]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
Export symbols for ZIL interface
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zap.h>
32 #include <sys/arc.h>
33 #include <sys/stat.h>
34 #include <sys/resource.h>
35 #include <sys/zil.h>
36 #include <sys/zil_impl.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/dmu_tx.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/metaslab.h>
42
43 /*
44 * The zfs intent log (ZIL) saves transaction records of system calls
45 * that change the file system in memory with enough information
46 * to be able to replay them. These are stored in memory until
47 * either the DMU transaction group (txg) commits them to the stable pool
48 * and they can be discarded, or they are flushed to the stable log
49 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
50 * requirement. In the event of a panic or power fail then those log
51 * records (transactions) are replayed.
52 *
53 * There is one ZIL per file system. Its on-disk (pool) format consists
54 * of 3 parts:
55 *
56 * - ZIL header
57 * - ZIL blocks
58 * - ZIL records
59 *
60 * A log record holds a system call transaction. Log blocks can
61 * hold many log records and the blocks are chained together.
62 * Each ZIL block contains a block pointer (blkptr_t) to the next
63 * ZIL block in the chain. The ZIL header points to the first
64 * block in the chain. Note there is not a fixed place in the pool
65 * to hold blocks. They are dynamically allocated and freed as
66 * needed from the blocks available. Figure X shows the ZIL structure:
67 */
68
69 /*
70 * See zil.h for more information about these fields.
71 */
72 zil_stats_t zil_stats = {
73 { "zil_commit_count", KSTAT_DATA_UINT64 },
74 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
75 { "zil_itx_count", KSTAT_DATA_UINT64 },
76 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
77 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
78 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
79 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
80 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
81 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
82 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
83 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
84 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
85 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
86 };
87
88 static kstat_t *zil_ksp;
89
90 /*
91 * Disable intent logging replay. This global ZIL switch affects all pools.
92 */
93 int zil_replay_disable = 0;
94
95 /*
96 * Tunable parameter for debugging or performance analysis. Setting
97 * zfs_nocacheflush will cause corruption on power loss if a volatile
98 * out-of-order write cache is enabled.
99 */
100 int zfs_nocacheflush = 0;
101
102 static kmem_cache_t *zil_lwb_cache;
103
104 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
105
106 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
107 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
108
109
110 /*
111 * ziltest is by and large an ugly hack, but very useful in
112 * checking replay without tedious work.
113 * When running ziltest we want to keep all itx's and so maintain
114 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
115 * We subtract TXG_CONCURRENT_STATES to allow for common code.
116 */
117 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
118
119 static int
120 zil_bp_compare(const void *x1, const void *x2)
121 {
122 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
123 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
124
125 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
126 return (-1);
127 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
128 return (1);
129
130 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
131 return (-1);
132 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
133 return (1);
134
135 return (0);
136 }
137
138 static void
139 zil_bp_tree_init(zilog_t *zilog)
140 {
141 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
142 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
143 }
144
145 static void
146 zil_bp_tree_fini(zilog_t *zilog)
147 {
148 avl_tree_t *t = &zilog->zl_bp_tree;
149 zil_bp_node_t *zn;
150 void *cookie = NULL;
151
152 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
153 kmem_free(zn, sizeof (zil_bp_node_t));
154
155 avl_destroy(t);
156 }
157
158 int
159 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
160 {
161 avl_tree_t *t = &zilog->zl_bp_tree;
162 const dva_t *dva;
163 zil_bp_node_t *zn;
164 avl_index_t where;
165
166 if (BP_IS_EMBEDDED(bp))
167 return (0);
168
169 dva = BP_IDENTITY(bp);
170
171 if (avl_find(t, dva, &where) != NULL)
172 return (SET_ERROR(EEXIST));
173
174 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_PUSHPAGE);
175 zn->zn_dva = *dva;
176 avl_insert(t, zn, where);
177
178 return (0);
179 }
180
181 static zil_header_t *
182 zil_header_in_syncing_context(zilog_t *zilog)
183 {
184 return ((zil_header_t *)zilog->zl_header);
185 }
186
187 static void
188 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
189 {
190 zio_cksum_t *zc = &bp->blk_cksum;
191
192 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
193 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
194 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
195 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
196 }
197
198 /*
199 * Read a log block and make sure it's valid.
200 */
201 static int
202 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
203 char **end)
204 {
205 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
206 uint32_t aflags = ARC_WAIT;
207 arc_buf_t *abuf = NULL;
208 zbookmark_phys_t zb;
209 int error;
210
211 if (zilog->zl_header->zh_claim_txg == 0)
212 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
213
214 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
215 zio_flags |= ZIO_FLAG_SPECULATIVE;
216
217 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
218 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
219
220 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
221 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
222
223 if (error == 0) {
224 zio_cksum_t cksum = bp->blk_cksum;
225
226 /*
227 * Validate the checksummed log block.
228 *
229 * Sequence numbers should be... sequential. The checksum
230 * verifier for the next block should be bp's checksum plus 1.
231 *
232 * Also check the log chain linkage and size used.
233 */
234 cksum.zc_word[ZIL_ZC_SEQ]++;
235
236 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
237 zil_chain_t *zilc = abuf->b_data;
238 char *lr = (char *)(zilc + 1);
239 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
240
241 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
242 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
243 error = SET_ERROR(ECKSUM);
244 } else {
245 bcopy(lr, dst, len);
246 *end = (char *)dst + len;
247 *nbp = zilc->zc_next_blk;
248 }
249 } else {
250 char *lr = abuf->b_data;
251 uint64_t size = BP_GET_LSIZE(bp);
252 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
253
254 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
255 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
256 (zilc->zc_nused > (size - sizeof (*zilc)))) {
257 error = SET_ERROR(ECKSUM);
258 } else {
259 bcopy(lr, dst, zilc->zc_nused);
260 *end = (char *)dst + zilc->zc_nused;
261 *nbp = zilc->zc_next_blk;
262 }
263 }
264
265 VERIFY(arc_buf_remove_ref(abuf, &abuf));
266 }
267
268 return (error);
269 }
270
271 /*
272 * Read a TX_WRITE log data block.
273 */
274 static int
275 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
276 {
277 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
278 const blkptr_t *bp = &lr->lr_blkptr;
279 uint32_t aflags = ARC_WAIT;
280 arc_buf_t *abuf = NULL;
281 zbookmark_phys_t zb;
282 int error;
283
284 if (BP_IS_HOLE(bp)) {
285 if (wbuf != NULL)
286 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
287 return (0);
288 }
289
290 if (zilog->zl_header->zh_claim_txg == 0)
291 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
292
293 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
294 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
295
296 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
297 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
298
299 if (error == 0) {
300 if (wbuf != NULL)
301 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
302 (void) arc_buf_remove_ref(abuf, &abuf);
303 }
304
305 return (error);
306 }
307
308 /*
309 * Parse the intent log, and call parse_func for each valid record within.
310 */
311 int
312 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
313 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
314 {
315 const zil_header_t *zh = zilog->zl_header;
316 boolean_t claimed = !!zh->zh_claim_txg;
317 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
318 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
319 uint64_t max_blk_seq = 0;
320 uint64_t max_lr_seq = 0;
321 uint64_t blk_count = 0;
322 uint64_t lr_count = 0;
323 blkptr_t blk, next_blk;
324 char *lrbuf, *lrp;
325 int error = 0;
326
327 bzero(&next_blk, sizeof (blkptr_t));
328
329 /*
330 * Old logs didn't record the maximum zh_claim_lr_seq.
331 */
332 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
333 claim_lr_seq = UINT64_MAX;
334
335 /*
336 * Starting at the block pointed to by zh_log we read the log chain.
337 * For each block in the chain we strongly check that block to
338 * ensure its validity. We stop when an invalid block is found.
339 * For each block pointer in the chain we call parse_blk_func().
340 * For each record in each valid block we call parse_lr_func().
341 * If the log has been claimed, stop if we encounter a sequence
342 * number greater than the highest claimed sequence number.
343 */
344 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
345 zil_bp_tree_init(zilog);
346
347 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
348 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
349 int reclen;
350 char *end = NULL;
351
352 if (blk_seq > claim_blk_seq)
353 break;
354 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
355 break;
356 ASSERT3U(max_blk_seq, <, blk_seq);
357 max_blk_seq = blk_seq;
358 blk_count++;
359
360 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
361 break;
362
363 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
364 if (error != 0)
365 break;
366
367 for (lrp = lrbuf; lrp < end; lrp += reclen) {
368 lr_t *lr = (lr_t *)lrp;
369 reclen = lr->lrc_reclen;
370 ASSERT3U(reclen, >=, sizeof (lr_t));
371 if (lr->lrc_seq > claim_lr_seq)
372 goto done;
373 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
374 goto done;
375 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
376 max_lr_seq = lr->lrc_seq;
377 lr_count++;
378 }
379 }
380 done:
381 zilog->zl_parse_error = error;
382 zilog->zl_parse_blk_seq = max_blk_seq;
383 zilog->zl_parse_lr_seq = max_lr_seq;
384 zilog->zl_parse_blk_count = blk_count;
385 zilog->zl_parse_lr_count = lr_count;
386
387 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
388 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
389
390 zil_bp_tree_fini(zilog);
391 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
392
393 return (error);
394 }
395
396 static int
397 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
398 {
399 /*
400 * Claim log block if not already committed and not already claimed.
401 * If tx == NULL, just verify that the block is claimable.
402 */
403 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
404 zil_bp_tree_add(zilog, bp) != 0)
405 return (0);
406
407 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
408 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
409 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
410 }
411
412 static int
413 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
414 {
415 lr_write_t *lr = (lr_write_t *)lrc;
416 int error;
417
418 if (lrc->lrc_txtype != TX_WRITE)
419 return (0);
420
421 /*
422 * If the block is not readable, don't claim it. This can happen
423 * in normal operation when a log block is written to disk before
424 * some of the dmu_sync() blocks it points to. In this case, the
425 * transaction cannot have been committed to anyone (we would have
426 * waited for all writes to be stable first), so it is semantically
427 * correct to declare this the end of the log.
428 */
429 if (lr->lr_blkptr.blk_birth >= first_txg &&
430 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
431 return (error);
432 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
433 }
434
435 /* ARGSUSED */
436 static int
437 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
438 {
439 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
440
441 return (0);
442 }
443
444 static int
445 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
446 {
447 lr_write_t *lr = (lr_write_t *)lrc;
448 blkptr_t *bp = &lr->lr_blkptr;
449
450 /*
451 * If we previously claimed it, we need to free it.
452 */
453 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
454 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
455 !BP_IS_HOLE(bp))
456 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
457
458 return (0);
459 }
460
461 static lwb_t *
462 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg, boolean_t fastwrite)
463 {
464 lwb_t *lwb;
465
466 lwb = kmem_cache_alloc(zil_lwb_cache, KM_PUSHPAGE);
467 lwb->lwb_zilog = zilog;
468 lwb->lwb_blk = *bp;
469 lwb->lwb_fastwrite = fastwrite;
470 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
471 lwb->lwb_max_txg = txg;
472 lwb->lwb_zio = NULL;
473 lwb->lwb_tx = NULL;
474 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
475 lwb->lwb_nused = sizeof (zil_chain_t);
476 lwb->lwb_sz = BP_GET_LSIZE(bp);
477 } else {
478 lwb->lwb_nused = 0;
479 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
480 }
481
482 mutex_enter(&zilog->zl_lock);
483 list_insert_tail(&zilog->zl_lwb_list, lwb);
484 mutex_exit(&zilog->zl_lock);
485
486 return (lwb);
487 }
488
489 /*
490 * Called when we create in-memory log transactions so that we know
491 * to cleanup the itxs at the end of spa_sync().
492 */
493 void
494 zilog_dirty(zilog_t *zilog, uint64_t txg)
495 {
496 dsl_pool_t *dp = zilog->zl_dmu_pool;
497 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
498
499 if (dsl_dataset_is_snapshot(ds))
500 panic("dirtying snapshot!");
501
502 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
503 /* up the hold count until we can be written out */
504 dmu_buf_add_ref(ds->ds_dbuf, zilog);
505 }
506 }
507
508 boolean_t
509 zilog_is_dirty(zilog_t *zilog)
510 {
511 dsl_pool_t *dp = zilog->zl_dmu_pool;
512 int t;
513
514 for (t = 0; t < TXG_SIZE; t++) {
515 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
516 return (B_TRUE);
517 }
518 return (B_FALSE);
519 }
520
521 /*
522 * Create an on-disk intent log.
523 */
524 static lwb_t *
525 zil_create(zilog_t *zilog)
526 {
527 const zil_header_t *zh = zilog->zl_header;
528 lwb_t *lwb = NULL;
529 uint64_t txg = 0;
530 dmu_tx_t *tx = NULL;
531 blkptr_t blk;
532 int error = 0;
533 boolean_t fastwrite = FALSE;
534
535 /*
536 * Wait for any previous destroy to complete.
537 */
538 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
539
540 ASSERT(zh->zh_claim_txg == 0);
541 ASSERT(zh->zh_replay_seq == 0);
542
543 blk = zh->zh_log;
544
545 /*
546 * Allocate an initial log block if:
547 * - there isn't one already
548 * - the existing block is the wrong endianess
549 */
550 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
551 tx = dmu_tx_create(zilog->zl_os);
552 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
553 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
554 txg = dmu_tx_get_txg(tx);
555
556 if (!BP_IS_HOLE(&blk)) {
557 zio_free_zil(zilog->zl_spa, txg, &blk);
558 BP_ZERO(&blk);
559 }
560
561 error = zio_alloc_zil(zilog->zl_spa, txg, &blk,
562 ZIL_MIN_BLKSZ, B_TRUE);
563 fastwrite = TRUE;
564
565 if (error == 0)
566 zil_init_log_chain(zilog, &blk);
567 }
568
569 /*
570 * Allocate a log write buffer (lwb) for the first log block.
571 */
572 if (error == 0)
573 lwb = zil_alloc_lwb(zilog, &blk, txg, fastwrite);
574
575 /*
576 * If we just allocated the first log block, commit our transaction
577 * and wait for zil_sync() to stuff the block poiner into zh_log.
578 * (zh is part of the MOS, so we cannot modify it in open context.)
579 */
580 if (tx != NULL) {
581 dmu_tx_commit(tx);
582 txg_wait_synced(zilog->zl_dmu_pool, txg);
583 }
584
585 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
586
587 return (lwb);
588 }
589
590 /*
591 * In one tx, free all log blocks and clear the log header.
592 * If keep_first is set, then we're replaying a log with no content.
593 * We want to keep the first block, however, so that the first
594 * synchronous transaction doesn't require a txg_wait_synced()
595 * in zil_create(). We don't need to txg_wait_synced() here either
596 * when keep_first is set, because both zil_create() and zil_destroy()
597 * will wait for any in-progress destroys to complete.
598 */
599 void
600 zil_destroy(zilog_t *zilog, boolean_t keep_first)
601 {
602 const zil_header_t *zh = zilog->zl_header;
603 lwb_t *lwb;
604 dmu_tx_t *tx;
605 uint64_t txg;
606
607 /*
608 * Wait for any previous destroy to complete.
609 */
610 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
611
612 zilog->zl_old_header = *zh; /* debugging aid */
613
614 if (BP_IS_HOLE(&zh->zh_log))
615 return;
616
617 tx = dmu_tx_create(zilog->zl_os);
618 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
619 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
620 txg = dmu_tx_get_txg(tx);
621
622 mutex_enter(&zilog->zl_lock);
623
624 ASSERT3U(zilog->zl_destroy_txg, <, txg);
625 zilog->zl_destroy_txg = txg;
626 zilog->zl_keep_first = keep_first;
627
628 if (!list_is_empty(&zilog->zl_lwb_list)) {
629 ASSERT(zh->zh_claim_txg == 0);
630 VERIFY(!keep_first);
631 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
632 ASSERT(lwb->lwb_zio == NULL);
633 if (lwb->lwb_fastwrite)
634 metaslab_fastwrite_unmark(zilog->zl_spa,
635 &lwb->lwb_blk);
636 list_remove(&zilog->zl_lwb_list, lwb);
637 if (lwb->lwb_buf != NULL)
638 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
639 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
640 kmem_cache_free(zil_lwb_cache, lwb);
641 }
642 } else if (!keep_first) {
643 zil_destroy_sync(zilog, tx);
644 }
645 mutex_exit(&zilog->zl_lock);
646
647 dmu_tx_commit(tx);
648 }
649
650 void
651 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
652 {
653 ASSERT(list_is_empty(&zilog->zl_lwb_list));
654 (void) zil_parse(zilog, zil_free_log_block,
655 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
656 }
657
658 int
659 zil_claim(const char *osname, void *txarg)
660 {
661 dmu_tx_t *tx = txarg;
662 uint64_t first_txg = dmu_tx_get_txg(tx);
663 zilog_t *zilog;
664 zil_header_t *zh;
665 objset_t *os;
666 int error;
667
668 error = dmu_objset_own(osname, DMU_OST_ANY, B_FALSE, FTAG, &os);
669 if (error != 0) {
670 /*
671 * EBUSY indicates that the objset is inconsistent, in which
672 * case it can not have a ZIL.
673 */
674 if (error != EBUSY) {
675 cmn_err(CE_WARN, "can't open objset for %s, error %u",
676 osname, error);
677 }
678
679 return (0);
680 }
681
682 zilog = dmu_objset_zil(os);
683 zh = zil_header_in_syncing_context(zilog);
684
685 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
686 if (!BP_IS_HOLE(&zh->zh_log))
687 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
688 BP_ZERO(&zh->zh_log);
689 dsl_dataset_dirty(dmu_objset_ds(os), tx);
690 dmu_objset_disown(os, FTAG);
691 return (0);
692 }
693
694 /*
695 * Claim all log blocks if we haven't already done so, and remember
696 * the highest claimed sequence number. This ensures that if we can
697 * read only part of the log now (e.g. due to a missing device),
698 * but we can read the entire log later, we will not try to replay
699 * or destroy beyond the last block we successfully claimed.
700 */
701 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
702 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
703 (void) zil_parse(zilog, zil_claim_log_block,
704 zil_claim_log_record, tx, first_txg);
705 zh->zh_claim_txg = first_txg;
706 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
707 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
708 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
709 zh->zh_flags |= ZIL_REPLAY_NEEDED;
710 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
711 dsl_dataset_dirty(dmu_objset_ds(os), tx);
712 }
713
714 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
715 dmu_objset_disown(os, FTAG);
716 return (0);
717 }
718
719 /*
720 * Check the log by walking the log chain.
721 * Checksum errors are ok as they indicate the end of the chain.
722 * Any other error (no device or read failure) returns an error.
723 */
724 int
725 zil_check_log_chain(const char *osname, void *tx)
726 {
727 zilog_t *zilog;
728 objset_t *os;
729 blkptr_t *bp;
730 int error;
731
732 ASSERT(tx == NULL);
733
734 error = dmu_objset_hold(osname, FTAG, &os);
735 if (error != 0) {
736 cmn_err(CE_WARN, "can't open objset for %s", osname);
737 return (0);
738 }
739
740 zilog = dmu_objset_zil(os);
741 bp = (blkptr_t *)&zilog->zl_header->zh_log;
742
743 /*
744 * Check the first block and determine if it's on a log device
745 * which may have been removed or faulted prior to loading this
746 * pool. If so, there's no point in checking the rest of the log
747 * as its content should have already been synced to the pool.
748 */
749 if (!BP_IS_HOLE(bp)) {
750 vdev_t *vd;
751 boolean_t valid = B_TRUE;
752
753 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
754 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
755 if (vd->vdev_islog && vdev_is_dead(vd))
756 valid = vdev_log_state_valid(vd);
757 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
758
759 if (!valid) {
760 dmu_objset_rele(os, FTAG);
761 return (0);
762 }
763 }
764
765 /*
766 * Because tx == NULL, zil_claim_log_block() will not actually claim
767 * any blocks, but just determine whether it is possible to do so.
768 * In addition to checking the log chain, zil_claim_log_block()
769 * will invoke zio_claim() with a done func of spa_claim_notify(),
770 * which will update spa_max_claim_txg. See spa_load() for details.
771 */
772 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
773 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
774
775 dmu_objset_rele(os, FTAG);
776
777 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
778 }
779
780 static int
781 zil_vdev_compare(const void *x1, const void *x2)
782 {
783 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
784 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
785
786 if (v1 < v2)
787 return (-1);
788 if (v1 > v2)
789 return (1);
790
791 return (0);
792 }
793
794 void
795 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
796 {
797 avl_tree_t *t = &zilog->zl_vdev_tree;
798 avl_index_t where;
799 zil_vdev_node_t *zv, zvsearch;
800 int ndvas = BP_GET_NDVAS(bp);
801 int i;
802
803 if (zfs_nocacheflush)
804 return;
805
806 ASSERT(zilog->zl_writer);
807
808 /*
809 * Even though we're zl_writer, we still need a lock because the
810 * zl_get_data() callbacks may have dmu_sync() done callbacks
811 * that will run concurrently.
812 */
813 mutex_enter(&zilog->zl_vdev_lock);
814 for (i = 0; i < ndvas; i++) {
815 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
816 if (avl_find(t, &zvsearch, &where) == NULL) {
817 zv = kmem_alloc(sizeof (*zv), KM_PUSHPAGE);
818 zv->zv_vdev = zvsearch.zv_vdev;
819 avl_insert(t, zv, where);
820 }
821 }
822 mutex_exit(&zilog->zl_vdev_lock);
823 }
824
825 static void
826 zil_flush_vdevs(zilog_t *zilog)
827 {
828 spa_t *spa = zilog->zl_spa;
829 avl_tree_t *t = &zilog->zl_vdev_tree;
830 void *cookie = NULL;
831 zil_vdev_node_t *zv;
832 zio_t *zio;
833
834 ASSERT(zilog->zl_writer);
835
836 /*
837 * We don't need zl_vdev_lock here because we're the zl_writer,
838 * and all zl_get_data() callbacks are done.
839 */
840 if (avl_numnodes(t) == 0)
841 return;
842
843 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
844
845 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
846
847 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
848 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
849 if (vd != NULL)
850 zio_flush(zio, vd);
851 kmem_free(zv, sizeof (*zv));
852 }
853
854 /*
855 * Wait for all the flushes to complete. Not all devices actually
856 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
857 */
858 (void) zio_wait(zio);
859
860 spa_config_exit(spa, SCL_STATE, FTAG);
861 }
862
863 /*
864 * Function called when a log block write completes
865 */
866 static void
867 zil_lwb_write_done(zio_t *zio)
868 {
869 lwb_t *lwb = zio->io_private;
870 zilog_t *zilog = lwb->lwb_zilog;
871 dmu_tx_t *tx = lwb->lwb_tx;
872
873 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
874 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
875 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
876 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
877 ASSERT(!BP_IS_GANG(zio->io_bp));
878 ASSERT(!BP_IS_HOLE(zio->io_bp));
879 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
880
881 /*
882 * Ensure the lwb buffer pointer is cleared before releasing
883 * the txg. If we have had an allocation failure and
884 * the txg is waiting to sync then we want want zil_sync()
885 * to remove the lwb so that it's not picked up as the next new
886 * one in zil_commit_writer(). zil_sync() will only remove
887 * the lwb if lwb_buf is null.
888 */
889 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
890 mutex_enter(&zilog->zl_lock);
891 lwb->lwb_zio = NULL;
892 lwb->lwb_fastwrite = FALSE;
893 lwb->lwb_buf = NULL;
894 lwb->lwb_tx = NULL;
895 mutex_exit(&zilog->zl_lock);
896
897 /*
898 * Now that we've written this log block, we have a stable pointer
899 * to the next block in the chain, so it's OK to let the txg in
900 * which we allocated the next block sync.
901 */
902 dmu_tx_commit(tx);
903 }
904
905 /*
906 * Initialize the io for a log block.
907 */
908 static void
909 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
910 {
911 zbookmark_phys_t zb;
912
913 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
914 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
915 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
916
917 if (zilog->zl_root_zio == NULL) {
918 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
919 ZIO_FLAG_CANFAIL);
920 }
921
922 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
923 mutex_enter(&zilog->zl_lock);
924 if (lwb->lwb_zio == NULL) {
925 if (!lwb->lwb_fastwrite) {
926 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
927 lwb->lwb_fastwrite = 1;
928 }
929 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
930 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
931 zil_lwb_write_done, lwb, ZIO_PRIORITY_SYNC_WRITE,
932 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
933 ZIO_FLAG_FASTWRITE, &zb);
934 }
935 mutex_exit(&zilog->zl_lock);
936 }
937
938 /*
939 * Define a limited set of intent log block sizes.
940 *
941 * These must be a multiple of 4KB. Note only the amount used (again
942 * aligned to 4KB) actually gets written. However, we can't always just
943 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
944 */
945 uint64_t zil_block_buckets[] = {
946 4096, /* non TX_WRITE */
947 8192+4096, /* data base */
948 32*1024 + 4096, /* NFS writes */
949 UINT64_MAX
950 };
951
952 /*
953 * Use the slog as long as the current commit size is less than the
954 * limit or the total list size is less than 2X the limit. Limit
955 * checking is disabled by setting zil_slog_limit to UINT64_MAX.
956 */
957 unsigned long zil_slog_limit = 1024 * 1024;
958 #define USE_SLOG(zilog) (((zilog)->zl_cur_used < zil_slog_limit) || \
959 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1)))
960
961 /*
962 * Start a log block write and advance to the next log block.
963 * Calls are serialized.
964 */
965 static lwb_t *
966 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
967 {
968 lwb_t *nlwb = NULL;
969 zil_chain_t *zilc;
970 spa_t *spa = zilog->zl_spa;
971 blkptr_t *bp;
972 dmu_tx_t *tx;
973 uint64_t txg;
974 uint64_t zil_blksz, wsz;
975 int i, error;
976 boolean_t use_slog;
977
978 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
979 zilc = (zil_chain_t *)lwb->lwb_buf;
980 bp = &zilc->zc_next_blk;
981 } else {
982 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
983 bp = &zilc->zc_next_blk;
984 }
985
986 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
987
988 /*
989 * Allocate the next block and save its address in this block
990 * before writing it in order to establish the log chain.
991 * Note that if the allocation of nlwb synced before we wrote
992 * the block that points at it (lwb), we'd leak it if we crashed.
993 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
994 * We dirty the dataset to ensure that zil_sync() will be called
995 * to clean up in the event of allocation failure or I/O failure.
996 */
997 tx = dmu_tx_create(zilog->zl_os);
998 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
999 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1000 txg = dmu_tx_get_txg(tx);
1001
1002 lwb->lwb_tx = tx;
1003
1004 /*
1005 * Log blocks are pre-allocated. Here we select the size of the next
1006 * block, based on size used in the last block.
1007 * - first find the smallest bucket that will fit the block from a
1008 * limited set of block sizes. This is because it's faster to write
1009 * blocks allocated from the same metaslab as they are adjacent or
1010 * close.
1011 * - next find the maximum from the new suggested size and an array of
1012 * previous sizes. This lessens a picket fence effect of wrongly
1013 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1014 * requests.
1015 *
1016 * Note we only write what is used, but we can't just allocate
1017 * the maximum block size because we can exhaust the available
1018 * pool log space.
1019 */
1020 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1021 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1022 continue;
1023 zil_blksz = zil_block_buckets[i];
1024 if (zil_blksz == UINT64_MAX)
1025 zil_blksz = SPA_MAXBLOCKSIZE;
1026 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1027 for (i = 0; i < ZIL_PREV_BLKS; i++)
1028 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1029 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1030
1031 BP_ZERO(bp);
1032 use_slog = USE_SLOG(zilog);
1033 error = zio_alloc_zil(spa, txg, bp, zil_blksz,
1034 USE_SLOG(zilog));
1035 if (use_slog) {
1036 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1037 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1038 } else {
1039 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1040 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1041 }
1042 if (error == 0) {
1043 ASSERT3U(bp->blk_birth, ==, txg);
1044 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1045 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1046
1047 /*
1048 * Allocate a new log write buffer (lwb).
1049 */
1050 nlwb = zil_alloc_lwb(zilog, bp, txg, TRUE);
1051
1052 /* Record the block for later vdev flushing */
1053 zil_add_block(zilog, &lwb->lwb_blk);
1054 }
1055
1056 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1057 /* For Slim ZIL only write what is used. */
1058 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1059 ASSERT3U(wsz, <=, lwb->lwb_sz);
1060 zio_shrink(lwb->lwb_zio, wsz);
1061
1062 } else {
1063 wsz = lwb->lwb_sz;
1064 }
1065
1066 zilc->zc_pad = 0;
1067 zilc->zc_nused = lwb->lwb_nused;
1068 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1069
1070 /*
1071 * clear unused data for security
1072 */
1073 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1074
1075 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1076
1077 /*
1078 * If there was an allocation failure then nlwb will be null which
1079 * forces a txg_wait_synced().
1080 */
1081 return (nlwb);
1082 }
1083
1084 static lwb_t *
1085 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1086 {
1087 lr_t *lrc = &itx->itx_lr; /* common log record */
1088 lr_write_t *lrw = (lr_write_t *)lrc;
1089 char *lr_buf;
1090 uint64_t txg = lrc->lrc_txg;
1091 uint64_t reclen = lrc->lrc_reclen;
1092 uint64_t dlen = 0;
1093
1094 if (lwb == NULL)
1095 return (NULL);
1096
1097 ASSERT(lwb->lwb_buf != NULL);
1098 ASSERT(zilog_is_dirty(zilog) ||
1099 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1100
1101 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
1102 dlen = P2ROUNDUP_TYPED(
1103 lrw->lr_length, sizeof (uint64_t), uint64_t);
1104
1105 zilog->zl_cur_used += (reclen + dlen);
1106
1107 zil_lwb_write_init(zilog, lwb);
1108
1109 /*
1110 * If this record won't fit in the current log block, start a new one.
1111 */
1112 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1113 lwb = zil_lwb_write_start(zilog, lwb);
1114 if (lwb == NULL)
1115 return (NULL);
1116 zil_lwb_write_init(zilog, lwb);
1117 ASSERT(LWB_EMPTY(lwb));
1118 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1119 txg_wait_synced(zilog->zl_dmu_pool, txg);
1120 return (lwb);
1121 }
1122 }
1123
1124 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1125 bcopy(lrc, lr_buf, reclen);
1126 lrc = (lr_t *)lr_buf;
1127 lrw = (lr_write_t *)lrc;
1128
1129 ZIL_STAT_BUMP(zil_itx_count);
1130
1131 /*
1132 * If it's a write, fetch the data or get its blkptr as appropriate.
1133 */
1134 if (lrc->lrc_txtype == TX_WRITE) {
1135 if (txg > spa_freeze_txg(zilog->zl_spa))
1136 txg_wait_synced(zilog->zl_dmu_pool, txg);
1137 if (itx->itx_wr_state == WR_COPIED) {
1138 ZIL_STAT_BUMP(zil_itx_copied_count);
1139 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1140 } else {
1141 char *dbuf;
1142 int error;
1143
1144 if (dlen) {
1145 ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1146 dbuf = lr_buf + reclen;
1147 lrw->lr_common.lrc_reclen += dlen;
1148 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1149 ZIL_STAT_INCR(zil_itx_needcopy_bytes,
1150 lrw->lr_length);
1151 } else {
1152 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1153 dbuf = NULL;
1154 ZIL_STAT_BUMP(zil_itx_indirect_count);
1155 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1156 lrw->lr_length);
1157 }
1158 error = zilog->zl_get_data(
1159 itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1160 if (error == EIO) {
1161 txg_wait_synced(zilog->zl_dmu_pool, txg);
1162 return (lwb);
1163 }
1164 if (error != 0) {
1165 ASSERT(error == ENOENT || error == EEXIST ||
1166 error == EALREADY);
1167 return (lwb);
1168 }
1169 }
1170 }
1171
1172 /*
1173 * We're actually making an entry, so update lrc_seq to be the
1174 * log record sequence number. Note that this is generally not
1175 * equal to the itx sequence number because not all transactions
1176 * are synchronous, and sometimes spa_sync() gets there first.
1177 */
1178 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1179 lwb->lwb_nused += reclen + dlen;
1180 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1181 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1182 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1183
1184 return (lwb);
1185 }
1186
1187 itx_t *
1188 zil_itx_create(uint64_t txtype, size_t lrsize)
1189 {
1190 itx_t *itx;
1191
1192 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1193
1194 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize,
1195 KM_PUSHPAGE | KM_NODEBUG);
1196 itx->itx_lr.lrc_txtype = txtype;
1197 itx->itx_lr.lrc_reclen = lrsize;
1198 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1199 itx->itx_lr.lrc_seq = 0; /* defensive */
1200 itx->itx_sync = B_TRUE; /* default is synchronous */
1201 itx->itx_callback = NULL;
1202 itx->itx_callback_data = NULL;
1203
1204 return (itx);
1205 }
1206
1207 void
1208 zil_itx_destroy(itx_t *itx)
1209 {
1210 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1211 }
1212
1213 /*
1214 * Free up the sync and async itxs. The itxs_t has already been detached
1215 * so no locks are needed.
1216 */
1217 static void
1218 zil_itxg_clean(itxs_t *itxs)
1219 {
1220 itx_t *itx;
1221 list_t *list;
1222 avl_tree_t *t;
1223 void *cookie;
1224 itx_async_node_t *ian;
1225
1226 list = &itxs->i_sync_list;
1227 while ((itx = list_head(list)) != NULL) {
1228 if (itx->itx_callback != NULL)
1229 itx->itx_callback(itx->itx_callback_data);
1230 list_remove(list, itx);
1231 kmem_free(itx, offsetof(itx_t, itx_lr) +
1232 itx->itx_lr.lrc_reclen);
1233 }
1234
1235 cookie = NULL;
1236 t = &itxs->i_async_tree;
1237 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1238 list = &ian->ia_list;
1239 while ((itx = list_head(list)) != NULL) {
1240 if (itx->itx_callback != NULL)
1241 itx->itx_callback(itx->itx_callback_data);
1242 list_remove(list, itx);
1243 kmem_free(itx, offsetof(itx_t, itx_lr) +
1244 itx->itx_lr.lrc_reclen);
1245 }
1246 list_destroy(list);
1247 kmem_free(ian, sizeof (itx_async_node_t));
1248 }
1249 avl_destroy(t);
1250
1251 kmem_free(itxs, sizeof (itxs_t));
1252 }
1253
1254 static int
1255 zil_aitx_compare(const void *x1, const void *x2)
1256 {
1257 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1258 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1259
1260 if (o1 < o2)
1261 return (-1);
1262 if (o1 > o2)
1263 return (1);
1264
1265 return (0);
1266 }
1267
1268 /*
1269 * Remove all async itx with the given oid.
1270 */
1271 static void
1272 zil_remove_async(zilog_t *zilog, uint64_t oid)
1273 {
1274 uint64_t otxg, txg;
1275 itx_async_node_t *ian;
1276 avl_tree_t *t;
1277 avl_index_t where;
1278 list_t clean_list;
1279 itx_t *itx;
1280
1281 ASSERT(oid != 0);
1282 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1283
1284 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1285 otxg = ZILTEST_TXG;
1286 else
1287 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1288
1289 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1290 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1291
1292 mutex_enter(&itxg->itxg_lock);
1293 if (itxg->itxg_txg != txg) {
1294 mutex_exit(&itxg->itxg_lock);
1295 continue;
1296 }
1297
1298 /*
1299 * Locate the object node and append its list.
1300 */
1301 t = &itxg->itxg_itxs->i_async_tree;
1302 ian = avl_find(t, &oid, &where);
1303 if (ian != NULL)
1304 list_move_tail(&clean_list, &ian->ia_list);
1305 mutex_exit(&itxg->itxg_lock);
1306 }
1307 while ((itx = list_head(&clean_list)) != NULL) {
1308 if (itx->itx_callback != NULL)
1309 itx->itx_callback(itx->itx_callback_data);
1310 list_remove(&clean_list, itx);
1311 kmem_free(itx, offsetof(itx_t, itx_lr) +
1312 itx->itx_lr.lrc_reclen);
1313 }
1314 list_destroy(&clean_list);
1315 }
1316
1317 void
1318 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1319 {
1320 uint64_t txg;
1321 itxg_t *itxg;
1322 itxs_t *itxs, *clean = NULL;
1323
1324 /*
1325 * Object ids can be re-instantiated in the next txg so
1326 * remove any async transactions to avoid future leaks.
1327 * This can happen if a fsync occurs on the re-instantiated
1328 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1329 * the new file data and flushes a write record for the old object.
1330 */
1331 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1332 zil_remove_async(zilog, itx->itx_oid);
1333
1334 /*
1335 * Ensure the data of a renamed file is committed before the rename.
1336 */
1337 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1338 zil_async_to_sync(zilog, itx->itx_oid);
1339
1340 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1341 txg = ZILTEST_TXG;
1342 else
1343 txg = dmu_tx_get_txg(tx);
1344
1345 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1346 mutex_enter(&itxg->itxg_lock);
1347 itxs = itxg->itxg_itxs;
1348 if (itxg->itxg_txg != txg) {
1349 if (itxs != NULL) {
1350 /*
1351 * The zil_clean callback hasn't got around to cleaning
1352 * this itxg. Save the itxs for release below.
1353 * This should be rare.
1354 */
1355 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1356 itxg->itxg_sod = 0;
1357 clean = itxg->itxg_itxs;
1358 }
1359 ASSERT(itxg->itxg_sod == 0);
1360 itxg->itxg_txg = txg;
1361 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1362 KM_PUSHPAGE);
1363
1364 list_create(&itxs->i_sync_list, sizeof (itx_t),
1365 offsetof(itx_t, itx_node));
1366 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1367 sizeof (itx_async_node_t),
1368 offsetof(itx_async_node_t, ia_node));
1369 }
1370 if (itx->itx_sync) {
1371 list_insert_tail(&itxs->i_sync_list, itx);
1372 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1373 itxg->itxg_sod += itx->itx_sod;
1374 } else {
1375 avl_tree_t *t = &itxs->i_async_tree;
1376 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1377 itx_async_node_t *ian;
1378 avl_index_t where;
1379
1380 ian = avl_find(t, &foid, &where);
1381 if (ian == NULL) {
1382 ian = kmem_alloc(sizeof (itx_async_node_t),
1383 KM_PUSHPAGE);
1384 list_create(&ian->ia_list, sizeof (itx_t),
1385 offsetof(itx_t, itx_node));
1386 ian->ia_foid = foid;
1387 avl_insert(t, ian, where);
1388 }
1389 list_insert_tail(&ian->ia_list, itx);
1390 }
1391
1392 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1393 zilog_dirty(zilog, txg);
1394 mutex_exit(&itxg->itxg_lock);
1395
1396 /* Release the old itxs now we've dropped the lock */
1397 if (clean != NULL)
1398 zil_itxg_clean(clean);
1399 }
1400
1401 /*
1402 * If there are any in-memory intent log transactions which have now been
1403 * synced then start up a taskq to free them. We should only do this after we
1404 * have written out the uberblocks (i.e. txg has been comitted) so that
1405 * don't inadvertently clean out in-memory log records that would be required
1406 * by zil_commit().
1407 */
1408 void
1409 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1410 {
1411 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1412 itxs_t *clean_me;
1413
1414 mutex_enter(&itxg->itxg_lock);
1415 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1416 mutex_exit(&itxg->itxg_lock);
1417 return;
1418 }
1419 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1420 ASSERT(itxg->itxg_txg != 0);
1421 ASSERT(zilog->zl_clean_taskq != NULL);
1422 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1423 itxg->itxg_sod = 0;
1424 clean_me = itxg->itxg_itxs;
1425 itxg->itxg_itxs = NULL;
1426 itxg->itxg_txg = 0;
1427 mutex_exit(&itxg->itxg_lock);
1428 /*
1429 * Preferably start a task queue to free up the old itxs but
1430 * if taskq_dispatch can't allocate resources to do that then
1431 * free it in-line. This should be rare. Note, using TQ_SLEEP
1432 * created a bad performance problem.
1433 */
1434 if (taskq_dispatch(zilog->zl_clean_taskq,
1435 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1436 zil_itxg_clean(clean_me);
1437 }
1438
1439 /*
1440 * Get the list of itxs to commit into zl_itx_commit_list.
1441 */
1442 static void
1443 zil_get_commit_list(zilog_t *zilog)
1444 {
1445 uint64_t otxg, txg;
1446 list_t *commit_list = &zilog->zl_itx_commit_list;
1447 uint64_t push_sod = 0;
1448
1449 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1450 otxg = ZILTEST_TXG;
1451 else
1452 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1453
1454 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1455 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1456
1457 mutex_enter(&itxg->itxg_lock);
1458 if (itxg->itxg_txg != txg) {
1459 mutex_exit(&itxg->itxg_lock);
1460 continue;
1461 }
1462
1463 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1464 push_sod += itxg->itxg_sod;
1465 itxg->itxg_sod = 0;
1466
1467 mutex_exit(&itxg->itxg_lock);
1468 }
1469 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1470 }
1471
1472 /*
1473 * Move the async itxs for a specified object to commit into sync lists.
1474 */
1475 static void
1476 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1477 {
1478 uint64_t otxg, txg;
1479 itx_async_node_t *ian;
1480 avl_tree_t *t;
1481 avl_index_t where;
1482
1483 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1484 otxg = ZILTEST_TXG;
1485 else
1486 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1487
1488 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1489 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1490
1491 mutex_enter(&itxg->itxg_lock);
1492 if (itxg->itxg_txg != txg) {
1493 mutex_exit(&itxg->itxg_lock);
1494 continue;
1495 }
1496
1497 /*
1498 * If a foid is specified then find that node and append its
1499 * list. Otherwise walk the tree appending all the lists
1500 * to the sync list. We add to the end rather than the
1501 * beginning to ensure the create has happened.
1502 */
1503 t = &itxg->itxg_itxs->i_async_tree;
1504 if (foid != 0) {
1505 ian = avl_find(t, &foid, &where);
1506 if (ian != NULL) {
1507 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1508 &ian->ia_list);
1509 }
1510 } else {
1511 void *cookie = NULL;
1512
1513 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1514 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1515 &ian->ia_list);
1516 list_destroy(&ian->ia_list);
1517 kmem_free(ian, sizeof (itx_async_node_t));
1518 }
1519 }
1520 mutex_exit(&itxg->itxg_lock);
1521 }
1522 }
1523
1524 static void
1525 zil_commit_writer(zilog_t *zilog)
1526 {
1527 uint64_t txg;
1528 itx_t *itx;
1529 lwb_t *lwb;
1530 spa_t *spa = zilog->zl_spa;
1531 int error = 0;
1532
1533 ASSERT(zilog->zl_root_zio == NULL);
1534
1535 mutex_exit(&zilog->zl_lock);
1536
1537 zil_get_commit_list(zilog);
1538
1539 /*
1540 * Return if there's nothing to commit before we dirty the fs by
1541 * calling zil_create().
1542 */
1543 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1544 mutex_enter(&zilog->zl_lock);
1545 return;
1546 }
1547
1548 if (zilog->zl_suspend) {
1549 lwb = NULL;
1550 } else {
1551 lwb = list_tail(&zilog->zl_lwb_list);
1552 if (lwb == NULL)
1553 lwb = zil_create(zilog);
1554 }
1555
1556 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1557 for (itx = list_head(&zilog->zl_itx_commit_list); itx != NULL;
1558 itx = list_next(&zilog->zl_itx_commit_list, itx)) {
1559 txg = itx->itx_lr.lrc_txg;
1560 ASSERT(txg);
1561
1562 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1563 lwb = zil_lwb_commit(zilog, itx, lwb);
1564 }
1565 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1566
1567 /* write the last block out */
1568 if (lwb != NULL && lwb->lwb_zio != NULL)
1569 lwb = zil_lwb_write_start(zilog, lwb);
1570
1571 zilog->zl_cur_used = 0;
1572
1573 /*
1574 * Wait if necessary for the log blocks to be on stable storage.
1575 */
1576 if (zilog->zl_root_zio) {
1577 error = zio_wait(zilog->zl_root_zio);
1578 zilog->zl_root_zio = NULL;
1579 zil_flush_vdevs(zilog);
1580 }
1581
1582 if (error || lwb == NULL)
1583 txg_wait_synced(zilog->zl_dmu_pool, 0);
1584
1585 while ((itx = list_head(&zilog->zl_itx_commit_list))) {
1586 txg = itx->itx_lr.lrc_txg;
1587 ASSERT(txg);
1588
1589 if (itx->itx_callback != NULL)
1590 itx->itx_callback(itx->itx_callback_data);
1591 list_remove(&zilog->zl_itx_commit_list, itx);
1592 kmem_free(itx, offsetof(itx_t, itx_lr)
1593 + itx->itx_lr.lrc_reclen);
1594 }
1595
1596 mutex_enter(&zilog->zl_lock);
1597
1598 /*
1599 * Remember the highest committed log sequence number for ztest.
1600 * We only update this value when all the log writes succeeded,
1601 * because ztest wants to ASSERT that it got the whole log chain.
1602 */
1603 if (error == 0 && lwb != NULL)
1604 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1605 }
1606
1607 /*
1608 * Commit zfs transactions to stable storage.
1609 * If foid is 0 push out all transactions, otherwise push only those
1610 * for that object or might reference that object.
1611 *
1612 * itxs are committed in batches. In a heavily stressed zil there will be
1613 * a commit writer thread who is writing out a bunch of itxs to the log
1614 * for a set of committing threads (cthreads) in the same batch as the writer.
1615 * Those cthreads are all waiting on the same cv for that batch.
1616 *
1617 * There will also be a different and growing batch of threads that are
1618 * waiting to commit (qthreads). When the committing batch completes
1619 * a transition occurs such that the cthreads exit and the qthreads become
1620 * cthreads. One of the new cthreads becomes the writer thread for the
1621 * batch. Any new threads arriving become new qthreads.
1622 *
1623 * Only 2 condition variables are needed and there's no transition
1624 * between the two cvs needed. They just flip-flop between qthreads
1625 * and cthreads.
1626 *
1627 * Using this scheme we can efficiently wakeup up only those threads
1628 * that have been committed.
1629 */
1630 void
1631 zil_commit(zilog_t *zilog, uint64_t foid)
1632 {
1633 uint64_t mybatch;
1634
1635 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1636 return;
1637
1638 ZIL_STAT_BUMP(zil_commit_count);
1639
1640 /* move the async itxs for the foid to the sync queues */
1641 zil_async_to_sync(zilog, foid);
1642
1643 mutex_enter(&zilog->zl_lock);
1644 mybatch = zilog->zl_next_batch;
1645 while (zilog->zl_writer) {
1646 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1647 if (mybatch <= zilog->zl_com_batch) {
1648 mutex_exit(&zilog->zl_lock);
1649 return;
1650 }
1651 }
1652
1653 zilog->zl_next_batch++;
1654 zilog->zl_writer = B_TRUE;
1655 ZIL_STAT_BUMP(zil_commit_writer_count);
1656 zil_commit_writer(zilog);
1657 zilog->zl_com_batch = mybatch;
1658 zilog->zl_writer = B_FALSE;
1659
1660 /* wake up one thread to become the next writer */
1661 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1662
1663 /* wake up all threads waiting for this batch to be committed */
1664 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1665
1666 mutex_exit(&zilog->zl_lock);
1667 }
1668
1669 /*
1670 * Called in syncing context to free committed log blocks and update log header.
1671 */
1672 void
1673 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1674 {
1675 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1676 uint64_t txg = dmu_tx_get_txg(tx);
1677 spa_t *spa = zilog->zl_spa;
1678 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1679 lwb_t *lwb;
1680
1681 /*
1682 * We don't zero out zl_destroy_txg, so make sure we don't try
1683 * to destroy it twice.
1684 */
1685 if (spa_sync_pass(spa) != 1)
1686 return;
1687
1688 mutex_enter(&zilog->zl_lock);
1689
1690 ASSERT(zilog->zl_stop_sync == 0);
1691
1692 if (*replayed_seq != 0) {
1693 ASSERT(zh->zh_replay_seq < *replayed_seq);
1694 zh->zh_replay_seq = *replayed_seq;
1695 *replayed_seq = 0;
1696 }
1697
1698 if (zilog->zl_destroy_txg == txg) {
1699 blkptr_t blk = zh->zh_log;
1700
1701 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1702
1703 bzero(zh, sizeof (zil_header_t));
1704 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1705
1706 if (zilog->zl_keep_first) {
1707 /*
1708 * If this block was part of log chain that couldn't
1709 * be claimed because a device was missing during
1710 * zil_claim(), but that device later returns,
1711 * then this block could erroneously appear valid.
1712 * To guard against this, assign a new GUID to the new
1713 * log chain so it doesn't matter what blk points to.
1714 */
1715 zil_init_log_chain(zilog, &blk);
1716 zh->zh_log = blk;
1717 }
1718 }
1719
1720 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1721 zh->zh_log = lwb->lwb_blk;
1722 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1723 break;
1724
1725 ASSERT(lwb->lwb_zio == NULL);
1726
1727 list_remove(&zilog->zl_lwb_list, lwb);
1728 zio_free_zil(spa, txg, &lwb->lwb_blk);
1729 kmem_cache_free(zil_lwb_cache, lwb);
1730
1731 /*
1732 * If we don't have anything left in the lwb list then
1733 * we've had an allocation failure and we need to zero
1734 * out the zil_header blkptr so that we don't end
1735 * up freeing the same block twice.
1736 */
1737 if (list_head(&zilog->zl_lwb_list) == NULL)
1738 BP_ZERO(&zh->zh_log);
1739 }
1740
1741 /*
1742 * Remove fastwrite on any blocks that have been pre-allocated for
1743 * the next commit. This prevents fastwrite counter pollution by
1744 * unused, long-lived LWBs.
1745 */
1746 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
1747 if (lwb->lwb_fastwrite && !lwb->lwb_zio) {
1748 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1749 lwb->lwb_fastwrite = 0;
1750 }
1751 }
1752
1753 mutex_exit(&zilog->zl_lock);
1754 }
1755
1756 void
1757 zil_init(void)
1758 {
1759 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1760 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1761
1762 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
1763 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
1764 KSTAT_FLAG_VIRTUAL);
1765
1766 if (zil_ksp != NULL) {
1767 zil_ksp->ks_data = &zil_stats;
1768 kstat_install(zil_ksp);
1769 }
1770 }
1771
1772 void
1773 zil_fini(void)
1774 {
1775 kmem_cache_destroy(zil_lwb_cache);
1776
1777 if (zil_ksp != NULL) {
1778 kstat_delete(zil_ksp);
1779 zil_ksp = NULL;
1780 }
1781 }
1782
1783 void
1784 zil_set_sync(zilog_t *zilog, uint64_t sync)
1785 {
1786 zilog->zl_sync = sync;
1787 }
1788
1789 void
1790 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1791 {
1792 zilog->zl_logbias = logbias;
1793 }
1794
1795 zilog_t *
1796 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1797 {
1798 zilog_t *zilog;
1799 int i;
1800
1801 zilog = kmem_zalloc(sizeof (zilog_t), KM_PUSHPAGE);
1802
1803 zilog->zl_header = zh_phys;
1804 zilog->zl_os = os;
1805 zilog->zl_spa = dmu_objset_spa(os);
1806 zilog->zl_dmu_pool = dmu_objset_pool(os);
1807 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1808 zilog->zl_logbias = dmu_objset_logbias(os);
1809 zilog->zl_sync = dmu_objset_syncprop(os);
1810 zilog->zl_next_batch = 1;
1811
1812 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1813
1814 for (i = 0; i < TXG_SIZE; i++) {
1815 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1816 MUTEX_DEFAULT, NULL);
1817 }
1818
1819 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1820 offsetof(lwb_t, lwb_node));
1821
1822 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1823 offsetof(itx_t, itx_node));
1824
1825 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1826
1827 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1828 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1829
1830 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1831 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1832 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1833 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1834
1835 return (zilog);
1836 }
1837
1838 void
1839 zil_free(zilog_t *zilog)
1840 {
1841 int i;
1842
1843 zilog->zl_stop_sync = 1;
1844
1845 ASSERT0(zilog->zl_suspend);
1846 ASSERT0(zilog->zl_suspending);
1847
1848 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1849 list_destroy(&zilog->zl_lwb_list);
1850
1851 avl_destroy(&zilog->zl_vdev_tree);
1852 mutex_destroy(&zilog->zl_vdev_lock);
1853
1854 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1855 list_destroy(&zilog->zl_itx_commit_list);
1856
1857 for (i = 0; i < TXG_SIZE; i++) {
1858 /*
1859 * It's possible for an itx to be generated that doesn't dirty
1860 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1861 * callback to remove the entry. We remove those here.
1862 *
1863 * Also free up the ziltest itxs.
1864 */
1865 if (zilog->zl_itxg[i].itxg_itxs)
1866 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1867 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1868 }
1869
1870 mutex_destroy(&zilog->zl_lock);
1871
1872 cv_destroy(&zilog->zl_cv_writer);
1873 cv_destroy(&zilog->zl_cv_suspend);
1874 cv_destroy(&zilog->zl_cv_batch[0]);
1875 cv_destroy(&zilog->zl_cv_batch[1]);
1876
1877 kmem_free(zilog, sizeof (zilog_t));
1878 }
1879
1880 /*
1881 * Open an intent log.
1882 */
1883 zilog_t *
1884 zil_open(objset_t *os, zil_get_data_t *get_data)
1885 {
1886 zilog_t *zilog = dmu_objset_zil(os);
1887
1888 ASSERT(zilog->zl_clean_taskq == NULL);
1889 ASSERT(zilog->zl_get_data == NULL);
1890 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1891
1892 zilog->zl_get_data = get_data;
1893 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1894 2, 2, TASKQ_PREPOPULATE);
1895
1896 return (zilog);
1897 }
1898
1899 /*
1900 * Close an intent log.
1901 */
1902 void
1903 zil_close(zilog_t *zilog)
1904 {
1905 lwb_t *lwb;
1906 uint64_t txg = 0;
1907
1908 zil_commit(zilog, 0); /* commit all itx */
1909
1910 /*
1911 * The lwb_max_txg for the stubby lwb will reflect the last activity
1912 * for the zil. After a txg_wait_synced() on the txg we know all the
1913 * callbacks have occurred that may clean the zil. Only then can we
1914 * destroy the zl_clean_taskq.
1915 */
1916 mutex_enter(&zilog->zl_lock);
1917 lwb = list_tail(&zilog->zl_lwb_list);
1918 if (lwb != NULL)
1919 txg = lwb->lwb_max_txg;
1920 mutex_exit(&zilog->zl_lock);
1921 if (txg)
1922 txg_wait_synced(zilog->zl_dmu_pool, txg);
1923 ASSERT(!zilog_is_dirty(zilog));
1924
1925 taskq_destroy(zilog->zl_clean_taskq);
1926 zilog->zl_clean_taskq = NULL;
1927 zilog->zl_get_data = NULL;
1928
1929 /*
1930 * We should have only one LWB left on the list; remove it now.
1931 */
1932 mutex_enter(&zilog->zl_lock);
1933 lwb = list_head(&zilog->zl_lwb_list);
1934 if (lwb != NULL) {
1935 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1936 ASSERT(lwb->lwb_zio == NULL);
1937 if (lwb->lwb_fastwrite)
1938 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1939 list_remove(&zilog->zl_lwb_list, lwb);
1940 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1941 kmem_cache_free(zil_lwb_cache, lwb);
1942 }
1943 mutex_exit(&zilog->zl_lock);
1944 }
1945
1946 static char *suspend_tag = "zil suspending";
1947
1948 /*
1949 * Suspend an intent log. While in suspended mode, we still honor
1950 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1951 * On old version pools, we suspend the log briefly when taking a
1952 * snapshot so that it will have an empty intent log.
1953 *
1954 * Long holds are not really intended to be used the way we do here --
1955 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
1956 * could fail. Therefore we take pains to only put a long hold if it is
1957 * actually necessary. Fortunately, it will only be necessary if the
1958 * objset is currently mounted (or the ZVOL equivalent). In that case it
1959 * will already have a long hold, so we are not really making things any worse.
1960 *
1961 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
1962 * zvol_state_t), and use their mechanism to prevent their hold from being
1963 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
1964 * very little gain.
1965 *
1966 * if cookiep == NULL, this does both the suspend & resume.
1967 * Otherwise, it returns with the dataset "long held", and the cookie
1968 * should be passed into zil_resume().
1969 */
1970 int
1971 zil_suspend(const char *osname, void **cookiep)
1972 {
1973 objset_t *os;
1974 zilog_t *zilog;
1975 const zil_header_t *zh;
1976 int error;
1977
1978 error = dmu_objset_hold(osname, suspend_tag, &os);
1979 if (error != 0)
1980 return (error);
1981 zilog = dmu_objset_zil(os);
1982
1983 mutex_enter(&zilog->zl_lock);
1984 zh = zilog->zl_header;
1985
1986 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
1987 mutex_exit(&zilog->zl_lock);
1988 dmu_objset_rele(os, suspend_tag);
1989 return (SET_ERROR(EBUSY));
1990 }
1991
1992 /*
1993 * Don't put a long hold in the cases where we can avoid it. This
1994 * is when there is no cookie so we are doing a suspend & resume
1995 * (i.e. called from zil_vdev_offline()), and there's nothing to do
1996 * for the suspend because it's already suspended, or there's no ZIL.
1997 */
1998 if (cookiep == NULL && !zilog->zl_suspending &&
1999 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2000 mutex_exit(&zilog->zl_lock);
2001 dmu_objset_rele(os, suspend_tag);
2002 return (0);
2003 }
2004
2005 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2006 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2007
2008 zilog->zl_suspend++;
2009
2010 if (zilog->zl_suspend > 1) {
2011 /*
2012 * Someone else is already suspending it.
2013 * Just wait for them to finish.
2014 */
2015
2016 while (zilog->zl_suspending)
2017 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2018 mutex_exit(&zilog->zl_lock);
2019
2020 if (cookiep == NULL)
2021 zil_resume(os);
2022 else
2023 *cookiep = os;
2024 return (0);
2025 }
2026
2027 /*
2028 * If there is no pointer to an on-disk block, this ZIL must not
2029 * be active (e.g. filesystem not mounted), so there's nothing
2030 * to clean up.
2031 */
2032 if (BP_IS_HOLE(&zh->zh_log)) {
2033 ASSERT(cookiep != NULL); /* fast path already handled */
2034
2035 *cookiep = os;
2036 mutex_exit(&zilog->zl_lock);
2037 return (0);
2038 }
2039
2040 zilog->zl_suspending = B_TRUE;
2041 mutex_exit(&zilog->zl_lock);
2042
2043 zil_commit(zilog, 0);
2044
2045 zil_destroy(zilog, B_FALSE);
2046
2047 mutex_enter(&zilog->zl_lock);
2048 zilog->zl_suspending = B_FALSE;
2049 cv_broadcast(&zilog->zl_cv_suspend);
2050 mutex_exit(&zilog->zl_lock);
2051
2052 if (cookiep == NULL)
2053 zil_resume(os);
2054 else
2055 *cookiep = os;
2056 return (0);
2057 }
2058
2059 void
2060 zil_resume(void *cookie)
2061 {
2062 objset_t *os = cookie;
2063 zilog_t *zilog = dmu_objset_zil(os);
2064
2065 mutex_enter(&zilog->zl_lock);
2066 ASSERT(zilog->zl_suspend != 0);
2067 zilog->zl_suspend--;
2068 mutex_exit(&zilog->zl_lock);
2069 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2070 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2071 }
2072
2073 typedef struct zil_replay_arg {
2074 zil_replay_func_t *zr_replay;
2075 void *zr_arg;
2076 boolean_t zr_byteswap;
2077 char *zr_lr;
2078 } zil_replay_arg_t;
2079
2080 static int
2081 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2082 {
2083 char name[MAXNAMELEN];
2084
2085 zilog->zl_replaying_seq--; /* didn't actually replay this one */
2086
2087 dmu_objset_name(zilog->zl_os, name);
2088
2089 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2090 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2091 (u_longlong_t)lr->lrc_seq,
2092 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2093 (lr->lrc_txtype & TX_CI) ? "CI" : "");
2094
2095 return (error);
2096 }
2097
2098 static int
2099 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2100 {
2101 zil_replay_arg_t *zr = zra;
2102 const zil_header_t *zh = zilog->zl_header;
2103 uint64_t reclen = lr->lrc_reclen;
2104 uint64_t txtype = lr->lrc_txtype;
2105 int error = 0;
2106
2107 zilog->zl_replaying_seq = lr->lrc_seq;
2108
2109 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
2110 return (0);
2111
2112 if (lr->lrc_txg < claim_txg) /* already committed */
2113 return (0);
2114
2115 /* Strip case-insensitive bit, still present in log record */
2116 txtype &= ~TX_CI;
2117
2118 if (txtype == 0 || txtype >= TX_MAX_TYPE)
2119 return (zil_replay_error(zilog, lr, EINVAL));
2120
2121 /*
2122 * If this record type can be logged out of order, the object
2123 * (lr_foid) may no longer exist. That's legitimate, not an error.
2124 */
2125 if (TX_OOO(txtype)) {
2126 error = dmu_object_info(zilog->zl_os,
2127 ((lr_ooo_t *)lr)->lr_foid, NULL);
2128 if (error == ENOENT || error == EEXIST)
2129 return (0);
2130 }
2131
2132 /*
2133 * Make a copy of the data so we can revise and extend it.
2134 */
2135 bcopy(lr, zr->zr_lr, reclen);
2136
2137 /*
2138 * If this is a TX_WRITE with a blkptr, suck in the data.
2139 */
2140 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2141 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2142 zr->zr_lr + reclen);
2143 if (error != 0)
2144 return (zil_replay_error(zilog, lr, error));
2145 }
2146
2147 /*
2148 * The log block containing this lr may have been byteswapped
2149 * so that we can easily examine common fields like lrc_txtype.
2150 * However, the log is a mix of different record types, and only the
2151 * replay vectors know how to byteswap their records. Therefore, if
2152 * the lr was byteswapped, undo it before invoking the replay vector.
2153 */
2154 if (zr->zr_byteswap)
2155 byteswap_uint64_array(zr->zr_lr, reclen);
2156
2157 /*
2158 * We must now do two things atomically: replay this log record,
2159 * and update the log header sequence number to reflect the fact that
2160 * we did so. At the end of each replay function the sequence number
2161 * is updated if we are in replay mode.
2162 */
2163 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2164 if (error != 0) {
2165 /*
2166 * The DMU's dnode layer doesn't see removes until the txg
2167 * commits, so a subsequent claim can spuriously fail with
2168 * EEXIST. So if we receive any error we try syncing out
2169 * any removes then retry the transaction. Note that we
2170 * specify B_FALSE for byteswap now, so we don't do it twice.
2171 */
2172 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2173 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2174 if (error != 0)
2175 return (zil_replay_error(zilog, lr, error));
2176 }
2177 return (0);
2178 }
2179
2180 /* ARGSUSED */
2181 static int
2182 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2183 {
2184 zilog->zl_replay_blks++;
2185
2186 return (0);
2187 }
2188
2189 /*
2190 * If this dataset has a non-empty intent log, replay it and destroy it.
2191 */
2192 void
2193 zil_replay(objset_t *os, void *arg, zil_replay_func_t replay_func[TX_MAX_TYPE])
2194 {
2195 zilog_t *zilog = dmu_objset_zil(os);
2196 const zil_header_t *zh = zilog->zl_header;
2197 zil_replay_arg_t zr;
2198
2199 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2200 zil_destroy(zilog, B_TRUE);
2201 return;
2202 }
2203
2204 zr.zr_replay = replay_func;
2205 zr.zr_arg = arg;
2206 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2207 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_PUSHPAGE);
2208
2209 /*
2210 * Wait for in-progress removes to sync before starting replay.
2211 */
2212 txg_wait_synced(zilog->zl_dmu_pool, 0);
2213
2214 zilog->zl_replay = B_TRUE;
2215 zilog->zl_replay_time = ddi_get_lbolt();
2216 ASSERT(zilog->zl_replay_blks == 0);
2217 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2218 zh->zh_claim_txg);
2219 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2220
2221 zil_destroy(zilog, B_FALSE);
2222 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2223 zilog->zl_replay = B_FALSE;
2224 }
2225
2226 boolean_t
2227 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2228 {
2229 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2230 return (B_TRUE);
2231
2232 if (zilog->zl_replay) {
2233 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2234 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2235 zilog->zl_replaying_seq;
2236 return (B_TRUE);
2237 }
2238
2239 return (B_FALSE);
2240 }
2241
2242 /* ARGSUSED */
2243 int
2244 zil_vdev_offline(const char *osname, void *arg)
2245 {
2246 int error;
2247
2248 error = zil_suspend(osname, NULL);
2249 if (error != 0)
2250 return (SET_ERROR(EEXIST));
2251 return (0);
2252 }
2253
2254 #if defined(_KERNEL) && defined(HAVE_SPL)
2255 EXPORT_SYMBOL(zil_alloc);
2256 EXPORT_SYMBOL(zil_free);
2257 EXPORT_SYMBOL(zil_open);
2258 EXPORT_SYMBOL(zil_close);
2259 EXPORT_SYMBOL(zil_replay);
2260 EXPORT_SYMBOL(zil_replaying);
2261 EXPORT_SYMBOL(zil_destroy);
2262 EXPORT_SYMBOL(zil_destroy_sync);
2263 EXPORT_SYMBOL(zil_itx_create);
2264 EXPORT_SYMBOL(zil_itx_destroy);
2265 EXPORT_SYMBOL(zil_itx_assign);
2266 EXPORT_SYMBOL(zil_commit);
2267 EXPORT_SYMBOL(zil_vdev_offline);
2268 EXPORT_SYMBOL(zil_claim);
2269 EXPORT_SYMBOL(zil_check_log_chain);
2270 EXPORT_SYMBOL(zil_sync);
2271 EXPORT_SYMBOL(zil_clean);
2272 EXPORT_SYMBOL(zil_suspend);
2273 EXPORT_SYMBOL(zil_resume);
2274 EXPORT_SYMBOL(zil_add_block);
2275 EXPORT_SYMBOL(zil_bp_tree_add);
2276 EXPORT_SYMBOL(zil_set_sync);
2277 EXPORT_SYMBOL(zil_set_logbias);
2278
2279 module_param(zil_replay_disable, int, 0644);
2280 MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
2281
2282 module_param(zfs_nocacheflush, int, 0644);
2283 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
2284
2285 module_param(zil_slog_limit, ulong, 0644);
2286 MODULE_PARM_DESC(zil_slog_limit, "Max commit bytes to separate log device");
2287 #endif