]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
ddt: move entry compression into ddt_zap
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 * Copyright (c) 2018 Datto Inc.
26 */
27
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48
49 /*
50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51 * calls that change the file system. Each itx has enough information to
52 * be able to replay them after a system crash, power loss, or
53 * equivalent failure mode. These are stored in memory until either:
54 *
55 * 1. they are committed to the pool by the DMU transaction group
56 * (txg), at which point they can be discarded; or
57 * 2. they are committed to the on-disk ZIL for the dataset being
58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59 * requirement).
60 *
61 * In the event of a crash or power loss, the itxs contained by each
62 * dataset's on-disk ZIL will be replayed when that dataset is first
63 * instantiated (e.g. if the dataset is a normal filesystem, when it is
64 * first mounted).
65 *
66 * As hinted at above, there is one ZIL per dataset (both the in-memory
67 * representation, and the on-disk representation). The on-disk format
68 * consists of 3 parts:
69 *
70 * - a single, per-dataset, ZIL header; which points to a chain of
71 * - zero or more ZIL blocks; each of which contains
72 * - zero or more ZIL records
73 *
74 * A ZIL record holds the information necessary to replay a single
75 * system call transaction. A ZIL block can hold many ZIL records, and
76 * the blocks are chained together, similarly to a singly linked list.
77 *
78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79 * block in the chain, and the ZIL header points to the first block in
80 * the chain.
81 *
82 * Note, there is not a fixed place in the pool to hold these ZIL
83 * blocks; they are dynamically allocated and freed as needed from the
84 * blocks available on the pool, though they can be preferentially
85 * allocated from a dedicated "log" vdev.
86 */
87
88 /*
89 * This controls the amount of time that a ZIL block (lwb) will remain
90 * "open" when it isn't "full", and it has a thread waiting for it to be
91 * committed to stable storage. Please refer to the zil_commit_waiter()
92 * function (and the comments within it) for more details.
93 */
94 static uint_t zfs_commit_timeout_pct = 10;
95
96 /*
97 * See zil.h for more information about these fields.
98 */
99 static zil_kstat_values_t zil_stats = {
100 { "zil_commit_count", KSTAT_DATA_UINT64 },
101 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
102 { "zil_itx_count", KSTAT_DATA_UINT64 },
103 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
104 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
105 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
106 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
107 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
108 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
109 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
111 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 },
112 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 },
113 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
114 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
115 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 },
116 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 },
117 };
118
119 static zil_sums_t zil_sums_global;
120 static kstat_t *zil_kstats_global;
121
122 /*
123 * Disable intent logging replay. This global ZIL switch affects all pools.
124 */
125 int zil_replay_disable = 0;
126
127 /*
128 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
129 * the disk(s) by the ZIL after an LWB write has completed. Setting this
130 * will cause ZIL corruption on power loss if a volatile out-of-order
131 * write cache is enabled.
132 */
133 static int zil_nocacheflush = 0;
134
135 /*
136 * Limit SLOG write size per commit executed with synchronous priority.
137 * Any writes above that will be executed with lower (asynchronous) priority
138 * to limit potential SLOG device abuse by single active ZIL writer.
139 */
140 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
141
142 static kmem_cache_t *zil_lwb_cache;
143 static kmem_cache_t *zil_zcw_cache;
144
145 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
146 static itx_t *zil_itx_clone(itx_t *oitx);
147 static uint64_t zil_max_waste_space(zilog_t *zilog);
148
149 static int
150 zil_bp_compare(const void *x1, const void *x2)
151 {
152 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
153 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
154
155 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
156 if (likely(cmp))
157 return (cmp);
158
159 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
160 }
161
162 static void
163 zil_bp_tree_init(zilog_t *zilog)
164 {
165 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
166 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
167 }
168
169 static void
170 zil_bp_tree_fini(zilog_t *zilog)
171 {
172 avl_tree_t *t = &zilog->zl_bp_tree;
173 zil_bp_node_t *zn;
174 void *cookie = NULL;
175
176 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
177 kmem_free(zn, sizeof (zil_bp_node_t));
178
179 avl_destroy(t);
180 }
181
182 int
183 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
184 {
185 avl_tree_t *t = &zilog->zl_bp_tree;
186 const dva_t *dva;
187 zil_bp_node_t *zn;
188 avl_index_t where;
189
190 if (BP_IS_EMBEDDED(bp))
191 return (0);
192
193 dva = BP_IDENTITY(bp);
194
195 if (avl_find(t, dva, &where) != NULL)
196 return (SET_ERROR(EEXIST));
197
198 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
199 zn->zn_dva = *dva;
200 avl_insert(t, zn, where);
201
202 return (0);
203 }
204
205 static zil_header_t *
206 zil_header_in_syncing_context(zilog_t *zilog)
207 {
208 return ((zil_header_t *)zilog->zl_header);
209 }
210
211 static void
212 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
213 {
214 zio_cksum_t *zc = &bp->blk_cksum;
215
216 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
217 sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
218 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
219 sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
220 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
221 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
222 }
223
224 static int
225 zil_kstats_global_update(kstat_t *ksp, int rw)
226 {
227 zil_kstat_values_t *zs = ksp->ks_data;
228 ASSERT3P(&zil_stats, ==, zs);
229
230 if (rw == KSTAT_WRITE) {
231 return (SET_ERROR(EACCES));
232 }
233
234 zil_kstat_values_update(zs, &zil_sums_global);
235
236 return (0);
237 }
238
239 /*
240 * Read a log block and make sure it's valid.
241 */
242 static int
243 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
244 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
245 {
246 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
247 arc_flags_t aflags = ARC_FLAG_WAIT;
248 zbookmark_phys_t zb;
249 int error;
250
251 if (zilog->zl_header->zh_claim_txg == 0)
252 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
253
254 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
255 zio_flags |= ZIO_FLAG_SPECULATIVE;
256
257 if (!decrypt)
258 zio_flags |= ZIO_FLAG_RAW;
259
260 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
261 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
262
263 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
264 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
265
266 if (error == 0) {
267 zio_cksum_t cksum = bp->blk_cksum;
268
269 /*
270 * Validate the checksummed log block.
271 *
272 * Sequence numbers should be... sequential. The checksum
273 * verifier for the next block should be bp's checksum plus 1.
274 *
275 * Also check the log chain linkage and size used.
276 */
277 cksum.zc_word[ZIL_ZC_SEQ]++;
278
279 uint64_t size = BP_GET_LSIZE(bp);
280 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
281 zil_chain_t *zilc = (*abuf)->b_data;
282 char *lr = (char *)(zilc + 1);
283
284 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
285 sizeof (cksum)) ||
286 zilc->zc_nused < sizeof (*zilc) ||
287 zilc->zc_nused > size) {
288 error = SET_ERROR(ECKSUM);
289 } else {
290 *begin = lr;
291 *end = lr + zilc->zc_nused - sizeof (*zilc);
292 *nbp = zilc->zc_next_blk;
293 }
294 } else {
295 char *lr = (*abuf)->b_data;
296 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
297
298 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
299 sizeof (cksum)) ||
300 (zilc->zc_nused > (size - sizeof (*zilc)))) {
301 error = SET_ERROR(ECKSUM);
302 } else {
303 *begin = lr;
304 *end = lr + zilc->zc_nused;
305 *nbp = zilc->zc_next_blk;
306 }
307 }
308 }
309
310 return (error);
311 }
312
313 /*
314 * Read a TX_WRITE log data block.
315 */
316 static int
317 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
318 {
319 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
320 const blkptr_t *bp = &lr->lr_blkptr;
321 arc_flags_t aflags = ARC_FLAG_WAIT;
322 arc_buf_t *abuf = NULL;
323 zbookmark_phys_t zb;
324 int error;
325
326 if (BP_IS_HOLE(bp)) {
327 if (wbuf != NULL)
328 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
329 return (0);
330 }
331
332 if (zilog->zl_header->zh_claim_txg == 0)
333 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
334
335 /*
336 * If we are not using the resulting data, we are just checking that
337 * it hasn't been corrupted so we don't need to waste CPU time
338 * decompressing and decrypting it.
339 */
340 if (wbuf == NULL)
341 zio_flags |= ZIO_FLAG_RAW;
342
343 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
344 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
345 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
346
347 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
348 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
349
350 if (error == 0) {
351 if (wbuf != NULL)
352 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
353 arc_buf_destroy(abuf, &abuf);
354 }
355
356 return (error);
357 }
358
359 void
360 zil_sums_init(zil_sums_t *zs)
361 {
362 wmsum_init(&zs->zil_commit_count, 0);
363 wmsum_init(&zs->zil_commit_writer_count, 0);
364 wmsum_init(&zs->zil_itx_count, 0);
365 wmsum_init(&zs->zil_itx_indirect_count, 0);
366 wmsum_init(&zs->zil_itx_indirect_bytes, 0);
367 wmsum_init(&zs->zil_itx_copied_count, 0);
368 wmsum_init(&zs->zil_itx_copied_bytes, 0);
369 wmsum_init(&zs->zil_itx_needcopy_count, 0);
370 wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
371 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
372 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
373 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
374 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
375 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
376 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
377 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
378 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
379 }
380
381 void
382 zil_sums_fini(zil_sums_t *zs)
383 {
384 wmsum_fini(&zs->zil_commit_count);
385 wmsum_fini(&zs->zil_commit_writer_count);
386 wmsum_fini(&zs->zil_itx_count);
387 wmsum_fini(&zs->zil_itx_indirect_count);
388 wmsum_fini(&zs->zil_itx_indirect_bytes);
389 wmsum_fini(&zs->zil_itx_copied_count);
390 wmsum_fini(&zs->zil_itx_copied_bytes);
391 wmsum_fini(&zs->zil_itx_needcopy_count);
392 wmsum_fini(&zs->zil_itx_needcopy_bytes);
393 wmsum_fini(&zs->zil_itx_metaslab_normal_count);
394 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
395 wmsum_fini(&zs->zil_itx_metaslab_normal_write);
396 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
397 wmsum_fini(&zs->zil_itx_metaslab_slog_count);
398 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
399 wmsum_fini(&zs->zil_itx_metaslab_slog_write);
400 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
401 }
402
403 void
404 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
405 {
406 zs->zil_commit_count.value.ui64 =
407 wmsum_value(&zil_sums->zil_commit_count);
408 zs->zil_commit_writer_count.value.ui64 =
409 wmsum_value(&zil_sums->zil_commit_writer_count);
410 zs->zil_itx_count.value.ui64 =
411 wmsum_value(&zil_sums->zil_itx_count);
412 zs->zil_itx_indirect_count.value.ui64 =
413 wmsum_value(&zil_sums->zil_itx_indirect_count);
414 zs->zil_itx_indirect_bytes.value.ui64 =
415 wmsum_value(&zil_sums->zil_itx_indirect_bytes);
416 zs->zil_itx_copied_count.value.ui64 =
417 wmsum_value(&zil_sums->zil_itx_copied_count);
418 zs->zil_itx_copied_bytes.value.ui64 =
419 wmsum_value(&zil_sums->zil_itx_copied_bytes);
420 zs->zil_itx_needcopy_count.value.ui64 =
421 wmsum_value(&zil_sums->zil_itx_needcopy_count);
422 zs->zil_itx_needcopy_bytes.value.ui64 =
423 wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
424 zs->zil_itx_metaslab_normal_count.value.ui64 =
425 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
426 zs->zil_itx_metaslab_normal_bytes.value.ui64 =
427 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
428 zs->zil_itx_metaslab_normal_write.value.ui64 =
429 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
430 zs->zil_itx_metaslab_normal_alloc.value.ui64 =
431 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
432 zs->zil_itx_metaslab_slog_count.value.ui64 =
433 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
434 zs->zil_itx_metaslab_slog_bytes.value.ui64 =
435 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
436 zs->zil_itx_metaslab_slog_write.value.ui64 =
437 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
438 zs->zil_itx_metaslab_slog_alloc.value.ui64 =
439 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
440 }
441
442 /*
443 * Parse the intent log, and call parse_func for each valid record within.
444 */
445 int
446 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
447 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
448 boolean_t decrypt)
449 {
450 const zil_header_t *zh = zilog->zl_header;
451 boolean_t claimed = !!zh->zh_claim_txg;
452 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
453 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
454 uint64_t max_blk_seq = 0;
455 uint64_t max_lr_seq = 0;
456 uint64_t blk_count = 0;
457 uint64_t lr_count = 0;
458 blkptr_t blk, next_blk = {{{{0}}}};
459 int error = 0;
460
461 /*
462 * Old logs didn't record the maximum zh_claim_lr_seq.
463 */
464 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
465 claim_lr_seq = UINT64_MAX;
466
467 /*
468 * Starting at the block pointed to by zh_log we read the log chain.
469 * For each block in the chain we strongly check that block to
470 * ensure its validity. We stop when an invalid block is found.
471 * For each block pointer in the chain we call parse_blk_func().
472 * For each record in each valid block we call parse_lr_func().
473 * If the log has been claimed, stop if we encounter a sequence
474 * number greater than the highest claimed sequence number.
475 */
476 zil_bp_tree_init(zilog);
477
478 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
479 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
480 int reclen;
481 char *lrp, *end;
482 arc_buf_t *abuf = NULL;
483
484 if (blk_seq > claim_blk_seq)
485 break;
486
487 error = parse_blk_func(zilog, &blk, arg, txg);
488 if (error != 0)
489 break;
490 ASSERT3U(max_blk_seq, <, blk_seq);
491 max_blk_seq = blk_seq;
492 blk_count++;
493
494 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
495 break;
496
497 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
498 &lrp, &end, &abuf);
499 if (error != 0) {
500 if (abuf)
501 arc_buf_destroy(abuf, &abuf);
502 if (claimed) {
503 char name[ZFS_MAX_DATASET_NAME_LEN];
504
505 dmu_objset_name(zilog->zl_os, name);
506
507 cmn_err(CE_WARN, "ZFS read log block error %d, "
508 "dataset %s, seq 0x%llx\n", error, name,
509 (u_longlong_t)blk_seq);
510 }
511 break;
512 }
513
514 for (; lrp < end; lrp += reclen) {
515 lr_t *lr = (lr_t *)lrp;
516 reclen = lr->lrc_reclen;
517 ASSERT3U(reclen, >=, sizeof (lr_t));
518 ASSERT3U(reclen, <=, end - lrp);
519 if (lr->lrc_seq > claim_lr_seq) {
520 arc_buf_destroy(abuf, &abuf);
521 goto done;
522 }
523
524 error = parse_lr_func(zilog, lr, arg, txg);
525 if (error != 0) {
526 arc_buf_destroy(abuf, &abuf);
527 goto done;
528 }
529 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
530 max_lr_seq = lr->lrc_seq;
531 lr_count++;
532 }
533 arc_buf_destroy(abuf, &abuf);
534 }
535 done:
536 zilog->zl_parse_error = error;
537 zilog->zl_parse_blk_seq = max_blk_seq;
538 zilog->zl_parse_lr_seq = max_lr_seq;
539 zilog->zl_parse_blk_count = blk_count;
540 zilog->zl_parse_lr_count = lr_count;
541
542 zil_bp_tree_fini(zilog);
543
544 return (error);
545 }
546
547 static int
548 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
549 uint64_t first_txg)
550 {
551 (void) tx;
552 ASSERT(!BP_IS_HOLE(bp));
553
554 /*
555 * As we call this function from the context of a rewind to a
556 * checkpoint, each ZIL block whose txg is later than the txg
557 * that we rewind to is invalid. Thus, we return -1 so
558 * zil_parse() doesn't attempt to read it.
559 */
560 if (bp->blk_birth >= first_txg)
561 return (-1);
562
563 if (zil_bp_tree_add(zilog, bp) != 0)
564 return (0);
565
566 zio_free(zilog->zl_spa, first_txg, bp);
567 return (0);
568 }
569
570 static int
571 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
572 uint64_t first_txg)
573 {
574 (void) zilog, (void) lrc, (void) tx, (void) first_txg;
575 return (0);
576 }
577
578 static int
579 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
580 uint64_t first_txg)
581 {
582 /*
583 * Claim log block if not already committed and not already claimed.
584 * If tx == NULL, just verify that the block is claimable.
585 */
586 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
587 zil_bp_tree_add(zilog, bp) != 0)
588 return (0);
589
590 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
591 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
592 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
593 }
594
595 static int
596 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
597 {
598 lr_write_t *lr = (lr_write_t *)lrc;
599 int error;
600
601 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
602
603 /*
604 * If the block is not readable, don't claim it. This can happen
605 * in normal operation when a log block is written to disk before
606 * some of the dmu_sync() blocks it points to. In this case, the
607 * transaction cannot have been committed to anyone (we would have
608 * waited for all writes to be stable first), so it is semantically
609 * correct to declare this the end of the log.
610 */
611 if (lr->lr_blkptr.blk_birth >= first_txg) {
612 error = zil_read_log_data(zilog, lr, NULL);
613 if (error != 0)
614 return (error);
615 }
616
617 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
618 }
619
620 static int
621 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
622 uint64_t first_txg)
623 {
624 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
625 const blkptr_t *bp;
626 spa_t *spa = zilog->zl_spa;
627 uint_t ii;
628
629 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
630 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
631 lr_bps[lr->lr_nbps]));
632
633 if (tx == NULL) {
634 return (0);
635 }
636
637 /*
638 * XXX: Do we need to byteswap lr?
639 */
640
641 for (ii = 0; ii < lr->lr_nbps; ii++) {
642 bp = &lr->lr_bps[ii];
643
644 /*
645 * When data is embedded into the BP there is no need to create
646 * BRT entry as there is no data block. Just copy the BP as it
647 * contains the data.
648 */
649 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
650 continue;
651
652 /*
653 * We can not handle block pointers from the future, since they
654 * are not yet allocated. It should not normally happen, but
655 * just in case lets be safe and just stop here now instead of
656 * corrupting the pool.
657 */
658 if (BP_PHYSICAL_BIRTH(bp) >= first_txg)
659 return (SET_ERROR(ENOENT));
660
661 /*
662 * Assert the block is really allocated before we reference it.
663 */
664 metaslab_check_free(spa, bp);
665 }
666
667 for (ii = 0; ii < lr->lr_nbps; ii++) {
668 bp = &lr->lr_bps[ii];
669 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
670 brt_pending_add(spa, bp, tx);
671 }
672
673 return (0);
674 }
675
676 static int
677 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
678 uint64_t first_txg)
679 {
680
681 switch (lrc->lrc_txtype) {
682 case TX_WRITE:
683 return (zil_claim_write(zilog, lrc, tx, first_txg));
684 case TX_CLONE_RANGE:
685 return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
686 default:
687 return (0);
688 }
689 }
690
691 static int
692 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
693 uint64_t claim_txg)
694 {
695 (void) claim_txg;
696
697 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
698
699 return (0);
700 }
701
702 static int
703 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
704 {
705 lr_write_t *lr = (lr_write_t *)lrc;
706 blkptr_t *bp = &lr->lr_blkptr;
707
708 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
709
710 /*
711 * If we previously claimed it, we need to free it.
712 */
713 if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
714 !BP_IS_HOLE(bp)) {
715 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
716 }
717
718 return (0);
719 }
720
721 static int
722 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
723 {
724 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
725 const blkptr_t *bp;
726 spa_t *spa;
727 uint_t ii;
728
729 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
730 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
731 lr_bps[lr->lr_nbps]));
732
733 if (tx == NULL) {
734 return (0);
735 }
736
737 spa = zilog->zl_spa;
738
739 for (ii = 0; ii < lr->lr_nbps; ii++) {
740 bp = &lr->lr_bps[ii];
741
742 if (!BP_IS_HOLE(bp)) {
743 zio_free(spa, dmu_tx_get_txg(tx), bp);
744 }
745 }
746
747 return (0);
748 }
749
750 static int
751 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
752 uint64_t claim_txg)
753 {
754
755 if (claim_txg == 0) {
756 return (0);
757 }
758
759 switch (lrc->lrc_txtype) {
760 case TX_WRITE:
761 return (zil_free_write(zilog, lrc, tx, claim_txg));
762 case TX_CLONE_RANGE:
763 return (zil_free_clone_range(zilog, lrc, tx));
764 default:
765 return (0);
766 }
767 }
768
769 static int
770 zil_lwb_vdev_compare(const void *x1, const void *x2)
771 {
772 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
773 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
774
775 return (TREE_CMP(v1, v2));
776 }
777
778 /*
779 * Allocate a new lwb. We may already have a block pointer for it, in which
780 * case we get size and version from there. Or we may not yet, in which case
781 * we choose them here and later make the block allocation match.
782 */
783 static lwb_t *
784 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
785 uint64_t txg, lwb_state_t state)
786 {
787 lwb_t *lwb;
788
789 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
790 lwb->lwb_zilog = zilog;
791 if (bp) {
792 lwb->lwb_blk = *bp;
793 lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
794 sz = BP_GET_LSIZE(bp);
795 } else {
796 BP_ZERO(&lwb->lwb_blk);
797 lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
798 SPA_VERSION_SLIM_ZIL);
799 }
800 lwb->lwb_slog = slog;
801 lwb->lwb_error = 0;
802 if (lwb->lwb_slim) {
803 lwb->lwb_nmax = sz;
804 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
805 } else {
806 lwb->lwb_nmax = sz - sizeof (zil_chain_t);
807 lwb->lwb_nused = lwb->lwb_nfilled = 0;
808 }
809 lwb->lwb_sz = sz;
810 lwb->lwb_state = state;
811 lwb->lwb_buf = zio_buf_alloc(sz);
812 lwb->lwb_child_zio = NULL;
813 lwb->lwb_write_zio = NULL;
814 lwb->lwb_root_zio = NULL;
815 lwb->lwb_issued_timestamp = 0;
816 lwb->lwb_issued_txg = 0;
817 lwb->lwb_alloc_txg = txg;
818 lwb->lwb_max_txg = 0;
819
820 mutex_enter(&zilog->zl_lock);
821 list_insert_tail(&zilog->zl_lwb_list, lwb);
822 if (state != LWB_STATE_NEW)
823 zilog->zl_last_lwb_opened = lwb;
824 mutex_exit(&zilog->zl_lock);
825
826 return (lwb);
827 }
828
829 static void
830 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
831 {
832 ASSERT(MUTEX_HELD(&zilog->zl_lock));
833 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
834 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
835 ASSERT3P(lwb->lwb_child_zio, ==, NULL);
836 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
837 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
838 ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
839 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
840 VERIFY(list_is_empty(&lwb->lwb_itxs));
841 VERIFY(list_is_empty(&lwb->lwb_waiters));
842 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
843 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
844
845 /*
846 * Clear the zilog's field to indicate this lwb is no longer
847 * valid, and prevent use-after-free errors.
848 */
849 if (zilog->zl_last_lwb_opened == lwb)
850 zilog->zl_last_lwb_opened = NULL;
851
852 kmem_cache_free(zil_lwb_cache, lwb);
853 }
854
855 /*
856 * Called when we create in-memory log transactions so that we know
857 * to cleanup the itxs at the end of spa_sync().
858 */
859 static void
860 zilog_dirty(zilog_t *zilog, uint64_t txg)
861 {
862 dsl_pool_t *dp = zilog->zl_dmu_pool;
863 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
864
865 ASSERT(spa_writeable(zilog->zl_spa));
866
867 if (ds->ds_is_snapshot)
868 panic("dirtying snapshot!");
869
870 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
871 /* up the hold count until we can be written out */
872 dmu_buf_add_ref(ds->ds_dbuf, zilog);
873
874 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
875 }
876 }
877
878 /*
879 * Determine if the zil is dirty in the specified txg. Callers wanting to
880 * ensure that the dirty state does not change must hold the itxg_lock for
881 * the specified txg. Holding the lock will ensure that the zil cannot be
882 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
883 * state.
884 */
885 static boolean_t __maybe_unused
886 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
887 {
888 dsl_pool_t *dp = zilog->zl_dmu_pool;
889
890 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
891 return (B_TRUE);
892 return (B_FALSE);
893 }
894
895 /*
896 * Determine if the zil is dirty. The zil is considered dirty if it has
897 * any pending itx records that have not been cleaned by zil_clean().
898 */
899 static boolean_t
900 zilog_is_dirty(zilog_t *zilog)
901 {
902 dsl_pool_t *dp = zilog->zl_dmu_pool;
903
904 for (int t = 0; t < TXG_SIZE; t++) {
905 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
906 return (B_TRUE);
907 }
908 return (B_FALSE);
909 }
910
911 /*
912 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
913 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
914 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
915 * zil_commit.
916 */
917 static void
918 zil_commit_activate_saxattr_feature(zilog_t *zilog)
919 {
920 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
921 uint64_t txg = 0;
922 dmu_tx_t *tx = NULL;
923
924 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
925 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
926 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
927 tx = dmu_tx_create(zilog->zl_os);
928 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
929 dsl_dataset_dirty(ds, tx);
930 txg = dmu_tx_get_txg(tx);
931
932 mutex_enter(&ds->ds_lock);
933 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
934 (void *)B_TRUE;
935 mutex_exit(&ds->ds_lock);
936 dmu_tx_commit(tx);
937 txg_wait_synced(zilog->zl_dmu_pool, txg);
938 }
939 }
940
941 /*
942 * Create an on-disk intent log.
943 */
944 static lwb_t *
945 zil_create(zilog_t *zilog)
946 {
947 const zil_header_t *zh = zilog->zl_header;
948 lwb_t *lwb = NULL;
949 uint64_t txg = 0;
950 dmu_tx_t *tx = NULL;
951 blkptr_t blk;
952 int error = 0;
953 boolean_t slog = FALSE;
954 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
955
956
957 /*
958 * Wait for any previous destroy to complete.
959 */
960 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
961
962 ASSERT(zh->zh_claim_txg == 0);
963 ASSERT(zh->zh_replay_seq == 0);
964
965 blk = zh->zh_log;
966
967 /*
968 * Allocate an initial log block if:
969 * - there isn't one already
970 * - the existing block is the wrong endianness
971 */
972 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
973 tx = dmu_tx_create(zilog->zl_os);
974 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
975 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
976 txg = dmu_tx_get_txg(tx);
977
978 if (!BP_IS_HOLE(&blk)) {
979 zio_free(zilog->zl_spa, txg, &blk);
980 BP_ZERO(&blk);
981 }
982
983 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
984 ZIL_MIN_BLKSZ, &slog);
985 if (error == 0)
986 zil_init_log_chain(zilog, &blk);
987 }
988
989 /*
990 * Allocate a log write block (lwb) for the first log block.
991 */
992 if (error == 0)
993 lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
994
995 /*
996 * If we just allocated the first log block, commit our transaction
997 * and wait for zil_sync() to stuff the block pointer into zh_log.
998 * (zh is part of the MOS, so we cannot modify it in open context.)
999 */
1000 if (tx != NULL) {
1001 /*
1002 * If "zilsaxattr" feature is enabled on zpool, then activate
1003 * it now when we're creating the ZIL chain. We can't wait with
1004 * this until we write the first xattr log record because we
1005 * need to wait for the feature activation to sync out.
1006 */
1007 if (spa_feature_is_enabled(zilog->zl_spa,
1008 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
1009 DMU_OST_ZVOL) {
1010 mutex_enter(&ds->ds_lock);
1011 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
1012 (void *)B_TRUE;
1013 mutex_exit(&ds->ds_lock);
1014 }
1015
1016 dmu_tx_commit(tx);
1017 txg_wait_synced(zilog->zl_dmu_pool, txg);
1018 } else {
1019 /*
1020 * This branch covers the case where we enable the feature on a
1021 * zpool that has existing ZIL headers.
1022 */
1023 zil_commit_activate_saxattr_feature(zilog);
1024 }
1025 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1026 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1027 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1028
1029 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1030 IMPLY(error == 0, lwb != NULL);
1031
1032 return (lwb);
1033 }
1034
1035 /*
1036 * In one tx, free all log blocks and clear the log header. If keep_first
1037 * is set, then we're replaying a log with no content. We want to keep the
1038 * first block, however, so that the first synchronous transaction doesn't
1039 * require a txg_wait_synced() in zil_create(). We don't need to
1040 * txg_wait_synced() here either when keep_first is set, because both
1041 * zil_create() and zil_destroy() will wait for any in-progress destroys
1042 * to complete.
1043 * Return B_TRUE if there were any entries to replay.
1044 */
1045 boolean_t
1046 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1047 {
1048 const zil_header_t *zh = zilog->zl_header;
1049 lwb_t *lwb;
1050 dmu_tx_t *tx;
1051 uint64_t txg;
1052
1053 /*
1054 * Wait for any previous destroy to complete.
1055 */
1056 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1057
1058 zilog->zl_old_header = *zh; /* debugging aid */
1059
1060 if (BP_IS_HOLE(&zh->zh_log))
1061 return (B_FALSE);
1062
1063 tx = dmu_tx_create(zilog->zl_os);
1064 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1065 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1066 txg = dmu_tx_get_txg(tx);
1067
1068 mutex_enter(&zilog->zl_lock);
1069
1070 ASSERT3U(zilog->zl_destroy_txg, <, txg);
1071 zilog->zl_destroy_txg = txg;
1072 zilog->zl_keep_first = keep_first;
1073
1074 if (!list_is_empty(&zilog->zl_lwb_list)) {
1075 ASSERT(zh->zh_claim_txg == 0);
1076 VERIFY(!keep_first);
1077 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1078 if (lwb->lwb_buf != NULL)
1079 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1080 if (!BP_IS_HOLE(&lwb->lwb_blk))
1081 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1082 zil_free_lwb(zilog, lwb);
1083 }
1084 } else if (!keep_first) {
1085 zil_destroy_sync(zilog, tx);
1086 }
1087 mutex_exit(&zilog->zl_lock);
1088
1089 dmu_tx_commit(tx);
1090
1091 return (B_TRUE);
1092 }
1093
1094 void
1095 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1096 {
1097 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1098 (void) zil_parse(zilog, zil_free_log_block,
1099 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1100 }
1101
1102 int
1103 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1104 {
1105 dmu_tx_t *tx = txarg;
1106 zilog_t *zilog;
1107 uint64_t first_txg;
1108 zil_header_t *zh;
1109 objset_t *os;
1110 int error;
1111
1112 error = dmu_objset_own_obj(dp, ds->ds_object,
1113 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1114 if (error != 0) {
1115 /*
1116 * EBUSY indicates that the objset is inconsistent, in which
1117 * case it can not have a ZIL.
1118 */
1119 if (error != EBUSY) {
1120 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1121 (unsigned long long)ds->ds_object, error);
1122 }
1123
1124 return (0);
1125 }
1126
1127 zilog = dmu_objset_zil(os);
1128 zh = zil_header_in_syncing_context(zilog);
1129 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1130 first_txg = spa_min_claim_txg(zilog->zl_spa);
1131
1132 /*
1133 * If the spa_log_state is not set to be cleared, check whether
1134 * the current uberblock is a checkpoint one and if the current
1135 * header has been claimed before moving on.
1136 *
1137 * If the current uberblock is a checkpointed uberblock then
1138 * one of the following scenarios took place:
1139 *
1140 * 1] We are currently rewinding to the checkpoint of the pool.
1141 * 2] We crashed in the middle of a checkpoint rewind but we
1142 * did manage to write the checkpointed uberblock to the
1143 * vdev labels, so when we tried to import the pool again
1144 * the checkpointed uberblock was selected from the import
1145 * procedure.
1146 *
1147 * In both cases we want to zero out all the ZIL blocks, except
1148 * the ones that have been claimed at the time of the checkpoint
1149 * (their zh_claim_txg != 0). The reason is that these blocks
1150 * may be corrupted since we may have reused their locations on
1151 * disk after we took the checkpoint.
1152 *
1153 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1154 * when we first figure out whether the current uberblock is
1155 * checkpointed or not. Unfortunately, that would discard all
1156 * the logs, including the ones that are claimed, and we would
1157 * leak space.
1158 */
1159 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1160 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1161 zh->zh_claim_txg == 0)) {
1162 if (!BP_IS_HOLE(&zh->zh_log)) {
1163 (void) zil_parse(zilog, zil_clear_log_block,
1164 zil_noop_log_record, tx, first_txg, B_FALSE);
1165 }
1166 BP_ZERO(&zh->zh_log);
1167 if (os->os_encrypted)
1168 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1169 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1170 dmu_objset_disown(os, B_FALSE, FTAG);
1171 return (0);
1172 }
1173
1174 /*
1175 * If we are not rewinding and opening the pool normally, then
1176 * the min_claim_txg should be equal to the first txg of the pool.
1177 */
1178 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1179
1180 /*
1181 * Claim all log blocks if we haven't already done so, and remember
1182 * the highest claimed sequence number. This ensures that if we can
1183 * read only part of the log now (e.g. due to a missing device),
1184 * but we can read the entire log later, we will not try to replay
1185 * or destroy beyond the last block we successfully claimed.
1186 */
1187 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1188 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1189 (void) zil_parse(zilog, zil_claim_log_block,
1190 zil_claim_log_record, tx, first_txg, B_FALSE);
1191 zh->zh_claim_txg = first_txg;
1192 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1193 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1194 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1195 zh->zh_flags |= ZIL_REPLAY_NEEDED;
1196 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1197 if (os->os_encrypted)
1198 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1199 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1200 }
1201
1202 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1203 dmu_objset_disown(os, B_FALSE, FTAG);
1204 return (0);
1205 }
1206
1207 /*
1208 * Check the log by walking the log chain.
1209 * Checksum errors are ok as they indicate the end of the chain.
1210 * Any other error (no device or read failure) returns an error.
1211 */
1212 int
1213 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1214 {
1215 (void) dp;
1216 zilog_t *zilog;
1217 objset_t *os;
1218 blkptr_t *bp;
1219 int error;
1220
1221 ASSERT(tx == NULL);
1222
1223 error = dmu_objset_from_ds(ds, &os);
1224 if (error != 0) {
1225 cmn_err(CE_WARN, "can't open objset %llu, error %d",
1226 (unsigned long long)ds->ds_object, error);
1227 return (0);
1228 }
1229
1230 zilog = dmu_objset_zil(os);
1231 bp = (blkptr_t *)&zilog->zl_header->zh_log;
1232
1233 if (!BP_IS_HOLE(bp)) {
1234 vdev_t *vd;
1235 boolean_t valid = B_TRUE;
1236
1237 /*
1238 * Check the first block and determine if it's on a log device
1239 * which may have been removed or faulted prior to loading this
1240 * pool. If so, there's no point in checking the rest of the
1241 * log as its content should have already been synced to the
1242 * pool.
1243 */
1244 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1245 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1246 if (vd->vdev_islog && vdev_is_dead(vd))
1247 valid = vdev_log_state_valid(vd);
1248 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1249
1250 if (!valid)
1251 return (0);
1252
1253 /*
1254 * Check whether the current uberblock is checkpointed (e.g.
1255 * we are rewinding) and whether the current header has been
1256 * claimed or not. If it hasn't then skip verifying it. We
1257 * do this because its ZIL blocks may be part of the pool's
1258 * state before the rewind, which is no longer valid.
1259 */
1260 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1261 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1262 zh->zh_claim_txg == 0)
1263 return (0);
1264 }
1265
1266 /*
1267 * Because tx == NULL, zil_claim_log_block() will not actually claim
1268 * any blocks, but just determine whether it is possible to do so.
1269 * In addition to checking the log chain, zil_claim_log_block()
1270 * will invoke zio_claim() with a done func of spa_claim_notify(),
1271 * which will update spa_max_claim_txg. See spa_load() for details.
1272 */
1273 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1274 zilog->zl_header->zh_claim_txg ? -1ULL :
1275 spa_min_claim_txg(os->os_spa), B_FALSE);
1276
1277 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1278 }
1279
1280 /*
1281 * When an itx is "skipped", this function is used to properly mark the
1282 * waiter as "done, and signal any thread(s) waiting on it. An itx can
1283 * be skipped (and not committed to an lwb) for a variety of reasons,
1284 * one of them being that the itx was committed via spa_sync(), prior to
1285 * it being committed to an lwb; this can happen if a thread calling
1286 * zil_commit() is racing with spa_sync().
1287 */
1288 static void
1289 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1290 {
1291 mutex_enter(&zcw->zcw_lock);
1292 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1293 zcw->zcw_done = B_TRUE;
1294 cv_broadcast(&zcw->zcw_cv);
1295 mutex_exit(&zcw->zcw_lock);
1296 }
1297
1298 /*
1299 * This function is used when the given waiter is to be linked into an
1300 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1301 * At this point, the waiter will no longer be referenced by the itx,
1302 * and instead, will be referenced by the lwb.
1303 */
1304 static void
1305 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1306 {
1307 /*
1308 * The lwb_waiters field of the lwb is protected by the zilog's
1309 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1310 * zl_issuer_lock also protects leaving the open state.
1311 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1312 * flush_done, which transition is protected by zl_lock.
1313 */
1314 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1315 IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1316 MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1317 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1318 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1319
1320 ASSERT(!list_link_active(&zcw->zcw_node));
1321 list_insert_tail(&lwb->lwb_waiters, zcw);
1322 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1323 zcw->zcw_lwb = lwb;
1324 }
1325
1326 /*
1327 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1328 * block, and the given waiter must be linked to the "nolwb waiters"
1329 * list inside of zil_process_commit_list().
1330 */
1331 static void
1332 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1333 {
1334 ASSERT(!list_link_active(&zcw->zcw_node));
1335 list_insert_tail(nolwb, zcw);
1336 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1337 }
1338
1339 void
1340 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1341 {
1342 avl_tree_t *t = &lwb->lwb_vdev_tree;
1343 avl_index_t where;
1344 zil_vdev_node_t *zv, zvsearch;
1345 int ndvas = BP_GET_NDVAS(bp);
1346 int i;
1347
1348 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1349 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1350
1351 if (zil_nocacheflush)
1352 return;
1353
1354 mutex_enter(&lwb->lwb_vdev_lock);
1355 for (i = 0; i < ndvas; i++) {
1356 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1357 if (avl_find(t, &zvsearch, &where) == NULL) {
1358 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1359 zv->zv_vdev = zvsearch.zv_vdev;
1360 avl_insert(t, zv, where);
1361 }
1362 }
1363 mutex_exit(&lwb->lwb_vdev_lock);
1364 }
1365
1366 static void
1367 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1368 {
1369 avl_tree_t *src = &lwb->lwb_vdev_tree;
1370 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1371 void *cookie = NULL;
1372 zil_vdev_node_t *zv;
1373
1374 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1375 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1376 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1377
1378 /*
1379 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1380 * not need the protection of lwb_vdev_lock (it will only be modified
1381 * while holding zilog->zl_lock) as its writes and those of its
1382 * children have all completed. The younger 'nlwb' may be waiting on
1383 * future writes to additional vdevs.
1384 */
1385 mutex_enter(&nlwb->lwb_vdev_lock);
1386 /*
1387 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1388 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1389 */
1390 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1391 avl_index_t where;
1392
1393 if (avl_find(dst, zv, &where) == NULL) {
1394 avl_insert(dst, zv, where);
1395 } else {
1396 kmem_free(zv, sizeof (*zv));
1397 }
1398 }
1399 mutex_exit(&nlwb->lwb_vdev_lock);
1400 }
1401
1402 void
1403 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1404 {
1405 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1406 }
1407
1408 /*
1409 * This function is a called after all vdevs associated with a given lwb
1410 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1411 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1412 * all "previous" lwb's will have completed before this function is
1413 * called; i.e. this function is called for all previous lwbs before
1414 * it's called for "this" lwb (enforced via zio the dependencies
1415 * configured in zil_lwb_set_zio_dependency()).
1416 *
1417 * The intention is for this function to be called as soon as the
1418 * contents of an lwb are considered "stable" on disk, and will survive
1419 * any sudden loss of power. At this point, any threads waiting for the
1420 * lwb to reach this state are signalled, and the "waiter" structures
1421 * are marked "done".
1422 */
1423 static void
1424 zil_lwb_flush_vdevs_done(zio_t *zio)
1425 {
1426 lwb_t *lwb = zio->io_private;
1427 zilog_t *zilog = lwb->lwb_zilog;
1428 zil_commit_waiter_t *zcw;
1429 itx_t *itx;
1430
1431 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1432
1433 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1434
1435 mutex_enter(&zilog->zl_lock);
1436
1437 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1438
1439 lwb->lwb_root_zio = NULL;
1440
1441 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1442 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1443
1444 if (zilog->zl_last_lwb_opened == lwb) {
1445 /*
1446 * Remember the highest committed log sequence number
1447 * for ztest. We only update this value when all the log
1448 * writes succeeded, because ztest wants to ASSERT that
1449 * it got the whole log chain.
1450 */
1451 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1452 }
1453
1454 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1455 zil_itx_destroy(itx);
1456
1457 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1458 mutex_enter(&zcw->zcw_lock);
1459
1460 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1461 zcw->zcw_lwb = NULL;
1462 /*
1463 * We expect any ZIO errors from child ZIOs to have been
1464 * propagated "up" to this specific LWB's root ZIO, in
1465 * order for this error handling to work correctly. This
1466 * includes ZIO errors from either this LWB's write or
1467 * flush, as well as any errors from other dependent LWBs
1468 * (e.g. a root LWB ZIO that might be a child of this LWB).
1469 *
1470 * With that said, it's important to note that LWB flush
1471 * errors are not propagated up to the LWB root ZIO.
1472 * This is incorrect behavior, and results in VDEV flush
1473 * errors not being handled correctly here. See the
1474 * comment above the call to "zio_flush" for details.
1475 */
1476
1477 zcw->zcw_zio_error = zio->io_error;
1478
1479 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1480 zcw->zcw_done = B_TRUE;
1481 cv_broadcast(&zcw->zcw_cv);
1482
1483 mutex_exit(&zcw->zcw_lock);
1484 }
1485
1486 uint64_t txg = lwb->lwb_issued_txg;
1487
1488 /* Once we drop the lock, lwb may be freed by zil_sync(). */
1489 mutex_exit(&zilog->zl_lock);
1490
1491 mutex_enter(&zilog->zl_lwb_io_lock);
1492 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1493 zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1494 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1495 cv_broadcast(&zilog->zl_lwb_io_cv);
1496 mutex_exit(&zilog->zl_lwb_io_lock);
1497 }
1498
1499 /*
1500 * Wait for the completion of all issued write/flush of that txg provided.
1501 * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1502 */
1503 static void
1504 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1505 {
1506 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1507
1508 mutex_enter(&zilog->zl_lwb_io_lock);
1509 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1510 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1511 mutex_exit(&zilog->zl_lwb_io_lock);
1512
1513 #ifdef ZFS_DEBUG
1514 mutex_enter(&zilog->zl_lock);
1515 mutex_enter(&zilog->zl_lwb_io_lock);
1516 lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1517 while (lwb != NULL) {
1518 if (lwb->lwb_issued_txg <= txg) {
1519 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1520 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1521 IMPLY(lwb->lwb_issued_txg > 0,
1522 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1523 }
1524 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1525 lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1526 lwb->lwb_buf == NULL);
1527 lwb = list_next(&zilog->zl_lwb_list, lwb);
1528 }
1529 mutex_exit(&zilog->zl_lwb_io_lock);
1530 mutex_exit(&zilog->zl_lock);
1531 #endif
1532 }
1533
1534 /*
1535 * This is called when an lwb's write zio completes. The callback's
1536 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1537 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1538 * in writing out this specific lwb's data, and in the case that cache
1539 * flushes have been deferred, vdevs involved in writing the data for
1540 * previous lwbs. The writes corresponding to all the vdevs in the
1541 * lwb_vdev_tree will have completed by the time this is called, due to
1542 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1543 * which takes deferred flushes into account. The lwb will be "done"
1544 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1545 * completion callback for the lwb's root zio.
1546 */
1547 static void
1548 zil_lwb_write_done(zio_t *zio)
1549 {
1550 lwb_t *lwb = zio->io_private;
1551 spa_t *spa = zio->io_spa;
1552 zilog_t *zilog = lwb->lwb_zilog;
1553 avl_tree_t *t = &lwb->lwb_vdev_tree;
1554 void *cookie = NULL;
1555 zil_vdev_node_t *zv;
1556 lwb_t *nlwb;
1557
1558 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1559
1560 abd_free(zio->io_abd);
1561 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1562 lwb->lwb_buf = NULL;
1563
1564 mutex_enter(&zilog->zl_lock);
1565 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1566 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1567 lwb->lwb_child_zio = NULL;
1568 lwb->lwb_write_zio = NULL;
1569
1570 /*
1571 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1572 * called for it yet, and when it will be, it won't be able to make
1573 * its write ZIO a parent this ZIO. In such case we can not defer
1574 * our flushes or below may be a race between the done callbacks.
1575 */
1576 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1577 if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1578 nlwb = NULL;
1579 mutex_exit(&zilog->zl_lock);
1580
1581 if (avl_numnodes(t) == 0)
1582 return;
1583
1584 /*
1585 * If there was an IO error, we're not going to call zio_flush()
1586 * on these vdevs, so we simply empty the tree and free the
1587 * nodes. We avoid calling zio_flush() since there isn't any
1588 * good reason for doing so, after the lwb block failed to be
1589 * written out.
1590 *
1591 * Additionally, we don't perform any further error handling at
1592 * this point (e.g. setting "zcw_zio_error" appropriately), as
1593 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1594 * we expect any error seen here, to have been propagated to
1595 * that function).
1596 */
1597 if (zio->io_error != 0) {
1598 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1599 kmem_free(zv, sizeof (*zv));
1600 return;
1601 }
1602
1603 /*
1604 * If this lwb does not have any threads waiting for it to
1605 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1606 * command to the vdevs written to by "this" lwb, and instead
1607 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1608 * command for those vdevs. Thus, we merge the vdev tree of
1609 * "this" lwb with the vdev tree of the "next" lwb in the list,
1610 * and assume the "next" lwb will handle flushing the vdevs (or
1611 * deferring the flush(s) again).
1612 *
1613 * This is a useful performance optimization, especially for
1614 * workloads with lots of async write activity and few sync
1615 * write and/or fsync activity, as it has the potential to
1616 * coalesce multiple flush commands to a vdev into one.
1617 */
1618 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1619 zil_lwb_flush_defer(lwb, nlwb);
1620 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1621 return;
1622 }
1623
1624 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1625 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1626 if (vd != NULL) {
1627 /*
1628 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1629 * always used within "zio_flush". This means,
1630 * any errors when flushing the vdev(s), will
1631 * (unfortunately) not be handled correctly,
1632 * since these "zio_flush" errors will not be
1633 * propagated up to "zil_lwb_flush_vdevs_done".
1634 */
1635 zio_flush(lwb->lwb_root_zio, vd);
1636 }
1637 kmem_free(zv, sizeof (*zv));
1638 }
1639 }
1640
1641 /*
1642 * Build the zio dependency chain, which is used to preserve the ordering of
1643 * lwb completions that is required by the semantics of the ZIL. Each new lwb
1644 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1645 * cannot complete until the previous lwb's zio completes.
1646 *
1647 * This is required by the semantics of zil_commit(): the commit waiters
1648 * attached to the lwbs will be woken in the lwb zio's completion callback,
1649 * so this zio dependency graph ensures the waiters are woken in the correct
1650 * order (the same order the lwbs were created).
1651 */
1652 static void
1653 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1654 {
1655 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1656
1657 lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1658 if (prev_lwb == NULL ||
1659 prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1660 return;
1661
1662 /*
1663 * If the previous lwb's write hasn't already completed, we also want
1664 * to order the completion of the lwb write zios (above, we only order
1665 * the completion of the lwb root zios). This is required because of
1666 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1667 *
1668 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous
1669 * lwb will rely on this lwb to flush the vdevs written to by that
1670 * previous lwb. Thus, we need to ensure this lwb doesn't issue the
1671 * flush until after the previous lwb's write completes. We ensure
1672 * this ordering by setting the zio parent/child relationship here.
1673 *
1674 * Without this relationship on the lwb's write zio, it's possible
1675 * for this lwb's write to complete prior to the previous lwb's write
1676 * completing; and thus, the vdevs for the previous lwb would be
1677 * flushed prior to that lwb's data being written to those vdevs (the
1678 * vdevs are flushed in the lwb write zio's completion handler,
1679 * zil_lwb_write_done()).
1680 */
1681 if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1682 ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1683 zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
1684 } else {
1685 ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1686 }
1687
1688 ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1689 zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1690 }
1691
1692
1693 /*
1694 * This function's purpose is to "open" an lwb such that it is ready to
1695 * accept new itxs being committed to it. This function is idempotent; if
1696 * the passed in lwb has already been opened, it is essentially a no-op.
1697 */
1698 static void
1699 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1700 {
1701 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1702
1703 if (lwb->lwb_state != LWB_STATE_NEW) {
1704 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1705 return;
1706 }
1707
1708 mutex_enter(&zilog->zl_lock);
1709 lwb->lwb_state = LWB_STATE_OPENED;
1710 zilog->zl_last_lwb_opened = lwb;
1711 mutex_exit(&zilog->zl_lock);
1712 }
1713
1714 /*
1715 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1716 * initialized. Otherwise this should not be used directly; see
1717 * zl_max_block_size instead.
1718 */
1719 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1720
1721 /*
1722 * Plan splitting of the provided burst size between several blocks.
1723 */
1724 static uint_t
1725 zil_lwb_plan(zilog_t *zilog, uint64_t size, uint_t *minsize)
1726 {
1727 uint_t md = zilog->zl_max_block_size - sizeof (zil_chain_t);
1728
1729 if (size <= md) {
1730 /*
1731 * Small bursts are written as-is in one block.
1732 */
1733 *minsize = size;
1734 return (size);
1735 } else if (size > 8 * md) {
1736 /*
1737 * Big bursts use maximum blocks. The first block size
1738 * is hard to predict, but it does not really matter.
1739 */
1740 *minsize = 0;
1741 return (md);
1742 }
1743
1744 /*
1745 * Medium bursts try to divide evenly to better utilize several SLOG
1746 * VDEVs. The first block size we predict assuming the worst case of
1747 * maxing out others. Fall back to using maximum blocks if due to
1748 * large records or wasted space we can not predict anything better.
1749 */
1750 uint_t s = size;
1751 uint_t n = DIV_ROUND_UP(s, md - sizeof (lr_write_t));
1752 uint_t chunk = DIV_ROUND_UP(s, n);
1753 uint_t waste = zil_max_waste_space(zilog);
1754 waste = MAX(waste, zilog->zl_cur_max);
1755 if (chunk <= md - waste) {
1756 *minsize = MAX(s - (md - waste) * (n - 1), waste);
1757 return (chunk);
1758 } else {
1759 *minsize = 0;
1760 return (md);
1761 }
1762 }
1763
1764 /*
1765 * Try to predict next block size based on previous history. Make prediction
1766 * sufficient for 7 of 8 previous bursts. Don't try to save if the saving is
1767 * less then 50%, extra writes may cost more, but we don't want single spike
1768 * to badly affect our predictions.
1769 */
1770 static uint_t
1771 zil_lwb_predict(zilog_t *zilog)
1772 {
1773 uint_t m, o;
1774
1775 /* If we are in the middle of a burst, take it into account also. */
1776 if (zilog->zl_cur_size > 0) {
1777 o = zil_lwb_plan(zilog, zilog->zl_cur_size, &m);
1778 } else {
1779 o = UINT_MAX;
1780 m = 0;
1781 }
1782
1783 /* Find minimum optimal size. We don't need to go below that. */
1784 for (int i = 0; i < ZIL_BURSTS; i++)
1785 o = MIN(o, zilog->zl_prev_opt[i]);
1786
1787 /* Find two biggest minimal first block sizes above the optimal. */
1788 uint_t m1 = MAX(m, o), m2 = o;
1789 for (int i = 0; i < ZIL_BURSTS; i++) {
1790 m = zilog->zl_prev_min[i];
1791 if (m >= m1) {
1792 m2 = m1;
1793 m1 = m;
1794 } else if (m > m2) {
1795 m2 = m;
1796 }
1797 }
1798
1799 /*
1800 * If second minimum size gives 50% saving -- use it. It may cost us
1801 * one additional write later, but the space saving is just too big.
1802 */
1803 return ((m1 < m2 * 2) ? m1 : m2);
1804 }
1805
1806 /*
1807 * Close the log block for being issued and allocate the next one.
1808 * Has to be called under zl_issuer_lock to chain more lwbs.
1809 */
1810 static lwb_t *
1811 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1812 {
1813 uint64_t blksz, plan, plan2;
1814
1815 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1816 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1817 lwb->lwb_state = LWB_STATE_CLOSED;
1818
1819 /*
1820 * If there was an allocation failure then returned NULL will trigger
1821 * zil_commit_writer_stall() at the caller. This is inherently racy,
1822 * since allocation may not have happened yet.
1823 */
1824 if (lwb->lwb_error != 0)
1825 return (NULL);
1826
1827 /*
1828 * Log blocks are pre-allocated. Here we select the size of the next
1829 * block, based on what's left of this burst and the previous history.
1830 * While we try to only write used part of the block, we can't just
1831 * always allocate the maximum block size because we can exhaust all
1832 * available pool log space, so we try to be reasonable.
1833 */
1834 if (zilog->zl_cur_left > 0) {
1835 /*
1836 * We are in the middle of a burst and know how much is left.
1837 * But if workload is multi-threaded there may be more soon.
1838 * Try to predict what can it be and plan for the worst case.
1839 */
1840 uint_t m;
1841 plan = zil_lwb_plan(zilog, zilog->zl_cur_left, &m);
1842 if (zilog->zl_parallel) {
1843 plan2 = zil_lwb_plan(zilog, zilog->zl_cur_left +
1844 zil_lwb_predict(zilog), &m);
1845 if (plan < plan2)
1846 plan = plan2;
1847 }
1848 } else {
1849 /*
1850 * The previous burst is done and we can only predict what
1851 * will come next.
1852 */
1853 plan = zil_lwb_predict(zilog);
1854 }
1855 blksz = plan + sizeof (zil_chain_t);
1856 blksz = P2ROUNDUP_TYPED(blksz, ZIL_MIN_BLKSZ, uint64_t);
1857 blksz = MIN(blksz, zilog->zl_max_block_size);
1858 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog, uint64_t, blksz,
1859 uint64_t, plan);
1860
1861 return (zil_alloc_lwb(zilog, blksz, NULL, 0, 0, state));
1862 }
1863
1864 /*
1865 * Finalize previously closed block and issue the write zio.
1866 */
1867 static void
1868 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1869 {
1870 spa_t *spa = zilog->zl_spa;
1871 zil_chain_t *zilc;
1872 boolean_t slog;
1873 zbookmark_phys_t zb;
1874 zio_priority_t prio;
1875 int error;
1876
1877 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1878
1879 /* Actually fill the lwb with the data. */
1880 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1881 itx = list_next(&lwb->lwb_itxs, itx))
1882 zil_lwb_commit(zilog, lwb, itx);
1883 lwb->lwb_nused = lwb->lwb_nfilled;
1884 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1885
1886 lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1887 ZIO_FLAG_CANFAIL);
1888
1889 /*
1890 * The lwb is now ready to be issued, but it can be only if it already
1891 * got its block pointer allocated or the allocation has failed.
1892 * Otherwise leave it as-is, relying on some other thread to issue it
1893 * after allocating its block pointer via calling zil_lwb_write_issue()
1894 * for the previous lwb(s) in the chain.
1895 */
1896 mutex_enter(&zilog->zl_lock);
1897 lwb->lwb_state = LWB_STATE_READY;
1898 if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1899 mutex_exit(&zilog->zl_lock);
1900 return;
1901 }
1902 mutex_exit(&zilog->zl_lock);
1903
1904 next_lwb:
1905 if (lwb->lwb_slim)
1906 zilc = (zil_chain_t *)lwb->lwb_buf;
1907 else
1908 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1909 int wsz = lwb->lwb_sz;
1910 if (lwb->lwb_error == 0) {
1911 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1912 if (!lwb->lwb_slog || zilog->zl_cur_size <= zil_slog_bulk)
1913 prio = ZIO_PRIORITY_SYNC_WRITE;
1914 else
1915 prio = ZIO_PRIORITY_ASYNC_WRITE;
1916 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1917 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1918 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1919 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1920 &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1921 lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1922 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1923
1924 if (lwb->lwb_slim) {
1925 /* For Slim ZIL only write what is used. */
1926 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1927 int);
1928 ASSERT3S(wsz, <=, lwb->lwb_sz);
1929 zio_shrink(lwb->lwb_write_zio, wsz);
1930 wsz = lwb->lwb_write_zio->io_size;
1931 }
1932 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1933 zilc->zc_pad = 0;
1934 zilc->zc_nused = lwb->lwb_nused;
1935 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1936 } else {
1937 /*
1938 * We can't write the lwb if there was an allocation failure,
1939 * so create a null zio instead just to maintain dependencies.
1940 */
1941 lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1942 zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1943 lwb->lwb_write_zio->io_error = lwb->lwb_error;
1944 }
1945 if (lwb->lwb_child_zio)
1946 zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1947
1948 /*
1949 * Open transaction to allocate the next block pointer.
1950 */
1951 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1952 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1953 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1954 uint64_t txg = dmu_tx_get_txg(tx);
1955
1956 /*
1957 * Allocate next the block pointer unless we are already in error.
1958 */
1959 lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1960 blkptr_t *bp = &zilc->zc_next_blk;
1961 BP_ZERO(bp);
1962 error = lwb->lwb_error;
1963 if (error == 0) {
1964 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1965 &slog);
1966 }
1967 if (error == 0) {
1968 ASSERT3U(bp->blk_birth, ==, txg);
1969 BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
1970 ZIO_CHECKSUM_ZILOG);
1971 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1972 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1973 }
1974
1975 /*
1976 * Reduce TXG open time by incrementing inflight counter and committing
1977 * the transaciton. zil_sync() will wait for it to return to zero.
1978 */
1979 mutex_enter(&zilog->zl_lwb_io_lock);
1980 lwb->lwb_issued_txg = txg;
1981 zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1982 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1983 mutex_exit(&zilog->zl_lwb_io_lock);
1984 dmu_tx_commit(tx);
1985
1986 spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
1987
1988 /*
1989 * We've completed all potentially blocking operations. Update the
1990 * nlwb and allow it proceed without possible lock order reversals.
1991 */
1992 mutex_enter(&zilog->zl_lock);
1993 zil_lwb_set_zio_dependency(zilog, lwb);
1994 lwb->lwb_state = LWB_STATE_ISSUED;
1995
1996 if (nlwb) {
1997 nlwb->lwb_blk = *bp;
1998 nlwb->lwb_error = error;
1999 nlwb->lwb_slog = slog;
2000 nlwb->lwb_alloc_txg = txg;
2001 if (nlwb->lwb_state != LWB_STATE_READY)
2002 nlwb = NULL;
2003 }
2004 mutex_exit(&zilog->zl_lock);
2005
2006 if (lwb->lwb_slog) {
2007 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
2008 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
2009 lwb->lwb_nused);
2010 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
2011 wsz);
2012 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
2013 BP_GET_LSIZE(&lwb->lwb_blk));
2014 } else {
2015 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
2016 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
2017 lwb->lwb_nused);
2018 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
2019 wsz);
2020 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
2021 BP_GET_LSIZE(&lwb->lwb_blk));
2022 }
2023 lwb->lwb_issued_timestamp = gethrtime();
2024 if (lwb->lwb_child_zio)
2025 zio_nowait(lwb->lwb_child_zio);
2026 zio_nowait(lwb->lwb_write_zio);
2027 zio_nowait(lwb->lwb_root_zio);
2028
2029 /*
2030 * If nlwb was ready when we gave it the block pointer,
2031 * it is on us to issue it and possibly following ones.
2032 */
2033 lwb = nlwb;
2034 if (lwb)
2035 goto next_lwb;
2036 }
2037
2038 /*
2039 * Maximum amount of data that can be put into single log block.
2040 */
2041 uint64_t
2042 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
2043 {
2044 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
2045 }
2046
2047 /*
2048 * Maximum amount of log space we agree to waste to reduce number of
2049 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
2050 */
2051 static inline uint64_t
2052 zil_max_waste_space(zilog_t *zilog)
2053 {
2054 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
2055 }
2056
2057 /*
2058 * Maximum amount of write data for WR_COPIED. For correctness, consumers
2059 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
2060 * maximum sized log block, because each WR_COPIED record must fit in a
2061 * single log block. Below that it is a tradeoff of additional memory copy
2062 * and possibly worse log space efficiency vs additional range lock/unlock.
2063 */
2064 static uint_t zil_maxcopied = 7680;
2065
2066 uint64_t
2067 zil_max_copied_data(zilog_t *zilog)
2068 {
2069 uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2070 return (MIN(max_data, zil_maxcopied));
2071 }
2072
2073 static uint64_t
2074 zil_itx_record_size(itx_t *itx)
2075 {
2076 lr_t *lr = &itx->itx_lr;
2077
2078 if (lr->lrc_txtype == TX_COMMIT)
2079 return (0);
2080 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2081 return (lr->lrc_reclen);
2082 }
2083
2084 static uint64_t
2085 zil_itx_data_size(itx_t *itx)
2086 {
2087 lr_t *lr = &itx->itx_lr;
2088 lr_write_t *lrw = (lr_write_t *)lr;
2089
2090 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2091 ASSERT3U(lr->lrc_reclen, ==, sizeof (lr_write_t));
2092 return (P2ROUNDUP_TYPED(lrw->lr_length, sizeof (uint64_t),
2093 uint64_t));
2094 }
2095 return (0);
2096 }
2097
2098 static uint64_t
2099 zil_itx_full_size(itx_t *itx)
2100 {
2101 lr_t *lr = &itx->itx_lr;
2102
2103 if (lr->lrc_txtype == TX_COMMIT)
2104 return (0);
2105 ASSERT3U(lr->lrc_reclen, >=, sizeof (lr_t));
2106 return (lr->lrc_reclen + zil_itx_data_size(itx));
2107 }
2108
2109 /*
2110 * Estimate space needed in the lwb for the itx. Allocate more lwbs or
2111 * split the itx as needed, but don't touch the actual transaction data.
2112 * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2113 * to chain more lwbs.
2114 */
2115 static lwb_t *
2116 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2117 {
2118 itx_t *citx;
2119 lr_t *lr, *clr;
2120 lr_write_t *lrw;
2121 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2122
2123 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2124 ASSERT3P(lwb, !=, NULL);
2125 ASSERT3P(lwb->lwb_buf, !=, NULL);
2126
2127 zil_lwb_write_open(zilog, lwb);
2128
2129 lr = &itx->itx_lr;
2130 lrw = (lr_write_t *)lr;
2131
2132 /*
2133 * A commit itx doesn't represent any on-disk state; instead
2134 * it's simply used as a place holder on the commit list, and
2135 * provides a mechanism for attaching a "commit waiter" onto the
2136 * correct lwb (such that the waiter can be signalled upon
2137 * completion of that lwb). Thus, we don't process this itx's
2138 * log record if it's a commit itx (these itx's don't have log
2139 * records), and instead link the itx's waiter onto the lwb's
2140 * list of waiters.
2141 *
2142 * For more details, see the comment above zil_commit().
2143 */
2144 if (lr->lrc_txtype == TX_COMMIT) {
2145 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2146 list_insert_tail(&lwb->lwb_itxs, itx);
2147 return (lwb);
2148 }
2149
2150 reclen = lr->lrc_reclen;
2151 ASSERT3U(reclen, >=, sizeof (lr_t));
2152 ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2153 dlen = zil_itx_data_size(itx);
2154
2155 cont:
2156 /*
2157 * If this record won't fit in the current log block, start a new one.
2158 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2159 */
2160 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2161 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2162 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2163 lwb_sp < zil_max_waste_space(zilog) &&
2164 (dlen % max_log_data == 0 ||
2165 lwb_sp < reclen + dlen % max_log_data))) {
2166 list_insert_tail(ilwbs, lwb);
2167 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2168 if (lwb == NULL)
2169 return (NULL);
2170 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2171 }
2172
2173 /*
2174 * There must be enough space in the log block to hold reclen.
2175 * For WR_COPIED, we need to fit the whole record in one block,
2176 * and reclen is the write record header size + the data size.
2177 * For WR_NEED_COPY, we can create multiple records, splitting
2178 * the data into multiple blocks, so we only need to fit one
2179 * word of data per block; in this case reclen is just the header
2180 * size (no data).
2181 */
2182 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2183
2184 dnow = MIN(dlen, lwb_sp - reclen);
2185 if (dlen > dnow) {
2186 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2187 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2188 citx = zil_itx_clone(itx);
2189 clr = &citx->itx_lr;
2190 lr_write_t *clrw = (lr_write_t *)clr;
2191 clrw->lr_length = dnow;
2192 lrw->lr_offset += dnow;
2193 lrw->lr_length -= dnow;
2194 zilog->zl_cur_left -= dnow;
2195 } else {
2196 citx = itx;
2197 clr = lr;
2198 }
2199
2200 /*
2201 * We're actually making an entry, so update lrc_seq to be the
2202 * log record sequence number. Note that this is generally not
2203 * equal to the itx sequence number because not all transactions
2204 * are synchronous, and sometimes spa_sync() gets there first.
2205 */
2206 clr->lrc_seq = ++zilog->zl_lr_seq;
2207
2208 lwb->lwb_nused += reclen + dnow;
2209 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2210 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2211
2212 zil_lwb_add_txg(lwb, lr->lrc_txg);
2213 list_insert_tail(&lwb->lwb_itxs, citx);
2214
2215 dlen -= dnow;
2216 if (dlen > 0)
2217 goto cont;
2218
2219 if (lr->lrc_txtype == TX_WRITE &&
2220 lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2221 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2222
2223 return (lwb);
2224 }
2225
2226 /*
2227 * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2228 * Does not require locking.
2229 */
2230 static void
2231 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2232 {
2233 lr_t *lr, *lrb;
2234 lr_write_t *lrw, *lrwb;
2235 char *lr_buf;
2236 uint64_t dlen, reclen;
2237
2238 lr = &itx->itx_lr;
2239 lrw = (lr_write_t *)lr;
2240
2241 if (lr->lrc_txtype == TX_COMMIT)
2242 return;
2243
2244 reclen = lr->lrc_reclen;
2245 dlen = zil_itx_data_size(itx);
2246 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2247
2248 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2249 memcpy(lr_buf, lr, reclen);
2250 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */
2251 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */
2252
2253 ZIL_STAT_BUMP(zilog, zil_itx_count);
2254
2255 /*
2256 * If it's a write, fetch the data or get its blkptr as appropriate.
2257 */
2258 if (lr->lrc_txtype == TX_WRITE) {
2259 if (itx->itx_wr_state == WR_COPIED) {
2260 ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2261 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2262 lrw->lr_length);
2263 } else {
2264 char *dbuf;
2265 int error;
2266
2267 if (itx->itx_wr_state == WR_NEED_COPY) {
2268 dbuf = lr_buf + reclen;
2269 lrb->lrc_reclen += dlen;
2270 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2271 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2272 dlen);
2273 } else {
2274 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2275 dbuf = NULL;
2276 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2277 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2278 lrw->lr_length);
2279 if (lwb->lwb_child_zio == NULL) {
2280 lwb->lwb_child_zio = zio_null(NULL,
2281 zilog->zl_spa, NULL, NULL, NULL,
2282 ZIO_FLAG_CANFAIL);
2283 }
2284 }
2285
2286 /*
2287 * The "lwb_child_zio" we pass in will become a child of
2288 * "lwb_write_zio", when one is created, so one will be
2289 * a parent of any zio's created by the "zl_get_data".
2290 * This way "lwb_write_zio" will first wait for children
2291 * block pointers before own writing, and then for their
2292 * writing completion before the vdev cache flushing.
2293 */
2294 error = zilog->zl_get_data(itx->itx_private,
2295 itx->itx_gen, lrwb, dbuf, lwb,
2296 lwb->lwb_child_zio);
2297 if (dbuf != NULL && error == 0) {
2298 /* Zero any padding bytes in the last block. */
2299 memset((char *)dbuf + lrwb->lr_length, 0,
2300 dlen - lrwb->lr_length);
2301 }
2302
2303 /*
2304 * Typically, the only return values we should see from
2305 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2306 * EALREADY. However, it is also possible to see other
2307 * error values such as ENOSPC or EINVAL from
2308 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2309 * ENXIO as well as a multitude of others from the
2310 * block layer through dmu_buf_hold() -> dbuf_read()
2311 * -> zio_wait(), as well as through dmu_read() ->
2312 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2313 * zio_wait(). When these errors happen, we can assume
2314 * that neither an immediate write nor an indirect
2315 * write occurred, so we need to fall back to
2316 * txg_wait_synced(). This is unusual, so we print to
2317 * dmesg whenever one of these errors occurs.
2318 */
2319 switch (error) {
2320 case 0:
2321 break;
2322 default:
2323 cmn_err(CE_WARN, "zil_lwb_commit() received "
2324 "unexpected error %d from ->zl_get_data()"
2325 ". Falling back to txg_wait_synced().",
2326 error);
2327 zfs_fallthrough;
2328 case EIO:
2329 txg_wait_synced(zilog->zl_dmu_pool,
2330 lr->lrc_txg);
2331 zfs_fallthrough;
2332 case ENOENT:
2333 zfs_fallthrough;
2334 case EEXIST:
2335 zfs_fallthrough;
2336 case EALREADY:
2337 return;
2338 }
2339 }
2340 }
2341
2342 lwb->lwb_nfilled += reclen + dlen;
2343 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2344 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2345 }
2346
2347 itx_t *
2348 zil_itx_create(uint64_t txtype, size_t olrsize)
2349 {
2350 size_t itxsize, lrsize;
2351 itx_t *itx;
2352
2353 ASSERT3U(olrsize, >=, sizeof (lr_t));
2354 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2355 ASSERT3U(lrsize, >=, olrsize);
2356 itxsize = offsetof(itx_t, itx_lr) + lrsize;
2357
2358 itx = zio_data_buf_alloc(itxsize);
2359 itx->itx_lr.lrc_txtype = txtype;
2360 itx->itx_lr.lrc_reclen = lrsize;
2361 itx->itx_lr.lrc_seq = 0; /* defensive */
2362 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2363 itx->itx_sync = B_TRUE; /* default is synchronous */
2364 itx->itx_callback = NULL;
2365 itx->itx_callback_data = NULL;
2366 itx->itx_size = itxsize;
2367
2368 return (itx);
2369 }
2370
2371 static itx_t *
2372 zil_itx_clone(itx_t *oitx)
2373 {
2374 ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2375 ASSERT3U(oitx->itx_size, ==,
2376 offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2377
2378 itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2379 memcpy(itx, oitx, oitx->itx_size);
2380 itx->itx_callback = NULL;
2381 itx->itx_callback_data = NULL;
2382 return (itx);
2383 }
2384
2385 void
2386 zil_itx_destroy(itx_t *itx)
2387 {
2388 ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2389 ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2390 itx->itx_size - offsetof(itx_t, itx_lr));
2391 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2392 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2393
2394 if (itx->itx_callback != NULL)
2395 itx->itx_callback(itx->itx_callback_data);
2396
2397 zio_data_buf_free(itx, itx->itx_size);
2398 }
2399
2400 /*
2401 * Free up the sync and async itxs. The itxs_t has already been detached
2402 * so no locks are needed.
2403 */
2404 static void
2405 zil_itxg_clean(void *arg)
2406 {
2407 itx_t *itx;
2408 list_t *list;
2409 avl_tree_t *t;
2410 void *cookie;
2411 itxs_t *itxs = arg;
2412 itx_async_node_t *ian;
2413
2414 list = &itxs->i_sync_list;
2415 while ((itx = list_remove_head(list)) != NULL) {
2416 /*
2417 * In the general case, commit itxs will not be found
2418 * here, as they'll be committed to an lwb via
2419 * zil_lwb_assign(), and free'd in that function. Having
2420 * said that, it is still possible for commit itxs to be
2421 * found here, due to the following race:
2422 *
2423 * - a thread calls zil_commit() which assigns the
2424 * commit itx to a per-txg i_sync_list
2425 * - zil_itxg_clean() is called (e.g. via spa_sync())
2426 * while the waiter is still on the i_sync_list
2427 *
2428 * There's nothing to prevent syncing the txg while the
2429 * waiter is on the i_sync_list. This normally doesn't
2430 * happen because spa_sync() is slower than zil_commit(),
2431 * but if zil_commit() calls txg_wait_synced() (e.g.
2432 * because zil_create() or zil_commit_writer_stall() is
2433 * called) we will hit this case.
2434 */
2435 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2436 zil_commit_waiter_skip(itx->itx_private);
2437
2438 zil_itx_destroy(itx);
2439 }
2440
2441 cookie = NULL;
2442 t = &itxs->i_async_tree;
2443 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2444 list = &ian->ia_list;
2445 while ((itx = list_remove_head(list)) != NULL) {
2446 /* commit itxs should never be on the async lists. */
2447 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2448 zil_itx_destroy(itx);
2449 }
2450 list_destroy(list);
2451 kmem_free(ian, sizeof (itx_async_node_t));
2452 }
2453 avl_destroy(t);
2454
2455 kmem_free(itxs, sizeof (itxs_t));
2456 }
2457
2458 static int
2459 zil_aitx_compare(const void *x1, const void *x2)
2460 {
2461 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2462 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2463
2464 return (TREE_CMP(o1, o2));
2465 }
2466
2467 /*
2468 * Remove all async itx with the given oid.
2469 */
2470 void
2471 zil_remove_async(zilog_t *zilog, uint64_t oid)
2472 {
2473 uint64_t otxg, txg;
2474 itx_async_node_t *ian, ian_search;
2475 avl_tree_t *t;
2476 avl_index_t where;
2477 list_t clean_list;
2478 itx_t *itx;
2479
2480 ASSERT(oid != 0);
2481 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2482
2483 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2484 otxg = ZILTEST_TXG;
2485 else
2486 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2487
2488 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2489 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2490
2491 mutex_enter(&itxg->itxg_lock);
2492 if (itxg->itxg_txg != txg) {
2493 mutex_exit(&itxg->itxg_lock);
2494 continue;
2495 }
2496
2497 /*
2498 * Locate the object node and append its list.
2499 */
2500 t = &itxg->itxg_itxs->i_async_tree;
2501 ian_search.ia_foid = oid;
2502 ian = avl_find(t, &ian_search, &where);
2503 if (ian != NULL)
2504 list_move_tail(&clean_list, &ian->ia_list);
2505 mutex_exit(&itxg->itxg_lock);
2506 }
2507 while ((itx = list_remove_head(&clean_list)) != NULL) {
2508 /* commit itxs should never be on the async lists. */
2509 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2510 zil_itx_destroy(itx);
2511 }
2512 list_destroy(&clean_list);
2513 }
2514
2515 void
2516 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2517 {
2518 uint64_t txg;
2519 itxg_t *itxg;
2520 itxs_t *itxs, *clean = NULL;
2521
2522 /*
2523 * Ensure the data of a renamed file is committed before the rename.
2524 */
2525 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2526 zil_async_to_sync(zilog, itx->itx_oid);
2527
2528 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2529 txg = ZILTEST_TXG;
2530 else
2531 txg = dmu_tx_get_txg(tx);
2532
2533 itxg = &zilog->zl_itxg[txg & TXG_MASK];
2534 mutex_enter(&itxg->itxg_lock);
2535 itxs = itxg->itxg_itxs;
2536 if (itxg->itxg_txg != txg) {
2537 if (itxs != NULL) {
2538 /*
2539 * The zil_clean callback hasn't got around to cleaning
2540 * this itxg. Save the itxs for release below.
2541 * This should be rare.
2542 */
2543 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2544 "txg %llu", (u_longlong_t)itxg->itxg_txg);
2545 clean = itxg->itxg_itxs;
2546 }
2547 itxg->itxg_txg = txg;
2548 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2549 KM_SLEEP);
2550
2551 list_create(&itxs->i_sync_list, sizeof (itx_t),
2552 offsetof(itx_t, itx_node));
2553 avl_create(&itxs->i_async_tree, zil_aitx_compare,
2554 sizeof (itx_async_node_t),
2555 offsetof(itx_async_node_t, ia_node));
2556 }
2557 if (itx->itx_sync) {
2558 list_insert_tail(&itxs->i_sync_list, itx);
2559 } else {
2560 avl_tree_t *t = &itxs->i_async_tree;
2561 uint64_t foid =
2562 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2563 itx_async_node_t *ian;
2564 avl_index_t where;
2565
2566 ian = avl_find(t, &foid, &where);
2567 if (ian == NULL) {
2568 ian = kmem_alloc(sizeof (itx_async_node_t),
2569 KM_SLEEP);
2570 list_create(&ian->ia_list, sizeof (itx_t),
2571 offsetof(itx_t, itx_node));
2572 ian->ia_foid = foid;
2573 avl_insert(t, ian, where);
2574 }
2575 list_insert_tail(&ian->ia_list, itx);
2576 }
2577
2578 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2579
2580 /*
2581 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2582 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2583 * need to be careful to always dirty the ZIL using the "real"
2584 * TXG (not itxg_txg) even when the SPA is frozen.
2585 */
2586 zilog_dirty(zilog, dmu_tx_get_txg(tx));
2587 mutex_exit(&itxg->itxg_lock);
2588
2589 /* Release the old itxs now we've dropped the lock */
2590 if (clean != NULL)
2591 zil_itxg_clean(clean);
2592 }
2593
2594 /*
2595 * If there are any in-memory intent log transactions which have now been
2596 * synced then start up a taskq to free them. We should only do this after we
2597 * have written out the uberblocks (i.e. txg has been committed) so that
2598 * don't inadvertently clean out in-memory log records that would be required
2599 * by zil_commit().
2600 */
2601 void
2602 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2603 {
2604 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2605 itxs_t *clean_me;
2606
2607 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2608
2609 mutex_enter(&itxg->itxg_lock);
2610 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2611 mutex_exit(&itxg->itxg_lock);
2612 return;
2613 }
2614 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2615 ASSERT3U(itxg->itxg_txg, !=, 0);
2616 clean_me = itxg->itxg_itxs;
2617 itxg->itxg_itxs = NULL;
2618 itxg->itxg_txg = 0;
2619 mutex_exit(&itxg->itxg_lock);
2620 /*
2621 * Preferably start a task queue to free up the old itxs but
2622 * if taskq_dispatch can't allocate resources to do that then
2623 * free it in-line. This should be rare. Note, using TQ_SLEEP
2624 * created a bad performance problem.
2625 */
2626 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2627 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2628 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2629 zil_itxg_clean, clean_me, TQ_NOSLEEP);
2630 if (id == TASKQID_INVALID)
2631 zil_itxg_clean(clean_me);
2632 }
2633
2634 /*
2635 * This function will traverse the queue of itxs that need to be
2636 * committed, and move them onto the ZIL's zl_itx_commit_list.
2637 */
2638 static uint64_t
2639 zil_get_commit_list(zilog_t *zilog)
2640 {
2641 uint64_t otxg, txg, wtxg = 0;
2642 list_t *commit_list = &zilog->zl_itx_commit_list;
2643
2644 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2645
2646 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2647 otxg = ZILTEST_TXG;
2648 else
2649 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2650
2651 /*
2652 * This is inherently racy, since there is nothing to prevent
2653 * the last synced txg from changing. That's okay since we'll
2654 * only commit things in the future.
2655 */
2656 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2657 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2658
2659 mutex_enter(&itxg->itxg_lock);
2660 if (itxg->itxg_txg != txg) {
2661 mutex_exit(&itxg->itxg_lock);
2662 continue;
2663 }
2664
2665 /*
2666 * If we're adding itx records to the zl_itx_commit_list,
2667 * then the zil better be dirty in this "txg". We can assert
2668 * that here since we're holding the itxg_lock which will
2669 * prevent spa_sync from cleaning it. Once we add the itxs
2670 * to the zl_itx_commit_list we must commit it to disk even
2671 * if it's unnecessary (i.e. the txg was synced).
2672 */
2673 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2674 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2675 list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2676 itx_t *itx = NULL;
2677 if (unlikely(zilog->zl_suspend > 0)) {
2678 /*
2679 * ZIL was just suspended, but we lost the race.
2680 * Allow all earlier itxs to be committed, but ask
2681 * caller to do txg_wait_synced(txg) for any new.
2682 */
2683 if (!list_is_empty(sync_list))
2684 wtxg = MAX(wtxg, txg);
2685 } else {
2686 itx = list_head(sync_list);
2687 list_move_tail(commit_list, sync_list);
2688 }
2689
2690 mutex_exit(&itxg->itxg_lock);
2691
2692 while (itx != NULL) {
2693 uint64_t s = zil_itx_full_size(itx);
2694 zilog->zl_cur_size += s;
2695 zilog->zl_cur_left += s;
2696 s = zil_itx_record_size(itx);
2697 zilog->zl_cur_max = MAX(zilog->zl_cur_max, s);
2698 itx = list_next(commit_list, itx);
2699 }
2700 }
2701 return (wtxg);
2702 }
2703
2704 /*
2705 * Move the async itxs for a specified object to commit into sync lists.
2706 */
2707 void
2708 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2709 {
2710 uint64_t otxg, txg;
2711 itx_async_node_t *ian, ian_search;
2712 avl_tree_t *t;
2713 avl_index_t where;
2714
2715 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2716 otxg = ZILTEST_TXG;
2717 else
2718 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2719
2720 /*
2721 * This is inherently racy, since there is nothing to prevent
2722 * the last synced txg from changing.
2723 */
2724 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2725 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2726
2727 mutex_enter(&itxg->itxg_lock);
2728 if (itxg->itxg_txg != txg) {
2729 mutex_exit(&itxg->itxg_lock);
2730 continue;
2731 }
2732
2733 /*
2734 * If a foid is specified then find that node and append its
2735 * list. Otherwise walk the tree appending all the lists
2736 * to the sync list. We add to the end rather than the
2737 * beginning to ensure the create has happened.
2738 */
2739 t = &itxg->itxg_itxs->i_async_tree;
2740 if (foid != 0) {
2741 ian_search.ia_foid = foid;
2742 ian = avl_find(t, &ian_search, &where);
2743 if (ian != NULL) {
2744 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2745 &ian->ia_list);
2746 }
2747 } else {
2748 void *cookie = NULL;
2749
2750 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2751 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2752 &ian->ia_list);
2753 list_destroy(&ian->ia_list);
2754 kmem_free(ian, sizeof (itx_async_node_t));
2755 }
2756 }
2757 mutex_exit(&itxg->itxg_lock);
2758 }
2759 }
2760
2761 /*
2762 * This function will prune commit itxs that are at the head of the
2763 * commit list (it won't prune past the first non-commit itx), and
2764 * either: a) attach them to the last lwb that's still pending
2765 * completion, or b) skip them altogether.
2766 *
2767 * This is used as a performance optimization to prevent commit itxs
2768 * from generating new lwbs when it's unnecessary to do so.
2769 */
2770 static void
2771 zil_prune_commit_list(zilog_t *zilog)
2772 {
2773 itx_t *itx;
2774
2775 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2776
2777 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2778 lr_t *lrc = &itx->itx_lr;
2779 if (lrc->lrc_txtype != TX_COMMIT)
2780 break;
2781
2782 mutex_enter(&zilog->zl_lock);
2783
2784 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2785 if (last_lwb == NULL ||
2786 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2787 /*
2788 * All of the itxs this waiter was waiting on
2789 * must have already completed (or there were
2790 * never any itx's for it to wait on), so it's
2791 * safe to skip this waiter and mark it done.
2792 */
2793 zil_commit_waiter_skip(itx->itx_private);
2794 } else {
2795 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2796 }
2797
2798 mutex_exit(&zilog->zl_lock);
2799
2800 list_remove(&zilog->zl_itx_commit_list, itx);
2801 zil_itx_destroy(itx);
2802 }
2803
2804 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2805 }
2806
2807 static void
2808 zil_commit_writer_stall(zilog_t *zilog)
2809 {
2810 /*
2811 * When zio_alloc_zil() fails to allocate the next lwb block on
2812 * disk, we must call txg_wait_synced() to ensure all of the
2813 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2814 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2815 * to zil_process_commit_list()) will have to call zil_create(),
2816 * and start a new ZIL chain.
2817 *
2818 * Since zil_alloc_zil() failed, the lwb that was previously
2819 * issued does not have a pointer to the "next" lwb on disk.
2820 * Thus, if another ZIL writer thread was to allocate the "next"
2821 * on-disk lwb, that block could be leaked in the event of a
2822 * crash (because the previous lwb on-disk would not point to
2823 * it).
2824 *
2825 * We must hold the zilog's zl_issuer_lock while we do this, to
2826 * ensure no new threads enter zil_process_commit_list() until
2827 * all lwb's in the zl_lwb_list have been synced and freed
2828 * (which is achieved via the txg_wait_synced() call).
2829 */
2830 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2831 txg_wait_synced(zilog->zl_dmu_pool, 0);
2832 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2833 }
2834
2835 static void
2836 zil_burst_done(zilog_t *zilog)
2837 {
2838 if (!list_is_empty(&zilog->zl_itx_commit_list) ||
2839 zilog->zl_cur_size == 0)
2840 return;
2841
2842 if (zilog->zl_parallel)
2843 zilog->zl_parallel--;
2844
2845 uint_t r = (zilog->zl_prev_rotor + 1) & (ZIL_BURSTS - 1);
2846 zilog->zl_prev_rotor = r;
2847 zilog->zl_prev_opt[r] = zil_lwb_plan(zilog, zilog->zl_cur_size,
2848 &zilog->zl_prev_min[r]);
2849
2850 zilog->zl_cur_size = 0;
2851 zilog->zl_cur_max = 0;
2852 zilog->zl_cur_left = 0;
2853 }
2854
2855 /*
2856 * This function will traverse the commit list, creating new lwbs as
2857 * needed, and committing the itxs from the commit list to these newly
2858 * created lwbs. Additionally, as a new lwb is created, the previous
2859 * lwb will be issued to the zio layer to be written to disk.
2860 */
2861 static void
2862 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2863 {
2864 spa_t *spa = zilog->zl_spa;
2865 list_t nolwb_itxs;
2866 list_t nolwb_waiters;
2867 lwb_t *lwb, *plwb;
2868 itx_t *itx;
2869
2870 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2871
2872 /*
2873 * Return if there's nothing to commit before we dirty the fs by
2874 * calling zil_create().
2875 */
2876 if (list_is_empty(&zilog->zl_itx_commit_list))
2877 return;
2878
2879 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2880 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2881 offsetof(zil_commit_waiter_t, zcw_node));
2882
2883 lwb = list_tail(&zilog->zl_lwb_list);
2884 if (lwb == NULL) {
2885 lwb = zil_create(zilog);
2886 } else {
2887 /*
2888 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2889 * have already been created (zl_lwb_list not empty).
2890 */
2891 zil_commit_activate_saxattr_feature(zilog);
2892 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2893 lwb->lwb_state == LWB_STATE_OPENED);
2894
2895 /*
2896 * If the lwb is still opened, it means the workload is really
2897 * multi-threaded and we won the chance of write aggregation.
2898 * If it is not opened yet, but previous lwb is still not
2899 * flushed, it still means the workload is multi-threaded, but
2900 * there was too much time between the commits to aggregate, so
2901 * we try aggregation next times, but without too much hopes.
2902 */
2903 if (lwb->lwb_state == LWB_STATE_OPENED) {
2904 zilog->zl_parallel = ZIL_BURSTS;
2905 } else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
2906 != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
2907 zilog->zl_parallel = MAX(zilog->zl_parallel,
2908 ZIL_BURSTS / 2);
2909 }
2910 }
2911
2912 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2913 lr_t *lrc = &itx->itx_lr;
2914 uint64_t txg = lrc->lrc_txg;
2915
2916 ASSERT3U(txg, !=, 0);
2917
2918 if (lrc->lrc_txtype == TX_COMMIT) {
2919 DTRACE_PROBE2(zil__process__commit__itx,
2920 zilog_t *, zilog, itx_t *, itx);
2921 } else {
2922 DTRACE_PROBE2(zil__process__normal__itx,
2923 zilog_t *, zilog, itx_t *, itx);
2924 }
2925
2926 boolean_t synced = txg <= spa_last_synced_txg(spa);
2927 boolean_t frozen = txg > spa_freeze_txg(spa);
2928
2929 /*
2930 * If the txg of this itx has already been synced out, then
2931 * we don't need to commit this itx to an lwb. This is
2932 * because the data of this itx will have already been
2933 * written to the main pool. This is inherently racy, and
2934 * it's still ok to commit an itx whose txg has already
2935 * been synced; this will result in a write that's
2936 * unnecessary, but will do no harm.
2937 *
2938 * With that said, we always want to commit TX_COMMIT itxs
2939 * to an lwb, regardless of whether or not that itx's txg
2940 * has been synced out. We do this to ensure any OPENED lwb
2941 * will always have at least one zil_commit_waiter_t linked
2942 * to the lwb.
2943 *
2944 * As a counter-example, if we skipped TX_COMMIT itx's
2945 * whose txg had already been synced, the following
2946 * situation could occur if we happened to be racing with
2947 * spa_sync:
2948 *
2949 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2950 * itx's txg is 10 and the last synced txg is 9.
2951 * 2. spa_sync finishes syncing out txg 10.
2952 * 3. We move to the next itx in the list, it's a TX_COMMIT
2953 * whose txg is 10, so we skip it rather than committing
2954 * it to the lwb used in (1).
2955 *
2956 * If the itx that is skipped in (3) is the last TX_COMMIT
2957 * itx in the commit list, than it's possible for the lwb
2958 * used in (1) to remain in the OPENED state indefinitely.
2959 *
2960 * To prevent the above scenario from occurring, ensuring
2961 * that once an lwb is OPENED it will transition to ISSUED
2962 * and eventually DONE, we always commit TX_COMMIT itx's to
2963 * an lwb here, even if that itx's txg has already been
2964 * synced.
2965 *
2966 * Finally, if the pool is frozen, we _always_ commit the
2967 * itx. The point of freezing the pool is to prevent data
2968 * from being written to the main pool via spa_sync, and
2969 * instead rely solely on the ZIL to persistently store the
2970 * data; i.e. when the pool is frozen, the last synced txg
2971 * value can't be trusted.
2972 */
2973 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2974 if (lwb != NULL) {
2975 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
2976 if (lwb == NULL) {
2977 list_insert_tail(&nolwb_itxs, itx);
2978 } else if ((zcw->zcw_lwb != NULL &&
2979 zcw->zcw_lwb != lwb) || zcw->zcw_done) {
2980 /*
2981 * Our lwb is done, leave the rest of
2982 * itx list to somebody else who care.
2983 */
2984 zilog->zl_parallel = ZIL_BURSTS;
2985 zilog->zl_cur_left -=
2986 zil_itx_full_size(itx);
2987 break;
2988 }
2989 } else {
2990 if (lrc->lrc_txtype == TX_COMMIT) {
2991 zil_commit_waiter_link_nolwb(
2992 itx->itx_private, &nolwb_waiters);
2993 }
2994 list_insert_tail(&nolwb_itxs, itx);
2995 }
2996 zilog->zl_cur_left -= zil_itx_full_size(itx);
2997 } else {
2998 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2999 zilog->zl_cur_left -= zil_itx_full_size(itx);
3000 zil_itx_destroy(itx);
3001 }
3002 }
3003
3004 if (lwb == NULL) {
3005 /*
3006 * This indicates zio_alloc_zil() failed to allocate the
3007 * "next" lwb on-disk. When this happens, we must stall
3008 * the ZIL write pipeline; see the comment within
3009 * zil_commit_writer_stall() for more details.
3010 */
3011 while ((lwb = list_remove_head(ilwbs)) != NULL)
3012 zil_lwb_write_issue(zilog, lwb);
3013 zil_commit_writer_stall(zilog);
3014
3015 /*
3016 * Additionally, we have to signal and mark the "nolwb"
3017 * waiters as "done" here, since without an lwb, we
3018 * can't do this via zil_lwb_flush_vdevs_done() like
3019 * normal.
3020 */
3021 zil_commit_waiter_t *zcw;
3022 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
3023 zil_commit_waiter_skip(zcw);
3024
3025 /*
3026 * And finally, we have to destroy the itx's that
3027 * couldn't be committed to an lwb; this will also call
3028 * the itx's callback if one exists for the itx.
3029 */
3030 while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
3031 zil_itx_destroy(itx);
3032 } else {
3033 ASSERT(list_is_empty(&nolwb_waiters));
3034 ASSERT3P(lwb, !=, NULL);
3035 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
3036 lwb->lwb_state == LWB_STATE_OPENED);
3037
3038 /*
3039 * At this point, the ZIL block pointed at by the "lwb"
3040 * variable is in "new" or "opened" state.
3041 *
3042 * If it's "new", then no itxs have been committed to it, so
3043 * there's no point in issuing its zio (i.e. it's "empty").
3044 *
3045 * If it's "opened", then it contains one or more itxs that
3046 * eventually need to be committed to stable storage. In
3047 * this case we intentionally do not issue the lwb's zio
3048 * to disk yet, and instead rely on one of the following
3049 * two mechanisms for issuing the zio:
3050 *
3051 * 1. Ideally, there will be more ZIL activity occurring on
3052 * the system, such that this function will be immediately
3053 * called again by different thread and this lwb will be
3054 * closed by zil_lwb_assign(). This way, the lwb will be
3055 * "full" when it is issued to disk, and we'll make use of
3056 * the lwb's size the best we can.
3057 *
3058 * 2. If there isn't sufficient ZIL activity occurring on
3059 * the system, zil_commit_waiter() will close it and issue
3060 * the zio. If this occurs, the lwb is not guaranteed
3061 * to be "full" by the time its zio is issued, and means
3062 * the size of the lwb was "too large" given the amount
3063 * of ZIL activity occurring on the system at that time.
3064 *
3065 * We do this for a couple of reasons:
3066 *
3067 * 1. To try and reduce the number of IOPs needed to
3068 * write the same number of itxs. If an lwb has space
3069 * available in its buffer for more itxs, and more itxs
3070 * will be committed relatively soon (relative to the
3071 * latency of performing a write), then it's beneficial
3072 * to wait for these "next" itxs. This way, more itxs
3073 * can be committed to stable storage with fewer writes.
3074 *
3075 * 2. To try and use the largest lwb block size that the
3076 * incoming rate of itxs can support. Again, this is to
3077 * try and pack as many itxs into as few lwbs as
3078 * possible, without significantly impacting the latency
3079 * of each individual itx.
3080 */
3081 if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
3082 zil_burst_done(zilog);
3083 list_insert_tail(ilwbs, lwb);
3084 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3085 if (lwb == NULL) {
3086 while ((lwb = list_remove_head(ilwbs)) != NULL)
3087 zil_lwb_write_issue(zilog, lwb);
3088 zil_commit_writer_stall(zilog);
3089 }
3090 }
3091 }
3092 }
3093
3094 /*
3095 * This function is responsible for ensuring the passed in commit waiter
3096 * (and associated commit itx) is committed to an lwb. If the waiter is
3097 * not already committed to an lwb, all itxs in the zilog's queue of
3098 * itxs will be processed. The assumption is the passed in waiter's
3099 * commit itx will found in the queue just like the other non-commit
3100 * itxs, such that when the entire queue is processed, the waiter will
3101 * have been committed to an lwb.
3102 *
3103 * The lwb associated with the passed in waiter is not guaranteed to
3104 * have been issued by the time this function completes. If the lwb is
3105 * not issued, we rely on future calls to zil_commit_writer() to issue
3106 * the lwb, or the timeout mechanism found in zil_commit_waiter().
3107 */
3108 static uint64_t
3109 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
3110 {
3111 list_t ilwbs;
3112 lwb_t *lwb;
3113 uint64_t wtxg = 0;
3114
3115 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3116 ASSERT(spa_writeable(zilog->zl_spa));
3117
3118 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
3119 mutex_enter(&zilog->zl_issuer_lock);
3120
3121 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3122 /*
3123 * It's possible that, while we were waiting to acquire
3124 * the "zl_issuer_lock", another thread committed this
3125 * waiter to an lwb. If that occurs, we bail out early,
3126 * without processing any of the zilog's queue of itxs.
3127 *
3128 * On certain workloads and system configurations, the
3129 * "zl_issuer_lock" can become highly contended. In an
3130 * attempt to reduce this contention, we immediately drop
3131 * the lock if the waiter has already been processed.
3132 *
3133 * We've measured this optimization to reduce CPU spent
3134 * contending on this lock by up to 5%, using a system
3135 * with 32 CPUs, low latency storage (~50 usec writes),
3136 * and 1024 threads performing sync writes.
3137 */
3138 goto out;
3139 }
3140
3141 ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3142
3143 wtxg = zil_get_commit_list(zilog);
3144 zil_prune_commit_list(zilog);
3145 zil_process_commit_list(zilog, zcw, &ilwbs);
3146
3147 out:
3148 mutex_exit(&zilog->zl_issuer_lock);
3149 while ((lwb = list_remove_head(&ilwbs)) != NULL)
3150 zil_lwb_write_issue(zilog, lwb);
3151 list_destroy(&ilwbs);
3152 return (wtxg);
3153 }
3154
3155 static void
3156 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3157 {
3158 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3159 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3160 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3161
3162 lwb_t *lwb = zcw->zcw_lwb;
3163 ASSERT3P(lwb, !=, NULL);
3164 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3165
3166 /*
3167 * If the lwb has already been issued by another thread, we can
3168 * immediately return since there's no work to be done (the
3169 * point of this function is to issue the lwb). Additionally, we
3170 * do this prior to acquiring the zl_issuer_lock, to avoid
3171 * acquiring it when it's not necessary to do so.
3172 */
3173 if (lwb->lwb_state != LWB_STATE_OPENED)
3174 return;
3175
3176 /*
3177 * In order to call zil_lwb_write_close() we must hold the
3178 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3179 * since we're already holding the commit waiter's "zcw_lock",
3180 * and those two locks are acquired in the opposite order
3181 * elsewhere.
3182 */
3183 mutex_exit(&zcw->zcw_lock);
3184 mutex_enter(&zilog->zl_issuer_lock);
3185 mutex_enter(&zcw->zcw_lock);
3186
3187 /*
3188 * Since we just dropped and re-acquired the commit waiter's
3189 * lock, we have to re-check to see if the waiter was marked
3190 * "done" during that process. If the waiter was marked "done",
3191 * the "lwb" pointer is no longer valid (it can be free'd after
3192 * the waiter is marked "done"), so without this check we could
3193 * wind up with a use-after-free error below.
3194 */
3195 if (zcw->zcw_done) {
3196 mutex_exit(&zilog->zl_issuer_lock);
3197 return;
3198 }
3199
3200 ASSERT3P(lwb, ==, zcw->zcw_lwb);
3201
3202 /*
3203 * We've already checked this above, but since we hadn't acquired
3204 * the zilog's zl_issuer_lock, we have to perform this check a
3205 * second time while holding the lock.
3206 *
3207 * We don't need to hold the zl_lock since the lwb cannot transition
3208 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3209 * _can_ transition from CLOSED to DONE, but it's OK to race with
3210 * that transition since we treat the lwb the same, whether it's in
3211 * the CLOSED, ISSUED or DONE states.
3212 *
3213 * The important thing, is we treat the lwb differently depending on
3214 * if it's OPENED or CLOSED, and block any other threads that might
3215 * attempt to close/issue this lwb. For that reason we hold the
3216 * zl_issuer_lock when checking the lwb_state; we must not call
3217 * zil_lwb_write_close() if the lwb had already been closed/issued.
3218 *
3219 * See the comment above the lwb_state_t structure definition for
3220 * more details on the lwb states, and locking requirements.
3221 */
3222 if (lwb->lwb_state != LWB_STATE_OPENED) {
3223 mutex_exit(&zilog->zl_issuer_lock);
3224 return;
3225 }
3226
3227 /*
3228 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3229 * is still open. But we have to drop it to avoid a deadlock in case
3230 * callback of zio issued by zil_lwb_write_issue() try to get it,
3231 * while zil_lwb_write_issue() is blocked on attempt to issue next
3232 * lwb it found in LWB_STATE_READY state.
3233 */
3234 mutex_exit(&zcw->zcw_lock);
3235
3236 /*
3237 * As described in the comments above zil_commit_waiter() and
3238 * zil_process_commit_list(), we need to issue this lwb's zio
3239 * since we've reached the commit waiter's timeout and it still
3240 * hasn't been issued.
3241 */
3242 zil_burst_done(zilog);
3243 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3244
3245 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3246
3247 if (nlwb == NULL) {
3248 /*
3249 * When zil_lwb_write_close() returns NULL, this
3250 * indicates zio_alloc_zil() failed to allocate the
3251 * "next" lwb on-disk. When this occurs, the ZIL write
3252 * pipeline must be stalled; see the comment within the
3253 * zil_commit_writer_stall() function for more details.
3254 */
3255 zil_lwb_write_issue(zilog, lwb);
3256 zil_commit_writer_stall(zilog);
3257 mutex_exit(&zilog->zl_issuer_lock);
3258 } else {
3259 mutex_exit(&zilog->zl_issuer_lock);
3260 zil_lwb_write_issue(zilog, lwb);
3261 }
3262 mutex_enter(&zcw->zcw_lock);
3263 }
3264
3265 /*
3266 * This function is responsible for performing the following two tasks:
3267 *
3268 * 1. its primary responsibility is to block until the given "commit
3269 * waiter" is considered "done".
3270 *
3271 * 2. its secondary responsibility is to issue the zio for the lwb that
3272 * the given "commit waiter" is waiting on, if this function has
3273 * waited "long enough" and the lwb is still in the "open" state.
3274 *
3275 * Given a sufficient amount of itxs being generated and written using
3276 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3277 * function. If this does not occur, this secondary responsibility will
3278 * ensure the lwb is issued even if there is not other synchronous
3279 * activity on the system.
3280 *
3281 * For more details, see zil_process_commit_list(); more specifically,
3282 * the comment at the bottom of that function.
3283 */
3284 static void
3285 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3286 {
3287 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3288 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3289 ASSERT(spa_writeable(zilog->zl_spa));
3290
3291 mutex_enter(&zcw->zcw_lock);
3292
3293 /*
3294 * The timeout is scaled based on the lwb latency to avoid
3295 * significantly impacting the latency of each individual itx.
3296 * For more details, see the comment at the bottom of the
3297 * zil_process_commit_list() function.
3298 */
3299 int pct = MAX(zfs_commit_timeout_pct, 1);
3300 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3301 hrtime_t wakeup = gethrtime() + sleep;
3302 boolean_t timedout = B_FALSE;
3303
3304 while (!zcw->zcw_done) {
3305 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3306
3307 lwb_t *lwb = zcw->zcw_lwb;
3308
3309 /*
3310 * Usually, the waiter will have a non-NULL lwb field here,
3311 * but it's possible for it to be NULL as a result of
3312 * zil_commit() racing with spa_sync().
3313 *
3314 * When zil_clean() is called, it's possible for the itxg
3315 * list (which may be cleaned via a taskq) to contain
3316 * commit itxs. When this occurs, the commit waiters linked
3317 * off of these commit itxs will not be committed to an
3318 * lwb. Additionally, these commit waiters will not be
3319 * marked done until zil_commit_waiter_skip() is called via
3320 * zil_itxg_clean().
3321 *
3322 * Thus, it's possible for this commit waiter (i.e. the
3323 * "zcw" variable) to be found in this "in between" state;
3324 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3325 * been skipped, so it's "zcw_done" field is still B_FALSE.
3326 */
3327 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3328
3329 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3330 ASSERT3B(timedout, ==, B_FALSE);
3331
3332 /*
3333 * If the lwb hasn't been issued yet, then we
3334 * need to wait with a timeout, in case this
3335 * function needs to issue the lwb after the
3336 * timeout is reached; responsibility (2) from
3337 * the comment above this function.
3338 */
3339 int rc = cv_timedwait_hires(&zcw->zcw_cv,
3340 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3341 CALLOUT_FLAG_ABSOLUTE);
3342
3343 if (rc != -1 || zcw->zcw_done)
3344 continue;
3345
3346 timedout = B_TRUE;
3347 zil_commit_waiter_timeout(zilog, zcw);
3348
3349 if (!zcw->zcw_done) {
3350 /*
3351 * If the commit waiter has already been
3352 * marked "done", it's possible for the
3353 * waiter's lwb structure to have already
3354 * been freed. Thus, we can only reliably
3355 * make these assertions if the waiter
3356 * isn't done.
3357 */
3358 ASSERT3P(lwb, ==, zcw->zcw_lwb);
3359 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3360 }
3361 } else {
3362 /*
3363 * If the lwb isn't open, then it must have already
3364 * been issued. In that case, there's no need to
3365 * use a timeout when waiting for the lwb to
3366 * complete.
3367 *
3368 * Additionally, if the lwb is NULL, the waiter
3369 * will soon be signaled and marked done via
3370 * zil_clean() and zil_itxg_clean(), so no timeout
3371 * is required.
3372 */
3373
3374 IMPLY(lwb != NULL,
3375 lwb->lwb_state == LWB_STATE_CLOSED ||
3376 lwb->lwb_state == LWB_STATE_READY ||
3377 lwb->lwb_state == LWB_STATE_ISSUED ||
3378 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3379 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3380 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3381 }
3382 }
3383
3384 mutex_exit(&zcw->zcw_lock);
3385 }
3386
3387 static zil_commit_waiter_t *
3388 zil_alloc_commit_waiter(void)
3389 {
3390 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3391
3392 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3393 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3394 list_link_init(&zcw->zcw_node);
3395 zcw->zcw_lwb = NULL;
3396 zcw->zcw_done = B_FALSE;
3397 zcw->zcw_zio_error = 0;
3398
3399 return (zcw);
3400 }
3401
3402 static void
3403 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3404 {
3405 ASSERT(!list_link_active(&zcw->zcw_node));
3406 ASSERT3P(zcw->zcw_lwb, ==, NULL);
3407 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3408 mutex_destroy(&zcw->zcw_lock);
3409 cv_destroy(&zcw->zcw_cv);
3410 kmem_cache_free(zil_zcw_cache, zcw);
3411 }
3412
3413 /*
3414 * This function is used to create a TX_COMMIT itx and assign it. This
3415 * way, it will be linked into the ZIL's list of synchronous itxs, and
3416 * then later committed to an lwb (or skipped) when
3417 * zil_process_commit_list() is called.
3418 */
3419 static void
3420 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3421 {
3422 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3423
3424 /*
3425 * Since we are not going to create any new dirty data, and we
3426 * can even help with clearing the existing dirty data, we
3427 * should not be subject to the dirty data based delays. We
3428 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3429 */
3430 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3431
3432 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3433 itx->itx_sync = B_TRUE;
3434 itx->itx_private = zcw;
3435
3436 zil_itx_assign(zilog, itx, tx);
3437
3438 dmu_tx_commit(tx);
3439 }
3440
3441 /*
3442 * Commit ZFS Intent Log transactions (itxs) to stable storage.
3443 *
3444 * When writing ZIL transactions to the on-disk representation of the
3445 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3446 * itxs can be committed to a single lwb. Once a lwb is written and
3447 * committed to stable storage (i.e. the lwb is written, and vdevs have
3448 * been flushed), each itx that was committed to that lwb is also
3449 * considered to be committed to stable storage.
3450 *
3451 * When an itx is committed to an lwb, the log record (lr_t) contained
3452 * by the itx is copied into the lwb's zio buffer, and once this buffer
3453 * is written to disk, it becomes an on-disk ZIL block.
3454 *
3455 * As itxs are generated, they're inserted into the ZIL's queue of
3456 * uncommitted itxs. The semantics of zil_commit() are such that it will
3457 * block until all itxs that were in the queue when it was called, are
3458 * committed to stable storage.
3459 *
3460 * If "foid" is zero, this means all "synchronous" and "asynchronous"
3461 * itxs, for all objects in the dataset, will be committed to stable
3462 * storage prior to zil_commit() returning. If "foid" is non-zero, all
3463 * "synchronous" itxs for all objects, but only "asynchronous" itxs
3464 * that correspond to the foid passed in, will be committed to stable
3465 * storage prior to zil_commit() returning.
3466 *
3467 * Generally speaking, when zil_commit() is called, the consumer doesn't
3468 * actually care about _all_ of the uncommitted itxs. Instead, they're
3469 * simply trying to waiting for a specific itx to be committed to disk,
3470 * but the interface(s) for interacting with the ZIL don't allow such
3471 * fine-grained communication. A better interface would allow a consumer
3472 * to create and assign an itx, and then pass a reference to this itx to
3473 * zil_commit(); such that zil_commit() would return as soon as that
3474 * specific itx was committed to disk (instead of waiting for _all_
3475 * itxs to be committed).
3476 *
3477 * When a thread calls zil_commit() a special "commit itx" will be
3478 * generated, along with a corresponding "waiter" for this commit itx.
3479 * zil_commit() will wait on this waiter's CV, such that when the waiter
3480 * is marked done, and signaled, zil_commit() will return.
3481 *
3482 * This commit itx is inserted into the queue of uncommitted itxs. This
3483 * provides an easy mechanism for determining which itxs were in the
3484 * queue prior to zil_commit() having been called, and which itxs were
3485 * added after zil_commit() was called.
3486 *
3487 * The commit itx is special; it doesn't have any on-disk representation.
3488 * When a commit itx is "committed" to an lwb, the waiter associated
3489 * with it is linked onto the lwb's list of waiters. Then, when that lwb
3490 * completes, each waiter on the lwb's list is marked done and signaled
3491 * -- allowing the thread waiting on the waiter to return from zil_commit().
3492 *
3493 * It's important to point out a few critical factors that allow us
3494 * to make use of the commit itxs, commit waiters, per-lwb lists of
3495 * commit waiters, and zio completion callbacks like we're doing:
3496 *
3497 * 1. The list of waiters for each lwb is traversed, and each commit
3498 * waiter is marked "done" and signaled, in the zio completion
3499 * callback of the lwb's zio[*].
3500 *
3501 * * Actually, the waiters are signaled in the zio completion
3502 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3503 * that are sent to the vdevs upon completion of the lwb zio.
3504 *
3505 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
3506 * itxs, the order in which they are inserted is preserved[*]; as
3507 * itxs are added to the queue, they are added to the tail of
3508 * in-memory linked lists.
3509 *
3510 * When committing the itxs to lwbs (to be written to disk), they
3511 * are committed in the same order in which the itxs were added to
3512 * the uncommitted queue's linked list(s); i.e. the linked list of
3513 * itxs to commit is traversed from head to tail, and each itx is
3514 * committed to an lwb in that order.
3515 *
3516 * * To clarify:
3517 *
3518 * - the order of "sync" itxs is preserved w.r.t. other
3519 * "sync" itxs, regardless of the corresponding objects.
3520 * - the order of "async" itxs is preserved w.r.t. other
3521 * "async" itxs corresponding to the same object.
3522 * - the order of "async" itxs is *not* preserved w.r.t. other
3523 * "async" itxs corresponding to different objects.
3524 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
3525 * versa) is *not* preserved, even for itxs that correspond
3526 * to the same object.
3527 *
3528 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
3529 * zil_get_commit_list(), and zil_process_commit_list().
3530 *
3531 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
3532 * lwb cannot be considered committed to stable storage, until its
3533 * "previous" lwb is also committed to stable storage. This fact,
3534 * coupled with the fact described above, means that itxs are
3535 * committed in (roughly) the order in which they were generated.
3536 * This is essential because itxs are dependent on prior itxs.
3537 * Thus, we *must not* deem an itx as being committed to stable
3538 * storage, until *all* prior itxs have also been committed to
3539 * stable storage.
3540 *
3541 * To enforce this ordering of lwb zio's, while still leveraging as
3542 * much of the underlying storage performance as possible, we rely
3543 * on two fundamental concepts:
3544 *
3545 * 1. The creation and issuance of lwb zio's is protected by
3546 * the zilog's "zl_issuer_lock", which ensures only a single
3547 * thread is creating and/or issuing lwb's at a time
3548 * 2. The "previous" lwb is a child of the "current" lwb
3549 * (leveraging the zio parent-child dependency graph)
3550 *
3551 * By relying on this parent-child zio relationship, we can have
3552 * many lwb zio's concurrently issued to the underlying storage,
3553 * but the order in which they complete will be the same order in
3554 * which they were created.
3555 */
3556 void
3557 zil_commit(zilog_t *zilog, uint64_t foid)
3558 {
3559 /*
3560 * We should never attempt to call zil_commit on a snapshot for
3561 * a couple of reasons:
3562 *
3563 * 1. A snapshot may never be modified, thus it cannot have any
3564 * in-flight itxs that would have modified the dataset.
3565 *
3566 * 2. By design, when zil_commit() is called, a commit itx will
3567 * be assigned to this zilog; as a result, the zilog will be
3568 * dirtied. We must not dirty the zilog of a snapshot; there's
3569 * checks in the code that enforce this invariant, and will
3570 * cause a panic if it's not upheld.
3571 */
3572 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3573
3574 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3575 return;
3576
3577 if (!spa_writeable(zilog->zl_spa)) {
3578 /*
3579 * If the SPA is not writable, there should never be any
3580 * pending itxs waiting to be committed to disk. If that
3581 * weren't true, we'd skip writing those itxs out, and
3582 * would break the semantics of zil_commit(); thus, we're
3583 * verifying that truth before we return to the caller.
3584 */
3585 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3586 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3587 for (int i = 0; i < TXG_SIZE; i++)
3588 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3589 return;
3590 }
3591
3592 /*
3593 * If the ZIL is suspended, we don't want to dirty it by calling
3594 * zil_commit_itx_assign() below, nor can we write out
3595 * lwbs like would be done in zil_commit_write(). Thus, we
3596 * simply rely on txg_wait_synced() to maintain the necessary
3597 * semantics, and avoid calling those functions altogether.
3598 */
3599 if (zilog->zl_suspend > 0) {
3600 txg_wait_synced(zilog->zl_dmu_pool, 0);
3601 return;
3602 }
3603
3604 zil_commit_impl(zilog, foid);
3605 }
3606
3607 void
3608 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3609 {
3610 ZIL_STAT_BUMP(zilog, zil_commit_count);
3611
3612 /*
3613 * Move the "async" itxs for the specified foid to the "sync"
3614 * queues, such that they will be later committed (or skipped)
3615 * to an lwb when zil_process_commit_list() is called.
3616 *
3617 * Since these "async" itxs must be committed prior to this
3618 * call to zil_commit returning, we must perform this operation
3619 * before we call zil_commit_itx_assign().
3620 */
3621 zil_async_to_sync(zilog, foid);
3622
3623 /*
3624 * We allocate a new "waiter" structure which will initially be
3625 * linked to the commit itx using the itx's "itx_private" field.
3626 * Since the commit itx doesn't represent any on-disk state,
3627 * when it's committed to an lwb, rather than copying the its
3628 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3629 * added to the lwb's list of waiters. Then, when the lwb is
3630 * committed to stable storage, each waiter in the lwb's list of
3631 * waiters will be marked "done", and signalled.
3632 *
3633 * We must create the waiter and assign the commit itx prior to
3634 * calling zil_commit_writer(), or else our specific commit itx
3635 * is not guaranteed to be committed to an lwb prior to calling
3636 * zil_commit_waiter().
3637 */
3638 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3639 zil_commit_itx_assign(zilog, zcw);
3640
3641 uint64_t wtxg = zil_commit_writer(zilog, zcw);
3642 zil_commit_waiter(zilog, zcw);
3643
3644 if (zcw->zcw_zio_error != 0) {
3645 /*
3646 * If there was an error writing out the ZIL blocks that
3647 * this thread is waiting on, then we fallback to
3648 * relying on spa_sync() to write out the data this
3649 * thread is waiting on. Obviously this has performance
3650 * implications, but the expectation is for this to be
3651 * an exceptional case, and shouldn't occur often.
3652 */
3653 DTRACE_PROBE2(zil__commit__io__error,
3654 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3655 txg_wait_synced(zilog->zl_dmu_pool, 0);
3656 } else if (wtxg != 0) {
3657 txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3658 }
3659
3660 zil_free_commit_waiter(zcw);
3661 }
3662
3663 /*
3664 * Called in syncing context to free committed log blocks and update log header.
3665 */
3666 void
3667 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3668 {
3669 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3670 uint64_t txg = dmu_tx_get_txg(tx);
3671 spa_t *spa = zilog->zl_spa;
3672 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3673 lwb_t *lwb;
3674
3675 /*
3676 * We don't zero out zl_destroy_txg, so make sure we don't try
3677 * to destroy it twice.
3678 */
3679 if (spa_sync_pass(spa) != 1)
3680 return;
3681
3682 zil_lwb_flush_wait_all(zilog, txg);
3683
3684 mutex_enter(&zilog->zl_lock);
3685
3686 ASSERT(zilog->zl_stop_sync == 0);
3687
3688 if (*replayed_seq != 0) {
3689 ASSERT(zh->zh_replay_seq < *replayed_seq);
3690 zh->zh_replay_seq = *replayed_seq;
3691 *replayed_seq = 0;
3692 }
3693
3694 if (zilog->zl_destroy_txg == txg) {
3695 blkptr_t blk = zh->zh_log;
3696 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3697
3698 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3699
3700 memset(zh, 0, sizeof (zil_header_t));
3701 memset(zilog->zl_replayed_seq, 0,
3702 sizeof (zilog->zl_replayed_seq));
3703
3704 if (zilog->zl_keep_first) {
3705 /*
3706 * If this block was part of log chain that couldn't
3707 * be claimed because a device was missing during
3708 * zil_claim(), but that device later returns,
3709 * then this block could erroneously appear valid.
3710 * To guard against this, assign a new GUID to the new
3711 * log chain so it doesn't matter what blk points to.
3712 */
3713 zil_init_log_chain(zilog, &blk);
3714 zh->zh_log = blk;
3715 } else {
3716 /*
3717 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3718 * records. So, deactivate the feature for this dataset.
3719 * We activate it again when we start a new ZIL chain.
3720 */
3721 if (dsl_dataset_feature_is_active(ds,
3722 SPA_FEATURE_ZILSAXATTR))
3723 dsl_dataset_deactivate_feature(ds,
3724 SPA_FEATURE_ZILSAXATTR, tx);
3725 }
3726 }
3727
3728 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3729 zh->zh_log = lwb->lwb_blk;
3730 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3731 lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3732 break;
3733 list_remove(&zilog->zl_lwb_list, lwb);
3734 if (!BP_IS_HOLE(&lwb->lwb_blk))
3735 zio_free(spa, txg, &lwb->lwb_blk);
3736 zil_free_lwb(zilog, lwb);
3737
3738 /*
3739 * If we don't have anything left in the lwb list then
3740 * we've had an allocation failure and we need to zero
3741 * out the zil_header blkptr so that we don't end
3742 * up freeing the same block twice.
3743 */
3744 if (list_is_empty(&zilog->zl_lwb_list))
3745 BP_ZERO(&zh->zh_log);
3746 }
3747
3748 mutex_exit(&zilog->zl_lock);
3749 }
3750
3751 static int
3752 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3753 {
3754 (void) unused, (void) kmflag;
3755 lwb_t *lwb = vbuf;
3756 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3757 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3758 offsetof(zil_commit_waiter_t, zcw_node));
3759 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3760 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3761 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3762 return (0);
3763 }
3764
3765 static void
3766 zil_lwb_dest(void *vbuf, void *unused)
3767 {
3768 (void) unused;
3769 lwb_t *lwb = vbuf;
3770 mutex_destroy(&lwb->lwb_vdev_lock);
3771 avl_destroy(&lwb->lwb_vdev_tree);
3772 list_destroy(&lwb->lwb_waiters);
3773 list_destroy(&lwb->lwb_itxs);
3774 }
3775
3776 void
3777 zil_init(void)
3778 {
3779 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3780 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3781
3782 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3783 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3784
3785 zil_sums_init(&zil_sums_global);
3786 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3787 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3788 KSTAT_FLAG_VIRTUAL);
3789
3790 if (zil_kstats_global != NULL) {
3791 zil_kstats_global->ks_data = &zil_stats;
3792 zil_kstats_global->ks_update = zil_kstats_global_update;
3793 zil_kstats_global->ks_private = NULL;
3794 kstat_install(zil_kstats_global);
3795 }
3796 }
3797
3798 void
3799 zil_fini(void)
3800 {
3801 kmem_cache_destroy(zil_zcw_cache);
3802 kmem_cache_destroy(zil_lwb_cache);
3803
3804 if (zil_kstats_global != NULL) {
3805 kstat_delete(zil_kstats_global);
3806 zil_kstats_global = NULL;
3807 }
3808
3809 zil_sums_fini(&zil_sums_global);
3810 }
3811
3812 void
3813 zil_set_sync(zilog_t *zilog, uint64_t sync)
3814 {
3815 zilog->zl_sync = sync;
3816 }
3817
3818 void
3819 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3820 {
3821 zilog->zl_logbias = logbias;
3822 }
3823
3824 zilog_t *
3825 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3826 {
3827 zilog_t *zilog;
3828
3829 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3830
3831 zilog->zl_header = zh_phys;
3832 zilog->zl_os = os;
3833 zilog->zl_spa = dmu_objset_spa(os);
3834 zilog->zl_dmu_pool = dmu_objset_pool(os);
3835 zilog->zl_destroy_txg = TXG_INITIAL - 1;
3836 zilog->zl_logbias = dmu_objset_logbias(os);
3837 zilog->zl_sync = dmu_objset_syncprop(os);
3838 zilog->zl_dirty_max_txg = 0;
3839 zilog->zl_last_lwb_opened = NULL;
3840 zilog->zl_last_lwb_latency = 0;
3841 zilog->zl_max_block_size = MIN(MAX(P2ALIGN_TYPED(zil_maxblocksize,
3842 ZIL_MIN_BLKSZ, uint64_t), ZIL_MIN_BLKSZ),
3843 spa_maxblocksize(dmu_objset_spa(os)));
3844
3845 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3846 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3847 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3848
3849 for (int i = 0; i < TXG_SIZE; i++) {
3850 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3851 MUTEX_DEFAULT, NULL);
3852 }
3853
3854 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3855 offsetof(lwb_t, lwb_node));
3856
3857 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3858 offsetof(itx_t, itx_node));
3859
3860 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3861 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3862
3863 for (int i = 0; i < ZIL_BURSTS; i++) {
3864 zilog->zl_prev_opt[i] = zilog->zl_max_block_size -
3865 sizeof (zil_chain_t);
3866 }
3867
3868 return (zilog);
3869 }
3870
3871 void
3872 zil_free(zilog_t *zilog)
3873 {
3874 int i;
3875
3876 zilog->zl_stop_sync = 1;
3877
3878 ASSERT0(zilog->zl_suspend);
3879 ASSERT0(zilog->zl_suspending);
3880
3881 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3882 list_destroy(&zilog->zl_lwb_list);
3883
3884 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3885 list_destroy(&zilog->zl_itx_commit_list);
3886
3887 for (i = 0; i < TXG_SIZE; i++) {
3888 /*
3889 * It's possible for an itx to be generated that doesn't dirty
3890 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3891 * callback to remove the entry. We remove those here.
3892 *
3893 * Also free up the ziltest itxs.
3894 */
3895 if (zilog->zl_itxg[i].itxg_itxs)
3896 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3897 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3898 }
3899
3900 mutex_destroy(&zilog->zl_issuer_lock);
3901 mutex_destroy(&zilog->zl_lock);
3902 mutex_destroy(&zilog->zl_lwb_io_lock);
3903
3904 cv_destroy(&zilog->zl_cv_suspend);
3905 cv_destroy(&zilog->zl_lwb_io_cv);
3906
3907 kmem_free(zilog, sizeof (zilog_t));
3908 }
3909
3910 /*
3911 * Open an intent log.
3912 */
3913 zilog_t *
3914 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3915 {
3916 zilog_t *zilog = dmu_objset_zil(os);
3917
3918 ASSERT3P(zilog->zl_get_data, ==, NULL);
3919 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3920 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3921
3922 zilog->zl_get_data = get_data;
3923 zilog->zl_sums = zil_sums;
3924
3925 return (zilog);
3926 }
3927
3928 /*
3929 * Close an intent log.
3930 */
3931 void
3932 zil_close(zilog_t *zilog)
3933 {
3934 lwb_t *lwb;
3935 uint64_t txg;
3936
3937 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3938 zil_commit(zilog, 0);
3939 } else {
3940 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3941 ASSERT0(zilog->zl_dirty_max_txg);
3942 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3943 }
3944
3945 mutex_enter(&zilog->zl_lock);
3946 txg = zilog->zl_dirty_max_txg;
3947 lwb = list_tail(&zilog->zl_lwb_list);
3948 if (lwb != NULL) {
3949 txg = MAX(txg, lwb->lwb_alloc_txg);
3950 txg = MAX(txg, lwb->lwb_max_txg);
3951 }
3952 mutex_exit(&zilog->zl_lock);
3953
3954 /*
3955 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3956 * on the time when the dmu_tx transaction is assigned in
3957 * zil_lwb_write_issue().
3958 */
3959 mutex_enter(&zilog->zl_lwb_io_lock);
3960 txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3961 mutex_exit(&zilog->zl_lwb_io_lock);
3962
3963 /*
3964 * We need to use txg_wait_synced() to wait until that txg is synced.
3965 * zil_sync() will guarantee all lwbs up to that txg have been
3966 * written out, flushed, and cleaned.
3967 */
3968 if (txg != 0)
3969 txg_wait_synced(zilog->zl_dmu_pool, txg);
3970
3971 if (zilog_is_dirty(zilog))
3972 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3973 (u_longlong_t)txg);
3974 if (txg < spa_freeze_txg(zilog->zl_spa))
3975 VERIFY(!zilog_is_dirty(zilog));
3976
3977 zilog->zl_get_data = NULL;
3978
3979 /*
3980 * We should have only one lwb left on the list; remove it now.
3981 */
3982 mutex_enter(&zilog->zl_lock);
3983 lwb = list_remove_head(&zilog->zl_lwb_list);
3984 if (lwb != NULL) {
3985 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3986 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
3987 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3988 zil_free_lwb(zilog, lwb);
3989 }
3990 mutex_exit(&zilog->zl_lock);
3991 }
3992
3993 static const char *suspend_tag = "zil suspending";
3994
3995 /*
3996 * Suspend an intent log. While in suspended mode, we still honor
3997 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3998 * On old version pools, we suspend the log briefly when taking a
3999 * snapshot so that it will have an empty intent log.
4000 *
4001 * Long holds are not really intended to be used the way we do here --
4002 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
4003 * could fail. Therefore we take pains to only put a long hold if it is
4004 * actually necessary. Fortunately, it will only be necessary if the
4005 * objset is currently mounted (or the ZVOL equivalent). In that case it
4006 * will already have a long hold, so we are not really making things any worse.
4007 *
4008 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
4009 * zvol_state_t), and use their mechanism to prevent their hold from being
4010 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
4011 * very little gain.
4012 *
4013 * if cookiep == NULL, this does both the suspend & resume.
4014 * Otherwise, it returns with the dataset "long held", and the cookie
4015 * should be passed into zil_resume().
4016 */
4017 int
4018 zil_suspend(const char *osname, void **cookiep)
4019 {
4020 objset_t *os;
4021 zilog_t *zilog;
4022 const zil_header_t *zh;
4023 int error;
4024
4025 error = dmu_objset_hold(osname, suspend_tag, &os);
4026 if (error != 0)
4027 return (error);
4028 zilog = dmu_objset_zil(os);
4029
4030 mutex_enter(&zilog->zl_lock);
4031 zh = zilog->zl_header;
4032
4033 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
4034 mutex_exit(&zilog->zl_lock);
4035 dmu_objset_rele(os, suspend_tag);
4036 return (SET_ERROR(EBUSY));
4037 }
4038
4039 /*
4040 * Don't put a long hold in the cases where we can avoid it. This
4041 * is when there is no cookie so we are doing a suspend & resume
4042 * (i.e. called from zil_vdev_offline()), and there's nothing to do
4043 * for the suspend because it's already suspended, or there's no ZIL.
4044 */
4045 if (cookiep == NULL && !zilog->zl_suspending &&
4046 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
4047 mutex_exit(&zilog->zl_lock);
4048 dmu_objset_rele(os, suspend_tag);
4049 return (0);
4050 }
4051
4052 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
4053 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
4054
4055 zilog->zl_suspend++;
4056
4057 if (zilog->zl_suspend > 1) {
4058 /*
4059 * Someone else is already suspending it.
4060 * Just wait for them to finish.
4061 */
4062
4063 while (zilog->zl_suspending)
4064 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
4065 mutex_exit(&zilog->zl_lock);
4066
4067 if (cookiep == NULL)
4068 zil_resume(os);
4069 else
4070 *cookiep = os;
4071 return (0);
4072 }
4073
4074 /*
4075 * If there is no pointer to an on-disk block, this ZIL must not
4076 * be active (e.g. filesystem not mounted), so there's nothing
4077 * to clean up.
4078 */
4079 if (BP_IS_HOLE(&zh->zh_log)) {
4080 ASSERT(cookiep != NULL); /* fast path already handled */
4081
4082 *cookiep = os;
4083 mutex_exit(&zilog->zl_lock);
4084 return (0);
4085 }
4086
4087 /*
4088 * The ZIL has work to do. Ensure that the associated encryption
4089 * key will remain mapped while we are committing the log by
4090 * grabbing a reference to it. If the key isn't loaded we have no
4091 * choice but to return an error until the wrapping key is loaded.
4092 */
4093 if (os->os_encrypted &&
4094 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
4095 zilog->zl_suspend--;
4096 mutex_exit(&zilog->zl_lock);
4097 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4098 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4099 return (SET_ERROR(EACCES));
4100 }
4101
4102 zilog->zl_suspending = B_TRUE;
4103 mutex_exit(&zilog->zl_lock);
4104
4105 /*
4106 * We need to use zil_commit_impl to ensure we wait for all
4107 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
4108 * to disk before proceeding. If we used zil_commit instead, it
4109 * would just call txg_wait_synced(), because zl_suspend is set.
4110 * txg_wait_synced() doesn't wait for these lwb's to be
4111 * LWB_STATE_FLUSH_DONE before returning.
4112 */
4113 zil_commit_impl(zilog, 0);
4114
4115 /*
4116 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
4117 * use txg_wait_synced() to ensure the data from the zilog has
4118 * migrated to the main pool before calling zil_destroy().
4119 */
4120 txg_wait_synced(zilog->zl_dmu_pool, 0);
4121
4122 zil_destroy(zilog, B_FALSE);
4123
4124 mutex_enter(&zilog->zl_lock);
4125 zilog->zl_suspending = B_FALSE;
4126 cv_broadcast(&zilog->zl_cv_suspend);
4127 mutex_exit(&zilog->zl_lock);
4128
4129 if (os->os_encrypted)
4130 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4131
4132 if (cookiep == NULL)
4133 zil_resume(os);
4134 else
4135 *cookiep = os;
4136 return (0);
4137 }
4138
4139 void
4140 zil_resume(void *cookie)
4141 {
4142 objset_t *os = cookie;
4143 zilog_t *zilog = dmu_objset_zil(os);
4144
4145 mutex_enter(&zilog->zl_lock);
4146 ASSERT(zilog->zl_suspend != 0);
4147 zilog->zl_suspend--;
4148 mutex_exit(&zilog->zl_lock);
4149 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4150 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4151 }
4152
4153 typedef struct zil_replay_arg {
4154 zil_replay_func_t *const *zr_replay;
4155 void *zr_arg;
4156 boolean_t zr_byteswap;
4157 char *zr_lr;
4158 } zil_replay_arg_t;
4159
4160 static int
4161 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4162 {
4163 char name[ZFS_MAX_DATASET_NAME_LEN];
4164
4165 zilog->zl_replaying_seq--; /* didn't actually replay this one */
4166
4167 dmu_objset_name(zilog->zl_os, name);
4168
4169 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4170 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4171 (u_longlong_t)lr->lrc_seq,
4172 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4173 (lr->lrc_txtype & TX_CI) ? "CI" : "");
4174
4175 return (error);
4176 }
4177
4178 static int
4179 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4180 uint64_t claim_txg)
4181 {
4182 zil_replay_arg_t *zr = zra;
4183 const zil_header_t *zh = zilog->zl_header;
4184 uint64_t reclen = lr->lrc_reclen;
4185 uint64_t txtype = lr->lrc_txtype;
4186 int error = 0;
4187
4188 zilog->zl_replaying_seq = lr->lrc_seq;
4189
4190 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
4191 return (0);
4192
4193 if (lr->lrc_txg < claim_txg) /* already committed */
4194 return (0);
4195
4196 /* Strip case-insensitive bit, still present in log record */
4197 txtype &= ~TX_CI;
4198
4199 if (txtype == 0 || txtype >= TX_MAX_TYPE)
4200 return (zil_replay_error(zilog, lr, EINVAL));
4201
4202 /*
4203 * If this record type can be logged out of order, the object
4204 * (lr_foid) may no longer exist. That's legitimate, not an error.
4205 */
4206 if (TX_OOO(txtype)) {
4207 error = dmu_object_info(zilog->zl_os,
4208 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4209 if (error == ENOENT || error == EEXIST)
4210 return (0);
4211 }
4212
4213 /*
4214 * Make a copy of the data so we can revise and extend it.
4215 */
4216 memcpy(zr->zr_lr, lr, reclen);
4217
4218 /*
4219 * If this is a TX_WRITE with a blkptr, suck in the data.
4220 */
4221 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4222 error = zil_read_log_data(zilog, (lr_write_t *)lr,
4223 zr->zr_lr + reclen);
4224 if (error != 0)
4225 return (zil_replay_error(zilog, lr, error));
4226 }
4227
4228 /*
4229 * The log block containing this lr may have been byteswapped
4230 * so that we can easily examine common fields like lrc_txtype.
4231 * However, the log is a mix of different record types, and only the
4232 * replay vectors know how to byteswap their records. Therefore, if
4233 * the lr was byteswapped, undo it before invoking the replay vector.
4234 */
4235 if (zr->zr_byteswap)
4236 byteswap_uint64_array(zr->zr_lr, reclen);
4237
4238 /*
4239 * We must now do two things atomically: replay this log record,
4240 * and update the log header sequence number to reflect the fact that
4241 * we did so. At the end of each replay function the sequence number
4242 * is updated if we are in replay mode.
4243 */
4244 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4245 if (error != 0) {
4246 /*
4247 * The DMU's dnode layer doesn't see removes until the txg
4248 * commits, so a subsequent claim can spuriously fail with
4249 * EEXIST. So if we receive any error we try syncing out
4250 * any removes then retry the transaction. Note that we
4251 * specify B_FALSE for byteswap now, so we don't do it twice.
4252 */
4253 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4254 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4255 if (error != 0)
4256 return (zil_replay_error(zilog, lr, error));
4257 }
4258 return (0);
4259 }
4260
4261 static int
4262 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4263 {
4264 (void) bp, (void) arg, (void) claim_txg;
4265
4266 zilog->zl_replay_blks++;
4267
4268 return (0);
4269 }
4270
4271 /*
4272 * If this dataset has a non-empty intent log, replay it and destroy it.
4273 * Return B_TRUE if there were any entries to replay.
4274 */
4275 boolean_t
4276 zil_replay(objset_t *os, void *arg,
4277 zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4278 {
4279 zilog_t *zilog = dmu_objset_zil(os);
4280 const zil_header_t *zh = zilog->zl_header;
4281 zil_replay_arg_t zr;
4282
4283 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4284 return (zil_destroy(zilog, B_TRUE));
4285 }
4286
4287 zr.zr_replay = replay_func;
4288 zr.zr_arg = arg;
4289 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4290 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4291
4292 /*
4293 * Wait for in-progress removes to sync before starting replay.
4294 */
4295 txg_wait_synced(zilog->zl_dmu_pool, 0);
4296
4297 zilog->zl_replay = B_TRUE;
4298 zilog->zl_replay_time = ddi_get_lbolt();
4299 ASSERT(zilog->zl_replay_blks == 0);
4300 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4301 zh->zh_claim_txg, B_TRUE);
4302 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4303
4304 zil_destroy(zilog, B_FALSE);
4305 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4306 zilog->zl_replay = B_FALSE;
4307
4308 return (B_TRUE);
4309 }
4310
4311 boolean_t
4312 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4313 {
4314 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4315 return (B_TRUE);
4316
4317 if (zilog->zl_replay) {
4318 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4319 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4320 zilog->zl_replaying_seq;
4321 return (B_TRUE);
4322 }
4323
4324 return (B_FALSE);
4325 }
4326
4327 int
4328 zil_reset(const char *osname, void *arg)
4329 {
4330 (void) arg;
4331
4332 int error = zil_suspend(osname, NULL);
4333 /* EACCES means crypto key not loaded */
4334 if ((error == EACCES) || (error == EBUSY))
4335 return (SET_ERROR(error));
4336 if (error != 0)
4337 return (SET_ERROR(EEXIST));
4338 return (0);
4339 }
4340
4341 EXPORT_SYMBOL(zil_alloc);
4342 EXPORT_SYMBOL(zil_free);
4343 EXPORT_SYMBOL(zil_open);
4344 EXPORT_SYMBOL(zil_close);
4345 EXPORT_SYMBOL(zil_replay);
4346 EXPORT_SYMBOL(zil_replaying);
4347 EXPORT_SYMBOL(zil_destroy);
4348 EXPORT_SYMBOL(zil_destroy_sync);
4349 EXPORT_SYMBOL(zil_itx_create);
4350 EXPORT_SYMBOL(zil_itx_destroy);
4351 EXPORT_SYMBOL(zil_itx_assign);
4352 EXPORT_SYMBOL(zil_commit);
4353 EXPORT_SYMBOL(zil_claim);
4354 EXPORT_SYMBOL(zil_check_log_chain);
4355 EXPORT_SYMBOL(zil_sync);
4356 EXPORT_SYMBOL(zil_clean);
4357 EXPORT_SYMBOL(zil_suspend);
4358 EXPORT_SYMBOL(zil_resume);
4359 EXPORT_SYMBOL(zil_lwb_add_block);
4360 EXPORT_SYMBOL(zil_bp_tree_add);
4361 EXPORT_SYMBOL(zil_set_sync);
4362 EXPORT_SYMBOL(zil_set_logbias);
4363 EXPORT_SYMBOL(zil_sums_init);
4364 EXPORT_SYMBOL(zil_sums_fini);
4365 EXPORT_SYMBOL(zil_kstat_values_update);
4366
4367 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4368 "ZIL block open timeout percentage");
4369
4370 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4371 "Disable intent logging replay");
4372
4373 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4374 "Disable ZIL cache flushes");
4375
4376 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4377 "Limit in bytes slog sync writes per commit");
4378
4379 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4380 "Limit in bytes of ZIL log block size");
4381
4382 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4383 "Limit in bytes WR_COPIED size");