]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
Fix ENXIO from spa_ld_verify_logs() in ztest
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 * Copyright (c) 2018 Datto Inc.
26 */
27
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zil.h>
45 #include <sys/abd.h>
46
47 /*
48 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49 * calls that change the file system. Each itx has enough information to
50 * be able to replay them after a system crash, power loss, or
51 * equivalent failure mode. These are stored in memory until either:
52 *
53 * 1. they are committed to the pool by the DMU transaction group
54 * (txg), at which point they can be discarded; or
55 * 2. they are committed to the on-disk ZIL for the dataset being
56 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57 * requirement).
58 *
59 * In the event of a crash or power loss, the itxs contained by each
60 * dataset's on-disk ZIL will be replayed when that dataset is first
61 * instantiated (e.g. if the dataset is a normal fileystem, when it is
62 * first mounted).
63 *
64 * As hinted at above, there is one ZIL per dataset (both the in-memory
65 * representation, and the on-disk representation). The on-disk format
66 * consists of 3 parts:
67 *
68 * - a single, per-dataset, ZIL header; which points to a chain of
69 * - zero or more ZIL blocks; each of which contains
70 * - zero or more ZIL records
71 *
72 * A ZIL record holds the information necessary to replay a single
73 * system call transaction. A ZIL block can hold many ZIL records, and
74 * the blocks are chained together, similarly to a singly linked list.
75 *
76 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77 * block in the chain, and the ZIL header points to the first block in
78 * the chain.
79 *
80 * Note, there is not a fixed place in the pool to hold these ZIL
81 * blocks; they are dynamically allocated and freed as needed from the
82 * blocks available on the pool, though they can be preferentially
83 * allocated from a dedicated "log" vdev.
84 */
85
86 /*
87 * This controls the amount of time that a ZIL block (lwb) will remain
88 * "open" when it isn't "full", and it has a thread waiting for it to be
89 * committed to stable storage. Please refer to the zil_commit_waiter()
90 * function (and the comments within it) for more details.
91 */
92 int zfs_commit_timeout_pct = 5;
93
94 /*
95 * See zil.h for more information about these fields.
96 */
97 zil_stats_t zil_stats = {
98 { "zil_commit_count", KSTAT_DATA_UINT64 },
99 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
100 { "zil_itx_count", KSTAT_DATA_UINT64 },
101 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
102 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
103 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
104 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
105 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
106 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
107 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
108 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
109 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
111 };
112
113 static kstat_t *zil_ksp;
114
115 /*
116 * Disable intent logging replay. This global ZIL switch affects all pools.
117 */
118 int zil_replay_disable = 0;
119
120 /*
121 * Tunable parameter for debugging or performance analysis. Setting
122 * zfs_nocacheflush will cause corruption on power loss if a volatile
123 * out-of-order write cache is enabled.
124 */
125 int zfs_nocacheflush = 0;
126
127 /*
128 * Limit SLOG write size per commit executed with synchronous priority.
129 * Any writes above that will be executed with lower (asynchronous) priority
130 * to limit potential SLOG device abuse by single active ZIL writer.
131 */
132 unsigned long zil_slog_bulk = 768 * 1024;
133
134 static kmem_cache_t *zil_lwb_cache;
135 static kmem_cache_t *zil_zcw_cache;
136
137 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
138
139 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
140 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
141
142 static int
143 zil_bp_compare(const void *x1, const void *x2)
144 {
145 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
146 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
147
148 int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
149 if (likely(cmp))
150 return (cmp);
151
152 return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
153 }
154
155 static void
156 zil_bp_tree_init(zilog_t *zilog)
157 {
158 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
159 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
160 }
161
162 static void
163 zil_bp_tree_fini(zilog_t *zilog)
164 {
165 avl_tree_t *t = &zilog->zl_bp_tree;
166 zil_bp_node_t *zn;
167 void *cookie = NULL;
168
169 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
170 kmem_free(zn, sizeof (zil_bp_node_t));
171
172 avl_destroy(t);
173 }
174
175 int
176 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
177 {
178 avl_tree_t *t = &zilog->zl_bp_tree;
179 const dva_t *dva;
180 zil_bp_node_t *zn;
181 avl_index_t where;
182
183 if (BP_IS_EMBEDDED(bp))
184 return (0);
185
186 dva = BP_IDENTITY(bp);
187
188 if (avl_find(t, dva, &where) != NULL)
189 return (SET_ERROR(EEXIST));
190
191 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
192 zn->zn_dva = *dva;
193 avl_insert(t, zn, where);
194
195 return (0);
196 }
197
198 static zil_header_t *
199 zil_header_in_syncing_context(zilog_t *zilog)
200 {
201 return ((zil_header_t *)zilog->zl_header);
202 }
203
204 static void
205 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
206 {
207 zio_cksum_t *zc = &bp->blk_cksum;
208
209 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
210 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
211 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
212 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
213 }
214
215 /*
216 * Read a log block and make sure it's valid.
217 */
218 static int
219 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
220 blkptr_t *nbp, void *dst, char **end)
221 {
222 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
223 arc_flags_t aflags = ARC_FLAG_WAIT;
224 arc_buf_t *abuf = NULL;
225 zbookmark_phys_t zb;
226 int error;
227
228 if (zilog->zl_header->zh_claim_txg == 0)
229 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
230
231 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
232 zio_flags |= ZIO_FLAG_SPECULATIVE;
233
234 if (!decrypt)
235 zio_flags |= ZIO_FLAG_RAW;
236
237 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
238 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
239
240 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
241 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
242
243 if (error == 0) {
244 zio_cksum_t cksum = bp->blk_cksum;
245
246 /*
247 * Validate the checksummed log block.
248 *
249 * Sequence numbers should be... sequential. The checksum
250 * verifier for the next block should be bp's checksum plus 1.
251 *
252 * Also check the log chain linkage and size used.
253 */
254 cksum.zc_word[ZIL_ZC_SEQ]++;
255
256 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
257 zil_chain_t *zilc = abuf->b_data;
258 char *lr = (char *)(zilc + 1);
259 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
260
261 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
262 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
263 error = SET_ERROR(ECKSUM);
264 } else {
265 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
266 bcopy(lr, dst, len);
267 *end = (char *)dst + len;
268 *nbp = zilc->zc_next_blk;
269 }
270 } else {
271 char *lr = abuf->b_data;
272 uint64_t size = BP_GET_LSIZE(bp);
273 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
274
275 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
276 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
277 (zilc->zc_nused > (size - sizeof (*zilc)))) {
278 error = SET_ERROR(ECKSUM);
279 } else {
280 ASSERT3U(zilc->zc_nused, <=,
281 SPA_OLD_MAXBLOCKSIZE);
282 bcopy(lr, dst, zilc->zc_nused);
283 *end = (char *)dst + zilc->zc_nused;
284 *nbp = zilc->zc_next_blk;
285 }
286 }
287
288 arc_buf_destroy(abuf, &abuf);
289 }
290
291 return (error);
292 }
293
294 /*
295 * Read a TX_WRITE log data block.
296 */
297 static int
298 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
299 {
300 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
301 const blkptr_t *bp = &lr->lr_blkptr;
302 arc_flags_t aflags = ARC_FLAG_WAIT;
303 arc_buf_t *abuf = NULL;
304 zbookmark_phys_t zb;
305 int error;
306
307 if (BP_IS_HOLE(bp)) {
308 if (wbuf != NULL)
309 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
310 return (0);
311 }
312
313 if (zilog->zl_header->zh_claim_txg == 0)
314 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
315
316 /*
317 * If we are not using the resulting data, we are just checking that
318 * it hasn't been corrupted so we don't need to waste CPU time
319 * decompressing and decrypting it.
320 */
321 if (wbuf == NULL)
322 zio_flags |= ZIO_FLAG_RAW;
323
324 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
325 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
326
327 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
328 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
329
330 if (error == 0) {
331 if (wbuf != NULL)
332 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
333 arc_buf_destroy(abuf, &abuf);
334 }
335
336 return (error);
337 }
338
339 /*
340 * Parse the intent log, and call parse_func for each valid record within.
341 */
342 int
343 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
344 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
345 boolean_t decrypt)
346 {
347 const zil_header_t *zh = zilog->zl_header;
348 boolean_t claimed = !!zh->zh_claim_txg;
349 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
350 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
351 uint64_t max_blk_seq = 0;
352 uint64_t max_lr_seq = 0;
353 uint64_t blk_count = 0;
354 uint64_t lr_count = 0;
355 blkptr_t blk, next_blk;
356 char *lrbuf, *lrp;
357 int error = 0;
358
359 bzero(&next_blk, sizeof (blkptr_t));
360
361 /*
362 * Old logs didn't record the maximum zh_claim_lr_seq.
363 */
364 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
365 claim_lr_seq = UINT64_MAX;
366
367 /*
368 * Starting at the block pointed to by zh_log we read the log chain.
369 * For each block in the chain we strongly check that block to
370 * ensure its validity. We stop when an invalid block is found.
371 * For each block pointer in the chain we call parse_blk_func().
372 * For each record in each valid block we call parse_lr_func().
373 * If the log has been claimed, stop if we encounter a sequence
374 * number greater than the highest claimed sequence number.
375 */
376 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
377 zil_bp_tree_init(zilog);
378
379 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
380 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
381 int reclen;
382 char *end = NULL;
383
384 if (blk_seq > claim_blk_seq)
385 break;
386
387 error = parse_blk_func(zilog, &blk, arg, txg);
388 if (error != 0)
389 break;
390 ASSERT3U(max_blk_seq, <, blk_seq);
391 max_blk_seq = blk_seq;
392 blk_count++;
393
394 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
395 break;
396
397 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
398 lrbuf, &end);
399 if (error != 0)
400 break;
401
402 for (lrp = lrbuf; lrp < end; lrp += reclen) {
403 lr_t *lr = (lr_t *)lrp;
404 reclen = lr->lrc_reclen;
405 ASSERT3U(reclen, >=, sizeof (lr_t));
406 if (lr->lrc_seq > claim_lr_seq)
407 goto done;
408
409 error = parse_lr_func(zilog, lr, arg, txg);
410 if (error != 0)
411 goto done;
412 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
413 max_lr_seq = lr->lrc_seq;
414 lr_count++;
415 }
416 }
417 done:
418 zilog->zl_parse_error = error;
419 zilog->zl_parse_blk_seq = max_blk_seq;
420 zilog->zl_parse_lr_seq = max_lr_seq;
421 zilog->zl_parse_blk_count = blk_count;
422 zilog->zl_parse_lr_count = lr_count;
423
424 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
425 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
426 (decrypt && error == EIO));
427
428 zil_bp_tree_fini(zilog);
429 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
430
431 return (error);
432 }
433
434 /* ARGSUSED */
435 static int
436 zil_clear_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
437 {
438 ASSERT(!BP_IS_HOLE(bp));
439
440 /*
441 * As we call this function from the context of a rewind to a
442 * checkpoint, each ZIL block whose txg is later than the txg
443 * that we rewind to is invalid. Thus, we return -1 so
444 * zil_parse() doesn't attempt to read it.
445 */
446 if (bp->blk_birth >= first_txg)
447 return (-1);
448
449 if (zil_bp_tree_add(zilog, bp) != 0)
450 return (0);
451
452 zio_free(zilog->zl_spa, first_txg, bp);
453 return (0);
454 }
455
456 /* ARGSUSED */
457 static int
458 zil_noop_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
459 {
460 return (0);
461 }
462
463 static int
464 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
465 {
466 /*
467 * Claim log block if not already committed and not already claimed.
468 * If tx == NULL, just verify that the block is claimable.
469 */
470 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
471 zil_bp_tree_add(zilog, bp) != 0)
472 return (0);
473
474 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
475 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
476 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
477 }
478
479 static int
480 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
481 {
482 lr_write_t *lr = (lr_write_t *)lrc;
483 int error;
484
485 if (lrc->lrc_txtype != TX_WRITE)
486 return (0);
487
488 /*
489 * If the block is not readable, don't claim it. This can happen
490 * in normal operation when a log block is written to disk before
491 * some of the dmu_sync() blocks it points to. In this case, the
492 * transaction cannot have been committed to anyone (we would have
493 * waited for all writes to be stable first), so it is semantically
494 * correct to declare this the end of the log.
495 */
496 if (lr->lr_blkptr.blk_birth >= first_txg) {
497 error = zil_read_log_data(zilog, lr, NULL);
498 if (error != 0)
499 return (error);
500 }
501
502 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
503 }
504
505 /* ARGSUSED */
506 static int
507 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
508 {
509 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
510
511 return (0);
512 }
513
514 static int
515 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
516 {
517 lr_write_t *lr = (lr_write_t *)lrc;
518 blkptr_t *bp = &lr->lr_blkptr;
519
520 /*
521 * If we previously claimed it, we need to free it.
522 */
523 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
524 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
525 !BP_IS_HOLE(bp))
526 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
527
528 return (0);
529 }
530
531 static int
532 zil_lwb_vdev_compare(const void *x1, const void *x2)
533 {
534 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
535 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
536
537 return (AVL_CMP(v1, v2));
538 }
539
540 static lwb_t *
541 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
542 boolean_t fastwrite)
543 {
544 lwb_t *lwb;
545
546 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
547 lwb->lwb_zilog = zilog;
548 lwb->lwb_blk = *bp;
549 lwb->lwb_fastwrite = fastwrite;
550 lwb->lwb_slog = slog;
551 lwb->lwb_state = LWB_STATE_CLOSED;
552 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
553 lwb->lwb_max_txg = txg;
554 lwb->lwb_write_zio = NULL;
555 lwb->lwb_root_zio = NULL;
556 lwb->lwb_tx = NULL;
557 lwb->lwb_issued_timestamp = 0;
558 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
559 lwb->lwb_nused = sizeof (zil_chain_t);
560 lwb->lwb_sz = BP_GET_LSIZE(bp);
561 } else {
562 lwb->lwb_nused = 0;
563 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
564 }
565
566 mutex_enter(&zilog->zl_lock);
567 list_insert_tail(&zilog->zl_lwb_list, lwb);
568 mutex_exit(&zilog->zl_lock);
569
570 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
571 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
572 VERIFY(list_is_empty(&lwb->lwb_waiters));
573 VERIFY(list_is_empty(&lwb->lwb_itxs));
574
575 return (lwb);
576 }
577
578 static void
579 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
580 {
581 ASSERT(MUTEX_HELD(&zilog->zl_lock));
582 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
583 VERIFY(list_is_empty(&lwb->lwb_waiters));
584 VERIFY(list_is_empty(&lwb->lwb_itxs));
585 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
586 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
587 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
588 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
589 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
590 lwb->lwb_state == LWB_STATE_DONE);
591
592 /*
593 * Clear the zilog's field to indicate this lwb is no longer
594 * valid, and prevent use-after-free errors.
595 */
596 if (zilog->zl_last_lwb_opened == lwb)
597 zilog->zl_last_lwb_opened = NULL;
598
599 kmem_cache_free(zil_lwb_cache, lwb);
600 }
601
602 /*
603 * Called when we create in-memory log transactions so that we know
604 * to cleanup the itxs at the end of spa_sync().
605 */
606 void
607 zilog_dirty(zilog_t *zilog, uint64_t txg)
608 {
609 dsl_pool_t *dp = zilog->zl_dmu_pool;
610 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
611
612 ASSERT(spa_writeable(zilog->zl_spa));
613
614 if (ds->ds_is_snapshot)
615 panic("dirtying snapshot!");
616
617 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
618 /* up the hold count until we can be written out */
619 dmu_buf_add_ref(ds->ds_dbuf, zilog);
620
621 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
622 }
623 }
624
625 /*
626 * Determine if the zil is dirty in the specified txg. Callers wanting to
627 * ensure that the dirty state does not change must hold the itxg_lock for
628 * the specified txg. Holding the lock will ensure that the zil cannot be
629 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
630 * state.
631 */
632 boolean_t
633 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
634 {
635 dsl_pool_t *dp = zilog->zl_dmu_pool;
636
637 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
638 return (B_TRUE);
639 return (B_FALSE);
640 }
641
642 /*
643 * Determine if the zil is dirty. The zil is considered dirty if it has
644 * any pending itx records that have not been cleaned by zil_clean().
645 */
646 boolean_t
647 zilog_is_dirty(zilog_t *zilog)
648 {
649 dsl_pool_t *dp = zilog->zl_dmu_pool;
650
651 for (int t = 0; t < TXG_SIZE; t++) {
652 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
653 return (B_TRUE);
654 }
655 return (B_FALSE);
656 }
657
658 /*
659 * Create an on-disk intent log.
660 */
661 static lwb_t *
662 zil_create(zilog_t *zilog)
663 {
664 const zil_header_t *zh = zilog->zl_header;
665 lwb_t *lwb = NULL;
666 uint64_t txg = 0;
667 dmu_tx_t *tx = NULL;
668 blkptr_t blk;
669 int error = 0;
670 boolean_t fastwrite = FALSE;
671 boolean_t slog = FALSE;
672
673 /*
674 * Wait for any previous destroy to complete.
675 */
676 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
677
678 ASSERT(zh->zh_claim_txg == 0);
679 ASSERT(zh->zh_replay_seq == 0);
680
681 blk = zh->zh_log;
682
683 /*
684 * Allocate an initial log block if:
685 * - there isn't one already
686 * - the existing block is the wrong endianness
687 */
688 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
689 tx = dmu_tx_create(zilog->zl_os);
690 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
691 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
692 txg = dmu_tx_get_txg(tx);
693
694 if (!BP_IS_HOLE(&blk)) {
695 zio_free(zilog->zl_spa, txg, &blk);
696 BP_ZERO(&blk);
697 }
698
699 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
700 ZIL_MIN_BLKSZ, &slog);
701 fastwrite = TRUE;
702
703 if (error == 0)
704 zil_init_log_chain(zilog, &blk);
705 }
706
707 /*
708 * Allocate a log write block (lwb) for the first log block.
709 */
710 if (error == 0)
711 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
712
713 /*
714 * If we just allocated the first log block, commit our transaction
715 * and wait for zil_sync() to stuff the block pointer into zh_log.
716 * (zh is part of the MOS, so we cannot modify it in open context.)
717 */
718 if (tx != NULL) {
719 dmu_tx_commit(tx);
720 txg_wait_synced(zilog->zl_dmu_pool, txg);
721 }
722
723 ASSERT(error != 0 || bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
724 IMPLY(error == 0, lwb != NULL);
725
726 return (lwb);
727 }
728
729 /*
730 * In one tx, free all log blocks and clear the log header. If keep_first
731 * is set, then we're replaying a log with no content. We want to keep the
732 * first block, however, so that the first synchronous transaction doesn't
733 * require a txg_wait_synced() in zil_create(). We don't need to
734 * txg_wait_synced() here either when keep_first is set, because both
735 * zil_create() and zil_destroy() will wait for any in-progress destroys
736 * to complete.
737 */
738 void
739 zil_destroy(zilog_t *zilog, boolean_t keep_first)
740 {
741 const zil_header_t *zh = zilog->zl_header;
742 lwb_t *lwb;
743 dmu_tx_t *tx;
744 uint64_t txg;
745
746 /*
747 * Wait for any previous destroy to complete.
748 */
749 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
750
751 zilog->zl_old_header = *zh; /* debugging aid */
752
753 if (BP_IS_HOLE(&zh->zh_log))
754 return;
755
756 tx = dmu_tx_create(zilog->zl_os);
757 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
758 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
759 txg = dmu_tx_get_txg(tx);
760
761 mutex_enter(&zilog->zl_lock);
762
763 ASSERT3U(zilog->zl_destroy_txg, <, txg);
764 zilog->zl_destroy_txg = txg;
765 zilog->zl_keep_first = keep_first;
766
767 if (!list_is_empty(&zilog->zl_lwb_list)) {
768 ASSERT(zh->zh_claim_txg == 0);
769 VERIFY(!keep_first);
770 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
771 if (lwb->lwb_fastwrite)
772 metaslab_fastwrite_unmark(zilog->zl_spa,
773 &lwb->lwb_blk);
774
775 list_remove(&zilog->zl_lwb_list, lwb);
776 if (lwb->lwb_buf != NULL)
777 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
778 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
779 zil_free_lwb(zilog, lwb);
780 }
781 } else if (!keep_first) {
782 zil_destroy_sync(zilog, tx);
783 }
784 mutex_exit(&zilog->zl_lock);
785
786 dmu_tx_commit(tx);
787 }
788
789 void
790 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
791 {
792 ASSERT(list_is_empty(&zilog->zl_lwb_list));
793 (void) zil_parse(zilog, zil_free_log_block,
794 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
795 }
796
797 int
798 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
799 {
800 dmu_tx_t *tx = txarg;
801 zilog_t *zilog;
802 uint64_t first_txg;
803 zil_header_t *zh;
804 objset_t *os;
805 int error;
806
807 error = dmu_objset_own_obj(dp, ds->ds_object,
808 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
809 if (error != 0) {
810 /*
811 * EBUSY indicates that the objset is inconsistent, in which
812 * case it can not have a ZIL.
813 */
814 if (error != EBUSY) {
815 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
816 (unsigned long long)ds->ds_object, error);
817 }
818
819 return (0);
820 }
821
822 zilog = dmu_objset_zil(os);
823 zh = zil_header_in_syncing_context(zilog);
824 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
825 first_txg = spa_min_claim_txg(zilog->zl_spa);
826
827 /*
828 * If the spa_log_state is not set to be cleared, check whether
829 * the current uberblock is a checkpoint one and if the current
830 * header has been claimed before moving on.
831 *
832 * If the current uberblock is a checkpointed uberblock then
833 * one of the following scenarios took place:
834 *
835 * 1] We are currently rewinding to the checkpoint of the pool.
836 * 2] We crashed in the middle of a checkpoint rewind but we
837 * did manage to write the checkpointed uberblock to the
838 * vdev labels, so when we tried to import the pool again
839 * the checkpointed uberblock was selected from the import
840 * procedure.
841 *
842 * In both cases we want to zero out all the ZIL blocks, except
843 * the ones that have been claimed at the time of the checkpoint
844 * (their zh_claim_txg != 0). The reason is that these blocks
845 * may be corrupted since we may have reused their locations on
846 * disk after we took the checkpoint.
847 *
848 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
849 * when we first figure out whether the current uberblock is
850 * checkpointed or not. Unfortunately, that would discard all
851 * the logs, including the ones that are claimed, and we would
852 * leak space.
853 */
854 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
855 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
856 zh->zh_claim_txg == 0)) {
857 if (!BP_IS_HOLE(&zh->zh_log)) {
858 (void) zil_parse(zilog, zil_clear_log_block,
859 zil_noop_log_record, tx, first_txg, B_FALSE);
860 }
861 BP_ZERO(&zh->zh_log);
862 if (os->os_encrypted)
863 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
864 dsl_dataset_dirty(dmu_objset_ds(os), tx);
865 dmu_objset_disown(os, B_FALSE, FTAG);
866 return (0);
867 }
868
869 /*
870 * If we are not rewinding and opening the pool normally, then
871 * the min_claim_txg should be equal to the first txg of the pool.
872 */
873 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
874
875 /*
876 * Claim all log blocks if we haven't already done so, and remember
877 * the highest claimed sequence number. This ensures that if we can
878 * read only part of the log now (e.g. due to a missing device),
879 * but we can read the entire log later, we will not try to replay
880 * or destroy beyond the last block we successfully claimed.
881 */
882 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
883 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
884 (void) zil_parse(zilog, zil_claim_log_block,
885 zil_claim_log_record, tx, first_txg, B_FALSE);
886 zh->zh_claim_txg = first_txg;
887 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
888 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
889 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
890 zh->zh_flags |= ZIL_REPLAY_NEEDED;
891 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
892 if (os->os_encrypted)
893 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
894 dsl_dataset_dirty(dmu_objset_ds(os), tx);
895 }
896
897 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
898 dmu_objset_disown(os, B_FALSE, FTAG);
899 return (0);
900 }
901
902 /*
903 * Check the log by walking the log chain.
904 * Checksum errors are ok as they indicate the end of the chain.
905 * Any other error (no device or read failure) returns an error.
906 */
907 /* ARGSUSED */
908 int
909 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
910 {
911 zilog_t *zilog;
912 objset_t *os;
913 blkptr_t *bp;
914 int error;
915
916 ASSERT(tx == NULL);
917
918 error = dmu_objset_from_ds(ds, &os);
919 if (error != 0) {
920 cmn_err(CE_WARN, "can't open objset %llu, error %d",
921 (unsigned long long)ds->ds_object, error);
922 return (0);
923 }
924
925 zilog = dmu_objset_zil(os);
926 bp = (blkptr_t *)&zilog->zl_header->zh_log;
927
928 if (!BP_IS_HOLE(bp)) {
929 vdev_t *vd;
930 boolean_t valid = B_TRUE;
931
932 /*
933 * Check the first block and determine if it's on a log device
934 * which may have been removed or faulted prior to loading this
935 * pool. If so, there's no point in checking the rest of the
936 * log as its content should have already been synced to the
937 * pool.
938 */
939 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
940 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
941 if (vd->vdev_islog && vdev_is_dead(vd))
942 valid = vdev_log_state_valid(vd);
943 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
944
945 if (!valid)
946 return (0);
947
948 /*
949 * Check whether the current uberblock is checkpointed (e.g.
950 * we are rewinding) and whether the current header has been
951 * claimed or not. If it hasn't then skip verifying it. We
952 * do this because its ZIL blocks may be part of the pool's
953 * state before the rewind, which is no longer valid.
954 */
955 zil_header_t *zh = zil_header_in_syncing_context(zilog);
956 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
957 zh->zh_claim_txg == 0)
958 return (0);
959 }
960
961 /*
962 * Because tx == NULL, zil_claim_log_block() will not actually claim
963 * any blocks, but just determine whether it is possible to do so.
964 * In addition to checking the log chain, zil_claim_log_block()
965 * will invoke zio_claim() with a done func of spa_claim_notify(),
966 * which will update spa_max_claim_txg. See spa_load() for details.
967 */
968 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
969 zilog->zl_header->zh_claim_txg ? -1ULL :
970 spa_min_claim_txg(os->os_spa), B_FALSE);
971
972 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
973 }
974
975 /*
976 * When an itx is "skipped", this function is used to properly mark the
977 * waiter as "done, and signal any thread(s) waiting on it. An itx can
978 * be skipped (and not committed to an lwb) for a variety of reasons,
979 * one of them being that the itx was committed via spa_sync(), prior to
980 * it being committed to an lwb; this can happen if a thread calling
981 * zil_commit() is racing with spa_sync().
982 */
983 static void
984 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
985 {
986 mutex_enter(&zcw->zcw_lock);
987 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
988 zcw->zcw_done = B_TRUE;
989 cv_broadcast(&zcw->zcw_cv);
990 mutex_exit(&zcw->zcw_lock);
991 }
992
993 /*
994 * This function is used when the given waiter is to be linked into an
995 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
996 * At this point, the waiter will no longer be referenced by the itx,
997 * and instead, will be referenced by the lwb.
998 */
999 static void
1000 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1001 {
1002 /*
1003 * The lwb_waiters field of the lwb is protected by the zilog's
1004 * zl_lock, thus it must be held when calling this function.
1005 */
1006 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1007
1008 mutex_enter(&zcw->zcw_lock);
1009 ASSERT(!list_link_active(&zcw->zcw_node));
1010 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1011 ASSERT3P(lwb, !=, NULL);
1012 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1013 lwb->lwb_state == LWB_STATE_ISSUED);
1014
1015 list_insert_tail(&lwb->lwb_waiters, zcw);
1016 zcw->zcw_lwb = lwb;
1017 mutex_exit(&zcw->zcw_lock);
1018 }
1019
1020 /*
1021 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1022 * block, and the given waiter must be linked to the "nolwb waiters"
1023 * list inside of zil_process_commit_list().
1024 */
1025 static void
1026 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1027 {
1028 mutex_enter(&zcw->zcw_lock);
1029 ASSERT(!list_link_active(&zcw->zcw_node));
1030 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1031 list_insert_tail(nolwb, zcw);
1032 mutex_exit(&zcw->zcw_lock);
1033 }
1034
1035 void
1036 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1037 {
1038 avl_tree_t *t = &lwb->lwb_vdev_tree;
1039 avl_index_t where;
1040 zil_vdev_node_t *zv, zvsearch;
1041 int ndvas = BP_GET_NDVAS(bp);
1042 int i;
1043
1044 if (zfs_nocacheflush)
1045 return;
1046
1047 mutex_enter(&lwb->lwb_vdev_lock);
1048 for (i = 0; i < ndvas; i++) {
1049 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1050 if (avl_find(t, &zvsearch, &where) == NULL) {
1051 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1052 zv->zv_vdev = zvsearch.zv_vdev;
1053 avl_insert(t, zv, where);
1054 }
1055 }
1056 mutex_exit(&lwb->lwb_vdev_lock);
1057 }
1058
1059 void
1060 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1061 {
1062 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1063 }
1064
1065 /*
1066 * This function is a called after all VDEVs associated with a given lwb
1067 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1068 * as the lwb write completes, if "zfs_nocacheflush" is set.
1069 *
1070 * The intention is for this function to be called as soon as the
1071 * contents of an lwb are considered "stable" on disk, and will survive
1072 * any sudden loss of power. At this point, any threads waiting for the
1073 * lwb to reach this state are signalled, and the "waiter" structures
1074 * are marked "done".
1075 */
1076 static void
1077 zil_lwb_flush_vdevs_done(zio_t *zio)
1078 {
1079 lwb_t *lwb = zio->io_private;
1080 zilog_t *zilog = lwb->lwb_zilog;
1081 dmu_tx_t *tx = lwb->lwb_tx;
1082 zil_commit_waiter_t *zcw;
1083 itx_t *itx;
1084
1085 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1086
1087 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1088
1089 mutex_enter(&zilog->zl_lock);
1090
1091 /*
1092 * Ensure the lwb buffer pointer is cleared before releasing the
1093 * txg. If we have had an allocation failure and the txg is
1094 * waiting to sync then we want zil_sync() to remove the lwb so
1095 * that it's not picked up as the next new one in
1096 * zil_process_commit_list(). zil_sync() will only remove the
1097 * lwb if lwb_buf is null.
1098 */
1099 lwb->lwb_buf = NULL;
1100 lwb->lwb_tx = NULL;
1101
1102 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1103 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1104
1105 lwb->lwb_root_zio = NULL;
1106 lwb->lwb_state = LWB_STATE_DONE;
1107
1108 if (zilog->zl_last_lwb_opened == lwb) {
1109 /*
1110 * Remember the highest committed log sequence number
1111 * for ztest. We only update this value when all the log
1112 * writes succeeded, because ztest wants to ASSERT that
1113 * it got the whole log chain.
1114 */
1115 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1116 }
1117
1118 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1119 list_remove(&lwb->lwb_itxs, itx);
1120 zil_itx_destroy(itx);
1121 }
1122
1123 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1124 mutex_enter(&zcw->zcw_lock);
1125
1126 ASSERT(list_link_active(&zcw->zcw_node));
1127 list_remove(&lwb->lwb_waiters, zcw);
1128
1129 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1130 zcw->zcw_lwb = NULL;
1131
1132 zcw->zcw_zio_error = zio->io_error;
1133
1134 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1135 zcw->zcw_done = B_TRUE;
1136 cv_broadcast(&zcw->zcw_cv);
1137
1138 mutex_exit(&zcw->zcw_lock);
1139 }
1140
1141 mutex_exit(&zilog->zl_lock);
1142
1143 /*
1144 * Now that we've written this log block, we have a stable pointer
1145 * to the next block in the chain, so it's OK to let the txg in
1146 * which we allocated the next block sync.
1147 */
1148 dmu_tx_commit(tx);
1149 }
1150
1151 /*
1152 * This is called when an lwb write completes. This means, this specific
1153 * lwb was written to disk, and all dependent lwb have also been
1154 * written to disk.
1155 *
1156 * At this point, a DKIOCFLUSHWRITECACHE command hasn't been issued to
1157 * the VDEVs involved in writing out this specific lwb. The lwb will be
1158 * "done" once zil_lwb_flush_vdevs_done() is called, which occurs in the
1159 * zio completion callback for the lwb's root zio.
1160 */
1161 static void
1162 zil_lwb_write_done(zio_t *zio)
1163 {
1164 lwb_t *lwb = zio->io_private;
1165 spa_t *spa = zio->io_spa;
1166 zilog_t *zilog = lwb->lwb_zilog;
1167 avl_tree_t *t = &lwb->lwb_vdev_tree;
1168 void *cookie = NULL;
1169 zil_vdev_node_t *zv;
1170
1171 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1172
1173 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1174 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1175 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1176 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1177 ASSERT(!BP_IS_GANG(zio->io_bp));
1178 ASSERT(!BP_IS_HOLE(zio->io_bp));
1179 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1180
1181 abd_put(zio->io_abd);
1182
1183 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1184
1185 mutex_enter(&zilog->zl_lock);
1186 lwb->lwb_write_zio = NULL;
1187 lwb->lwb_fastwrite = FALSE;
1188 mutex_exit(&zilog->zl_lock);
1189
1190 if (avl_numnodes(t) == 0)
1191 return;
1192
1193 /*
1194 * If there was an IO error, we're not going to call zio_flush()
1195 * on these vdevs, so we simply empty the tree and free the
1196 * nodes. We avoid calling zio_flush() since there isn't any
1197 * good reason for doing so, after the lwb block failed to be
1198 * written out.
1199 */
1200 if (zio->io_error != 0) {
1201 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1202 kmem_free(zv, sizeof (*zv));
1203 return;
1204 }
1205
1206 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1207 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1208 if (vd != NULL)
1209 zio_flush(lwb->lwb_root_zio, vd);
1210 kmem_free(zv, sizeof (*zv));
1211 }
1212 }
1213
1214 /*
1215 * This function's purpose is to "open" an lwb such that it is ready to
1216 * accept new itxs being committed to it. To do this, the lwb's zio
1217 * structures are created, and linked to the lwb. This function is
1218 * idempotent; if the passed in lwb has already been opened, this
1219 * function is essentially a no-op.
1220 */
1221 static void
1222 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1223 {
1224 zbookmark_phys_t zb;
1225 zio_priority_t prio;
1226
1227 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1228 ASSERT3P(lwb, !=, NULL);
1229 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1230 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1231
1232 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1233 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1234 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1235
1236 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1237 mutex_enter(&zilog->zl_lock);
1238 if (lwb->lwb_root_zio == NULL) {
1239 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1240 BP_GET_LSIZE(&lwb->lwb_blk));
1241
1242 if (!lwb->lwb_fastwrite) {
1243 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1244 lwb->lwb_fastwrite = 1;
1245 }
1246
1247 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1248 prio = ZIO_PRIORITY_SYNC_WRITE;
1249 else
1250 prio = ZIO_PRIORITY_ASYNC_WRITE;
1251
1252 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1253 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1254 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1255
1256 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1257 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1258 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1259 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
1260 ZIO_FLAG_FASTWRITE, &zb);
1261 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1262
1263 lwb->lwb_state = LWB_STATE_OPENED;
1264
1265 /*
1266 * The zilog's "zl_last_lwb_opened" field is used to
1267 * build the lwb/zio dependency chain, which is used to
1268 * preserve the ordering of lwb completions that is
1269 * required by the semantics of the ZIL. Each new lwb
1270 * zio becomes a parent of the "previous" lwb zio, such
1271 * that the new lwb's zio cannot complete until the
1272 * "previous" lwb's zio completes.
1273 *
1274 * This is required by the semantics of zil_commit();
1275 * the commit waiters attached to the lwbs will be woken
1276 * in the lwb zio's completion callback, so this zio
1277 * dependency graph ensures the waiters are woken in the
1278 * correct order (the same order the lwbs were created).
1279 */
1280 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1281 if (last_lwb_opened != NULL &&
1282 last_lwb_opened->lwb_state != LWB_STATE_DONE) {
1283 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1284 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1285 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1286 zio_add_child(lwb->lwb_root_zio,
1287 last_lwb_opened->lwb_root_zio);
1288 }
1289 zilog->zl_last_lwb_opened = lwb;
1290 }
1291 mutex_exit(&zilog->zl_lock);
1292
1293 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1294 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1295 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1296 }
1297
1298 /*
1299 * Define a limited set of intent log block sizes.
1300 *
1301 * These must be a multiple of 4KB. Note only the amount used (again
1302 * aligned to 4KB) actually gets written. However, we can't always just
1303 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1304 */
1305 uint64_t zil_block_buckets[] = {
1306 4096, /* non TX_WRITE */
1307 8192+4096, /* data base */
1308 32*1024 + 4096, /* NFS writes */
1309 UINT64_MAX
1310 };
1311
1312 /*
1313 * Start a log block write and advance to the next log block.
1314 * Calls are serialized.
1315 */
1316 static lwb_t *
1317 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1318 {
1319 lwb_t *nlwb = NULL;
1320 zil_chain_t *zilc;
1321 spa_t *spa = zilog->zl_spa;
1322 blkptr_t *bp;
1323 dmu_tx_t *tx;
1324 uint64_t txg;
1325 uint64_t zil_blksz, wsz;
1326 int i, error;
1327 boolean_t slog;
1328
1329 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1330 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1331 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1332 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1333
1334 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1335 zilc = (zil_chain_t *)lwb->lwb_buf;
1336 bp = &zilc->zc_next_blk;
1337 } else {
1338 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1339 bp = &zilc->zc_next_blk;
1340 }
1341
1342 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1343
1344 /*
1345 * Allocate the next block and save its address in this block
1346 * before writing it in order to establish the log chain.
1347 * Note that if the allocation of nlwb synced before we wrote
1348 * the block that points at it (lwb), we'd leak it if we crashed.
1349 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1350 * We dirty the dataset to ensure that zil_sync() will be called
1351 * to clean up in the event of allocation failure or I/O failure.
1352 */
1353
1354 tx = dmu_tx_create(zilog->zl_os);
1355
1356 /*
1357 * Since we are not going to create any new dirty data, and we
1358 * can even help with clearing the existing dirty data, we
1359 * should not be subject to the dirty data based delays. We
1360 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1361 */
1362 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1363
1364 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1365 txg = dmu_tx_get_txg(tx);
1366
1367 lwb->lwb_tx = tx;
1368
1369 /*
1370 * Log blocks are pre-allocated. Here we select the size of the next
1371 * block, based on size used in the last block.
1372 * - first find the smallest bucket that will fit the block from a
1373 * limited set of block sizes. This is because it's faster to write
1374 * blocks allocated from the same metaslab as they are adjacent or
1375 * close.
1376 * - next find the maximum from the new suggested size and an array of
1377 * previous sizes. This lessens a picket fence effect of wrongly
1378 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1379 * requests.
1380 *
1381 * Note we only write what is used, but we can't just allocate
1382 * the maximum block size because we can exhaust the available
1383 * pool log space.
1384 */
1385 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1386 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1387 continue;
1388 zil_blksz = zil_block_buckets[i];
1389 if (zil_blksz == UINT64_MAX)
1390 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1391 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1392 for (i = 0; i < ZIL_PREV_BLKS; i++)
1393 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1394 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1395
1396 BP_ZERO(bp);
1397 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1398 if (slog) {
1399 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1400 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1401 } else {
1402 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1403 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1404 }
1405 if (error == 0) {
1406 ASSERT3U(bp->blk_birth, ==, txg);
1407 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1408 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1409
1410 /*
1411 * Allocate a new log write block (lwb).
1412 */
1413 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1414 }
1415
1416 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1417 /* For Slim ZIL only write what is used. */
1418 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1419 ASSERT3U(wsz, <=, lwb->lwb_sz);
1420 zio_shrink(lwb->lwb_write_zio, wsz);
1421
1422 } else {
1423 wsz = lwb->lwb_sz;
1424 }
1425
1426 zilc->zc_pad = 0;
1427 zilc->zc_nused = lwb->lwb_nused;
1428 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1429
1430 /*
1431 * clear unused data for security
1432 */
1433 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1434
1435 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1436
1437 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1438 lwb->lwb_issued_timestamp = gethrtime();
1439 lwb->lwb_state = LWB_STATE_ISSUED;
1440
1441 zio_nowait(lwb->lwb_root_zio);
1442 zio_nowait(lwb->lwb_write_zio);
1443
1444 /*
1445 * If there was an allocation failure then nlwb will be null which
1446 * forces a txg_wait_synced().
1447 */
1448 return (nlwb);
1449 }
1450
1451 static lwb_t *
1452 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1453 {
1454 lr_t *lrcb, *lrc;
1455 lr_write_t *lrwb, *lrw;
1456 char *lr_buf;
1457 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1458
1459 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1460 ASSERT3P(lwb, !=, NULL);
1461 ASSERT3P(lwb->lwb_buf, !=, NULL);
1462
1463 zil_lwb_write_open(zilog, lwb);
1464
1465 lrc = &itx->itx_lr;
1466 lrw = (lr_write_t *)lrc;
1467
1468 /*
1469 * A commit itx doesn't represent any on-disk state; instead
1470 * it's simply used as a place holder on the commit list, and
1471 * provides a mechanism for attaching a "commit waiter" onto the
1472 * correct lwb (such that the waiter can be signalled upon
1473 * completion of that lwb). Thus, we don't process this itx's
1474 * log record if it's a commit itx (these itx's don't have log
1475 * records), and instead link the itx's waiter onto the lwb's
1476 * list of waiters.
1477 *
1478 * For more details, see the comment above zil_commit().
1479 */
1480 if (lrc->lrc_txtype == TX_COMMIT) {
1481 mutex_enter(&zilog->zl_lock);
1482 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1483 itx->itx_private = NULL;
1484 mutex_exit(&zilog->zl_lock);
1485 return (lwb);
1486 }
1487
1488 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1489 dlen = P2ROUNDUP_TYPED(
1490 lrw->lr_length, sizeof (uint64_t), uint64_t);
1491 } else {
1492 dlen = 0;
1493 }
1494 reclen = lrc->lrc_reclen;
1495 zilog->zl_cur_used += (reclen + dlen);
1496 txg = lrc->lrc_txg;
1497
1498 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1499
1500 cont:
1501 /*
1502 * If this record won't fit in the current log block, start a new one.
1503 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1504 */
1505 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1506 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1507 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1508 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1509 lwb = zil_lwb_write_issue(zilog, lwb);
1510 if (lwb == NULL)
1511 return (NULL);
1512 zil_lwb_write_open(zilog, lwb);
1513 ASSERT(LWB_EMPTY(lwb));
1514 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1515 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1516 }
1517
1518 dnow = MIN(dlen, lwb_sp - reclen);
1519 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1520 bcopy(lrc, lr_buf, reclen);
1521 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1522 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1523
1524 ZIL_STAT_BUMP(zil_itx_count);
1525
1526 /*
1527 * If it's a write, fetch the data or get its blkptr as appropriate.
1528 */
1529 if (lrc->lrc_txtype == TX_WRITE) {
1530 if (txg > spa_freeze_txg(zilog->zl_spa))
1531 txg_wait_synced(zilog->zl_dmu_pool, txg);
1532 if (itx->itx_wr_state == WR_COPIED) {
1533 ZIL_STAT_BUMP(zil_itx_copied_count);
1534 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1535 } else {
1536 char *dbuf;
1537 int error;
1538
1539 if (itx->itx_wr_state == WR_NEED_COPY) {
1540 dbuf = lr_buf + reclen;
1541 lrcb->lrc_reclen += dnow;
1542 if (lrwb->lr_length > dnow)
1543 lrwb->lr_length = dnow;
1544 lrw->lr_offset += dnow;
1545 lrw->lr_length -= dnow;
1546 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1547 ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1548 } else {
1549 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1550 dbuf = NULL;
1551 ZIL_STAT_BUMP(zil_itx_indirect_count);
1552 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1553 lrw->lr_length);
1554 }
1555
1556 /*
1557 * We pass in the "lwb_write_zio" rather than
1558 * "lwb_root_zio" so that the "lwb_write_zio"
1559 * becomes the parent of any zio's created by
1560 * the "zl_get_data" callback. The vdevs are
1561 * flushed after the "lwb_write_zio" completes,
1562 * so we want to make sure that completion
1563 * callback waits for these additional zio's,
1564 * such that the vdevs used by those zio's will
1565 * be included in the lwb's vdev tree, and those
1566 * vdevs will be properly flushed. If we passed
1567 * in "lwb_root_zio" here, then these additional
1568 * vdevs may not be flushed; e.g. if these zio's
1569 * completed after "lwb_write_zio" completed.
1570 */
1571 error = zilog->zl_get_data(itx->itx_private,
1572 lrwb, dbuf, lwb, lwb->lwb_write_zio);
1573
1574 if (error == EIO) {
1575 txg_wait_synced(zilog->zl_dmu_pool, txg);
1576 return (lwb);
1577 }
1578 if (error != 0) {
1579 ASSERT(error == ENOENT || error == EEXIST ||
1580 error == EALREADY);
1581 return (lwb);
1582 }
1583 }
1584 }
1585
1586 /*
1587 * We're actually making an entry, so update lrc_seq to be the
1588 * log record sequence number. Note that this is generally not
1589 * equal to the itx sequence number because not all transactions
1590 * are synchronous, and sometimes spa_sync() gets there first.
1591 */
1592 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1593 lwb->lwb_nused += reclen + dnow;
1594
1595 zil_lwb_add_txg(lwb, txg);
1596
1597 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1598 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1599
1600 dlen -= dnow;
1601 if (dlen > 0) {
1602 zilog->zl_cur_used += reclen;
1603 goto cont;
1604 }
1605
1606 return (lwb);
1607 }
1608
1609 itx_t *
1610 zil_itx_create(uint64_t txtype, size_t lrsize)
1611 {
1612 size_t itxsize;
1613 itx_t *itx;
1614
1615 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1616 itxsize = offsetof(itx_t, itx_lr) + lrsize;
1617
1618 itx = zio_data_buf_alloc(itxsize);
1619 itx->itx_lr.lrc_txtype = txtype;
1620 itx->itx_lr.lrc_reclen = lrsize;
1621 itx->itx_lr.lrc_seq = 0; /* defensive */
1622 itx->itx_sync = B_TRUE; /* default is synchronous */
1623 itx->itx_callback = NULL;
1624 itx->itx_callback_data = NULL;
1625 itx->itx_size = itxsize;
1626
1627 return (itx);
1628 }
1629
1630 void
1631 zil_itx_destroy(itx_t *itx)
1632 {
1633 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1634 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1635
1636 if (itx->itx_callback != NULL)
1637 itx->itx_callback(itx->itx_callback_data);
1638
1639 zio_data_buf_free(itx, itx->itx_size);
1640 }
1641
1642 /*
1643 * Free up the sync and async itxs. The itxs_t has already been detached
1644 * so no locks are needed.
1645 */
1646 static void
1647 zil_itxg_clean(itxs_t *itxs)
1648 {
1649 itx_t *itx;
1650 list_t *list;
1651 avl_tree_t *t;
1652 void *cookie;
1653 itx_async_node_t *ian;
1654
1655 list = &itxs->i_sync_list;
1656 while ((itx = list_head(list)) != NULL) {
1657 /*
1658 * In the general case, commit itxs will not be found
1659 * here, as they'll be committed to an lwb via
1660 * zil_lwb_commit(), and free'd in that function. Having
1661 * said that, it is still possible for commit itxs to be
1662 * found here, due to the following race:
1663 *
1664 * - a thread calls zil_commit() which assigns the
1665 * commit itx to a per-txg i_sync_list
1666 * - zil_itxg_clean() is called (e.g. via spa_sync())
1667 * while the waiter is still on the i_sync_list
1668 *
1669 * There's nothing to prevent syncing the txg while the
1670 * waiter is on the i_sync_list. This normally doesn't
1671 * happen because spa_sync() is slower than zil_commit(),
1672 * but if zil_commit() calls txg_wait_synced() (e.g.
1673 * because zil_create() or zil_commit_writer_stall() is
1674 * called) we will hit this case.
1675 */
1676 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1677 zil_commit_waiter_skip(itx->itx_private);
1678
1679 list_remove(list, itx);
1680 zil_itx_destroy(itx);
1681 }
1682
1683 cookie = NULL;
1684 t = &itxs->i_async_tree;
1685 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1686 list = &ian->ia_list;
1687 while ((itx = list_head(list)) != NULL) {
1688 list_remove(list, itx);
1689 /* commit itxs should never be on the async lists. */
1690 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1691 zil_itx_destroy(itx);
1692 }
1693 list_destroy(list);
1694 kmem_free(ian, sizeof (itx_async_node_t));
1695 }
1696 avl_destroy(t);
1697
1698 kmem_free(itxs, sizeof (itxs_t));
1699 }
1700
1701 static int
1702 zil_aitx_compare(const void *x1, const void *x2)
1703 {
1704 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1705 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1706
1707 return (AVL_CMP(o1, o2));
1708 }
1709
1710 /*
1711 * Remove all async itx with the given oid.
1712 */
1713 static void
1714 zil_remove_async(zilog_t *zilog, uint64_t oid)
1715 {
1716 uint64_t otxg, txg;
1717 itx_async_node_t *ian;
1718 avl_tree_t *t;
1719 avl_index_t where;
1720 list_t clean_list;
1721 itx_t *itx;
1722
1723 ASSERT(oid != 0);
1724 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1725
1726 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1727 otxg = ZILTEST_TXG;
1728 else
1729 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1730
1731 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1732 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1733
1734 mutex_enter(&itxg->itxg_lock);
1735 if (itxg->itxg_txg != txg) {
1736 mutex_exit(&itxg->itxg_lock);
1737 continue;
1738 }
1739
1740 /*
1741 * Locate the object node and append its list.
1742 */
1743 t = &itxg->itxg_itxs->i_async_tree;
1744 ian = avl_find(t, &oid, &where);
1745 if (ian != NULL)
1746 list_move_tail(&clean_list, &ian->ia_list);
1747 mutex_exit(&itxg->itxg_lock);
1748 }
1749 while ((itx = list_head(&clean_list)) != NULL) {
1750 list_remove(&clean_list, itx);
1751 /* commit itxs should never be on the async lists. */
1752 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1753 zil_itx_destroy(itx);
1754 }
1755 list_destroy(&clean_list);
1756 }
1757
1758 void
1759 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1760 {
1761 uint64_t txg;
1762 itxg_t *itxg;
1763 itxs_t *itxs, *clean = NULL;
1764
1765 /*
1766 * Object ids can be re-instantiated in the next txg so
1767 * remove any async transactions to avoid future leaks.
1768 * This can happen if a fsync occurs on the re-instantiated
1769 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1770 * the new file data and flushes a write record for the old object.
1771 */
1772 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1773 zil_remove_async(zilog, itx->itx_oid);
1774
1775 /*
1776 * Ensure the data of a renamed file is committed before the rename.
1777 */
1778 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1779 zil_async_to_sync(zilog, itx->itx_oid);
1780
1781 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1782 txg = ZILTEST_TXG;
1783 else
1784 txg = dmu_tx_get_txg(tx);
1785
1786 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1787 mutex_enter(&itxg->itxg_lock);
1788 itxs = itxg->itxg_itxs;
1789 if (itxg->itxg_txg != txg) {
1790 if (itxs != NULL) {
1791 /*
1792 * The zil_clean callback hasn't got around to cleaning
1793 * this itxg. Save the itxs for release below.
1794 * This should be rare.
1795 */
1796 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1797 "txg %llu", itxg->itxg_txg);
1798 clean = itxg->itxg_itxs;
1799 }
1800 itxg->itxg_txg = txg;
1801 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1802 KM_SLEEP);
1803
1804 list_create(&itxs->i_sync_list, sizeof (itx_t),
1805 offsetof(itx_t, itx_node));
1806 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1807 sizeof (itx_async_node_t),
1808 offsetof(itx_async_node_t, ia_node));
1809 }
1810 if (itx->itx_sync) {
1811 list_insert_tail(&itxs->i_sync_list, itx);
1812 } else {
1813 avl_tree_t *t = &itxs->i_async_tree;
1814 uint64_t foid =
1815 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1816 itx_async_node_t *ian;
1817 avl_index_t where;
1818
1819 ian = avl_find(t, &foid, &where);
1820 if (ian == NULL) {
1821 ian = kmem_alloc(sizeof (itx_async_node_t),
1822 KM_SLEEP);
1823 list_create(&ian->ia_list, sizeof (itx_t),
1824 offsetof(itx_t, itx_node));
1825 ian->ia_foid = foid;
1826 avl_insert(t, ian, where);
1827 }
1828 list_insert_tail(&ian->ia_list, itx);
1829 }
1830
1831 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1832
1833 /*
1834 * We don't want to dirty the ZIL using ZILTEST_TXG, because
1835 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
1836 * need to be careful to always dirty the ZIL using the "real"
1837 * TXG (not itxg_txg) even when the SPA is frozen.
1838 */
1839 zilog_dirty(zilog, dmu_tx_get_txg(tx));
1840 mutex_exit(&itxg->itxg_lock);
1841
1842 /* Release the old itxs now we've dropped the lock */
1843 if (clean != NULL)
1844 zil_itxg_clean(clean);
1845 }
1846
1847 /*
1848 * If there are any in-memory intent log transactions which have now been
1849 * synced then start up a taskq to free them. We should only do this after we
1850 * have written out the uberblocks (i.e. txg has been comitted) so that
1851 * don't inadvertently clean out in-memory log records that would be required
1852 * by zil_commit().
1853 */
1854 void
1855 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1856 {
1857 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1858 itxs_t *clean_me;
1859
1860 ASSERT3U(synced_txg, <, ZILTEST_TXG);
1861
1862 mutex_enter(&itxg->itxg_lock);
1863 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1864 mutex_exit(&itxg->itxg_lock);
1865 return;
1866 }
1867 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1868 ASSERT3U(itxg->itxg_txg, !=, 0);
1869 clean_me = itxg->itxg_itxs;
1870 itxg->itxg_itxs = NULL;
1871 itxg->itxg_txg = 0;
1872 mutex_exit(&itxg->itxg_lock);
1873 /*
1874 * Preferably start a task queue to free up the old itxs but
1875 * if taskq_dispatch can't allocate resources to do that then
1876 * free it in-line. This should be rare. Note, using TQ_SLEEP
1877 * created a bad performance problem.
1878 */
1879 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
1880 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
1881 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
1882 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP);
1883 if (id == TASKQID_INVALID)
1884 zil_itxg_clean(clean_me);
1885 }
1886
1887 /*
1888 * This function will traverse the queue of itxs that need to be
1889 * committed, and move them onto the ZIL's zl_itx_commit_list.
1890 */
1891 static void
1892 zil_get_commit_list(zilog_t *zilog)
1893 {
1894 uint64_t otxg, txg;
1895 list_t *commit_list = &zilog->zl_itx_commit_list;
1896
1897 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1898
1899 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1900 otxg = ZILTEST_TXG;
1901 else
1902 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1903
1904 /*
1905 * This is inherently racy, since there is nothing to prevent
1906 * the last synced txg from changing. That's okay since we'll
1907 * only commit things in the future.
1908 */
1909 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1910 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1911
1912 mutex_enter(&itxg->itxg_lock);
1913 if (itxg->itxg_txg != txg) {
1914 mutex_exit(&itxg->itxg_lock);
1915 continue;
1916 }
1917
1918 /*
1919 * If we're adding itx records to the zl_itx_commit_list,
1920 * then the zil better be dirty in this "txg". We can assert
1921 * that here since we're holding the itxg_lock which will
1922 * prevent spa_sync from cleaning it. Once we add the itxs
1923 * to the zl_itx_commit_list we must commit it to disk even
1924 * if it's unnecessary (i.e. the txg was synced).
1925 */
1926 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1927 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1928 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1929
1930 mutex_exit(&itxg->itxg_lock);
1931 }
1932 }
1933
1934 /*
1935 * Move the async itxs for a specified object to commit into sync lists.
1936 */
1937 static void
1938 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1939 {
1940 uint64_t otxg, txg;
1941 itx_async_node_t *ian;
1942 avl_tree_t *t;
1943 avl_index_t where;
1944
1945 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1946 otxg = ZILTEST_TXG;
1947 else
1948 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1949
1950 /*
1951 * This is inherently racy, since there is nothing to prevent
1952 * the last synced txg from changing.
1953 */
1954 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1955 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1956
1957 mutex_enter(&itxg->itxg_lock);
1958 if (itxg->itxg_txg != txg) {
1959 mutex_exit(&itxg->itxg_lock);
1960 continue;
1961 }
1962
1963 /*
1964 * If a foid is specified then find that node and append its
1965 * list. Otherwise walk the tree appending all the lists
1966 * to the sync list. We add to the end rather than the
1967 * beginning to ensure the create has happened.
1968 */
1969 t = &itxg->itxg_itxs->i_async_tree;
1970 if (foid != 0) {
1971 ian = avl_find(t, &foid, &where);
1972 if (ian != NULL) {
1973 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1974 &ian->ia_list);
1975 }
1976 } else {
1977 void *cookie = NULL;
1978
1979 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1980 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1981 &ian->ia_list);
1982 list_destroy(&ian->ia_list);
1983 kmem_free(ian, sizeof (itx_async_node_t));
1984 }
1985 }
1986 mutex_exit(&itxg->itxg_lock);
1987 }
1988 }
1989
1990 /*
1991 * This function will prune commit itxs that are at the head of the
1992 * commit list (it won't prune past the first non-commit itx), and
1993 * either: a) attach them to the last lwb that's still pending
1994 * completion, or b) skip them altogether.
1995 *
1996 * This is used as a performance optimization to prevent commit itxs
1997 * from generating new lwbs when it's unnecessary to do so.
1998 */
1999 static void
2000 zil_prune_commit_list(zilog_t *zilog)
2001 {
2002 itx_t *itx;
2003
2004 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2005
2006 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2007 lr_t *lrc = &itx->itx_lr;
2008 if (lrc->lrc_txtype != TX_COMMIT)
2009 break;
2010
2011 mutex_enter(&zilog->zl_lock);
2012
2013 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2014 if (last_lwb == NULL || last_lwb->lwb_state == LWB_STATE_DONE) {
2015 /*
2016 * All of the itxs this waiter was waiting on
2017 * must have already completed (or there were
2018 * never any itx's for it to wait on), so it's
2019 * safe to skip this waiter and mark it done.
2020 */
2021 zil_commit_waiter_skip(itx->itx_private);
2022 } else {
2023 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2024 itx->itx_private = NULL;
2025 }
2026
2027 mutex_exit(&zilog->zl_lock);
2028
2029 list_remove(&zilog->zl_itx_commit_list, itx);
2030 zil_itx_destroy(itx);
2031 }
2032
2033 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2034 }
2035
2036 static void
2037 zil_commit_writer_stall(zilog_t *zilog)
2038 {
2039 /*
2040 * When zio_alloc_zil() fails to allocate the next lwb block on
2041 * disk, we must call txg_wait_synced() to ensure all of the
2042 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2043 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2044 * to zil_process_commit_list()) will have to call zil_create(),
2045 * and start a new ZIL chain.
2046 *
2047 * Since zil_alloc_zil() failed, the lwb that was previously
2048 * issued does not have a pointer to the "next" lwb on disk.
2049 * Thus, if another ZIL writer thread was to allocate the "next"
2050 * on-disk lwb, that block could be leaked in the event of a
2051 * crash (because the previous lwb on-disk would not point to
2052 * it).
2053 *
2054 * We must hold the zilog's zl_issuer_lock while we do this, to
2055 * ensure no new threads enter zil_process_commit_list() until
2056 * all lwb's in the zl_lwb_list have been synced and freed
2057 * (which is achieved via the txg_wait_synced() call).
2058 */
2059 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2060 txg_wait_synced(zilog->zl_dmu_pool, 0);
2061 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2062 }
2063
2064 /*
2065 * This function will traverse the commit list, creating new lwbs as
2066 * needed, and committing the itxs from the commit list to these newly
2067 * created lwbs. Additionally, as a new lwb is created, the previous
2068 * lwb will be issued to the zio layer to be written to disk.
2069 */
2070 static void
2071 zil_process_commit_list(zilog_t *zilog)
2072 {
2073 spa_t *spa = zilog->zl_spa;
2074 list_t nolwb_itxs;
2075 list_t nolwb_waiters;
2076 lwb_t *lwb;
2077 itx_t *itx;
2078
2079 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2080
2081 /*
2082 * Return if there's nothing to commit before we dirty the fs by
2083 * calling zil_create().
2084 */
2085 if (list_head(&zilog->zl_itx_commit_list) == NULL)
2086 return;
2087
2088 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2089 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2090 offsetof(zil_commit_waiter_t, zcw_node));
2091
2092 lwb = list_tail(&zilog->zl_lwb_list);
2093 if (lwb == NULL) {
2094 lwb = zil_create(zilog);
2095 } else {
2096 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2097 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2098 }
2099
2100 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2101 lr_t *lrc = &itx->itx_lr;
2102 uint64_t txg = lrc->lrc_txg;
2103
2104 ASSERT3U(txg, !=, 0);
2105
2106 if (lrc->lrc_txtype == TX_COMMIT) {
2107 DTRACE_PROBE2(zil__process__commit__itx,
2108 zilog_t *, zilog, itx_t *, itx);
2109 } else {
2110 DTRACE_PROBE2(zil__process__normal__itx,
2111 zilog_t *, zilog, itx_t *, itx);
2112 }
2113
2114 list_remove(&zilog->zl_itx_commit_list, itx);
2115
2116 boolean_t synced = txg <= spa_last_synced_txg(spa);
2117 boolean_t frozen = txg > spa_freeze_txg(spa);
2118
2119 /*
2120 * If the txg of this itx has already been synced out, then
2121 * we don't need to commit this itx to an lwb. This is
2122 * because the data of this itx will have already been
2123 * written to the main pool. This is inherently racy, and
2124 * it's still ok to commit an itx whose txg has already
2125 * been synced; this will result in a write that's
2126 * unnecessary, but will do no harm.
2127 *
2128 * With that said, we always want to commit TX_COMMIT itxs
2129 * to an lwb, regardless of whether or not that itx's txg
2130 * has been synced out. We do this to ensure any OPENED lwb
2131 * will always have at least one zil_commit_waiter_t linked
2132 * to the lwb.
2133 *
2134 * As a counter-example, if we skipped TX_COMMIT itx's
2135 * whose txg had already been synced, the following
2136 * situation could occur if we happened to be racing with
2137 * spa_sync:
2138 *
2139 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2140 * itx's txg is 10 and the last synced txg is 9.
2141 * 2. spa_sync finishes syncing out txg 10.
2142 * 3. We move to the next itx in the list, it's a TX_COMMIT
2143 * whose txg is 10, so we skip it rather than committing
2144 * it to the lwb used in (1).
2145 *
2146 * If the itx that is skipped in (3) is the last TX_COMMIT
2147 * itx in the commit list, than it's possible for the lwb
2148 * used in (1) to remain in the OPENED state indefinitely.
2149 *
2150 * To prevent the above scenario from occurring, ensuring
2151 * that once an lwb is OPENED it will transition to ISSUED
2152 * and eventually DONE, we always commit TX_COMMIT itx's to
2153 * an lwb here, even if that itx's txg has already been
2154 * synced.
2155 *
2156 * Finally, if the pool is frozen, we _always_ commit the
2157 * itx. The point of freezing the pool is to prevent data
2158 * from being written to the main pool via spa_sync, and
2159 * instead rely solely on the ZIL to persistently store the
2160 * data; i.e. when the pool is frozen, the last synced txg
2161 * value can't be trusted.
2162 */
2163 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2164 if (lwb != NULL) {
2165 lwb = zil_lwb_commit(zilog, itx, lwb);
2166
2167 if (lwb == NULL)
2168 list_insert_tail(&nolwb_itxs, itx);
2169 else
2170 list_insert_tail(&lwb->lwb_itxs, itx);
2171 } else {
2172 if (lrc->lrc_txtype == TX_COMMIT) {
2173 zil_commit_waiter_link_nolwb(
2174 itx->itx_private, &nolwb_waiters);
2175 }
2176
2177 list_insert_tail(&nolwb_itxs, itx);
2178 }
2179 } else {
2180 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2181 zil_itx_destroy(itx);
2182 }
2183 }
2184
2185 if (lwb == NULL) {
2186 /*
2187 * This indicates zio_alloc_zil() failed to allocate the
2188 * "next" lwb on-disk. When this happens, we must stall
2189 * the ZIL write pipeline; see the comment within
2190 * zil_commit_writer_stall() for more details.
2191 */
2192 zil_commit_writer_stall(zilog);
2193
2194 /*
2195 * Additionally, we have to signal and mark the "nolwb"
2196 * waiters as "done" here, since without an lwb, we
2197 * can't do this via zil_lwb_flush_vdevs_done() like
2198 * normal.
2199 */
2200 zil_commit_waiter_t *zcw;
2201 while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2202 zil_commit_waiter_skip(zcw);
2203 list_remove(&nolwb_waiters, zcw);
2204 }
2205
2206 /*
2207 * And finally, we have to destroy the itx's that
2208 * couldn't be committed to an lwb; this will also call
2209 * the itx's callback if one exists for the itx.
2210 */
2211 while ((itx = list_head(&nolwb_itxs)) != NULL) {
2212 list_remove(&nolwb_itxs, itx);
2213 zil_itx_destroy(itx);
2214 }
2215 } else {
2216 ASSERT(list_is_empty(&nolwb_waiters));
2217 ASSERT3P(lwb, !=, NULL);
2218 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2219 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_DONE);
2220
2221 /*
2222 * At this point, the ZIL block pointed at by the "lwb"
2223 * variable is in one of the following states: "closed"
2224 * or "open".
2225 *
2226 * If it's "closed", then no itxs have been committed to
2227 * it, so there's no point in issuing its zio (i.e. it's
2228 * "empty").
2229 *
2230 * If it's "open", then it contains one or more itxs that
2231 * eventually need to be committed to stable storage. In
2232 * this case we intentionally do not issue the lwb's zio
2233 * to disk yet, and instead rely on one of the following
2234 * two mechanisms for issuing the zio:
2235 *
2236 * 1. Ideally, there will be more ZIL activity occurring
2237 * on the system, such that this function will be
2238 * immediately called again (not necessarily by the same
2239 * thread) and this lwb's zio will be issued via
2240 * zil_lwb_commit(). This way, the lwb is guaranteed to
2241 * be "full" when it is issued to disk, and we'll make
2242 * use of the lwb's size the best we can.
2243 *
2244 * 2. If there isn't sufficient ZIL activity occurring on
2245 * the system, such that this lwb's zio isn't issued via
2246 * zil_lwb_commit(), zil_commit_waiter() will issue the
2247 * lwb's zio. If this occurs, the lwb is not guaranteed
2248 * to be "full" by the time its zio is issued, and means
2249 * the size of the lwb was "too large" given the amount
2250 * of ZIL activity occurring on the system at that time.
2251 *
2252 * We do this for a couple of reasons:
2253 *
2254 * 1. To try and reduce the number of IOPs needed to
2255 * write the same number of itxs. If an lwb has space
2256 * available in its buffer for more itxs, and more itxs
2257 * will be committed relatively soon (relative to the
2258 * latency of performing a write), then it's beneficial
2259 * to wait for these "next" itxs. This way, more itxs
2260 * can be committed to stable storage with fewer writes.
2261 *
2262 * 2. To try and use the largest lwb block size that the
2263 * incoming rate of itxs can support. Again, this is to
2264 * try and pack as many itxs into as few lwbs as
2265 * possible, without significantly impacting the latency
2266 * of each individual itx.
2267 */
2268 }
2269 }
2270
2271 /*
2272 * This function is responsible for ensuring the passed in commit waiter
2273 * (and associated commit itx) is committed to an lwb. If the waiter is
2274 * not already committed to an lwb, all itxs in the zilog's queue of
2275 * itxs will be processed. The assumption is the passed in waiter's
2276 * commit itx will found in the queue just like the other non-commit
2277 * itxs, such that when the entire queue is processed, the waiter will
2278 * have been committed to an lwb.
2279 *
2280 * The lwb associated with the passed in waiter is not guaranteed to
2281 * have been issued by the time this function completes. If the lwb is
2282 * not issued, we rely on future calls to zil_commit_writer() to issue
2283 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2284 */
2285 static void
2286 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2287 {
2288 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2289 ASSERT(spa_writeable(zilog->zl_spa));
2290
2291 mutex_enter(&zilog->zl_issuer_lock);
2292
2293 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2294 /*
2295 * It's possible that, while we were waiting to acquire
2296 * the "zl_issuer_lock", another thread committed this
2297 * waiter to an lwb. If that occurs, we bail out early,
2298 * without processing any of the zilog's queue of itxs.
2299 *
2300 * On certain workloads and system configurations, the
2301 * "zl_issuer_lock" can become highly contended. In an
2302 * attempt to reduce this contention, we immediately drop
2303 * the lock if the waiter has already been processed.
2304 *
2305 * We've measured this optimization to reduce CPU spent
2306 * contending on this lock by up to 5%, using a system
2307 * with 32 CPUs, low latency storage (~50 usec writes),
2308 * and 1024 threads performing sync writes.
2309 */
2310 goto out;
2311 }
2312
2313 ZIL_STAT_BUMP(zil_commit_writer_count);
2314
2315 zil_get_commit_list(zilog);
2316 zil_prune_commit_list(zilog);
2317 zil_process_commit_list(zilog);
2318
2319 out:
2320 mutex_exit(&zilog->zl_issuer_lock);
2321 }
2322
2323 static void
2324 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2325 {
2326 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2327 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2328 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2329
2330 lwb_t *lwb = zcw->zcw_lwb;
2331 ASSERT3P(lwb, !=, NULL);
2332 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2333
2334 /*
2335 * If the lwb has already been issued by another thread, we can
2336 * immediately return since there's no work to be done (the
2337 * point of this function is to issue the lwb). Additionally, we
2338 * do this prior to acquiring the zl_issuer_lock, to avoid
2339 * acquiring it when it's not necessary to do so.
2340 */
2341 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2342 lwb->lwb_state == LWB_STATE_DONE)
2343 return;
2344
2345 /*
2346 * In order to call zil_lwb_write_issue() we must hold the
2347 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2348 * since we're already holding the commit waiter's "zcw_lock",
2349 * and those two locks are acquired in the opposite order
2350 * elsewhere.
2351 */
2352 mutex_exit(&zcw->zcw_lock);
2353 mutex_enter(&zilog->zl_issuer_lock);
2354 mutex_enter(&zcw->zcw_lock);
2355
2356 /*
2357 * Since we just dropped and re-acquired the commit waiter's
2358 * lock, we have to re-check to see if the waiter was marked
2359 * "done" during that process. If the waiter was marked "done",
2360 * the "lwb" pointer is no longer valid (it can be free'd after
2361 * the waiter is marked "done"), so without this check we could
2362 * wind up with a use-after-free error below.
2363 */
2364 if (zcw->zcw_done)
2365 goto out;
2366
2367 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2368
2369 /*
2370 * We've already checked this above, but since we hadn't acquired
2371 * the zilog's zl_issuer_lock, we have to perform this check a
2372 * second time while holding the lock.
2373 *
2374 * We don't need to hold the zl_lock since the lwb cannot transition
2375 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2376 * _can_ transition from ISSUED to DONE, but it's OK to race with
2377 * that transition since we treat the lwb the same, whether it's in
2378 * the ISSUED or DONE states.
2379 *
2380 * The important thing, is we treat the lwb differently depending on
2381 * if it's ISSUED or OPENED, and block any other threads that might
2382 * attempt to issue this lwb. For that reason we hold the
2383 * zl_issuer_lock when checking the lwb_state; we must not call
2384 * zil_lwb_write_issue() if the lwb had already been issued.
2385 *
2386 * See the comment above the lwb_state_t structure definition for
2387 * more details on the lwb states, and locking requirements.
2388 */
2389 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2390 lwb->lwb_state == LWB_STATE_DONE)
2391 goto out;
2392
2393 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2394
2395 /*
2396 * As described in the comments above zil_commit_waiter() and
2397 * zil_process_commit_list(), we need to issue this lwb's zio
2398 * since we've reached the commit waiter's timeout and it still
2399 * hasn't been issued.
2400 */
2401 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2402
2403 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2404
2405 /*
2406 * Since the lwb's zio hadn't been issued by the time this thread
2407 * reached its timeout, we reset the zilog's "zl_cur_used" field
2408 * to influence the zil block size selection algorithm.
2409 *
2410 * By having to issue the lwb's zio here, it means the size of the
2411 * lwb was too large, given the incoming throughput of itxs. By
2412 * setting "zl_cur_used" to zero, we communicate this fact to the
2413 * block size selection algorithm, so it can take this information
2414 * into account, and potentially select a smaller size for the
2415 * next lwb block that is allocated.
2416 */
2417 zilog->zl_cur_used = 0;
2418
2419 if (nlwb == NULL) {
2420 /*
2421 * When zil_lwb_write_issue() returns NULL, this
2422 * indicates zio_alloc_zil() failed to allocate the
2423 * "next" lwb on-disk. When this occurs, the ZIL write
2424 * pipeline must be stalled; see the comment within the
2425 * zil_commit_writer_stall() function for more details.
2426 *
2427 * We must drop the commit waiter's lock prior to
2428 * calling zil_commit_writer_stall() or else we can wind
2429 * up with the following deadlock:
2430 *
2431 * - This thread is waiting for the txg to sync while
2432 * holding the waiter's lock; txg_wait_synced() is
2433 * used within txg_commit_writer_stall().
2434 *
2435 * - The txg can't sync because it is waiting for this
2436 * lwb's zio callback to call dmu_tx_commit().
2437 *
2438 * - The lwb's zio callback can't call dmu_tx_commit()
2439 * because it's blocked trying to acquire the waiter's
2440 * lock, which occurs prior to calling dmu_tx_commit()
2441 */
2442 mutex_exit(&zcw->zcw_lock);
2443 zil_commit_writer_stall(zilog);
2444 mutex_enter(&zcw->zcw_lock);
2445 }
2446
2447 out:
2448 mutex_exit(&zilog->zl_issuer_lock);
2449 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2450 }
2451
2452 /*
2453 * This function is responsible for performing the following two tasks:
2454 *
2455 * 1. its primary responsibility is to block until the given "commit
2456 * waiter" is considered "done".
2457 *
2458 * 2. its secondary responsibility is to issue the zio for the lwb that
2459 * the given "commit waiter" is waiting on, if this function has
2460 * waited "long enough" and the lwb is still in the "open" state.
2461 *
2462 * Given a sufficient amount of itxs being generated and written using
2463 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2464 * function. If this does not occur, this secondary responsibility will
2465 * ensure the lwb is issued even if there is not other synchronous
2466 * activity on the system.
2467 *
2468 * For more details, see zil_process_commit_list(); more specifically,
2469 * the comment at the bottom of that function.
2470 */
2471 static void
2472 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2473 {
2474 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2475 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2476 ASSERT(spa_writeable(zilog->zl_spa));
2477
2478 mutex_enter(&zcw->zcw_lock);
2479
2480 /*
2481 * The timeout is scaled based on the lwb latency to avoid
2482 * significantly impacting the latency of each individual itx.
2483 * For more details, see the comment at the bottom of the
2484 * zil_process_commit_list() function.
2485 */
2486 int pct = MAX(zfs_commit_timeout_pct, 1);
2487 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2488 hrtime_t wakeup = gethrtime() + sleep;
2489 boolean_t timedout = B_FALSE;
2490
2491 while (!zcw->zcw_done) {
2492 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2493
2494 lwb_t *lwb = zcw->zcw_lwb;
2495
2496 /*
2497 * Usually, the waiter will have a non-NULL lwb field here,
2498 * but it's possible for it to be NULL as a result of
2499 * zil_commit() racing with spa_sync().
2500 *
2501 * When zil_clean() is called, it's possible for the itxg
2502 * list (which may be cleaned via a taskq) to contain
2503 * commit itxs. When this occurs, the commit waiters linked
2504 * off of these commit itxs will not be committed to an
2505 * lwb. Additionally, these commit waiters will not be
2506 * marked done until zil_commit_waiter_skip() is called via
2507 * zil_itxg_clean().
2508 *
2509 * Thus, it's possible for this commit waiter (i.e. the
2510 * "zcw" variable) to be found in this "in between" state;
2511 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2512 * been skipped, so it's "zcw_done" field is still B_FALSE.
2513 */
2514 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2515
2516 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2517 ASSERT3B(timedout, ==, B_FALSE);
2518
2519 /*
2520 * If the lwb hasn't been issued yet, then we
2521 * need to wait with a timeout, in case this
2522 * function needs to issue the lwb after the
2523 * timeout is reached; responsibility (2) from
2524 * the comment above this function.
2525 */
2526 clock_t timeleft = cv_timedwait_hires(&zcw->zcw_cv,
2527 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2528 CALLOUT_FLAG_ABSOLUTE);
2529
2530 if (timeleft >= 0 || zcw->zcw_done)
2531 continue;
2532
2533 timedout = B_TRUE;
2534 zil_commit_waiter_timeout(zilog, zcw);
2535
2536 if (!zcw->zcw_done) {
2537 /*
2538 * If the commit waiter has already been
2539 * marked "done", it's possible for the
2540 * waiter's lwb structure to have already
2541 * been freed. Thus, we can only reliably
2542 * make these assertions if the waiter
2543 * isn't done.
2544 */
2545 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2546 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2547 }
2548 } else {
2549 /*
2550 * If the lwb isn't open, then it must have already
2551 * been issued. In that case, there's no need to
2552 * use a timeout when waiting for the lwb to
2553 * complete.
2554 *
2555 * Additionally, if the lwb is NULL, the waiter
2556 * will soon be signaled and marked done via
2557 * zil_clean() and zil_itxg_clean(), so no timeout
2558 * is required.
2559 */
2560
2561 IMPLY(lwb != NULL,
2562 lwb->lwb_state == LWB_STATE_ISSUED ||
2563 lwb->lwb_state == LWB_STATE_DONE);
2564 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2565 }
2566 }
2567
2568 mutex_exit(&zcw->zcw_lock);
2569 }
2570
2571 static zil_commit_waiter_t *
2572 zil_alloc_commit_waiter(void)
2573 {
2574 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2575
2576 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2577 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2578 list_link_init(&zcw->zcw_node);
2579 zcw->zcw_lwb = NULL;
2580 zcw->zcw_done = B_FALSE;
2581 zcw->zcw_zio_error = 0;
2582
2583 return (zcw);
2584 }
2585
2586 static void
2587 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2588 {
2589 ASSERT(!list_link_active(&zcw->zcw_node));
2590 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2591 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2592 mutex_destroy(&zcw->zcw_lock);
2593 cv_destroy(&zcw->zcw_cv);
2594 kmem_cache_free(zil_zcw_cache, zcw);
2595 }
2596
2597 /*
2598 * This function is used to create a TX_COMMIT itx and assign it. This
2599 * way, it will be linked into the ZIL's list of synchronous itxs, and
2600 * then later committed to an lwb (or skipped) when
2601 * zil_process_commit_list() is called.
2602 */
2603 static void
2604 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2605 {
2606 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2607 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2608
2609 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2610 itx->itx_sync = B_TRUE;
2611 itx->itx_private = zcw;
2612
2613 zil_itx_assign(zilog, itx, tx);
2614
2615 dmu_tx_commit(tx);
2616 }
2617
2618 /*
2619 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2620 *
2621 * When writing ZIL transactions to the on-disk representation of the
2622 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2623 * itxs can be committed to a single lwb. Once a lwb is written and
2624 * committed to stable storage (i.e. the lwb is written, and vdevs have
2625 * been flushed), each itx that was committed to that lwb is also
2626 * considered to be committed to stable storage.
2627 *
2628 * When an itx is committed to an lwb, the log record (lr_t) contained
2629 * by the itx is copied into the lwb's zio buffer, and once this buffer
2630 * is written to disk, it becomes an on-disk ZIL block.
2631 *
2632 * As itxs are generated, they're inserted into the ZIL's queue of
2633 * uncommitted itxs. The semantics of zil_commit() are such that it will
2634 * block until all itxs that were in the queue when it was called, are
2635 * committed to stable storage.
2636 *
2637 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2638 * itxs, for all objects in the dataset, will be committed to stable
2639 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2640 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2641 * that correspond to the foid passed in, will be committed to stable
2642 * storage prior to zil_commit() returning.
2643 *
2644 * Generally speaking, when zil_commit() is called, the consumer doesn't
2645 * actually care about _all_ of the uncommitted itxs. Instead, they're
2646 * simply trying to waiting for a specific itx to be committed to disk,
2647 * but the interface(s) for interacting with the ZIL don't allow such
2648 * fine-grained communication. A better interface would allow a consumer
2649 * to create and assign an itx, and then pass a reference to this itx to
2650 * zil_commit(); such that zil_commit() would return as soon as that
2651 * specific itx was committed to disk (instead of waiting for _all_
2652 * itxs to be committed).
2653 *
2654 * When a thread calls zil_commit() a special "commit itx" will be
2655 * generated, along with a corresponding "waiter" for this commit itx.
2656 * zil_commit() will wait on this waiter's CV, such that when the waiter
2657 * is marked done, and signaled, zil_commit() will return.
2658 *
2659 * This commit itx is inserted into the queue of uncommitted itxs. This
2660 * provides an easy mechanism for determining which itxs were in the
2661 * queue prior to zil_commit() having been called, and which itxs were
2662 * added after zil_commit() was called.
2663 *
2664 * The commit it is special; it doesn't have any on-disk representation.
2665 * When a commit itx is "committed" to an lwb, the waiter associated
2666 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2667 * completes, each waiter on the lwb's list is marked done and signaled
2668 * -- allowing the thread waiting on the waiter to return from zil_commit().
2669 *
2670 * It's important to point out a few critical factors that allow us
2671 * to make use of the commit itxs, commit waiters, per-lwb lists of
2672 * commit waiters, and zio completion callbacks like we're doing:
2673 *
2674 * 1. The list of waiters for each lwb is traversed, and each commit
2675 * waiter is marked "done" and signaled, in the zio completion
2676 * callback of the lwb's zio[*].
2677 *
2678 * * Actually, the waiters are signaled in the zio completion
2679 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2680 * that are sent to the vdevs upon completion of the lwb zio.
2681 *
2682 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2683 * itxs, the order in which they are inserted is preserved[*]; as
2684 * itxs are added to the queue, they are added to the tail of
2685 * in-memory linked lists.
2686 *
2687 * When committing the itxs to lwbs (to be written to disk), they
2688 * are committed in the same order in which the itxs were added to
2689 * the uncommitted queue's linked list(s); i.e. the linked list of
2690 * itxs to commit is traversed from head to tail, and each itx is
2691 * committed to an lwb in that order.
2692 *
2693 * * To clarify:
2694 *
2695 * - the order of "sync" itxs is preserved w.r.t. other
2696 * "sync" itxs, regardless of the corresponding objects.
2697 * - the order of "async" itxs is preserved w.r.t. other
2698 * "async" itxs corresponding to the same object.
2699 * - the order of "async" itxs is *not* preserved w.r.t. other
2700 * "async" itxs corresponding to different objects.
2701 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
2702 * versa) is *not* preserved, even for itxs that correspond
2703 * to the same object.
2704 *
2705 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
2706 * zil_get_commit_list(), and zil_process_commit_list().
2707 *
2708 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
2709 * lwb cannot be considered committed to stable storage, until its
2710 * "previous" lwb is also committed to stable storage. This fact,
2711 * coupled with the fact described above, means that itxs are
2712 * committed in (roughly) the order in which they were generated.
2713 * This is essential because itxs are dependent on prior itxs.
2714 * Thus, we *must not* deem an itx as being committed to stable
2715 * storage, until *all* prior itxs have also been committed to
2716 * stable storage.
2717 *
2718 * To enforce this ordering of lwb zio's, while still leveraging as
2719 * much of the underlying storage performance as possible, we rely
2720 * on two fundamental concepts:
2721 *
2722 * 1. The creation and issuance of lwb zio's is protected by
2723 * the zilog's "zl_issuer_lock", which ensures only a single
2724 * thread is creating and/or issuing lwb's at a time
2725 * 2. The "previous" lwb is a child of the "current" lwb
2726 * (leveraging the zio parent-child dependency graph)
2727 *
2728 * By relying on this parent-child zio relationship, we can have
2729 * many lwb zio's concurrently issued to the underlying storage,
2730 * but the order in which they complete will be the same order in
2731 * which they were created.
2732 */
2733 void
2734 zil_commit(zilog_t *zilog, uint64_t foid)
2735 {
2736 /*
2737 * We should never attempt to call zil_commit on a snapshot for
2738 * a couple of reasons:
2739 *
2740 * 1. A snapshot may never be modified, thus it cannot have any
2741 * in-flight itxs that would have modified the dataset.
2742 *
2743 * 2. By design, when zil_commit() is called, a commit itx will
2744 * be assigned to this zilog; as a result, the zilog will be
2745 * dirtied. We must not dirty the zilog of a snapshot; there's
2746 * checks in the code that enforce this invariant, and will
2747 * cause a panic if it's not upheld.
2748 */
2749 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
2750
2751 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2752 return;
2753
2754 if (!spa_writeable(zilog->zl_spa)) {
2755 /*
2756 * If the SPA is not writable, there should never be any
2757 * pending itxs waiting to be committed to disk. If that
2758 * weren't true, we'd skip writing those itxs out, and
2759 * would break the semantics of zil_commit(); thus, we're
2760 * verifying that truth before we return to the caller.
2761 */
2762 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2763 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
2764 for (int i = 0; i < TXG_SIZE; i++)
2765 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
2766 return;
2767 }
2768
2769 /*
2770 * If the ZIL is suspended, we don't want to dirty it by calling
2771 * zil_commit_itx_assign() below, nor can we write out
2772 * lwbs like would be done in zil_commit_write(). Thus, we
2773 * simply rely on txg_wait_synced() to maintain the necessary
2774 * semantics, and avoid calling those functions altogether.
2775 */
2776 if (zilog->zl_suspend > 0) {
2777 txg_wait_synced(zilog->zl_dmu_pool, 0);
2778 return;
2779 }
2780
2781 zil_commit_impl(zilog, foid);
2782 }
2783
2784 void
2785 zil_commit_impl(zilog_t *zilog, uint64_t foid)
2786 {
2787 ZIL_STAT_BUMP(zil_commit_count);
2788
2789 /*
2790 * Move the "async" itxs for the specified foid to the "sync"
2791 * queues, such that they will be later committed (or skipped)
2792 * to an lwb when zil_process_commit_list() is called.
2793 *
2794 * Since these "async" itxs must be committed prior to this
2795 * call to zil_commit returning, we must perform this operation
2796 * before we call zil_commit_itx_assign().
2797 */
2798 zil_async_to_sync(zilog, foid);
2799
2800 /*
2801 * We allocate a new "waiter" structure which will initially be
2802 * linked to the commit itx using the itx's "itx_private" field.
2803 * Since the commit itx doesn't represent any on-disk state,
2804 * when it's committed to an lwb, rather than copying the its
2805 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
2806 * added to the lwb's list of waiters. Then, when the lwb is
2807 * committed to stable storage, each waiter in the lwb's list of
2808 * waiters will be marked "done", and signalled.
2809 *
2810 * We must create the waiter and assign the commit itx prior to
2811 * calling zil_commit_writer(), or else our specific commit itx
2812 * is not guaranteed to be committed to an lwb prior to calling
2813 * zil_commit_waiter().
2814 */
2815 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
2816 zil_commit_itx_assign(zilog, zcw);
2817
2818 zil_commit_writer(zilog, zcw);
2819 zil_commit_waiter(zilog, zcw);
2820
2821 if (zcw->zcw_zio_error != 0) {
2822 /*
2823 * If there was an error writing out the ZIL blocks that
2824 * this thread is waiting on, then we fallback to
2825 * relying on spa_sync() to write out the data this
2826 * thread is waiting on. Obviously this has performance
2827 * implications, but the expectation is for this to be
2828 * an exceptional case, and shouldn't occur often.
2829 */
2830 DTRACE_PROBE2(zil__commit__io__error,
2831 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
2832 txg_wait_synced(zilog->zl_dmu_pool, 0);
2833 }
2834
2835 zil_free_commit_waiter(zcw);
2836 }
2837
2838 /*
2839 * Called in syncing context to free committed log blocks and update log header.
2840 */
2841 void
2842 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
2843 {
2844 zil_header_t *zh = zil_header_in_syncing_context(zilog);
2845 uint64_t txg = dmu_tx_get_txg(tx);
2846 spa_t *spa = zilog->zl_spa;
2847 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
2848 lwb_t *lwb;
2849
2850 /*
2851 * We don't zero out zl_destroy_txg, so make sure we don't try
2852 * to destroy it twice.
2853 */
2854 if (spa_sync_pass(spa) != 1)
2855 return;
2856
2857 mutex_enter(&zilog->zl_lock);
2858
2859 ASSERT(zilog->zl_stop_sync == 0);
2860
2861 if (*replayed_seq != 0) {
2862 ASSERT(zh->zh_replay_seq < *replayed_seq);
2863 zh->zh_replay_seq = *replayed_seq;
2864 *replayed_seq = 0;
2865 }
2866
2867 if (zilog->zl_destroy_txg == txg) {
2868 blkptr_t blk = zh->zh_log;
2869
2870 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
2871
2872 bzero(zh, sizeof (zil_header_t));
2873 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
2874
2875 if (zilog->zl_keep_first) {
2876 /*
2877 * If this block was part of log chain that couldn't
2878 * be claimed because a device was missing during
2879 * zil_claim(), but that device later returns,
2880 * then this block could erroneously appear valid.
2881 * To guard against this, assign a new GUID to the new
2882 * log chain so it doesn't matter what blk points to.
2883 */
2884 zil_init_log_chain(zilog, &blk);
2885 zh->zh_log = blk;
2886 }
2887 }
2888
2889 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
2890 zh->zh_log = lwb->lwb_blk;
2891 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
2892 break;
2893 list_remove(&zilog->zl_lwb_list, lwb);
2894 zio_free(spa, txg, &lwb->lwb_blk);
2895 zil_free_lwb(zilog, lwb);
2896
2897 /*
2898 * If we don't have anything left in the lwb list then
2899 * we've had an allocation failure and we need to zero
2900 * out the zil_header blkptr so that we don't end
2901 * up freeing the same block twice.
2902 */
2903 if (list_head(&zilog->zl_lwb_list) == NULL)
2904 BP_ZERO(&zh->zh_log);
2905 }
2906
2907 /*
2908 * Remove fastwrite on any blocks that have been pre-allocated for
2909 * the next commit. This prevents fastwrite counter pollution by
2910 * unused, long-lived LWBs.
2911 */
2912 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
2913 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
2914 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
2915 lwb->lwb_fastwrite = 0;
2916 }
2917 }
2918
2919 mutex_exit(&zilog->zl_lock);
2920 }
2921
2922 /* ARGSUSED */
2923 static int
2924 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
2925 {
2926 lwb_t *lwb = vbuf;
2927 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2928 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
2929 offsetof(zil_commit_waiter_t, zcw_node));
2930 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
2931 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
2932 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
2933 return (0);
2934 }
2935
2936 /* ARGSUSED */
2937 static void
2938 zil_lwb_dest(void *vbuf, void *unused)
2939 {
2940 lwb_t *lwb = vbuf;
2941 mutex_destroy(&lwb->lwb_vdev_lock);
2942 avl_destroy(&lwb->lwb_vdev_tree);
2943 list_destroy(&lwb->lwb_waiters);
2944 list_destroy(&lwb->lwb_itxs);
2945 }
2946
2947 void
2948 zil_init(void)
2949 {
2950 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
2951 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
2952
2953 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
2954 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
2955
2956 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
2957 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
2958 KSTAT_FLAG_VIRTUAL);
2959
2960 if (zil_ksp != NULL) {
2961 zil_ksp->ks_data = &zil_stats;
2962 kstat_install(zil_ksp);
2963 }
2964 }
2965
2966 void
2967 zil_fini(void)
2968 {
2969 kmem_cache_destroy(zil_zcw_cache);
2970 kmem_cache_destroy(zil_lwb_cache);
2971
2972 if (zil_ksp != NULL) {
2973 kstat_delete(zil_ksp);
2974 zil_ksp = NULL;
2975 }
2976 }
2977
2978 void
2979 zil_set_sync(zilog_t *zilog, uint64_t sync)
2980 {
2981 zilog->zl_sync = sync;
2982 }
2983
2984 void
2985 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
2986 {
2987 zilog->zl_logbias = logbias;
2988 }
2989
2990 zilog_t *
2991 zil_alloc(objset_t *os, zil_header_t *zh_phys)
2992 {
2993 zilog_t *zilog;
2994
2995 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
2996
2997 zilog->zl_header = zh_phys;
2998 zilog->zl_os = os;
2999 zilog->zl_spa = dmu_objset_spa(os);
3000 zilog->zl_dmu_pool = dmu_objset_pool(os);
3001 zilog->zl_destroy_txg = TXG_INITIAL - 1;
3002 zilog->zl_logbias = dmu_objset_logbias(os);
3003 zilog->zl_sync = dmu_objset_syncprop(os);
3004 zilog->zl_dirty_max_txg = 0;
3005 zilog->zl_last_lwb_opened = NULL;
3006 zilog->zl_last_lwb_latency = 0;
3007
3008 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3009 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3010
3011 for (int i = 0; i < TXG_SIZE; i++) {
3012 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3013 MUTEX_DEFAULT, NULL);
3014 }
3015
3016 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3017 offsetof(lwb_t, lwb_node));
3018
3019 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3020 offsetof(itx_t, itx_node));
3021
3022 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3023
3024 return (zilog);
3025 }
3026
3027 void
3028 zil_free(zilog_t *zilog)
3029 {
3030 int i;
3031
3032 zilog->zl_stop_sync = 1;
3033
3034 ASSERT0(zilog->zl_suspend);
3035 ASSERT0(zilog->zl_suspending);
3036
3037 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3038 list_destroy(&zilog->zl_lwb_list);
3039
3040 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3041 list_destroy(&zilog->zl_itx_commit_list);
3042
3043 for (i = 0; i < TXG_SIZE; i++) {
3044 /*
3045 * It's possible for an itx to be generated that doesn't dirty
3046 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3047 * callback to remove the entry. We remove those here.
3048 *
3049 * Also free up the ziltest itxs.
3050 */
3051 if (zilog->zl_itxg[i].itxg_itxs)
3052 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3053 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3054 }
3055
3056 mutex_destroy(&zilog->zl_issuer_lock);
3057 mutex_destroy(&zilog->zl_lock);
3058
3059 cv_destroy(&zilog->zl_cv_suspend);
3060
3061 kmem_free(zilog, sizeof (zilog_t));
3062 }
3063
3064 /*
3065 * Open an intent log.
3066 */
3067 zilog_t *
3068 zil_open(objset_t *os, zil_get_data_t *get_data)
3069 {
3070 zilog_t *zilog = dmu_objset_zil(os);
3071
3072 ASSERT3P(zilog->zl_get_data, ==, NULL);
3073 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3074 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3075
3076 zilog->zl_get_data = get_data;
3077
3078 return (zilog);
3079 }
3080
3081 /*
3082 * Close an intent log.
3083 */
3084 void
3085 zil_close(zilog_t *zilog)
3086 {
3087 lwb_t *lwb;
3088 uint64_t txg;
3089
3090 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3091 zil_commit(zilog, 0);
3092 } else {
3093 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3094 ASSERT0(zilog->zl_dirty_max_txg);
3095 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3096 }
3097
3098 mutex_enter(&zilog->zl_lock);
3099 lwb = list_tail(&zilog->zl_lwb_list);
3100 if (lwb == NULL)
3101 txg = zilog->zl_dirty_max_txg;
3102 else
3103 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3104 mutex_exit(&zilog->zl_lock);
3105
3106 /*
3107 * We need to use txg_wait_synced() to wait long enough for the
3108 * ZIL to be clean, and to wait for all pending lwbs to be
3109 * written out.
3110 */
3111 if (txg != 0)
3112 txg_wait_synced(zilog->zl_dmu_pool, txg);
3113
3114 if (zilog_is_dirty(zilog))
3115 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
3116 if (txg < spa_freeze_txg(zilog->zl_spa))
3117 VERIFY(!zilog_is_dirty(zilog));
3118
3119 zilog->zl_get_data = NULL;
3120
3121 /*
3122 * We should have only one lwb left on the list; remove it now.
3123 */
3124 mutex_enter(&zilog->zl_lock);
3125 lwb = list_head(&zilog->zl_lwb_list);
3126 if (lwb != NULL) {
3127 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3128 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3129
3130 if (lwb->lwb_fastwrite)
3131 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3132
3133 list_remove(&zilog->zl_lwb_list, lwb);
3134 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3135 zil_free_lwb(zilog, lwb);
3136 }
3137 mutex_exit(&zilog->zl_lock);
3138 }
3139
3140 static char *suspend_tag = "zil suspending";
3141
3142 /*
3143 * Suspend an intent log. While in suspended mode, we still honor
3144 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3145 * On old version pools, we suspend the log briefly when taking a
3146 * snapshot so that it will have an empty intent log.
3147 *
3148 * Long holds are not really intended to be used the way we do here --
3149 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3150 * could fail. Therefore we take pains to only put a long hold if it is
3151 * actually necessary. Fortunately, it will only be necessary if the
3152 * objset is currently mounted (or the ZVOL equivalent). In that case it
3153 * will already have a long hold, so we are not really making things any worse.
3154 *
3155 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3156 * zvol_state_t), and use their mechanism to prevent their hold from being
3157 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3158 * very little gain.
3159 *
3160 * if cookiep == NULL, this does both the suspend & resume.
3161 * Otherwise, it returns with the dataset "long held", and the cookie
3162 * should be passed into zil_resume().
3163 */
3164 int
3165 zil_suspend(const char *osname, void **cookiep)
3166 {
3167 objset_t *os;
3168 zilog_t *zilog;
3169 const zil_header_t *zh;
3170 int error;
3171
3172 error = dmu_objset_hold(osname, suspend_tag, &os);
3173 if (error != 0)
3174 return (error);
3175 zilog = dmu_objset_zil(os);
3176
3177 mutex_enter(&zilog->zl_lock);
3178 zh = zilog->zl_header;
3179
3180 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3181 mutex_exit(&zilog->zl_lock);
3182 dmu_objset_rele(os, suspend_tag);
3183 return (SET_ERROR(EBUSY));
3184 }
3185
3186 /*
3187 * Don't put a long hold in the cases where we can avoid it. This
3188 * is when there is no cookie so we are doing a suspend & resume
3189 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3190 * for the suspend because it's already suspended, or there's no ZIL.
3191 */
3192 if (cookiep == NULL && !zilog->zl_suspending &&
3193 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3194 mutex_exit(&zilog->zl_lock);
3195 dmu_objset_rele(os, suspend_tag);
3196 return (0);
3197 }
3198
3199 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3200 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3201
3202 zilog->zl_suspend++;
3203
3204 if (zilog->zl_suspend > 1) {
3205 /*
3206 * Someone else is already suspending it.
3207 * Just wait for them to finish.
3208 */
3209
3210 while (zilog->zl_suspending)
3211 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3212 mutex_exit(&zilog->zl_lock);
3213
3214 if (cookiep == NULL)
3215 zil_resume(os);
3216 else
3217 *cookiep = os;
3218 return (0);
3219 }
3220
3221 /*
3222 * If there is no pointer to an on-disk block, this ZIL must not
3223 * be active (e.g. filesystem not mounted), so there's nothing
3224 * to clean up.
3225 */
3226 if (BP_IS_HOLE(&zh->zh_log)) {
3227 ASSERT(cookiep != NULL); /* fast path already handled */
3228
3229 *cookiep = os;
3230 mutex_exit(&zilog->zl_lock);
3231 return (0);
3232 }
3233
3234 /*
3235 * The ZIL has work to do. Ensure that the associated encryption
3236 * key will remain mapped while we are committing the log by
3237 * grabbing a reference to it. If the key isn't loaded we have no
3238 * choice but to return an error until the wrapping key is loaded.
3239 */
3240 if (os->os_encrypted &&
3241 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3242 zilog->zl_suspend--;
3243 mutex_exit(&zilog->zl_lock);
3244 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3245 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3246 return (SET_ERROR(EACCES));
3247 }
3248
3249 zilog->zl_suspending = B_TRUE;
3250 mutex_exit(&zilog->zl_lock);
3251
3252 /*
3253 * We need to use zil_commit_impl to ensure we wait for all
3254 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3255 * to disk before proceeding. If we used zil_commit instead, it
3256 * would just call txg_wait_synced(), because zl_suspend is set.
3257 * txg_wait_synced() doesn't wait for these lwb's to be
3258 * LWB_STATE_DONE before returning.
3259 */
3260 zil_commit_impl(zilog, 0);
3261
3262 /*
3263 * Now that we've ensured all lwb's are LWB_STATE_DONE,
3264 * txg_wait_synced() will be called from within zil_destroy(),
3265 * which will ensure the data from the zilog has migrated to the
3266 * main pool before it returns.
3267 */
3268 txg_wait_synced(zilog->zl_dmu_pool, 0);
3269
3270 zil_destroy(zilog, B_FALSE);
3271
3272 mutex_enter(&zilog->zl_lock);
3273 zilog->zl_suspending = B_FALSE;
3274 cv_broadcast(&zilog->zl_cv_suspend);
3275 mutex_exit(&zilog->zl_lock);
3276
3277 if (os->os_encrypted)
3278 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3279
3280 if (cookiep == NULL)
3281 zil_resume(os);
3282 else
3283 *cookiep = os;
3284 return (0);
3285 }
3286
3287 void
3288 zil_resume(void *cookie)
3289 {
3290 objset_t *os = cookie;
3291 zilog_t *zilog = dmu_objset_zil(os);
3292
3293 mutex_enter(&zilog->zl_lock);
3294 ASSERT(zilog->zl_suspend != 0);
3295 zilog->zl_suspend--;
3296 mutex_exit(&zilog->zl_lock);
3297 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3298 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3299 }
3300
3301 typedef struct zil_replay_arg {
3302 zil_replay_func_t **zr_replay;
3303 void *zr_arg;
3304 boolean_t zr_byteswap;
3305 char *zr_lr;
3306 } zil_replay_arg_t;
3307
3308 static int
3309 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
3310 {
3311 char name[ZFS_MAX_DATASET_NAME_LEN];
3312
3313 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3314
3315 dmu_objset_name(zilog->zl_os, name);
3316
3317 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3318 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3319 (u_longlong_t)lr->lrc_seq,
3320 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3321 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3322
3323 return (error);
3324 }
3325
3326 static int
3327 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
3328 {
3329 zil_replay_arg_t *zr = zra;
3330 const zil_header_t *zh = zilog->zl_header;
3331 uint64_t reclen = lr->lrc_reclen;
3332 uint64_t txtype = lr->lrc_txtype;
3333 int error = 0;
3334
3335 zilog->zl_replaying_seq = lr->lrc_seq;
3336
3337 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3338 return (0);
3339
3340 if (lr->lrc_txg < claim_txg) /* already committed */
3341 return (0);
3342
3343 /* Strip case-insensitive bit, still present in log record */
3344 txtype &= ~TX_CI;
3345
3346 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3347 return (zil_replay_error(zilog, lr, EINVAL));
3348
3349 /*
3350 * If this record type can be logged out of order, the object
3351 * (lr_foid) may no longer exist. That's legitimate, not an error.
3352 */
3353 if (TX_OOO(txtype)) {
3354 error = dmu_object_info(zilog->zl_os,
3355 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3356 if (error == ENOENT || error == EEXIST)
3357 return (0);
3358 }
3359
3360 /*
3361 * Make a copy of the data so we can revise and extend it.
3362 */
3363 bcopy(lr, zr->zr_lr, reclen);
3364
3365 /*
3366 * If this is a TX_WRITE with a blkptr, suck in the data.
3367 */
3368 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3369 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3370 zr->zr_lr + reclen);
3371 if (error != 0)
3372 return (zil_replay_error(zilog, lr, error));
3373 }
3374
3375 /*
3376 * The log block containing this lr may have been byteswapped
3377 * so that we can easily examine common fields like lrc_txtype.
3378 * However, the log is a mix of different record types, and only the
3379 * replay vectors know how to byteswap their records. Therefore, if
3380 * the lr was byteswapped, undo it before invoking the replay vector.
3381 */
3382 if (zr->zr_byteswap)
3383 byteswap_uint64_array(zr->zr_lr, reclen);
3384
3385 /*
3386 * We must now do two things atomically: replay this log record,
3387 * and update the log header sequence number to reflect the fact that
3388 * we did so. At the end of each replay function the sequence number
3389 * is updated if we are in replay mode.
3390 */
3391 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3392 if (error != 0) {
3393 /*
3394 * The DMU's dnode layer doesn't see removes until the txg
3395 * commits, so a subsequent claim can spuriously fail with
3396 * EEXIST. So if we receive any error we try syncing out
3397 * any removes then retry the transaction. Note that we
3398 * specify B_FALSE for byteswap now, so we don't do it twice.
3399 */
3400 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3401 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3402 if (error != 0)
3403 return (zil_replay_error(zilog, lr, error));
3404 }
3405 return (0);
3406 }
3407
3408 /* ARGSUSED */
3409 static int
3410 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
3411 {
3412 zilog->zl_replay_blks++;
3413
3414 return (0);
3415 }
3416
3417 /*
3418 * If this dataset has a non-empty intent log, replay it and destroy it.
3419 */
3420 void
3421 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
3422 {
3423 zilog_t *zilog = dmu_objset_zil(os);
3424 const zil_header_t *zh = zilog->zl_header;
3425 zil_replay_arg_t zr;
3426
3427 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3428 zil_destroy(zilog, B_TRUE);
3429 return;
3430 }
3431
3432 zr.zr_replay = replay_func;
3433 zr.zr_arg = arg;
3434 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3435 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3436
3437 /*
3438 * Wait for in-progress removes to sync before starting replay.
3439 */
3440 txg_wait_synced(zilog->zl_dmu_pool, 0);
3441
3442 zilog->zl_replay = B_TRUE;
3443 zilog->zl_replay_time = ddi_get_lbolt();
3444 ASSERT(zilog->zl_replay_blks == 0);
3445 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3446 zh->zh_claim_txg, B_TRUE);
3447 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3448
3449 zil_destroy(zilog, B_FALSE);
3450 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3451 zilog->zl_replay = B_FALSE;
3452 }
3453
3454 boolean_t
3455 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3456 {
3457 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3458 return (B_TRUE);
3459
3460 if (zilog->zl_replay) {
3461 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3462 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3463 zilog->zl_replaying_seq;
3464 return (B_TRUE);
3465 }
3466
3467 return (B_FALSE);
3468 }
3469
3470 /* ARGSUSED */
3471 int
3472 zil_reset(const char *osname, void *arg)
3473 {
3474 int error;
3475
3476 error = zil_suspend(osname, NULL);
3477 /* EACCES means crypto key not loaded */
3478 if ((error == EACCES) || (error == EBUSY))
3479 return (SET_ERROR(error));
3480 if (error != 0)
3481 return (SET_ERROR(EEXIST));
3482 return (0);
3483 }
3484
3485 #if defined(_KERNEL)
3486 EXPORT_SYMBOL(zil_alloc);
3487 EXPORT_SYMBOL(zil_free);
3488 EXPORT_SYMBOL(zil_open);
3489 EXPORT_SYMBOL(zil_close);
3490 EXPORT_SYMBOL(zil_replay);
3491 EXPORT_SYMBOL(zil_replaying);
3492 EXPORT_SYMBOL(zil_destroy);
3493 EXPORT_SYMBOL(zil_destroy_sync);
3494 EXPORT_SYMBOL(zil_itx_create);
3495 EXPORT_SYMBOL(zil_itx_destroy);
3496 EXPORT_SYMBOL(zil_itx_assign);
3497 EXPORT_SYMBOL(zil_commit);
3498 EXPORT_SYMBOL(zil_claim);
3499 EXPORT_SYMBOL(zil_check_log_chain);
3500 EXPORT_SYMBOL(zil_sync);
3501 EXPORT_SYMBOL(zil_clean);
3502 EXPORT_SYMBOL(zil_suspend);
3503 EXPORT_SYMBOL(zil_resume);
3504 EXPORT_SYMBOL(zil_lwb_add_block);
3505 EXPORT_SYMBOL(zil_bp_tree_add);
3506 EXPORT_SYMBOL(zil_set_sync);
3507 EXPORT_SYMBOL(zil_set_logbias);
3508
3509 /* BEGIN CSTYLED */
3510 module_param(zfs_commit_timeout_pct, int, 0644);
3511 MODULE_PARM_DESC(zfs_commit_timeout_pct, "ZIL block open timeout percentage");
3512
3513 module_param(zil_replay_disable, int, 0644);
3514 MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
3515
3516 module_param(zfs_nocacheflush, int, 0644);
3517 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
3518
3519 module_param(zil_slog_bulk, ulong, 0644);
3520 MODULE_PARM_DESC(zil_slog_bulk, "Limit in bytes slog sync writes per commit");
3521 /* END CSTYLED */
3522 #endif