]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
Fix inflated quiesce time caused by lwb_tx during zil_commit()
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 * Copyright (c) 2018 Datto Inc.
26 */
27
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46
47 /*
48 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
49 * calls that change the file system. Each itx has enough information to
50 * be able to replay them after a system crash, power loss, or
51 * equivalent failure mode. These are stored in memory until either:
52 *
53 * 1. they are committed to the pool by the DMU transaction group
54 * (txg), at which point they can be discarded; or
55 * 2. they are committed to the on-disk ZIL for the dataset being
56 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
57 * requirement).
58 *
59 * In the event of a crash or power loss, the itxs contained by each
60 * dataset's on-disk ZIL will be replayed when that dataset is first
61 * instantiated (e.g. if the dataset is a normal filesystem, when it is
62 * first mounted).
63 *
64 * As hinted at above, there is one ZIL per dataset (both the in-memory
65 * representation, and the on-disk representation). The on-disk format
66 * consists of 3 parts:
67 *
68 * - a single, per-dataset, ZIL header; which points to a chain of
69 * - zero or more ZIL blocks; each of which contains
70 * - zero or more ZIL records
71 *
72 * A ZIL record holds the information necessary to replay a single
73 * system call transaction. A ZIL block can hold many ZIL records, and
74 * the blocks are chained together, similarly to a singly linked list.
75 *
76 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
77 * block in the chain, and the ZIL header points to the first block in
78 * the chain.
79 *
80 * Note, there is not a fixed place in the pool to hold these ZIL
81 * blocks; they are dynamically allocated and freed as needed from the
82 * blocks available on the pool, though they can be preferentially
83 * allocated from a dedicated "log" vdev.
84 */
85
86 /*
87 * This controls the amount of time that a ZIL block (lwb) will remain
88 * "open" when it isn't "full", and it has a thread waiting for it to be
89 * committed to stable storage. Please refer to the zil_commit_waiter()
90 * function (and the comments within it) for more details.
91 */
92 static int zfs_commit_timeout_pct = 5;
93
94 /*
95 * See zil.h for more information about these fields.
96 */
97 static zil_stats_t zil_stats = {
98 { "zil_commit_count", KSTAT_DATA_UINT64 },
99 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
100 { "zil_itx_count", KSTAT_DATA_UINT64 },
101 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
102 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
103 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
104 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
105 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
106 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
107 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
108 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
109 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
111 };
112
113 static kstat_t *zil_ksp;
114
115 /*
116 * Disable intent logging replay. This global ZIL switch affects all pools.
117 */
118 int zil_replay_disable = 0;
119
120 /*
121 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
122 * the disk(s) by the ZIL after an LWB write has completed. Setting this
123 * will cause ZIL corruption on power loss if a volatile out-of-order
124 * write cache is enabled.
125 */
126 static int zil_nocacheflush = 0;
127
128 /*
129 * Limit SLOG write size per commit executed with synchronous priority.
130 * Any writes above that will be executed with lower (asynchronous) priority
131 * to limit potential SLOG device abuse by single active ZIL writer.
132 */
133 static unsigned long zil_slog_bulk = 768 * 1024;
134
135 static kmem_cache_t *zil_lwb_cache;
136 static kmem_cache_t *zil_zcw_cache;
137
138 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
139 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
140
141 static int
142 zil_bp_compare(const void *x1, const void *x2)
143 {
144 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
145 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
146
147 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
148 if (likely(cmp))
149 return (cmp);
150
151 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
152 }
153
154 static void
155 zil_bp_tree_init(zilog_t *zilog)
156 {
157 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
158 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
159 }
160
161 static void
162 zil_bp_tree_fini(zilog_t *zilog)
163 {
164 avl_tree_t *t = &zilog->zl_bp_tree;
165 zil_bp_node_t *zn;
166 void *cookie = NULL;
167
168 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
169 kmem_free(zn, sizeof (zil_bp_node_t));
170
171 avl_destroy(t);
172 }
173
174 int
175 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
176 {
177 avl_tree_t *t = &zilog->zl_bp_tree;
178 const dva_t *dva;
179 zil_bp_node_t *zn;
180 avl_index_t where;
181
182 if (BP_IS_EMBEDDED(bp))
183 return (0);
184
185 dva = BP_IDENTITY(bp);
186
187 if (avl_find(t, dva, &where) != NULL)
188 return (SET_ERROR(EEXIST));
189
190 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
191 zn->zn_dva = *dva;
192 avl_insert(t, zn, where);
193
194 return (0);
195 }
196
197 static zil_header_t *
198 zil_header_in_syncing_context(zilog_t *zilog)
199 {
200 return ((zil_header_t *)zilog->zl_header);
201 }
202
203 static void
204 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
205 {
206 zio_cksum_t *zc = &bp->blk_cksum;
207
208 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
209 sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
210 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
211 sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
212 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
213 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
214 }
215
216 /*
217 * Read a log block and make sure it's valid.
218 */
219 static int
220 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
221 blkptr_t *nbp, void *dst, char **end)
222 {
223 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
224 arc_flags_t aflags = ARC_FLAG_WAIT;
225 arc_buf_t *abuf = NULL;
226 zbookmark_phys_t zb;
227 int error;
228
229 if (zilog->zl_header->zh_claim_txg == 0)
230 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
231
232 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
233 zio_flags |= ZIO_FLAG_SPECULATIVE;
234
235 if (!decrypt)
236 zio_flags |= ZIO_FLAG_RAW;
237
238 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
239 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
240
241 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
242 &abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
243
244 if (error == 0) {
245 zio_cksum_t cksum = bp->blk_cksum;
246
247 /*
248 * Validate the checksummed log block.
249 *
250 * Sequence numbers should be... sequential. The checksum
251 * verifier for the next block should be bp's checksum plus 1.
252 *
253 * Also check the log chain linkage and size used.
254 */
255 cksum.zc_word[ZIL_ZC_SEQ]++;
256
257 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
258 zil_chain_t *zilc = abuf->b_data;
259 char *lr = (char *)(zilc + 1);
260 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
261
262 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
263 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
264 error = SET_ERROR(ECKSUM);
265 } else {
266 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
267 memcpy(dst, lr, len);
268 *end = (char *)dst + len;
269 *nbp = zilc->zc_next_blk;
270 }
271 } else {
272 char *lr = abuf->b_data;
273 uint64_t size = BP_GET_LSIZE(bp);
274 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
275
276 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
277 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
278 (zilc->zc_nused > (size - sizeof (*zilc)))) {
279 error = SET_ERROR(ECKSUM);
280 } else {
281 ASSERT3U(zilc->zc_nused, <=,
282 SPA_OLD_MAXBLOCKSIZE);
283 memcpy(dst, lr, zilc->zc_nused);
284 *end = (char *)dst + zilc->zc_nused;
285 *nbp = zilc->zc_next_blk;
286 }
287 }
288
289 arc_buf_destroy(abuf, &abuf);
290 }
291
292 return (error);
293 }
294
295 /*
296 * Read a TX_WRITE log data block.
297 */
298 static int
299 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
300 {
301 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
302 const blkptr_t *bp = &lr->lr_blkptr;
303 arc_flags_t aflags = ARC_FLAG_WAIT;
304 arc_buf_t *abuf = NULL;
305 zbookmark_phys_t zb;
306 int error;
307
308 if (BP_IS_HOLE(bp)) {
309 if (wbuf != NULL)
310 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
311 return (0);
312 }
313
314 if (zilog->zl_header->zh_claim_txg == 0)
315 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
316
317 /*
318 * If we are not using the resulting data, we are just checking that
319 * it hasn't been corrupted so we don't need to waste CPU time
320 * decompressing and decrypting it.
321 */
322 if (wbuf == NULL)
323 zio_flags |= ZIO_FLAG_RAW;
324
325 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
326 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
327
328 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
329 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
330
331 if (error == 0) {
332 if (wbuf != NULL)
333 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
334 arc_buf_destroy(abuf, &abuf);
335 }
336
337 return (error);
338 }
339
340 /*
341 * Parse the intent log, and call parse_func for each valid record within.
342 */
343 int
344 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
345 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
346 boolean_t decrypt)
347 {
348 const zil_header_t *zh = zilog->zl_header;
349 boolean_t claimed = !!zh->zh_claim_txg;
350 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
351 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
352 uint64_t max_blk_seq = 0;
353 uint64_t max_lr_seq = 0;
354 uint64_t blk_count = 0;
355 uint64_t lr_count = 0;
356 blkptr_t blk, next_blk = {{{{0}}}};
357 char *lrbuf, *lrp;
358 int error = 0;
359
360 /*
361 * Old logs didn't record the maximum zh_claim_lr_seq.
362 */
363 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
364 claim_lr_seq = UINT64_MAX;
365
366 /*
367 * Starting at the block pointed to by zh_log we read the log chain.
368 * For each block in the chain we strongly check that block to
369 * ensure its validity. We stop when an invalid block is found.
370 * For each block pointer in the chain we call parse_blk_func().
371 * For each record in each valid block we call parse_lr_func().
372 * If the log has been claimed, stop if we encounter a sequence
373 * number greater than the highest claimed sequence number.
374 */
375 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
376 zil_bp_tree_init(zilog);
377
378 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
379 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
380 int reclen;
381 char *end = NULL;
382
383 if (blk_seq > claim_blk_seq)
384 break;
385
386 error = parse_blk_func(zilog, &blk, arg, txg);
387 if (error != 0)
388 break;
389 ASSERT3U(max_blk_seq, <, blk_seq);
390 max_blk_seq = blk_seq;
391 blk_count++;
392
393 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
394 break;
395
396 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
397 lrbuf, &end);
398 if (error != 0)
399 break;
400
401 for (lrp = lrbuf; lrp < end; lrp += reclen) {
402 lr_t *lr = (lr_t *)lrp;
403 reclen = lr->lrc_reclen;
404 ASSERT3U(reclen, >=, sizeof (lr_t));
405 if (lr->lrc_seq > claim_lr_seq)
406 goto done;
407
408 error = parse_lr_func(zilog, lr, arg, txg);
409 if (error != 0)
410 goto done;
411 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
412 max_lr_seq = lr->lrc_seq;
413 lr_count++;
414 }
415 }
416 done:
417 zilog->zl_parse_error = error;
418 zilog->zl_parse_blk_seq = max_blk_seq;
419 zilog->zl_parse_lr_seq = max_lr_seq;
420 zilog->zl_parse_blk_count = blk_count;
421 zilog->zl_parse_lr_count = lr_count;
422
423 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
424 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq) ||
425 (decrypt && error == EIO));
426
427 zil_bp_tree_fini(zilog);
428 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
429
430 return (error);
431 }
432
433 static int
434 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
435 uint64_t first_txg)
436 {
437 (void) tx;
438 ASSERT(!BP_IS_HOLE(bp));
439
440 /*
441 * As we call this function from the context of a rewind to a
442 * checkpoint, each ZIL block whose txg is later than the txg
443 * that we rewind to is invalid. Thus, we return -1 so
444 * zil_parse() doesn't attempt to read it.
445 */
446 if (bp->blk_birth >= first_txg)
447 return (-1);
448
449 if (zil_bp_tree_add(zilog, bp) != 0)
450 return (0);
451
452 zio_free(zilog->zl_spa, first_txg, bp);
453 return (0);
454 }
455
456 static int
457 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
458 uint64_t first_txg)
459 {
460 (void) zilog, (void) lrc, (void) tx, (void) first_txg;
461 return (0);
462 }
463
464 static int
465 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
466 uint64_t first_txg)
467 {
468 /*
469 * Claim log block if not already committed and not already claimed.
470 * If tx == NULL, just verify that the block is claimable.
471 */
472 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
473 zil_bp_tree_add(zilog, bp) != 0)
474 return (0);
475
476 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
477 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
478 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
479 }
480
481 static int
482 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
483 uint64_t first_txg)
484 {
485 lr_write_t *lr = (lr_write_t *)lrc;
486 int error;
487
488 if (lrc->lrc_txtype != TX_WRITE)
489 return (0);
490
491 /*
492 * If the block is not readable, don't claim it. This can happen
493 * in normal operation when a log block is written to disk before
494 * some of the dmu_sync() blocks it points to. In this case, the
495 * transaction cannot have been committed to anyone (we would have
496 * waited for all writes to be stable first), so it is semantically
497 * correct to declare this the end of the log.
498 */
499 if (lr->lr_blkptr.blk_birth >= first_txg) {
500 error = zil_read_log_data(zilog, lr, NULL);
501 if (error != 0)
502 return (error);
503 }
504
505 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
506 }
507
508 static int
509 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
510 uint64_t claim_txg)
511 {
512 (void) claim_txg;
513
514 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
515
516 return (0);
517 }
518
519 static int
520 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
521 uint64_t claim_txg)
522 {
523 lr_write_t *lr = (lr_write_t *)lrc;
524 blkptr_t *bp = &lr->lr_blkptr;
525
526 /*
527 * If we previously claimed it, we need to free it.
528 */
529 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
530 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
531 !BP_IS_HOLE(bp))
532 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
533
534 return (0);
535 }
536
537 static int
538 zil_lwb_vdev_compare(const void *x1, const void *x2)
539 {
540 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
541 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
542
543 return (TREE_CMP(v1, v2));
544 }
545
546 static lwb_t *
547 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
548 boolean_t fastwrite)
549 {
550 lwb_t *lwb;
551
552 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
553 lwb->lwb_zilog = zilog;
554 lwb->lwb_blk = *bp;
555 lwb->lwb_fastwrite = fastwrite;
556 lwb->lwb_slog = slog;
557 lwb->lwb_state = LWB_STATE_CLOSED;
558 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
559 lwb->lwb_max_txg = txg;
560 lwb->lwb_write_zio = NULL;
561 lwb->lwb_root_zio = NULL;
562 lwb->lwb_issued_timestamp = 0;
563 lwb->lwb_issued_txg = 0;
564 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
565 lwb->lwb_nused = sizeof (zil_chain_t);
566 lwb->lwb_sz = BP_GET_LSIZE(bp);
567 } else {
568 lwb->lwb_nused = 0;
569 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
570 }
571
572 mutex_enter(&zilog->zl_lock);
573 list_insert_tail(&zilog->zl_lwb_list, lwb);
574 mutex_exit(&zilog->zl_lock);
575
576 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
577 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
578 VERIFY(list_is_empty(&lwb->lwb_waiters));
579 VERIFY(list_is_empty(&lwb->lwb_itxs));
580
581 return (lwb);
582 }
583
584 static void
585 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
586 {
587 ASSERT(MUTEX_HELD(&zilog->zl_lock));
588 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
589 VERIFY(list_is_empty(&lwb->lwb_waiters));
590 VERIFY(list_is_empty(&lwb->lwb_itxs));
591 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
592 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
593 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
594 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
595 ASSERT(lwb->lwb_state == LWB_STATE_CLOSED ||
596 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
597
598 /*
599 * Clear the zilog's field to indicate this lwb is no longer
600 * valid, and prevent use-after-free errors.
601 */
602 if (zilog->zl_last_lwb_opened == lwb)
603 zilog->zl_last_lwb_opened = NULL;
604
605 kmem_cache_free(zil_lwb_cache, lwb);
606 }
607
608 /*
609 * Called when we create in-memory log transactions so that we know
610 * to cleanup the itxs at the end of spa_sync().
611 */
612 static void
613 zilog_dirty(zilog_t *zilog, uint64_t txg)
614 {
615 dsl_pool_t *dp = zilog->zl_dmu_pool;
616 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
617
618 ASSERT(spa_writeable(zilog->zl_spa));
619
620 if (ds->ds_is_snapshot)
621 panic("dirtying snapshot!");
622
623 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
624 /* up the hold count until we can be written out */
625 dmu_buf_add_ref(ds->ds_dbuf, zilog);
626
627 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
628 }
629 }
630
631 /*
632 * Determine if the zil is dirty in the specified txg. Callers wanting to
633 * ensure that the dirty state does not change must hold the itxg_lock for
634 * the specified txg. Holding the lock will ensure that the zil cannot be
635 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
636 * state.
637 */
638 static boolean_t __maybe_unused
639 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
640 {
641 dsl_pool_t *dp = zilog->zl_dmu_pool;
642
643 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
644 return (B_TRUE);
645 return (B_FALSE);
646 }
647
648 /*
649 * Determine if the zil is dirty. The zil is considered dirty if it has
650 * any pending itx records that have not been cleaned by zil_clean().
651 */
652 static boolean_t
653 zilog_is_dirty(zilog_t *zilog)
654 {
655 dsl_pool_t *dp = zilog->zl_dmu_pool;
656
657 for (int t = 0; t < TXG_SIZE; t++) {
658 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
659 return (B_TRUE);
660 }
661 return (B_FALSE);
662 }
663
664 /*
665 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
666 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
667 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
668 * zil_commit.
669 */
670 static void
671 zil_commit_activate_saxattr_feature(zilog_t *zilog)
672 {
673 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
674 uint64_t txg = 0;
675 dmu_tx_t *tx = NULL;
676
677 if (spa_feature_is_enabled(zilog->zl_spa,
678 SPA_FEATURE_ZILSAXATTR) &&
679 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
680 !dsl_dataset_feature_is_active(ds,
681 SPA_FEATURE_ZILSAXATTR)) {
682 tx = dmu_tx_create(zilog->zl_os);
683 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
684 dsl_dataset_dirty(ds, tx);
685 txg = dmu_tx_get_txg(tx);
686
687 mutex_enter(&ds->ds_lock);
688 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
689 (void *)B_TRUE;
690 mutex_exit(&ds->ds_lock);
691 dmu_tx_commit(tx);
692 txg_wait_synced(zilog->zl_dmu_pool, txg);
693 }
694 }
695
696 /*
697 * Create an on-disk intent log.
698 */
699 static lwb_t *
700 zil_create(zilog_t *zilog)
701 {
702 const zil_header_t *zh = zilog->zl_header;
703 lwb_t *lwb = NULL;
704 uint64_t txg = 0;
705 dmu_tx_t *tx = NULL;
706 blkptr_t blk;
707 int error = 0;
708 boolean_t fastwrite = FALSE;
709 boolean_t slog = FALSE;
710 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
711
712
713 /*
714 * Wait for any previous destroy to complete.
715 */
716 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
717
718 ASSERT(zh->zh_claim_txg == 0);
719 ASSERT(zh->zh_replay_seq == 0);
720
721 blk = zh->zh_log;
722
723 /*
724 * Allocate an initial log block if:
725 * - there isn't one already
726 * - the existing block is the wrong endianness
727 */
728 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
729 tx = dmu_tx_create(zilog->zl_os);
730 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
731 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
732 txg = dmu_tx_get_txg(tx);
733
734 if (!BP_IS_HOLE(&blk)) {
735 zio_free(zilog->zl_spa, txg, &blk);
736 BP_ZERO(&blk);
737 }
738
739 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
740 ZIL_MIN_BLKSZ, &slog);
741 fastwrite = TRUE;
742
743 if (error == 0)
744 zil_init_log_chain(zilog, &blk);
745 }
746
747 /*
748 * Allocate a log write block (lwb) for the first log block.
749 */
750 if (error == 0)
751 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
752
753 /*
754 * If we just allocated the first log block, commit our transaction
755 * and wait for zil_sync() to stuff the block pointer into zh_log.
756 * (zh is part of the MOS, so we cannot modify it in open context.)
757 */
758 if (tx != NULL) {
759 /*
760 * If "zilsaxattr" feature is enabled on zpool, then activate
761 * it now when we're creating the ZIL chain. We can't wait with
762 * this until we write the first xattr log record because we
763 * need to wait for the feature activation to sync out.
764 */
765 if (spa_feature_is_enabled(zilog->zl_spa,
766 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
767 DMU_OST_ZVOL) {
768 mutex_enter(&ds->ds_lock);
769 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
770 (void *)B_TRUE;
771 mutex_exit(&ds->ds_lock);
772 }
773
774 dmu_tx_commit(tx);
775 txg_wait_synced(zilog->zl_dmu_pool, txg);
776 } else {
777 /*
778 * This branch covers the case where we enable the feature on a
779 * zpool that has existing ZIL headers.
780 */
781 zil_commit_activate_saxattr_feature(zilog);
782 }
783 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
784 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
785 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
786
787 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
788 IMPLY(error == 0, lwb != NULL);
789
790 return (lwb);
791 }
792
793 /*
794 * In one tx, free all log blocks and clear the log header. If keep_first
795 * is set, then we're replaying a log with no content. We want to keep the
796 * first block, however, so that the first synchronous transaction doesn't
797 * require a txg_wait_synced() in zil_create(). We don't need to
798 * txg_wait_synced() here either when keep_first is set, because both
799 * zil_create() and zil_destroy() will wait for any in-progress destroys
800 * to complete.
801 */
802 void
803 zil_destroy(zilog_t *zilog, boolean_t keep_first)
804 {
805 const zil_header_t *zh = zilog->zl_header;
806 lwb_t *lwb;
807 dmu_tx_t *tx;
808 uint64_t txg;
809
810 /*
811 * Wait for any previous destroy to complete.
812 */
813 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
814
815 zilog->zl_old_header = *zh; /* debugging aid */
816
817 if (BP_IS_HOLE(&zh->zh_log))
818 return;
819
820 tx = dmu_tx_create(zilog->zl_os);
821 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
822 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
823 txg = dmu_tx_get_txg(tx);
824
825 mutex_enter(&zilog->zl_lock);
826
827 ASSERT3U(zilog->zl_destroy_txg, <, txg);
828 zilog->zl_destroy_txg = txg;
829 zilog->zl_keep_first = keep_first;
830
831 if (!list_is_empty(&zilog->zl_lwb_list)) {
832 ASSERT(zh->zh_claim_txg == 0);
833 VERIFY(!keep_first);
834 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
835 if (lwb->lwb_fastwrite)
836 metaslab_fastwrite_unmark(zilog->zl_spa,
837 &lwb->lwb_blk);
838
839 list_remove(&zilog->zl_lwb_list, lwb);
840 if (lwb->lwb_buf != NULL)
841 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
842 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
843 zil_free_lwb(zilog, lwb);
844 }
845 } else if (!keep_first) {
846 zil_destroy_sync(zilog, tx);
847 }
848 mutex_exit(&zilog->zl_lock);
849
850 dmu_tx_commit(tx);
851 }
852
853 void
854 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
855 {
856 ASSERT(list_is_empty(&zilog->zl_lwb_list));
857 (void) zil_parse(zilog, zil_free_log_block,
858 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
859 }
860
861 int
862 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
863 {
864 dmu_tx_t *tx = txarg;
865 zilog_t *zilog;
866 uint64_t first_txg;
867 zil_header_t *zh;
868 objset_t *os;
869 int error;
870
871 error = dmu_objset_own_obj(dp, ds->ds_object,
872 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
873 if (error != 0) {
874 /*
875 * EBUSY indicates that the objset is inconsistent, in which
876 * case it can not have a ZIL.
877 */
878 if (error != EBUSY) {
879 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
880 (unsigned long long)ds->ds_object, error);
881 }
882
883 return (0);
884 }
885
886 zilog = dmu_objset_zil(os);
887 zh = zil_header_in_syncing_context(zilog);
888 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
889 first_txg = spa_min_claim_txg(zilog->zl_spa);
890
891 /*
892 * If the spa_log_state is not set to be cleared, check whether
893 * the current uberblock is a checkpoint one and if the current
894 * header has been claimed before moving on.
895 *
896 * If the current uberblock is a checkpointed uberblock then
897 * one of the following scenarios took place:
898 *
899 * 1] We are currently rewinding to the checkpoint of the pool.
900 * 2] We crashed in the middle of a checkpoint rewind but we
901 * did manage to write the checkpointed uberblock to the
902 * vdev labels, so when we tried to import the pool again
903 * the checkpointed uberblock was selected from the import
904 * procedure.
905 *
906 * In both cases we want to zero out all the ZIL blocks, except
907 * the ones that have been claimed at the time of the checkpoint
908 * (their zh_claim_txg != 0). The reason is that these blocks
909 * may be corrupted since we may have reused their locations on
910 * disk after we took the checkpoint.
911 *
912 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
913 * when we first figure out whether the current uberblock is
914 * checkpointed or not. Unfortunately, that would discard all
915 * the logs, including the ones that are claimed, and we would
916 * leak space.
917 */
918 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
919 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
920 zh->zh_claim_txg == 0)) {
921 if (!BP_IS_HOLE(&zh->zh_log)) {
922 (void) zil_parse(zilog, zil_clear_log_block,
923 zil_noop_log_record, tx, first_txg, B_FALSE);
924 }
925 BP_ZERO(&zh->zh_log);
926 if (os->os_encrypted)
927 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
928 dsl_dataset_dirty(dmu_objset_ds(os), tx);
929 dmu_objset_disown(os, B_FALSE, FTAG);
930 return (0);
931 }
932
933 /*
934 * If we are not rewinding and opening the pool normally, then
935 * the min_claim_txg should be equal to the first txg of the pool.
936 */
937 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
938
939 /*
940 * Claim all log blocks if we haven't already done so, and remember
941 * the highest claimed sequence number. This ensures that if we can
942 * read only part of the log now (e.g. due to a missing device),
943 * but we can read the entire log later, we will not try to replay
944 * or destroy beyond the last block we successfully claimed.
945 */
946 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
947 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
948 (void) zil_parse(zilog, zil_claim_log_block,
949 zil_claim_log_record, tx, first_txg, B_FALSE);
950 zh->zh_claim_txg = first_txg;
951 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
952 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
953 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
954 zh->zh_flags |= ZIL_REPLAY_NEEDED;
955 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
956 if (os->os_encrypted)
957 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
958 dsl_dataset_dirty(dmu_objset_ds(os), tx);
959 }
960
961 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
962 dmu_objset_disown(os, B_FALSE, FTAG);
963 return (0);
964 }
965
966 /*
967 * Check the log by walking the log chain.
968 * Checksum errors are ok as they indicate the end of the chain.
969 * Any other error (no device or read failure) returns an error.
970 */
971 int
972 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
973 {
974 (void) dp;
975 zilog_t *zilog;
976 objset_t *os;
977 blkptr_t *bp;
978 int error;
979
980 ASSERT(tx == NULL);
981
982 error = dmu_objset_from_ds(ds, &os);
983 if (error != 0) {
984 cmn_err(CE_WARN, "can't open objset %llu, error %d",
985 (unsigned long long)ds->ds_object, error);
986 return (0);
987 }
988
989 zilog = dmu_objset_zil(os);
990 bp = (blkptr_t *)&zilog->zl_header->zh_log;
991
992 if (!BP_IS_HOLE(bp)) {
993 vdev_t *vd;
994 boolean_t valid = B_TRUE;
995
996 /*
997 * Check the first block and determine if it's on a log device
998 * which may have been removed or faulted prior to loading this
999 * pool. If so, there's no point in checking the rest of the
1000 * log as its content should have already been synced to the
1001 * pool.
1002 */
1003 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1004 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1005 if (vd->vdev_islog && vdev_is_dead(vd))
1006 valid = vdev_log_state_valid(vd);
1007 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1008
1009 if (!valid)
1010 return (0);
1011
1012 /*
1013 * Check whether the current uberblock is checkpointed (e.g.
1014 * we are rewinding) and whether the current header has been
1015 * claimed or not. If it hasn't then skip verifying it. We
1016 * do this because its ZIL blocks may be part of the pool's
1017 * state before the rewind, which is no longer valid.
1018 */
1019 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1020 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1021 zh->zh_claim_txg == 0)
1022 return (0);
1023 }
1024
1025 /*
1026 * Because tx == NULL, zil_claim_log_block() will not actually claim
1027 * any blocks, but just determine whether it is possible to do so.
1028 * In addition to checking the log chain, zil_claim_log_block()
1029 * will invoke zio_claim() with a done func of spa_claim_notify(),
1030 * which will update spa_max_claim_txg. See spa_load() for details.
1031 */
1032 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1033 zilog->zl_header->zh_claim_txg ? -1ULL :
1034 spa_min_claim_txg(os->os_spa), B_FALSE);
1035
1036 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1037 }
1038
1039 /*
1040 * When an itx is "skipped", this function is used to properly mark the
1041 * waiter as "done, and signal any thread(s) waiting on it. An itx can
1042 * be skipped (and not committed to an lwb) for a variety of reasons,
1043 * one of them being that the itx was committed via spa_sync(), prior to
1044 * it being committed to an lwb; this can happen if a thread calling
1045 * zil_commit() is racing with spa_sync().
1046 */
1047 static void
1048 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1049 {
1050 mutex_enter(&zcw->zcw_lock);
1051 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1052 zcw->zcw_done = B_TRUE;
1053 cv_broadcast(&zcw->zcw_cv);
1054 mutex_exit(&zcw->zcw_lock);
1055 }
1056
1057 /*
1058 * This function is used when the given waiter is to be linked into an
1059 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1060 * At this point, the waiter will no longer be referenced by the itx,
1061 * and instead, will be referenced by the lwb.
1062 */
1063 static void
1064 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1065 {
1066 /*
1067 * The lwb_waiters field of the lwb is protected by the zilog's
1068 * zl_lock, thus it must be held when calling this function.
1069 */
1070 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1071
1072 mutex_enter(&zcw->zcw_lock);
1073 ASSERT(!list_link_active(&zcw->zcw_node));
1074 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1075 ASSERT3P(lwb, !=, NULL);
1076 ASSERT(lwb->lwb_state == LWB_STATE_OPENED ||
1077 lwb->lwb_state == LWB_STATE_ISSUED ||
1078 lwb->lwb_state == LWB_STATE_WRITE_DONE);
1079
1080 list_insert_tail(&lwb->lwb_waiters, zcw);
1081 zcw->zcw_lwb = lwb;
1082 mutex_exit(&zcw->zcw_lock);
1083 }
1084
1085 /*
1086 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1087 * block, and the given waiter must be linked to the "nolwb waiters"
1088 * list inside of zil_process_commit_list().
1089 */
1090 static void
1091 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1092 {
1093 mutex_enter(&zcw->zcw_lock);
1094 ASSERT(!list_link_active(&zcw->zcw_node));
1095 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1096 list_insert_tail(nolwb, zcw);
1097 mutex_exit(&zcw->zcw_lock);
1098 }
1099
1100 void
1101 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1102 {
1103 avl_tree_t *t = &lwb->lwb_vdev_tree;
1104 avl_index_t where;
1105 zil_vdev_node_t *zv, zvsearch;
1106 int ndvas = BP_GET_NDVAS(bp);
1107 int i;
1108
1109 if (zil_nocacheflush)
1110 return;
1111
1112 mutex_enter(&lwb->lwb_vdev_lock);
1113 for (i = 0; i < ndvas; i++) {
1114 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1115 if (avl_find(t, &zvsearch, &where) == NULL) {
1116 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1117 zv->zv_vdev = zvsearch.zv_vdev;
1118 avl_insert(t, zv, where);
1119 }
1120 }
1121 mutex_exit(&lwb->lwb_vdev_lock);
1122 }
1123
1124 static void
1125 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1126 {
1127 avl_tree_t *src = &lwb->lwb_vdev_tree;
1128 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1129 void *cookie = NULL;
1130 zil_vdev_node_t *zv;
1131
1132 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1133 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1134 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1135
1136 /*
1137 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1138 * not need the protection of lwb_vdev_lock (it will only be modified
1139 * while holding zilog->zl_lock) as its writes and those of its
1140 * children have all completed. The younger 'nlwb' may be waiting on
1141 * future writes to additional vdevs.
1142 */
1143 mutex_enter(&nlwb->lwb_vdev_lock);
1144 /*
1145 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1146 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1147 */
1148 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1149 avl_index_t where;
1150
1151 if (avl_find(dst, zv, &where) == NULL) {
1152 avl_insert(dst, zv, where);
1153 } else {
1154 kmem_free(zv, sizeof (*zv));
1155 }
1156 }
1157 mutex_exit(&nlwb->lwb_vdev_lock);
1158 }
1159
1160 void
1161 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1162 {
1163 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1164 }
1165
1166 /*
1167 * This function is a called after all vdevs associated with a given lwb
1168 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1169 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1170 * all "previous" lwb's will have completed before this function is
1171 * called; i.e. this function is called for all previous lwbs before
1172 * it's called for "this" lwb (enforced via zio the dependencies
1173 * configured in zil_lwb_set_zio_dependency()).
1174 *
1175 * The intention is for this function to be called as soon as the
1176 * contents of an lwb are considered "stable" on disk, and will survive
1177 * any sudden loss of power. At this point, any threads waiting for the
1178 * lwb to reach this state are signalled, and the "waiter" structures
1179 * are marked "done".
1180 */
1181 static void
1182 zil_lwb_flush_vdevs_done(zio_t *zio)
1183 {
1184 lwb_t *lwb = zio->io_private;
1185 zilog_t *zilog = lwb->lwb_zilog;
1186 zil_commit_waiter_t *zcw;
1187 itx_t *itx;
1188 uint64_t txg;
1189
1190 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1191
1192 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1193
1194 mutex_enter(&zilog->zl_lock);
1195
1196 /*
1197 * If we have had an allocation failure and the txg is
1198 * waiting to sync then we want zil_sync() to remove the lwb so
1199 * that it's not picked up as the next new one in
1200 * zil_process_commit_list(). zil_sync() will only remove the
1201 * lwb if lwb_buf is null.
1202 */
1203 lwb->lwb_buf = NULL;
1204
1205 ASSERT3U(lwb->lwb_issued_timestamp, >, 0);
1206 zilog->zl_last_lwb_latency = gethrtime() - lwb->lwb_issued_timestamp;
1207
1208 lwb->lwb_root_zio = NULL;
1209
1210 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1211 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1212
1213 if (zilog->zl_last_lwb_opened == lwb) {
1214 /*
1215 * Remember the highest committed log sequence number
1216 * for ztest. We only update this value when all the log
1217 * writes succeeded, because ztest wants to ASSERT that
1218 * it got the whole log chain.
1219 */
1220 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1221 }
1222
1223 while ((itx = list_head(&lwb->lwb_itxs)) != NULL) {
1224 list_remove(&lwb->lwb_itxs, itx);
1225 zil_itx_destroy(itx);
1226 }
1227
1228 while ((zcw = list_head(&lwb->lwb_waiters)) != NULL) {
1229 mutex_enter(&zcw->zcw_lock);
1230
1231 ASSERT(list_link_active(&zcw->zcw_node));
1232 list_remove(&lwb->lwb_waiters, zcw);
1233
1234 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1235 zcw->zcw_lwb = NULL;
1236 /*
1237 * We expect any ZIO errors from child ZIOs to have been
1238 * propagated "up" to this specific LWB's root ZIO, in
1239 * order for this error handling to work correctly. This
1240 * includes ZIO errors from either this LWB's write or
1241 * flush, as well as any errors from other dependent LWBs
1242 * (e.g. a root LWB ZIO that might be a child of this LWB).
1243 *
1244 * With that said, it's important to note that LWB flush
1245 * errors are not propagated up to the LWB root ZIO.
1246 * This is incorrect behavior, and results in VDEV flush
1247 * errors not being handled correctly here. See the
1248 * comment above the call to "zio_flush" for details.
1249 */
1250
1251 zcw->zcw_zio_error = zio->io_error;
1252
1253 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1254 zcw->zcw_done = B_TRUE;
1255 cv_broadcast(&zcw->zcw_cv);
1256
1257 mutex_exit(&zcw->zcw_lock);
1258 }
1259
1260 mutex_exit(&zilog->zl_lock);
1261
1262 mutex_enter(&zilog->zl_lwb_io_lock);
1263 txg = lwb->lwb_issued_txg;
1264 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1265 zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1266 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1267 cv_broadcast(&zilog->zl_lwb_io_cv);
1268 mutex_exit(&zilog->zl_lwb_io_lock);
1269 }
1270
1271 /*
1272 * Wait for the completion of all issued write/flush of that txg provided.
1273 * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1274 */
1275 static void
1276 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1277 {
1278 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1279
1280 mutex_enter(&zilog->zl_lwb_io_lock);
1281 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1282 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1283 mutex_exit(&zilog->zl_lwb_io_lock);
1284
1285 #ifdef ZFS_DEBUG
1286 mutex_enter(&zilog->zl_lock);
1287 mutex_enter(&zilog->zl_lwb_io_lock);
1288 lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1289 while (lwb != NULL && lwb->lwb_max_txg <= txg) {
1290 if (lwb->lwb_issued_txg <= txg) {
1291 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1292 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1293 IMPLY(lwb->lwb_issued_txg > 0,
1294 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1295 }
1296 IMPLY(lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1297 lwb->lwb_buf == NULL);
1298 lwb = list_next(&zilog->zl_lwb_list, lwb);
1299 }
1300 mutex_exit(&zilog->zl_lwb_io_lock);
1301 mutex_exit(&zilog->zl_lock);
1302 #endif
1303 }
1304
1305 /*
1306 * This is called when an lwb's write zio completes. The callback's
1307 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1308 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1309 * in writing out this specific lwb's data, and in the case that cache
1310 * flushes have been deferred, vdevs involved in writing the data for
1311 * previous lwbs. The writes corresponding to all the vdevs in the
1312 * lwb_vdev_tree will have completed by the time this is called, due to
1313 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1314 * which takes deferred flushes into account. The lwb will be "done"
1315 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1316 * completion callback for the lwb's root zio.
1317 */
1318 static void
1319 zil_lwb_write_done(zio_t *zio)
1320 {
1321 lwb_t *lwb = zio->io_private;
1322 spa_t *spa = zio->io_spa;
1323 zilog_t *zilog = lwb->lwb_zilog;
1324 avl_tree_t *t = &lwb->lwb_vdev_tree;
1325 void *cookie = NULL;
1326 zil_vdev_node_t *zv;
1327 lwb_t *nlwb;
1328
1329 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1330
1331 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1332 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
1333 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
1334 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
1335 ASSERT(!BP_IS_GANG(zio->io_bp));
1336 ASSERT(!BP_IS_HOLE(zio->io_bp));
1337 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
1338
1339 abd_free(zio->io_abd);
1340
1341 mutex_enter(&zilog->zl_lock);
1342 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1343 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1344 lwb->lwb_write_zio = NULL;
1345 lwb->lwb_fastwrite = FALSE;
1346 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1347 mutex_exit(&zilog->zl_lock);
1348
1349 if (avl_numnodes(t) == 0)
1350 return;
1351
1352 /*
1353 * If there was an IO error, we're not going to call zio_flush()
1354 * on these vdevs, so we simply empty the tree and free the
1355 * nodes. We avoid calling zio_flush() since there isn't any
1356 * good reason for doing so, after the lwb block failed to be
1357 * written out.
1358 *
1359 * Additionally, we don't perform any further error handling at
1360 * this point (e.g. setting "zcw_zio_error" appropriately), as
1361 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1362 * we expect any error seen here, to have been propagated to
1363 * that function).
1364 */
1365 if (zio->io_error != 0) {
1366 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1367 kmem_free(zv, sizeof (*zv));
1368 return;
1369 }
1370
1371 /*
1372 * If this lwb does not have any threads waiting for it to
1373 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1374 * command to the vdevs written to by "this" lwb, and instead
1375 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1376 * command for those vdevs. Thus, we merge the vdev tree of
1377 * "this" lwb with the vdev tree of the "next" lwb in the list,
1378 * and assume the "next" lwb will handle flushing the vdevs (or
1379 * deferring the flush(s) again).
1380 *
1381 * This is a useful performance optimization, especially for
1382 * workloads with lots of async write activity and few sync
1383 * write and/or fsync activity, as it has the potential to
1384 * coalesce multiple flush commands to a vdev into one.
1385 */
1386 if (list_head(&lwb->lwb_waiters) == NULL && nlwb != NULL) {
1387 zil_lwb_flush_defer(lwb, nlwb);
1388 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1389 return;
1390 }
1391
1392 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1393 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1394 if (vd != NULL) {
1395 /*
1396 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1397 * always used within "zio_flush". This means,
1398 * any errors when flushing the vdev(s), will
1399 * (unfortunately) not be handled correctly,
1400 * since these "zio_flush" errors will not be
1401 * propagated up to "zil_lwb_flush_vdevs_done".
1402 */
1403 zio_flush(lwb->lwb_root_zio, vd);
1404 }
1405 kmem_free(zv, sizeof (*zv));
1406 }
1407 }
1408
1409 static void
1410 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1411 {
1412 lwb_t *last_lwb_opened = zilog->zl_last_lwb_opened;
1413
1414 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1415 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1416
1417 /*
1418 * The zilog's "zl_last_lwb_opened" field is used to build the
1419 * lwb/zio dependency chain, which is used to preserve the
1420 * ordering of lwb completions that is required by the semantics
1421 * of the ZIL. Each new lwb zio becomes a parent of the
1422 * "previous" lwb zio, such that the new lwb's zio cannot
1423 * complete until the "previous" lwb's zio completes.
1424 *
1425 * This is required by the semantics of zil_commit(); the commit
1426 * waiters attached to the lwbs will be woken in the lwb zio's
1427 * completion callback, so this zio dependency graph ensures the
1428 * waiters are woken in the correct order (the same order the
1429 * lwbs were created).
1430 */
1431 if (last_lwb_opened != NULL &&
1432 last_lwb_opened->lwb_state != LWB_STATE_FLUSH_DONE) {
1433 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1434 last_lwb_opened->lwb_state == LWB_STATE_ISSUED ||
1435 last_lwb_opened->lwb_state == LWB_STATE_WRITE_DONE);
1436
1437 ASSERT3P(last_lwb_opened->lwb_root_zio, !=, NULL);
1438 zio_add_child(lwb->lwb_root_zio,
1439 last_lwb_opened->lwb_root_zio);
1440
1441 /*
1442 * If the previous lwb's write hasn't already completed,
1443 * we also want to order the completion of the lwb write
1444 * zios (above, we only order the completion of the lwb
1445 * root zios). This is required because of how we can
1446 * defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1447 *
1448 * When the DKIOCFLUSHWRITECACHE commands are deferred,
1449 * the previous lwb will rely on this lwb to flush the
1450 * vdevs written to by that previous lwb. Thus, we need
1451 * to ensure this lwb doesn't issue the flush until
1452 * after the previous lwb's write completes. We ensure
1453 * this ordering by setting the zio parent/child
1454 * relationship here.
1455 *
1456 * Without this relationship on the lwb's write zio,
1457 * it's possible for this lwb's write to complete prior
1458 * to the previous lwb's write completing; and thus, the
1459 * vdevs for the previous lwb would be flushed prior to
1460 * that lwb's data being written to those vdevs (the
1461 * vdevs are flushed in the lwb write zio's completion
1462 * handler, zil_lwb_write_done()).
1463 */
1464 if (last_lwb_opened->lwb_state != LWB_STATE_WRITE_DONE) {
1465 ASSERT(last_lwb_opened->lwb_state == LWB_STATE_OPENED ||
1466 last_lwb_opened->lwb_state == LWB_STATE_ISSUED);
1467
1468 ASSERT3P(last_lwb_opened->lwb_write_zio, !=, NULL);
1469 zio_add_child(lwb->lwb_write_zio,
1470 last_lwb_opened->lwb_write_zio);
1471 }
1472 }
1473 }
1474
1475
1476 /*
1477 * This function's purpose is to "open" an lwb such that it is ready to
1478 * accept new itxs being committed to it. To do this, the lwb's zio
1479 * structures are created, and linked to the lwb. This function is
1480 * idempotent; if the passed in lwb has already been opened, this
1481 * function is essentially a no-op.
1482 */
1483 static void
1484 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1485 {
1486 zbookmark_phys_t zb;
1487 zio_priority_t prio;
1488
1489 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1490 ASSERT3P(lwb, !=, NULL);
1491 EQUIV(lwb->lwb_root_zio == NULL, lwb->lwb_state == LWB_STATE_CLOSED);
1492 EQUIV(lwb->lwb_root_zio != NULL, lwb->lwb_state == LWB_STATE_OPENED);
1493
1494 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1495 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1496 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1497
1498 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
1499 mutex_enter(&zilog->zl_lock);
1500 if (lwb->lwb_root_zio == NULL) {
1501 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
1502 BP_GET_LSIZE(&lwb->lwb_blk));
1503
1504 if (!lwb->lwb_fastwrite) {
1505 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
1506 lwb->lwb_fastwrite = 1;
1507 }
1508
1509 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1510 prio = ZIO_PRIORITY_SYNC_WRITE;
1511 else
1512 prio = ZIO_PRIORITY_ASYNC_WRITE;
1513
1514 lwb->lwb_root_zio = zio_root(zilog->zl_spa,
1515 zil_lwb_flush_vdevs_done, lwb, ZIO_FLAG_CANFAIL);
1516 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1517
1518 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio,
1519 zilog->zl_spa, 0, &lwb->lwb_blk, lwb_abd,
1520 BP_GET_LSIZE(&lwb->lwb_blk), zil_lwb_write_done, lwb,
1521 prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_FASTWRITE, &zb);
1522 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1523
1524 lwb->lwb_state = LWB_STATE_OPENED;
1525
1526 zil_lwb_set_zio_dependency(zilog, lwb);
1527 zilog->zl_last_lwb_opened = lwb;
1528 }
1529 mutex_exit(&zilog->zl_lock);
1530
1531 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1532 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1533 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1534 }
1535
1536 /*
1537 * Define a limited set of intent log block sizes.
1538 *
1539 * These must be a multiple of 4KB. Note only the amount used (again
1540 * aligned to 4KB) actually gets written. However, we can't always just
1541 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1542 */
1543 static const struct {
1544 uint64_t limit;
1545 uint64_t blksz;
1546 } zil_block_buckets[] = {
1547 { 4096, 4096 }, /* non TX_WRITE */
1548 { 8192 + 4096, 8192 + 4096 }, /* database */
1549 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */
1550 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */
1551 { 131072, 131072 }, /* < 128KB writes */
1552 { 131072 +4096, 65536 + 4096 }, /* 128KB writes */
1553 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */
1554 };
1555
1556 /*
1557 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1558 * initialized. Otherwise this should not be used directly; see
1559 * zl_max_block_size instead.
1560 */
1561 static int zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1562
1563 /*
1564 * Start a log block write and advance to the next log block.
1565 * Calls are serialized.
1566 */
1567 static lwb_t *
1568 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1569 {
1570 lwb_t *nlwb = NULL;
1571 zil_chain_t *zilc;
1572 spa_t *spa = zilog->zl_spa;
1573 blkptr_t *bp;
1574 dmu_tx_t *tx;
1575 uint64_t txg;
1576 uint64_t zil_blksz, wsz;
1577 int i, error;
1578 boolean_t slog;
1579
1580 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1581 ASSERT3P(lwb->lwb_root_zio, !=, NULL);
1582 ASSERT3P(lwb->lwb_write_zio, !=, NULL);
1583 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1584
1585 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1586 zilc = (zil_chain_t *)lwb->lwb_buf;
1587 bp = &zilc->zc_next_blk;
1588 } else {
1589 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
1590 bp = &zilc->zc_next_blk;
1591 }
1592
1593 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1594
1595 /*
1596 * Allocate the next block and save its address in this block
1597 * before writing it in order to establish the log chain.
1598 */
1599
1600 tx = dmu_tx_create(zilog->zl_os);
1601
1602 /*
1603 * Since we are not going to create any new dirty data, and we
1604 * can even help with clearing the existing dirty data, we
1605 * should not be subject to the dirty data based delays. We
1606 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1607 */
1608 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1609
1610 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1611 txg = dmu_tx_get_txg(tx);
1612
1613 mutex_enter(&zilog->zl_lwb_io_lock);
1614 lwb->lwb_issued_txg = txg;
1615 zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1616 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1617 mutex_exit(&zilog->zl_lwb_io_lock);
1618
1619 /*
1620 * Log blocks are pre-allocated. Here we select the size of the next
1621 * block, based on size used in the last block.
1622 * - first find the smallest bucket that will fit the block from a
1623 * limited set of block sizes. This is because it's faster to write
1624 * blocks allocated from the same metaslab as they are adjacent or
1625 * close.
1626 * - next find the maximum from the new suggested size and an array of
1627 * previous sizes. This lessens a picket fence effect of wrongly
1628 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1629 * requests.
1630 *
1631 * Note we only write what is used, but we can't just allocate
1632 * the maximum block size because we can exhaust the available
1633 * pool log space.
1634 */
1635 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1636 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1637 continue;
1638 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1639 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1640 for (i = 0; i < ZIL_PREV_BLKS; i++)
1641 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1642 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1643
1644 BP_ZERO(bp);
1645 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, zil_blksz, &slog);
1646 if (slog) {
1647 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1648 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1649 } else {
1650 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1651 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1652 }
1653 if (error == 0) {
1654 ASSERT3U(bp->blk_birth, ==, txg);
1655 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1656 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1657
1658 /*
1659 * Allocate a new log write block (lwb).
1660 */
1661 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1662 }
1663
1664 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1665 /* For Slim ZIL only write what is used. */
1666 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1667 ASSERT3U(wsz, <=, lwb->lwb_sz);
1668 zio_shrink(lwb->lwb_write_zio, wsz);
1669
1670 } else {
1671 wsz = lwb->lwb_sz;
1672 }
1673
1674 zilc->zc_pad = 0;
1675 zilc->zc_nused = lwb->lwb_nused;
1676 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1677
1678 /*
1679 * clear unused data for security
1680 */
1681 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1682
1683 spa_config_enter(zilog->zl_spa, SCL_STATE, lwb, RW_READER);
1684
1685 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1686 lwb->lwb_issued_timestamp = gethrtime();
1687 lwb->lwb_state = LWB_STATE_ISSUED;
1688
1689 zio_nowait(lwb->lwb_root_zio);
1690 zio_nowait(lwb->lwb_write_zio);
1691
1692 dmu_tx_commit(tx);
1693
1694 /*
1695 * If there was an allocation failure then nlwb will be null which
1696 * forces a txg_wait_synced().
1697 */
1698 return (nlwb);
1699 }
1700
1701 /*
1702 * Maximum amount of write data that can be put into single log block.
1703 */
1704 uint64_t
1705 zil_max_log_data(zilog_t *zilog)
1706 {
1707 return (zilog->zl_max_block_size -
1708 sizeof (zil_chain_t) - sizeof (lr_write_t));
1709 }
1710
1711 /*
1712 * Maximum amount of log space we agree to waste to reduce number of
1713 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~12%).
1714 */
1715 static inline uint64_t
1716 zil_max_waste_space(zilog_t *zilog)
1717 {
1718 return (zil_max_log_data(zilog) / 8);
1719 }
1720
1721 /*
1722 * Maximum amount of write data for WR_COPIED. For correctness, consumers
1723 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1724 * maximum sized log block, because each WR_COPIED record must fit in a
1725 * single log block. For space efficiency, we want to fit two records into a
1726 * max-sized log block.
1727 */
1728 uint64_t
1729 zil_max_copied_data(zilog_t *zilog)
1730 {
1731 return ((zilog->zl_max_block_size - sizeof (zil_chain_t)) / 2 -
1732 sizeof (lr_write_t));
1733 }
1734
1735 static lwb_t *
1736 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1737 {
1738 lr_t *lrcb, *lrc;
1739 lr_write_t *lrwb, *lrw;
1740 char *lr_buf;
1741 uint64_t dlen, dnow, dpad, lwb_sp, reclen, txg, max_log_data;
1742
1743 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1744 ASSERT3P(lwb, !=, NULL);
1745 ASSERT3P(lwb->lwb_buf, !=, NULL);
1746
1747 zil_lwb_write_open(zilog, lwb);
1748
1749 lrc = &itx->itx_lr;
1750 lrw = (lr_write_t *)lrc;
1751
1752 /*
1753 * A commit itx doesn't represent any on-disk state; instead
1754 * it's simply used as a place holder on the commit list, and
1755 * provides a mechanism for attaching a "commit waiter" onto the
1756 * correct lwb (such that the waiter can be signalled upon
1757 * completion of that lwb). Thus, we don't process this itx's
1758 * log record if it's a commit itx (these itx's don't have log
1759 * records), and instead link the itx's waiter onto the lwb's
1760 * list of waiters.
1761 *
1762 * For more details, see the comment above zil_commit().
1763 */
1764 if (lrc->lrc_txtype == TX_COMMIT) {
1765 mutex_enter(&zilog->zl_lock);
1766 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
1767 itx->itx_private = NULL;
1768 mutex_exit(&zilog->zl_lock);
1769 return (lwb);
1770 }
1771
1772 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1773 dlen = P2ROUNDUP_TYPED(
1774 lrw->lr_length, sizeof (uint64_t), uint64_t);
1775 dpad = dlen - lrw->lr_length;
1776 } else {
1777 dlen = dpad = 0;
1778 }
1779 reclen = lrc->lrc_reclen;
1780 zilog->zl_cur_used += (reclen + dlen);
1781 txg = lrc->lrc_txg;
1782
1783 ASSERT3U(zilog->zl_cur_used, <, UINT64_MAX - (reclen + dlen));
1784
1785 cont:
1786 /*
1787 * If this record won't fit in the current log block, start a new one.
1788 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1789 */
1790 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1791 max_log_data = zil_max_log_data(zilog);
1792 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1793 lwb_sp < zil_max_waste_space(zilog) &&
1794 (dlen % max_log_data == 0 ||
1795 lwb_sp < reclen + dlen % max_log_data))) {
1796 lwb = zil_lwb_write_issue(zilog, lwb);
1797 if (lwb == NULL)
1798 return (NULL);
1799 zil_lwb_write_open(zilog, lwb);
1800 ASSERT(LWB_EMPTY(lwb));
1801 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1802
1803 /*
1804 * There must be enough space in the new, empty log block to
1805 * hold reclen. For WR_COPIED, we need to fit the whole
1806 * record in one block, and reclen is the header size + the
1807 * data size. For WR_NEED_COPY, we can create multiple
1808 * records, splitting the data into multiple blocks, so we
1809 * only need to fit one word of data per block; in this case
1810 * reclen is just the header size (no data).
1811 */
1812 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1813 }
1814
1815 dnow = MIN(dlen, lwb_sp - reclen);
1816 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1817 memcpy(lr_buf, lrc, reclen);
1818 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1819 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1820
1821 ZIL_STAT_BUMP(zil_itx_count);
1822
1823 /*
1824 * If it's a write, fetch the data or get its blkptr as appropriate.
1825 */
1826 if (lrc->lrc_txtype == TX_WRITE) {
1827 if (txg > spa_freeze_txg(zilog->zl_spa))
1828 txg_wait_synced(zilog->zl_dmu_pool, txg);
1829 if (itx->itx_wr_state == WR_COPIED) {
1830 ZIL_STAT_BUMP(zil_itx_copied_count);
1831 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1832 } else {
1833 char *dbuf;
1834 int error;
1835
1836 if (itx->itx_wr_state == WR_NEED_COPY) {
1837 dbuf = lr_buf + reclen;
1838 lrcb->lrc_reclen += dnow;
1839 if (lrwb->lr_length > dnow)
1840 lrwb->lr_length = dnow;
1841 lrw->lr_offset += dnow;
1842 lrw->lr_length -= dnow;
1843 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1844 ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1845 } else {
1846 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
1847 dbuf = NULL;
1848 ZIL_STAT_BUMP(zil_itx_indirect_count);
1849 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1850 lrw->lr_length);
1851 }
1852
1853 /*
1854 * We pass in the "lwb_write_zio" rather than
1855 * "lwb_root_zio" so that the "lwb_write_zio"
1856 * becomes the parent of any zio's created by
1857 * the "zl_get_data" callback. The vdevs are
1858 * flushed after the "lwb_write_zio" completes,
1859 * so we want to make sure that completion
1860 * callback waits for these additional zio's,
1861 * such that the vdevs used by those zio's will
1862 * be included in the lwb's vdev tree, and those
1863 * vdevs will be properly flushed. If we passed
1864 * in "lwb_root_zio" here, then these additional
1865 * vdevs may not be flushed; e.g. if these zio's
1866 * completed after "lwb_write_zio" completed.
1867 */
1868 error = zilog->zl_get_data(itx->itx_private,
1869 itx->itx_gen, lrwb, dbuf, lwb,
1870 lwb->lwb_write_zio);
1871 if (dbuf != NULL && error == 0 && dnow == dlen)
1872 /* Zero any padding bytes in the last block. */
1873 memset((char *)dbuf + lrwb->lr_length, 0, dpad);
1874
1875 if (error == EIO) {
1876 txg_wait_synced(zilog->zl_dmu_pool, txg);
1877 return (lwb);
1878 }
1879 if (error != 0) {
1880 ASSERT(error == ENOENT || error == EEXIST ||
1881 error == EALREADY);
1882 return (lwb);
1883 }
1884 }
1885 }
1886
1887 /*
1888 * We're actually making an entry, so update lrc_seq to be the
1889 * log record sequence number. Note that this is generally not
1890 * equal to the itx sequence number because not all transactions
1891 * are synchronous, and sometimes spa_sync() gets there first.
1892 */
1893 lrcb->lrc_seq = ++zilog->zl_lr_seq;
1894 lwb->lwb_nused += reclen + dnow;
1895
1896 zil_lwb_add_txg(lwb, txg);
1897
1898 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1899 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1900
1901 dlen -= dnow;
1902 if (dlen > 0) {
1903 zilog->zl_cur_used += reclen;
1904 goto cont;
1905 }
1906
1907 return (lwb);
1908 }
1909
1910 itx_t *
1911 zil_itx_create(uint64_t txtype, size_t olrsize)
1912 {
1913 size_t itxsize, lrsize;
1914 itx_t *itx;
1915
1916 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
1917 itxsize = offsetof(itx_t, itx_lr) + lrsize;
1918
1919 itx = zio_data_buf_alloc(itxsize);
1920 itx->itx_lr.lrc_txtype = txtype;
1921 itx->itx_lr.lrc_reclen = lrsize;
1922 itx->itx_lr.lrc_seq = 0; /* defensive */
1923 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
1924 itx->itx_sync = B_TRUE; /* default is synchronous */
1925 itx->itx_callback = NULL;
1926 itx->itx_callback_data = NULL;
1927 itx->itx_size = itxsize;
1928
1929 return (itx);
1930 }
1931
1932 void
1933 zil_itx_destroy(itx_t *itx)
1934 {
1935 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
1936 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
1937
1938 if (itx->itx_callback != NULL)
1939 itx->itx_callback(itx->itx_callback_data);
1940
1941 zio_data_buf_free(itx, itx->itx_size);
1942 }
1943
1944 /*
1945 * Free up the sync and async itxs. The itxs_t has already been detached
1946 * so no locks are needed.
1947 */
1948 static void
1949 zil_itxg_clean(void *arg)
1950 {
1951 itx_t *itx;
1952 list_t *list;
1953 avl_tree_t *t;
1954 void *cookie;
1955 itxs_t *itxs = arg;
1956 itx_async_node_t *ian;
1957
1958 list = &itxs->i_sync_list;
1959 while ((itx = list_head(list)) != NULL) {
1960 /*
1961 * In the general case, commit itxs will not be found
1962 * here, as they'll be committed to an lwb via
1963 * zil_lwb_commit(), and free'd in that function. Having
1964 * said that, it is still possible for commit itxs to be
1965 * found here, due to the following race:
1966 *
1967 * - a thread calls zil_commit() which assigns the
1968 * commit itx to a per-txg i_sync_list
1969 * - zil_itxg_clean() is called (e.g. via spa_sync())
1970 * while the waiter is still on the i_sync_list
1971 *
1972 * There's nothing to prevent syncing the txg while the
1973 * waiter is on the i_sync_list. This normally doesn't
1974 * happen because spa_sync() is slower than zil_commit(),
1975 * but if zil_commit() calls txg_wait_synced() (e.g.
1976 * because zil_create() or zil_commit_writer_stall() is
1977 * called) we will hit this case.
1978 */
1979 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
1980 zil_commit_waiter_skip(itx->itx_private);
1981
1982 list_remove(list, itx);
1983 zil_itx_destroy(itx);
1984 }
1985
1986 cookie = NULL;
1987 t = &itxs->i_async_tree;
1988 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1989 list = &ian->ia_list;
1990 while ((itx = list_head(list)) != NULL) {
1991 list_remove(list, itx);
1992 /* commit itxs should never be on the async lists. */
1993 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
1994 zil_itx_destroy(itx);
1995 }
1996 list_destroy(list);
1997 kmem_free(ian, sizeof (itx_async_node_t));
1998 }
1999 avl_destroy(t);
2000
2001 kmem_free(itxs, sizeof (itxs_t));
2002 }
2003
2004 static int
2005 zil_aitx_compare(const void *x1, const void *x2)
2006 {
2007 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2008 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2009
2010 return (TREE_CMP(o1, o2));
2011 }
2012
2013 /*
2014 * Remove all async itx with the given oid.
2015 */
2016 void
2017 zil_remove_async(zilog_t *zilog, uint64_t oid)
2018 {
2019 uint64_t otxg, txg;
2020 itx_async_node_t *ian;
2021 avl_tree_t *t;
2022 avl_index_t where;
2023 list_t clean_list;
2024 itx_t *itx;
2025
2026 ASSERT(oid != 0);
2027 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2028
2029 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2030 otxg = ZILTEST_TXG;
2031 else
2032 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2033
2034 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2035 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2036
2037 mutex_enter(&itxg->itxg_lock);
2038 if (itxg->itxg_txg != txg) {
2039 mutex_exit(&itxg->itxg_lock);
2040 continue;
2041 }
2042
2043 /*
2044 * Locate the object node and append its list.
2045 */
2046 t = &itxg->itxg_itxs->i_async_tree;
2047 ian = avl_find(t, &oid, &where);
2048 if (ian != NULL)
2049 list_move_tail(&clean_list, &ian->ia_list);
2050 mutex_exit(&itxg->itxg_lock);
2051 }
2052 while ((itx = list_head(&clean_list)) != NULL) {
2053 list_remove(&clean_list, itx);
2054 /* commit itxs should never be on the async lists. */
2055 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2056 zil_itx_destroy(itx);
2057 }
2058 list_destroy(&clean_list);
2059 }
2060
2061 void
2062 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2063 {
2064 uint64_t txg;
2065 itxg_t *itxg;
2066 itxs_t *itxs, *clean = NULL;
2067
2068 /*
2069 * Ensure the data of a renamed file is committed before the rename.
2070 */
2071 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2072 zil_async_to_sync(zilog, itx->itx_oid);
2073
2074 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2075 txg = ZILTEST_TXG;
2076 else
2077 txg = dmu_tx_get_txg(tx);
2078
2079 itxg = &zilog->zl_itxg[txg & TXG_MASK];
2080 mutex_enter(&itxg->itxg_lock);
2081 itxs = itxg->itxg_itxs;
2082 if (itxg->itxg_txg != txg) {
2083 if (itxs != NULL) {
2084 /*
2085 * The zil_clean callback hasn't got around to cleaning
2086 * this itxg. Save the itxs for release below.
2087 * This should be rare.
2088 */
2089 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2090 "txg %llu", (u_longlong_t)itxg->itxg_txg);
2091 clean = itxg->itxg_itxs;
2092 }
2093 itxg->itxg_txg = txg;
2094 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2095 KM_SLEEP);
2096
2097 list_create(&itxs->i_sync_list, sizeof (itx_t),
2098 offsetof(itx_t, itx_node));
2099 avl_create(&itxs->i_async_tree, zil_aitx_compare,
2100 sizeof (itx_async_node_t),
2101 offsetof(itx_async_node_t, ia_node));
2102 }
2103 if (itx->itx_sync) {
2104 list_insert_tail(&itxs->i_sync_list, itx);
2105 } else {
2106 avl_tree_t *t = &itxs->i_async_tree;
2107 uint64_t foid =
2108 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2109 itx_async_node_t *ian;
2110 avl_index_t where;
2111
2112 ian = avl_find(t, &foid, &where);
2113 if (ian == NULL) {
2114 ian = kmem_alloc(sizeof (itx_async_node_t),
2115 KM_SLEEP);
2116 list_create(&ian->ia_list, sizeof (itx_t),
2117 offsetof(itx_t, itx_node));
2118 ian->ia_foid = foid;
2119 avl_insert(t, ian, where);
2120 }
2121 list_insert_tail(&ian->ia_list, itx);
2122 }
2123
2124 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2125
2126 /*
2127 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2128 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2129 * need to be careful to always dirty the ZIL using the "real"
2130 * TXG (not itxg_txg) even when the SPA is frozen.
2131 */
2132 zilog_dirty(zilog, dmu_tx_get_txg(tx));
2133 mutex_exit(&itxg->itxg_lock);
2134
2135 /* Release the old itxs now we've dropped the lock */
2136 if (clean != NULL)
2137 zil_itxg_clean(clean);
2138 }
2139
2140 /*
2141 * If there are any in-memory intent log transactions which have now been
2142 * synced then start up a taskq to free them. We should only do this after we
2143 * have written out the uberblocks (i.e. txg has been committed) so that
2144 * don't inadvertently clean out in-memory log records that would be required
2145 * by zil_commit().
2146 */
2147 void
2148 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2149 {
2150 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2151 itxs_t *clean_me;
2152
2153 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2154
2155 mutex_enter(&itxg->itxg_lock);
2156 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2157 mutex_exit(&itxg->itxg_lock);
2158 return;
2159 }
2160 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2161 ASSERT3U(itxg->itxg_txg, !=, 0);
2162 clean_me = itxg->itxg_itxs;
2163 itxg->itxg_itxs = NULL;
2164 itxg->itxg_txg = 0;
2165 mutex_exit(&itxg->itxg_lock);
2166 /*
2167 * Preferably start a task queue to free up the old itxs but
2168 * if taskq_dispatch can't allocate resources to do that then
2169 * free it in-line. This should be rare. Note, using TQ_SLEEP
2170 * created a bad performance problem.
2171 */
2172 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2173 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2174 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2175 zil_itxg_clean, clean_me, TQ_NOSLEEP);
2176 if (id == TASKQID_INVALID)
2177 zil_itxg_clean(clean_me);
2178 }
2179
2180 /*
2181 * This function will traverse the queue of itxs that need to be
2182 * committed, and move them onto the ZIL's zl_itx_commit_list.
2183 */
2184 static void
2185 zil_get_commit_list(zilog_t *zilog)
2186 {
2187 uint64_t otxg, txg;
2188 list_t *commit_list = &zilog->zl_itx_commit_list;
2189
2190 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2191
2192 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2193 otxg = ZILTEST_TXG;
2194 else
2195 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2196
2197 /*
2198 * This is inherently racy, since there is nothing to prevent
2199 * the last synced txg from changing. That's okay since we'll
2200 * only commit things in the future.
2201 */
2202 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2203 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2204
2205 mutex_enter(&itxg->itxg_lock);
2206 if (itxg->itxg_txg != txg) {
2207 mutex_exit(&itxg->itxg_lock);
2208 continue;
2209 }
2210
2211 /*
2212 * If we're adding itx records to the zl_itx_commit_list,
2213 * then the zil better be dirty in this "txg". We can assert
2214 * that here since we're holding the itxg_lock which will
2215 * prevent spa_sync from cleaning it. Once we add the itxs
2216 * to the zl_itx_commit_list we must commit it to disk even
2217 * if it's unnecessary (i.e. the txg was synced).
2218 */
2219 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2220 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2221 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
2222
2223 mutex_exit(&itxg->itxg_lock);
2224 }
2225 }
2226
2227 /*
2228 * Move the async itxs for a specified object to commit into sync lists.
2229 */
2230 void
2231 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2232 {
2233 uint64_t otxg, txg;
2234 itx_async_node_t *ian;
2235 avl_tree_t *t;
2236 avl_index_t where;
2237
2238 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2239 otxg = ZILTEST_TXG;
2240 else
2241 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2242
2243 /*
2244 * This is inherently racy, since there is nothing to prevent
2245 * the last synced txg from changing.
2246 */
2247 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2248 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2249
2250 mutex_enter(&itxg->itxg_lock);
2251 if (itxg->itxg_txg != txg) {
2252 mutex_exit(&itxg->itxg_lock);
2253 continue;
2254 }
2255
2256 /*
2257 * If a foid is specified then find that node and append its
2258 * list. Otherwise walk the tree appending all the lists
2259 * to the sync list. We add to the end rather than the
2260 * beginning to ensure the create has happened.
2261 */
2262 t = &itxg->itxg_itxs->i_async_tree;
2263 if (foid != 0) {
2264 ian = avl_find(t, &foid, &where);
2265 if (ian != NULL) {
2266 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2267 &ian->ia_list);
2268 }
2269 } else {
2270 void *cookie = NULL;
2271
2272 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2273 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2274 &ian->ia_list);
2275 list_destroy(&ian->ia_list);
2276 kmem_free(ian, sizeof (itx_async_node_t));
2277 }
2278 }
2279 mutex_exit(&itxg->itxg_lock);
2280 }
2281 }
2282
2283 /*
2284 * This function will prune commit itxs that are at the head of the
2285 * commit list (it won't prune past the first non-commit itx), and
2286 * either: a) attach them to the last lwb that's still pending
2287 * completion, or b) skip them altogether.
2288 *
2289 * This is used as a performance optimization to prevent commit itxs
2290 * from generating new lwbs when it's unnecessary to do so.
2291 */
2292 static void
2293 zil_prune_commit_list(zilog_t *zilog)
2294 {
2295 itx_t *itx;
2296
2297 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2298
2299 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2300 lr_t *lrc = &itx->itx_lr;
2301 if (lrc->lrc_txtype != TX_COMMIT)
2302 break;
2303
2304 mutex_enter(&zilog->zl_lock);
2305
2306 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2307 if (last_lwb == NULL ||
2308 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2309 /*
2310 * All of the itxs this waiter was waiting on
2311 * must have already completed (or there were
2312 * never any itx's for it to wait on), so it's
2313 * safe to skip this waiter and mark it done.
2314 */
2315 zil_commit_waiter_skip(itx->itx_private);
2316 } else {
2317 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2318 itx->itx_private = NULL;
2319 }
2320
2321 mutex_exit(&zilog->zl_lock);
2322
2323 list_remove(&zilog->zl_itx_commit_list, itx);
2324 zil_itx_destroy(itx);
2325 }
2326
2327 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2328 }
2329
2330 static void
2331 zil_commit_writer_stall(zilog_t *zilog)
2332 {
2333 /*
2334 * When zio_alloc_zil() fails to allocate the next lwb block on
2335 * disk, we must call txg_wait_synced() to ensure all of the
2336 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2337 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2338 * to zil_process_commit_list()) will have to call zil_create(),
2339 * and start a new ZIL chain.
2340 *
2341 * Since zil_alloc_zil() failed, the lwb that was previously
2342 * issued does not have a pointer to the "next" lwb on disk.
2343 * Thus, if another ZIL writer thread was to allocate the "next"
2344 * on-disk lwb, that block could be leaked in the event of a
2345 * crash (because the previous lwb on-disk would not point to
2346 * it).
2347 *
2348 * We must hold the zilog's zl_issuer_lock while we do this, to
2349 * ensure no new threads enter zil_process_commit_list() until
2350 * all lwb's in the zl_lwb_list have been synced and freed
2351 * (which is achieved via the txg_wait_synced() call).
2352 */
2353 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2354 txg_wait_synced(zilog->zl_dmu_pool, 0);
2355 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
2356 }
2357
2358 /*
2359 * This function will traverse the commit list, creating new lwbs as
2360 * needed, and committing the itxs from the commit list to these newly
2361 * created lwbs. Additionally, as a new lwb is created, the previous
2362 * lwb will be issued to the zio layer to be written to disk.
2363 */
2364 static void
2365 zil_process_commit_list(zilog_t *zilog)
2366 {
2367 spa_t *spa = zilog->zl_spa;
2368 list_t nolwb_itxs;
2369 list_t nolwb_waiters;
2370 lwb_t *lwb;
2371 itx_t *itx;
2372
2373 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2374
2375 /*
2376 * Return if there's nothing to commit before we dirty the fs by
2377 * calling zil_create().
2378 */
2379 if (list_head(&zilog->zl_itx_commit_list) == NULL)
2380 return;
2381
2382 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2383 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2384 offsetof(zil_commit_waiter_t, zcw_node));
2385
2386 lwb = list_tail(&zilog->zl_lwb_list);
2387 if (lwb == NULL) {
2388 lwb = zil_create(zilog);
2389 } else {
2390 /*
2391 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2392 * have already been created (zl_lwb_list not empty).
2393 */
2394 zil_commit_activate_saxattr_feature(zilog);
2395 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2396 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2397 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2398 }
2399
2400 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2401 lr_t *lrc = &itx->itx_lr;
2402 uint64_t txg = lrc->lrc_txg;
2403
2404 ASSERT3U(txg, !=, 0);
2405
2406 if (lrc->lrc_txtype == TX_COMMIT) {
2407 DTRACE_PROBE2(zil__process__commit__itx,
2408 zilog_t *, zilog, itx_t *, itx);
2409 } else {
2410 DTRACE_PROBE2(zil__process__normal__itx,
2411 zilog_t *, zilog, itx_t *, itx);
2412 }
2413
2414 list_remove(&zilog->zl_itx_commit_list, itx);
2415
2416 boolean_t synced = txg <= spa_last_synced_txg(spa);
2417 boolean_t frozen = txg > spa_freeze_txg(spa);
2418
2419 /*
2420 * If the txg of this itx has already been synced out, then
2421 * we don't need to commit this itx to an lwb. This is
2422 * because the data of this itx will have already been
2423 * written to the main pool. This is inherently racy, and
2424 * it's still ok to commit an itx whose txg has already
2425 * been synced; this will result in a write that's
2426 * unnecessary, but will do no harm.
2427 *
2428 * With that said, we always want to commit TX_COMMIT itxs
2429 * to an lwb, regardless of whether or not that itx's txg
2430 * has been synced out. We do this to ensure any OPENED lwb
2431 * will always have at least one zil_commit_waiter_t linked
2432 * to the lwb.
2433 *
2434 * As a counter-example, if we skipped TX_COMMIT itx's
2435 * whose txg had already been synced, the following
2436 * situation could occur if we happened to be racing with
2437 * spa_sync:
2438 *
2439 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2440 * itx's txg is 10 and the last synced txg is 9.
2441 * 2. spa_sync finishes syncing out txg 10.
2442 * 3. We move to the next itx in the list, it's a TX_COMMIT
2443 * whose txg is 10, so we skip it rather than committing
2444 * it to the lwb used in (1).
2445 *
2446 * If the itx that is skipped in (3) is the last TX_COMMIT
2447 * itx in the commit list, than it's possible for the lwb
2448 * used in (1) to remain in the OPENED state indefinitely.
2449 *
2450 * To prevent the above scenario from occurring, ensuring
2451 * that once an lwb is OPENED it will transition to ISSUED
2452 * and eventually DONE, we always commit TX_COMMIT itx's to
2453 * an lwb here, even if that itx's txg has already been
2454 * synced.
2455 *
2456 * Finally, if the pool is frozen, we _always_ commit the
2457 * itx. The point of freezing the pool is to prevent data
2458 * from being written to the main pool via spa_sync, and
2459 * instead rely solely on the ZIL to persistently store the
2460 * data; i.e. when the pool is frozen, the last synced txg
2461 * value can't be trusted.
2462 */
2463 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2464 if (lwb != NULL) {
2465 lwb = zil_lwb_commit(zilog, itx, lwb);
2466
2467 if (lwb == NULL)
2468 list_insert_tail(&nolwb_itxs, itx);
2469 else
2470 list_insert_tail(&lwb->lwb_itxs, itx);
2471 } else {
2472 if (lrc->lrc_txtype == TX_COMMIT) {
2473 zil_commit_waiter_link_nolwb(
2474 itx->itx_private, &nolwb_waiters);
2475 }
2476
2477 list_insert_tail(&nolwb_itxs, itx);
2478 }
2479 } else {
2480 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2481 zil_itx_destroy(itx);
2482 }
2483 }
2484
2485 if (lwb == NULL) {
2486 /*
2487 * This indicates zio_alloc_zil() failed to allocate the
2488 * "next" lwb on-disk. When this happens, we must stall
2489 * the ZIL write pipeline; see the comment within
2490 * zil_commit_writer_stall() for more details.
2491 */
2492 zil_commit_writer_stall(zilog);
2493
2494 /*
2495 * Additionally, we have to signal and mark the "nolwb"
2496 * waiters as "done" here, since without an lwb, we
2497 * can't do this via zil_lwb_flush_vdevs_done() like
2498 * normal.
2499 */
2500 zil_commit_waiter_t *zcw;
2501 while ((zcw = list_head(&nolwb_waiters)) != NULL) {
2502 zil_commit_waiter_skip(zcw);
2503 list_remove(&nolwb_waiters, zcw);
2504 }
2505
2506 /*
2507 * And finally, we have to destroy the itx's that
2508 * couldn't be committed to an lwb; this will also call
2509 * the itx's callback if one exists for the itx.
2510 */
2511 while ((itx = list_head(&nolwb_itxs)) != NULL) {
2512 list_remove(&nolwb_itxs, itx);
2513 zil_itx_destroy(itx);
2514 }
2515 } else {
2516 ASSERT(list_is_empty(&nolwb_waiters));
2517 ASSERT3P(lwb, !=, NULL);
2518 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
2519 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
2520 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
2521
2522 /*
2523 * At this point, the ZIL block pointed at by the "lwb"
2524 * variable is in one of the following states: "closed"
2525 * or "open".
2526 *
2527 * If it's "closed", then no itxs have been committed to
2528 * it, so there's no point in issuing its zio (i.e. it's
2529 * "empty").
2530 *
2531 * If it's "open", then it contains one or more itxs that
2532 * eventually need to be committed to stable storage. In
2533 * this case we intentionally do not issue the lwb's zio
2534 * to disk yet, and instead rely on one of the following
2535 * two mechanisms for issuing the zio:
2536 *
2537 * 1. Ideally, there will be more ZIL activity occurring
2538 * on the system, such that this function will be
2539 * immediately called again (not necessarily by the same
2540 * thread) and this lwb's zio will be issued via
2541 * zil_lwb_commit(). This way, the lwb is guaranteed to
2542 * be "full" when it is issued to disk, and we'll make
2543 * use of the lwb's size the best we can.
2544 *
2545 * 2. If there isn't sufficient ZIL activity occurring on
2546 * the system, such that this lwb's zio isn't issued via
2547 * zil_lwb_commit(), zil_commit_waiter() will issue the
2548 * lwb's zio. If this occurs, the lwb is not guaranteed
2549 * to be "full" by the time its zio is issued, and means
2550 * the size of the lwb was "too large" given the amount
2551 * of ZIL activity occurring on the system at that time.
2552 *
2553 * We do this for a couple of reasons:
2554 *
2555 * 1. To try and reduce the number of IOPs needed to
2556 * write the same number of itxs. If an lwb has space
2557 * available in its buffer for more itxs, and more itxs
2558 * will be committed relatively soon (relative to the
2559 * latency of performing a write), then it's beneficial
2560 * to wait for these "next" itxs. This way, more itxs
2561 * can be committed to stable storage with fewer writes.
2562 *
2563 * 2. To try and use the largest lwb block size that the
2564 * incoming rate of itxs can support. Again, this is to
2565 * try and pack as many itxs into as few lwbs as
2566 * possible, without significantly impacting the latency
2567 * of each individual itx.
2568 */
2569 }
2570 }
2571
2572 /*
2573 * This function is responsible for ensuring the passed in commit waiter
2574 * (and associated commit itx) is committed to an lwb. If the waiter is
2575 * not already committed to an lwb, all itxs in the zilog's queue of
2576 * itxs will be processed. The assumption is the passed in waiter's
2577 * commit itx will found in the queue just like the other non-commit
2578 * itxs, such that when the entire queue is processed, the waiter will
2579 * have been committed to an lwb.
2580 *
2581 * The lwb associated with the passed in waiter is not guaranteed to
2582 * have been issued by the time this function completes. If the lwb is
2583 * not issued, we rely on future calls to zil_commit_writer() to issue
2584 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2585 */
2586 static void
2587 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2588 {
2589 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2590 ASSERT(spa_writeable(zilog->zl_spa));
2591
2592 mutex_enter(&zilog->zl_issuer_lock);
2593
2594 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
2595 /*
2596 * It's possible that, while we were waiting to acquire
2597 * the "zl_issuer_lock", another thread committed this
2598 * waiter to an lwb. If that occurs, we bail out early,
2599 * without processing any of the zilog's queue of itxs.
2600 *
2601 * On certain workloads and system configurations, the
2602 * "zl_issuer_lock" can become highly contended. In an
2603 * attempt to reduce this contention, we immediately drop
2604 * the lock if the waiter has already been processed.
2605 *
2606 * We've measured this optimization to reduce CPU spent
2607 * contending on this lock by up to 5%, using a system
2608 * with 32 CPUs, low latency storage (~50 usec writes),
2609 * and 1024 threads performing sync writes.
2610 */
2611 goto out;
2612 }
2613
2614 ZIL_STAT_BUMP(zil_commit_writer_count);
2615
2616 zil_get_commit_list(zilog);
2617 zil_prune_commit_list(zilog);
2618 zil_process_commit_list(zilog);
2619
2620 out:
2621 mutex_exit(&zilog->zl_issuer_lock);
2622 }
2623
2624 static void
2625 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
2626 {
2627 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2628 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2629 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
2630
2631 lwb_t *lwb = zcw->zcw_lwb;
2632 ASSERT3P(lwb, !=, NULL);
2633 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_CLOSED);
2634
2635 /*
2636 * If the lwb has already been issued by another thread, we can
2637 * immediately return since there's no work to be done (the
2638 * point of this function is to issue the lwb). Additionally, we
2639 * do this prior to acquiring the zl_issuer_lock, to avoid
2640 * acquiring it when it's not necessary to do so.
2641 */
2642 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2643 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2644 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2645 return;
2646
2647 /*
2648 * In order to call zil_lwb_write_issue() we must hold the
2649 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
2650 * since we're already holding the commit waiter's "zcw_lock",
2651 * and those two locks are acquired in the opposite order
2652 * elsewhere.
2653 */
2654 mutex_exit(&zcw->zcw_lock);
2655 mutex_enter(&zilog->zl_issuer_lock);
2656 mutex_enter(&zcw->zcw_lock);
2657
2658 /*
2659 * Since we just dropped and re-acquired the commit waiter's
2660 * lock, we have to re-check to see if the waiter was marked
2661 * "done" during that process. If the waiter was marked "done",
2662 * the "lwb" pointer is no longer valid (it can be free'd after
2663 * the waiter is marked "done"), so without this check we could
2664 * wind up with a use-after-free error below.
2665 */
2666 if (zcw->zcw_done)
2667 goto out;
2668
2669 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2670
2671 /*
2672 * We've already checked this above, but since we hadn't acquired
2673 * the zilog's zl_issuer_lock, we have to perform this check a
2674 * second time while holding the lock.
2675 *
2676 * We don't need to hold the zl_lock since the lwb cannot transition
2677 * from OPENED to ISSUED while we hold the zl_issuer_lock. The lwb
2678 * _can_ transition from ISSUED to DONE, but it's OK to race with
2679 * that transition since we treat the lwb the same, whether it's in
2680 * the ISSUED or DONE states.
2681 *
2682 * The important thing, is we treat the lwb differently depending on
2683 * if it's ISSUED or OPENED, and block any other threads that might
2684 * attempt to issue this lwb. For that reason we hold the
2685 * zl_issuer_lock when checking the lwb_state; we must not call
2686 * zil_lwb_write_issue() if the lwb had already been issued.
2687 *
2688 * See the comment above the lwb_state_t structure definition for
2689 * more details on the lwb states, and locking requirements.
2690 */
2691 if (lwb->lwb_state == LWB_STATE_ISSUED ||
2692 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2693 lwb->lwb_state == LWB_STATE_FLUSH_DONE)
2694 goto out;
2695
2696 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
2697
2698 /*
2699 * As described in the comments above zil_commit_waiter() and
2700 * zil_process_commit_list(), we need to issue this lwb's zio
2701 * since we've reached the commit waiter's timeout and it still
2702 * hasn't been issued.
2703 */
2704 lwb_t *nlwb = zil_lwb_write_issue(zilog, lwb);
2705
2706 IMPLY(nlwb != NULL, lwb->lwb_state != LWB_STATE_OPENED);
2707
2708 /*
2709 * Since the lwb's zio hadn't been issued by the time this thread
2710 * reached its timeout, we reset the zilog's "zl_cur_used" field
2711 * to influence the zil block size selection algorithm.
2712 *
2713 * By having to issue the lwb's zio here, it means the size of the
2714 * lwb was too large, given the incoming throughput of itxs. By
2715 * setting "zl_cur_used" to zero, we communicate this fact to the
2716 * block size selection algorithm, so it can take this information
2717 * into account, and potentially select a smaller size for the
2718 * next lwb block that is allocated.
2719 */
2720 zilog->zl_cur_used = 0;
2721
2722 if (nlwb == NULL) {
2723 /*
2724 * When zil_lwb_write_issue() returns NULL, this
2725 * indicates zio_alloc_zil() failed to allocate the
2726 * "next" lwb on-disk. When this occurs, the ZIL write
2727 * pipeline must be stalled; see the comment within the
2728 * zil_commit_writer_stall() function for more details.
2729 *
2730 * We must drop the commit waiter's lock prior to
2731 * calling zil_commit_writer_stall() or else we can wind
2732 * up with the following deadlock:
2733 *
2734 * - This thread is waiting for the txg to sync while
2735 * holding the waiter's lock; txg_wait_synced() is
2736 * used within txg_commit_writer_stall().
2737 *
2738 * - The txg can't sync because it is waiting for this
2739 * lwb's zio callback to call dmu_tx_commit().
2740 *
2741 * - The lwb's zio callback can't call dmu_tx_commit()
2742 * because it's blocked trying to acquire the waiter's
2743 * lock, which occurs prior to calling dmu_tx_commit()
2744 */
2745 mutex_exit(&zcw->zcw_lock);
2746 zil_commit_writer_stall(zilog);
2747 mutex_enter(&zcw->zcw_lock);
2748 }
2749
2750 out:
2751 mutex_exit(&zilog->zl_issuer_lock);
2752 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2753 }
2754
2755 /*
2756 * This function is responsible for performing the following two tasks:
2757 *
2758 * 1. its primary responsibility is to block until the given "commit
2759 * waiter" is considered "done".
2760 *
2761 * 2. its secondary responsibility is to issue the zio for the lwb that
2762 * the given "commit waiter" is waiting on, if this function has
2763 * waited "long enough" and the lwb is still in the "open" state.
2764 *
2765 * Given a sufficient amount of itxs being generated and written using
2766 * the ZIL, the lwb's zio will be issued via the zil_lwb_commit()
2767 * function. If this does not occur, this secondary responsibility will
2768 * ensure the lwb is issued even if there is not other synchronous
2769 * activity on the system.
2770 *
2771 * For more details, see zil_process_commit_list(); more specifically,
2772 * the comment at the bottom of that function.
2773 */
2774 static void
2775 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
2776 {
2777 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2778 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
2779 ASSERT(spa_writeable(zilog->zl_spa));
2780
2781 mutex_enter(&zcw->zcw_lock);
2782
2783 /*
2784 * The timeout is scaled based on the lwb latency to avoid
2785 * significantly impacting the latency of each individual itx.
2786 * For more details, see the comment at the bottom of the
2787 * zil_process_commit_list() function.
2788 */
2789 int pct = MAX(zfs_commit_timeout_pct, 1);
2790 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
2791 hrtime_t wakeup = gethrtime() + sleep;
2792 boolean_t timedout = B_FALSE;
2793
2794 while (!zcw->zcw_done) {
2795 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
2796
2797 lwb_t *lwb = zcw->zcw_lwb;
2798
2799 /*
2800 * Usually, the waiter will have a non-NULL lwb field here,
2801 * but it's possible for it to be NULL as a result of
2802 * zil_commit() racing with spa_sync().
2803 *
2804 * When zil_clean() is called, it's possible for the itxg
2805 * list (which may be cleaned via a taskq) to contain
2806 * commit itxs. When this occurs, the commit waiters linked
2807 * off of these commit itxs will not be committed to an
2808 * lwb. Additionally, these commit waiters will not be
2809 * marked done until zil_commit_waiter_skip() is called via
2810 * zil_itxg_clean().
2811 *
2812 * Thus, it's possible for this commit waiter (i.e. the
2813 * "zcw" variable) to be found in this "in between" state;
2814 * where it's "zcw_lwb" field is NULL, and it hasn't yet
2815 * been skipped, so it's "zcw_done" field is still B_FALSE.
2816 */
2817 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_CLOSED);
2818
2819 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
2820 ASSERT3B(timedout, ==, B_FALSE);
2821
2822 /*
2823 * If the lwb hasn't been issued yet, then we
2824 * need to wait with a timeout, in case this
2825 * function needs to issue the lwb after the
2826 * timeout is reached; responsibility (2) from
2827 * the comment above this function.
2828 */
2829 int rc = cv_timedwait_hires(&zcw->zcw_cv,
2830 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
2831 CALLOUT_FLAG_ABSOLUTE);
2832
2833 if (rc != -1 || zcw->zcw_done)
2834 continue;
2835
2836 timedout = B_TRUE;
2837 zil_commit_waiter_timeout(zilog, zcw);
2838
2839 if (!zcw->zcw_done) {
2840 /*
2841 * If the commit waiter has already been
2842 * marked "done", it's possible for the
2843 * waiter's lwb structure to have already
2844 * been freed. Thus, we can only reliably
2845 * make these assertions if the waiter
2846 * isn't done.
2847 */
2848 ASSERT3P(lwb, ==, zcw->zcw_lwb);
2849 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
2850 }
2851 } else {
2852 /*
2853 * If the lwb isn't open, then it must have already
2854 * been issued. In that case, there's no need to
2855 * use a timeout when waiting for the lwb to
2856 * complete.
2857 *
2858 * Additionally, if the lwb is NULL, the waiter
2859 * will soon be signaled and marked done via
2860 * zil_clean() and zil_itxg_clean(), so no timeout
2861 * is required.
2862 */
2863
2864 IMPLY(lwb != NULL,
2865 lwb->lwb_state == LWB_STATE_ISSUED ||
2866 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
2867 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
2868 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
2869 }
2870 }
2871
2872 mutex_exit(&zcw->zcw_lock);
2873 }
2874
2875 static zil_commit_waiter_t *
2876 zil_alloc_commit_waiter(void)
2877 {
2878 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
2879
2880 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
2881 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
2882 list_link_init(&zcw->zcw_node);
2883 zcw->zcw_lwb = NULL;
2884 zcw->zcw_done = B_FALSE;
2885 zcw->zcw_zio_error = 0;
2886
2887 return (zcw);
2888 }
2889
2890 static void
2891 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
2892 {
2893 ASSERT(!list_link_active(&zcw->zcw_node));
2894 ASSERT3P(zcw->zcw_lwb, ==, NULL);
2895 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
2896 mutex_destroy(&zcw->zcw_lock);
2897 cv_destroy(&zcw->zcw_cv);
2898 kmem_cache_free(zil_zcw_cache, zcw);
2899 }
2900
2901 /*
2902 * This function is used to create a TX_COMMIT itx and assign it. This
2903 * way, it will be linked into the ZIL's list of synchronous itxs, and
2904 * then later committed to an lwb (or skipped) when
2905 * zil_process_commit_list() is called.
2906 */
2907 static void
2908 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
2909 {
2910 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
2911 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
2912
2913 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
2914 itx->itx_sync = B_TRUE;
2915 itx->itx_private = zcw;
2916
2917 zil_itx_assign(zilog, itx, tx);
2918
2919 dmu_tx_commit(tx);
2920 }
2921
2922 /*
2923 * Commit ZFS Intent Log transactions (itxs) to stable storage.
2924 *
2925 * When writing ZIL transactions to the on-disk representation of the
2926 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
2927 * itxs can be committed to a single lwb. Once a lwb is written and
2928 * committed to stable storage (i.e. the lwb is written, and vdevs have
2929 * been flushed), each itx that was committed to that lwb is also
2930 * considered to be committed to stable storage.
2931 *
2932 * When an itx is committed to an lwb, the log record (lr_t) contained
2933 * by the itx is copied into the lwb's zio buffer, and once this buffer
2934 * is written to disk, it becomes an on-disk ZIL block.
2935 *
2936 * As itxs are generated, they're inserted into the ZIL's queue of
2937 * uncommitted itxs. The semantics of zil_commit() are such that it will
2938 * block until all itxs that were in the queue when it was called, are
2939 * committed to stable storage.
2940 *
2941 * If "foid" is zero, this means all "synchronous" and "asynchronous"
2942 * itxs, for all objects in the dataset, will be committed to stable
2943 * storage prior to zil_commit() returning. If "foid" is non-zero, all
2944 * "synchronous" itxs for all objects, but only "asynchronous" itxs
2945 * that correspond to the foid passed in, will be committed to stable
2946 * storage prior to zil_commit() returning.
2947 *
2948 * Generally speaking, when zil_commit() is called, the consumer doesn't
2949 * actually care about _all_ of the uncommitted itxs. Instead, they're
2950 * simply trying to waiting for a specific itx to be committed to disk,
2951 * but the interface(s) for interacting with the ZIL don't allow such
2952 * fine-grained communication. A better interface would allow a consumer
2953 * to create and assign an itx, and then pass a reference to this itx to
2954 * zil_commit(); such that zil_commit() would return as soon as that
2955 * specific itx was committed to disk (instead of waiting for _all_
2956 * itxs to be committed).
2957 *
2958 * When a thread calls zil_commit() a special "commit itx" will be
2959 * generated, along with a corresponding "waiter" for this commit itx.
2960 * zil_commit() will wait on this waiter's CV, such that when the waiter
2961 * is marked done, and signaled, zil_commit() will return.
2962 *
2963 * This commit itx is inserted into the queue of uncommitted itxs. This
2964 * provides an easy mechanism for determining which itxs were in the
2965 * queue prior to zil_commit() having been called, and which itxs were
2966 * added after zil_commit() was called.
2967 *
2968 * The commit it is special; it doesn't have any on-disk representation.
2969 * When a commit itx is "committed" to an lwb, the waiter associated
2970 * with it is linked onto the lwb's list of waiters. Then, when that lwb
2971 * completes, each waiter on the lwb's list is marked done and signaled
2972 * -- allowing the thread waiting on the waiter to return from zil_commit().
2973 *
2974 * It's important to point out a few critical factors that allow us
2975 * to make use of the commit itxs, commit waiters, per-lwb lists of
2976 * commit waiters, and zio completion callbacks like we're doing:
2977 *
2978 * 1. The list of waiters for each lwb is traversed, and each commit
2979 * waiter is marked "done" and signaled, in the zio completion
2980 * callback of the lwb's zio[*].
2981 *
2982 * * Actually, the waiters are signaled in the zio completion
2983 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
2984 * that are sent to the vdevs upon completion of the lwb zio.
2985 *
2986 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
2987 * itxs, the order in which they are inserted is preserved[*]; as
2988 * itxs are added to the queue, they are added to the tail of
2989 * in-memory linked lists.
2990 *
2991 * When committing the itxs to lwbs (to be written to disk), they
2992 * are committed in the same order in which the itxs were added to
2993 * the uncommitted queue's linked list(s); i.e. the linked list of
2994 * itxs to commit is traversed from head to tail, and each itx is
2995 * committed to an lwb in that order.
2996 *
2997 * * To clarify:
2998 *
2999 * - the order of "sync" itxs is preserved w.r.t. other
3000 * "sync" itxs, regardless of the corresponding objects.
3001 * - the order of "async" itxs is preserved w.r.t. other
3002 * "async" itxs corresponding to the same object.
3003 * - the order of "async" itxs is *not* preserved w.r.t. other
3004 * "async" itxs corresponding to different objects.
3005 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
3006 * versa) is *not* preserved, even for itxs that correspond
3007 * to the same object.
3008 *
3009 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
3010 * zil_get_commit_list(), and zil_process_commit_list().
3011 *
3012 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
3013 * lwb cannot be considered committed to stable storage, until its
3014 * "previous" lwb is also committed to stable storage. This fact,
3015 * coupled with the fact described above, means that itxs are
3016 * committed in (roughly) the order in which they were generated.
3017 * This is essential because itxs are dependent on prior itxs.
3018 * Thus, we *must not* deem an itx as being committed to stable
3019 * storage, until *all* prior itxs have also been committed to
3020 * stable storage.
3021 *
3022 * To enforce this ordering of lwb zio's, while still leveraging as
3023 * much of the underlying storage performance as possible, we rely
3024 * on two fundamental concepts:
3025 *
3026 * 1. The creation and issuance of lwb zio's is protected by
3027 * the zilog's "zl_issuer_lock", which ensures only a single
3028 * thread is creating and/or issuing lwb's at a time
3029 * 2. The "previous" lwb is a child of the "current" lwb
3030 * (leveraging the zio parent-child dependency graph)
3031 *
3032 * By relying on this parent-child zio relationship, we can have
3033 * many lwb zio's concurrently issued to the underlying storage,
3034 * but the order in which they complete will be the same order in
3035 * which they were created.
3036 */
3037 void
3038 zil_commit(zilog_t *zilog, uint64_t foid)
3039 {
3040 /*
3041 * We should never attempt to call zil_commit on a snapshot for
3042 * a couple of reasons:
3043 *
3044 * 1. A snapshot may never be modified, thus it cannot have any
3045 * in-flight itxs that would have modified the dataset.
3046 *
3047 * 2. By design, when zil_commit() is called, a commit itx will
3048 * be assigned to this zilog; as a result, the zilog will be
3049 * dirtied. We must not dirty the zilog of a snapshot; there's
3050 * checks in the code that enforce this invariant, and will
3051 * cause a panic if it's not upheld.
3052 */
3053 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3054
3055 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3056 return;
3057
3058 if (!spa_writeable(zilog->zl_spa)) {
3059 /*
3060 * If the SPA is not writable, there should never be any
3061 * pending itxs waiting to be committed to disk. If that
3062 * weren't true, we'd skip writing those itxs out, and
3063 * would break the semantics of zil_commit(); thus, we're
3064 * verifying that truth before we return to the caller.
3065 */
3066 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3067 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3068 for (int i = 0; i < TXG_SIZE; i++)
3069 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3070 return;
3071 }
3072
3073 /*
3074 * If the ZIL is suspended, we don't want to dirty it by calling
3075 * zil_commit_itx_assign() below, nor can we write out
3076 * lwbs like would be done in zil_commit_write(). Thus, we
3077 * simply rely on txg_wait_synced() to maintain the necessary
3078 * semantics, and avoid calling those functions altogether.
3079 */
3080 if (zilog->zl_suspend > 0) {
3081 txg_wait_synced(zilog->zl_dmu_pool, 0);
3082 return;
3083 }
3084
3085 zil_commit_impl(zilog, foid);
3086 }
3087
3088 void
3089 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3090 {
3091 ZIL_STAT_BUMP(zil_commit_count);
3092
3093 /*
3094 * Move the "async" itxs for the specified foid to the "sync"
3095 * queues, such that they will be later committed (or skipped)
3096 * to an lwb when zil_process_commit_list() is called.
3097 *
3098 * Since these "async" itxs must be committed prior to this
3099 * call to zil_commit returning, we must perform this operation
3100 * before we call zil_commit_itx_assign().
3101 */
3102 zil_async_to_sync(zilog, foid);
3103
3104 /*
3105 * We allocate a new "waiter" structure which will initially be
3106 * linked to the commit itx using the itx's "itx_private" field.
3107 * Since the commit itx doesn't represent any on-disk state,
3108 * when it's committed to an lwb, rather than copying the its
3109 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3110 * added to the lwb's list of waiters. Then, when the lwb is
3111 * committed to stable storage, each waiter in the lwb's list of
3112 * waiters will be marked "done", and signalled.
3113 *
3114 * We must create the waiter and assign the commit itx prior to
3115 * calling zil_commit_writer(), or else our specific commit itx
3116 * is not guaranteed to be committed to an lwb prior to calling
3117 * zil_commit_waiter().
3118 */
3119 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3120 zil_commit_itx_assign(zilog, zcw);
3121
3122 zil_commit_writer(zilog, zcw);
3123 zil_commit_waiter(zilog, zcw);
3124
3125 if (zcw->zcw_zio_error != 0) {
3126 /*
3127 * If there was an error writing out the ZIL blocks that
3128 * this thread is waiting on, then we fallback to
3129 * relying on spa_sync() to write out the data this
3130 * thread is waiting on. Obviously this has performance
3131 * implications, but the expectation is for this to be
3132 * an exceptional case, and shouldn't occur often.
3133 */
3134 DTRACE_PROBE2(zil__commit__io__error,
3135 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3136 txg_wait_synced(zilog->zl_dmu_pool, 0);
3137 }
3138
3139 zil_free_commit_waiter(zcw);
3140 }
3141
3142 /*
3143 * Called in syncing context to free committed log blocks and update log header.
3144 */
3145 void
3146 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3147 {
3148 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3149 uint64_t txg = dmu_tx_get_txg(tx);
3150 spa_t *spa = zilog->zl_spa;
3151 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3152 lwb_t *lwb;
3153
3154 /*
3155 * We don't zero out zl_destroy_txg, so make sure we don't try
3156 * to destroy it twice.
3157 */
3158 if (spa_sync_pass(spa) != 1)
3159 return;
3160
3161 zil_lwb_flush_wait_all(zilog, txg);
3162
3163 mutex_enter(&zilog->zl_lock);
3164
3165 ASSERT(zilog->zl_stop_sync == 0);
3166
3167 if (*replayed_seq != 0) {
3168 ASSERT(zh->zh_replay_seq < *replayed_seq);
3169 zh->zh_replay_seq = *replayed_seq;
3170 *replayed_seq = 0;
3171 }
3172
3173 if (zilog->zl_destroy_txg == txg) {
3174 blkptr_t blk = zh->zh_log;
3175 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3176
3177 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
3178
3179 memset(zh, 0, sizeof (zil_header_t));
3180 memset(zilog->zl_replayed_seq, 0,
3181 sizeof (zilog->zl_replayed_seq));
3182
3183 if (zilog->zl_keep_first) {
3184 /*
3185 * If this block was part of log chain that couldn't
3186 * be claimed because a device was missing during
3187 * zil_claim(), but that device later returns,
3188 * then this block could erroneously appear valid.
3189 * To guard against this, assign a new GUID to the new
3190 * log chain so it doesn't matter what blk points to.
3191 */
3192 zil_init_log_chain(zilog, &blk);
3193 zh->zh_log = blk;
3194 } else {
3195 /*
3196 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3197 * records. So, deactivate the feature for this dataset.
3198 * We activate it again when we start a new ZIL chain.
3199 */
3200 if (dsl_dataset_feature_is_active(ds,
3201 SPA_FEATURE_ZILSAXATTR))
3202 dsl_dataset_deactivate_feature(ds,
3203 SPA_FEATURE_ZILSAXATTR, tx);
3204 }
3205 }
3206
3207 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3208 zh->zh_log = lwb->lwb_blk;
3209 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
3210 break;
3211 list_remove(&zilog->zl_lwb_list, lwb);
3212 zio_free(spa, txg, &lwb->lwb_blk);
3213 zil_free_lwb(zilog, lwb);
3214
3215 /*
3216 * If we don't have anything left in the lwb list then
3217 * we've had an allocation failure and we need to zero
3218 * out the zil_header blkptr so that we don't end
3219 * up freeing the same block twice.
3220 */
3221 if (list_head(&zilog->zl_lwb_list) == NULL)
3222 BP_ZERO(&zh->zh_log);
3223 }
3224
3225 /*
3226 * Remove fastwrite on any blocks that have been pre-allocated for
3227 * the next commit. This prevents fastwrite counter pollution by
3228 * unused, long-lived LWBs.
3229 */
3230 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
3231 if (lwb->lwb_fastwrite && !lwb->lwb_write_zio) {
3232 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3233 lwb->lwb_fastwrite = 0;
3234 }
3235 }
3236
3237 mutex_exit(&zilog->zl_lock);
3238 }
3239
3240 static int
3241 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3242 {
3243 (void) unused, (void) kmflag;
3244 lwb_t *lwb = vbuf;
3245 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3246 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3247 offsetof(zil_commit_waiter_t, zcw_node));
3248 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3249 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3250 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3251 return (0);
3252 }
3253
3254 static void
3255 zil_lwb_dest(void *vbuf, void *unused)
3256 {
3257 (void) unused;
3258 lwb_t *lwb = vbuf;
3259 mutex_destroy(&lwb->lwb_vdev_lock);
3260 avl_destroy(&lwb->lwb_vdev_tree);
3261 list_destroy(&lwb->lwb_waiters);
3262 list_destroy(&lwb->lwb_itxs);
3263 }
3264
3265 void
3266 zil_init(void)
3267 {
3268 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3269 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3270
3271 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3272 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3273
3274 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
3275 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3276 KSTAT_FLAG_VIRTUAL);
3277
3278 if (zil_ksp != NULL) {
3279 zil_ksp->ks_data = &zil_stats;
3280 kstat_install(zil_ksp);
3281 }
3282 }
3283
3284 void
3285 zil_fini(void)
3286 {
3287 kmem_cache_destroy(zil_zcw_cache);
3288 kmem_cache_destroy(zil_lwb_cache);
3289
3290 if (zil_ksp != NULL) {
3291 kstat_delete(zil_ksp);
3292 zil_ksp = NULL;
3293 }
3294 }
3295
3296 void
3297 zil_set_sync(zilog_t *zilog, uint64_t sync)
3298 {
3299 zilog->zl_sync = sync;
3300 }
3301
3302 void
3303 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3304 {
3305 zilog->zl_logbias = logbias;
3306 }
3307
3308 zilog_t *
3309 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3310 {
3311 zilog_t *zilog;
3312
3313 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3314
3315 zilog->zl_header = zh_phys;
3316 zilog->zl_os = os;
3317 zilog->zl_spa = dmu_objset_spa(os);
3318 zilog->zl_dmu_pool = dmu_objset_pool(os);
3319 zilog->zl_destroy_txg = TXG_INITIAL - 1;
3320 zilog->zl_logbias = dmu_objset_logbias(os);
3321 zilog->zl_sync = dmu_objset_syncprop(os);
3322 zilog->zl_dirty_max_txg = 0;
3323 zilog->zl_last_lwb_opened = NULL;
3324 zilog->zl_last_lwb_latency = 0;
3325 zilog->zl_max_block_size = zil_maxblocksize;
3326
3327 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3328 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3329 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3330
3331 for (int i = 0; i < TXG_SIZE; i++) {
3332 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3333 MUTEX_DEFAULT, NULL);
3334 }
3335
3336 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3337 offsetof(lwb_t, lwb_node));
3338
3339 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3340 offsetof(itx_t, itx_node));
3341
3342 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3343 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3344
3345 return (zilog);
3346 }
3347
3348 void
3349 zil_free(zilog_t *zilog)
3350 {
3351 int i;
3352
3353 zilog->zl_stop_sync = 1;
3354
3355 ASSERT0(zilog->zl_suspend);
3356 ASSERT0(zilog->zl_suspending);
3357
3358 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3359 list_destroy(&zilog->zl_lwb_list);
3360
3361 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3362 list_destroy(&zilog->zl_itx_commit_list);
3363
3364 for (i = 0; i < TXG_SIZE; i++) {
3365 /*
3366 * It's possible for an itx to be generated that doesn't dirty
3367 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3368 * callback to remove the entry. We remove those here.
3369 *
3370 * Also free up the ziltest itxs.
3371 */
3372 if (zilog->zl_itxg[i].itxg_itxs)
3373 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3374 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3375 }
3376
3377 mutex_destroy(&zilog->zl_issuer_lock);
3378 mutex_destroy(&zilog->zl_lock);
3379 mutex_destroy(&zilog->zl_lwb_io_lock);
3380
3381 cv_destroy(&zilog->zl_cv_suspend);
3382 cv_destroy(&zilog->zl_lwb_io_cv);
3383
3384 kmem_free(zilog, sizeof (zilog_t));
3385 }
3386
3387 /*
3388 * Open an intent log.
3389 */
3390 zilog_t *
3391 zil_open(objset_t *os, zil_get_data_t *get_data)
3392 {
3393 zilog_t *zilog = dmu_objset_zil(os);
3394
3395 ASSERT3P(zilog->zl_get_data, ==, NULL);
3396 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3397 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3398
3399 zilog->zl_get_data = get_data;
3400
3401 return (zilog);
3402 }
3403
3404 /*
3405 * Close an intent log.
3406 */
3407 void
3408 zil_close(zilog_t *zilog)
3409 {
3410 lwb_t *lwb;
3411 uint64_t txg;
3412
3413 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3414 zil_commit(zilog, 0);
3415 } else {
3416 ASSERT3P(list_tail(&zilog->zl_lwb_list), ==, NULL);
3417 ASSERT0(zilog->zl_dirty_max_txg);
3418 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3419 }
3420
3421 mutex_enter(&zilog->zl_lock);
3422 lwb = list_tail(&zilog->zl_lwb_list);
3423 if (lwb == NULL)
3424 txg = zilog->zl_dirty_max_txg;
3425 else
3426 txg = MAX(zilog->zl_dirty_max_txg, lwb->lwb_max_txg);
3427 mutex_exit(&zilog->zl_lock);
3428
3429 /*
3430 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3431 * on the time when the dmu_tx transaction is assigned in
3432 * zil_lwb_write_issue().
3433 */
3434 mutex_enter(&zilog->zl_lwb_io_lock);
3435 txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3436 mutex_exit(&zilog->zl_lwb_io_lock);
3437
3438 /*
3439 * We need to use txg_wait_synced() to wait until that txg is synced.
3440 * zil_sync() will guarantee all lwbs up to that txg have been
3441 * written out, flushed, and cleaned.
3442 */
3443 if (txg != 0)
3444 txg_wait_synced(zilog->zl_dmu_pool, txg);
3445
3446 if (zilog_is_dirty(zilog))
3447 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3448 (u_longlong_t)txg);
3449 if (txg < spa_freeze_txg(zilog->zl_spa))
3450 VERIFY(!zilog_is_dirty(zilog));
3451
3452 zilog->zl_get_data = NULL;
3453
3454 /*
3455 * We should have only one lwb left on the list; remove it now.
3456 */
3457 mutex_enter(&zilog->zl_lock);
3458 lwb = list_head(&zilog->zl_lwb_list);
3459 if (lwb != NULL) {
3460 ASSERT3P(lwb, ==, list_tail(&zilog->zl_lwb_list));
3461 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_ISSUED);
3462
3463 if (lwb->lwb_fastwrite)
3464 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
3465
3466 list_remove(&zilog->zl_lwb_list, lwb);
3467 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3468 zil_free_lwb(zilog, lwb);
3469 }
3470 mutex_exit(&zilog->zl_lock);
3471 }
3472
3473 static char *suspend_tag = "zil suspending";
3474
3475 /*
3476 * Suspend an intent log. While in suspended mode, we still honor
3477 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3478 * On old version pools, we suspend the log briefly when taking a
3479 * snapshot so that it will have an empty intent log.
3480 *
3481 * Long holds are not really intended to be used the way we do here --
3482 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3483 * could fail. Therefore we take pains to only put a long hold if it is
3484 * actually necessary. Fortunately, it will only be necessary if the
3485 * objset is currently mounted (or the ZVOL equivalent). In that case it
3486 * will already have a long hold, so we are not really making things any worse.
3487 *
3488 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3489 * zvol_state_t), and use their mechanism to prevent their hold from being
3490 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3491 * very little gain.
3492 *
3493 * if cookiep == NULL, this does both the suspend & resume.
3494 * Otherwise, it returns with the dataset "long held", and the cookie
3495 * should be passed into zil_resume().
3496 */
3497 int
3498 zil_suspend(const char *osname, void **cookiep)
3499 {
3500 objset_t *os;
3501 zilog_t *zilog;
3502 const zil_header_t *zh;
3503 int error;
3504
3505 error = dmu_objset_hold(osname, suspend_tag, &os);
3506 if (error != 0)
3507 return (error);
3508 zilog = dmu_objset_zil(os);
3509
3510 mutex_enter(&zilog->zl_lock);
3511 zh = zilog->zl_header;
3512
3513 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3514 mutex_exit(&zilog->zl_lock);
3515 dmu_objset_rele(os, suspend_tag);
3516 return (SET_ERROR(EBUSY));
3517 }
3518
3519 /*
3520 * Don't put a long hold in the cases where we can avoid it. This
3521 * is when there is no cookie so we are doing a suspend & resume
3522 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3523 * for the suspend because it's already suspended, or there's no ZIL.
3524 */
3525 if (cookiep == NULL && !zilog->zl_suspending &&
3526 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3527 mutex_exit(&zilog->zl_lock);
3528 dmu_objset_rele(os, suspend_tag);
3529 return (0);
3530 }
3531
3532 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3533 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3534
3535 zilog->zl_suspend++;
3536
3537 if (zilog->zl_suspend > 1) {
3538 /*
3539 * Someone else is already suspending it.
3540 * Just wait for them to finish.
3541 */
3542
3543 while (zilog->zl_suspending)
3544 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3545 mutex_exit(&zilog->zl_lock);
3546
3547 if (cookiep == NULL)
3548 zil_resume(os);
3549 else
3550 *cookiep = os;
3551 return (0);
3552 }
3553
3554 /*
3555 * If there is no pointer to an on-disk block, this ZIL must not
3556 * be active (e.g. filesystem not mounted), so there's nothing
3557 * to clean up.
3558 */
3559 if (BP_IS_HOLE(&zh->zh_log)) {
3560 ASSERT(cookiep != NULL); /* fast path already handled */
3561
3562 *cookiep = os;
3563 mutex_exit(&zilog->zl_lock);
3564 return (0);
3565 }
3566
3567 /*
3568 * The ZIL has work to do. Ensure that the associated encryption
3569 * key will remain mapped while we are committing the log by
3570 * grabbing a reference to it. If the key isn't loaded we have no
3571 * choice but to return an error until the wrapping key is loaded.
3572 */
3573 if (os->os_encrypted &&
3574 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3575 zilog->zl_suspend--;
3576 mutex_exit(&zilog->zl_lock);
3577 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3578 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3579 return (SET_ERROR(EACCES));
3580 }
3581
3582 zilog->zl_suspending = B_TRUE;
3583 mutex_exit(&zilog->zl_lock);
3584
3585 /*
3586 * We need to use zil_commit_impl to ensure we wait for all
3587 * LWB_STATE_OPENED and LWB_STATE_ISSUED lwbs to be committed
3588 * to disk before proceeding. If we used zil_commit instead, it
3589 * would just call txg_wait_synced(), because zl_suspend is set.
3590 * txg_wait_synced() doesn't wait for these lwb's to be
3591 * LWB_STATE_FLUSH_DONE before returning.
3592 */
3593 zil_commit_impl(zilog, 0);
3594
3595 /*
3596 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3597 * use txg_wait_synced() to ensure the data from the zilog has
3598 * migrated to the main pool before calling zil_destroy().
3599 */
3600 txg_wait_synced(zilog->zl_dmu_pool, 0);
3601
3602 zil_destroy(zilog, B_FALSE);
3603
3604 mutex_enter(&zilog->zl_lock);
3605 zilog->zl_suspending = B_FALSE;
3606 cv_broadcast(&zilog->zl_cv_suspend);
3607 mutex_exit(&zilog->zl_lock);
3608
3609 if (os->os_encrypted)
3610 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
3611
3612 if (cookiep == NULL)
3613 zil_resume(os);
3614 else
3615 *cookiep = os;
3616 return (0);
3617 }
3618
3619 void
3620 zil_resume(void *cookie)
3621 {
3622 objset_t *os = cookie;
3623 zilog_t *zilog = dmu_objset_zil(os);
3624
3625 mutex_enter(&zilog->zl_lock);
3626 ASSERT(zilog->zl_suspend != 0);
3627 zilog->zl_suspend--;
3628 mutex_exit(&zilog->zl_lock);
3629 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3630 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3631 }
3632
3633 typedef struct zil_replay_arg {
3634 zil_replay_func_t *const *zr_replay;
3635 void *zr_arg;
3636 boolean_t zr_byteswap;
3637 char *zr_lr;
3638 } zil_replay_arg_t;
3639
3640 static int
3641 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
3642 {
3643 char name[ZFS_MAX_DATASET_NAME_LEN];
3644
3645 zilog->zl_replaying_seq--; /* didn't actually replay this one */
3646
3647 dmu_objset_name(zilog->zl_os, name);
3648
3649 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
3650 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
3651 (u_longlong_t)lr->lrc_seq,
3652 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
3653 (lr->lrc_txtype & TX_CI) ? "CI" : "");
3654
3655 return (error);
3656 }
3657
3658 static int
3659 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
3660 uint64_t claim_txg)
3661 {
3662 zil_replay_arg_t *zr = zra;
3663 const zil_header_t *zh = zilog->zl_header;
3664 uint64_t reclen = lr->lrc_reclen;
3665 uint64_t txtype = lr->lrc_txtype;
3666 int error = 0;
3667
3668 zilog->zl_replaying_seq = lr->lrc_seq;
3669
3670 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
3671 return (0);
3672
3673 if (lr->lrc_txg < claim_txg) /* already committed */
3674 return (0);
3675
3676 /* Strip case-insensitive bit, still present in log record */
3677 txtype &= ~TX_CI;
3678
3679 if (txtype == 0 || txtype >= TX_MAX_TYPE)
3680 return (zil_replay_error(zilog, lr, EINVAL));
3681
3682 /*
3683 * If this record type can be logged out of order, the object
3684 * (lr_foid) may no longer exist. That's legitimate, not an error.
3685 */
3686 if (TX_OOO(txtype)) {
3687 error = dmu_object_info(zilog->zl_os,
3688 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
3689 if (error == ENOENT || error == EEXIST)
3690 return (0);
3691 }
3692
3693 /*
3694 * Make a copy of the data so we can revise and extend it.
3695 */
3696 memcpy(zr->zr_lr, lr, reclen);
3697
3698 /*
3699 * If this is a TX_WRITE with a blkptr, suck in the data.
3700 */
3701 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
3702 error = zil_read_log_data(zilog, (lr_write_t *)lr,
3703 zr->zr_lr + reclen);
3704 if (error != 0)
3705 return (zil_replay_error(zilog, lr, error));
3706 }
3707
3708 /*
3709 * The log block containing this lr may have been byteswapped
3710 * so that we can easily examine common fields like lrc_txtype.
3711 * However, the log is a mix of different record types, and only the
3712 * replay vectors know how to byteswap their records. Therefore, if
3713 * the lr was byteswapped, undo it before invoking the replay vector.
3714 */
3715 if (zr->zr_byteswap)
3716 byteswap_uint64_array(zr->zr_lr, reclen);
3717
3718 /*
3719 * We must now do two things atomically: replay this log record,
3720 * and update the log header sequence number to reflect the fact that
3721 * we did so. At the end of each replay function the sequence number
3722 * is updated if we are in replay mode.
3723 */
3724 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
3725 if (error != 0) {
3726 /*
3727 * The DMU's dnode layer doesn't see removes until the txg
3728 * commits, so a subsequent claim can spuriously fail with
3729 * EEXIST. So if we receive any error we try syncing out
3730 * any removes then retry the transaction. Note that we
3731 * specify B_FALSE for byteswap now, so we don't do it twice.
3732 */
3733 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
3734 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
3735 if (error != 0)
3736 return (zil_replay_error(zilog, lr, error));
3737 }
3738 return (0);
3739 }
3740
3741 static int
3742 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
3743 {
3744 (void) bp, (void) arg, (void) claim_txg;
3745
3746 zilog->zl_replay_blks++;
3747
3748 return (0);
3749 }
3750
3751 /*
3752 * If this dataset has a non-empty intent log, replay it and destroy it.
3753 */
3754 void
3755 zil_replay(objset_t *os, void *arg,
3756 zil_replay_func_t *const replay_func[TX_MAX_TYPE])
3757 {
3758 zilog_t *zilog = dmu_objset_zil(os);
3759 const zil_header_t *zh = zilog->zl_header;
3760 zil_replay_arg_t zr;
3761
3762 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
3763 zil_destroy(zilog, B_TRUE);
3764 return;
3765 }
3766
3767 zr.zr_replay = replay_func;
3768 zr.zr_arg = arg;
3769 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
3770 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
3771
3772 /*
3773 * Wait for in-progress removes to sync before starting replay.
3774 */
3775 txg_wait_synced(zilog->zl_dmu_pool, 0);
3776
3777 zilog->zl_replay = B_TRUE;
3778 zilog->zl_replay_time = ddi_get_lbolt();
3779 ASSERT(zilog->zl_replay_blks == 0);
3780 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
3781 zh->zh_claim_txg, B_TRUE);
3782 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
3783
3784 zil_destroy(zilog, B_FALSE);
3785 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
3786 zilog->zl_replay = B_FALSE;
3787 }
3788
3789 boolean_t
3790 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
3791 {
3792 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3793 return (B_TRUE);
3794
3795 if (zilog->zl_replay) {
3796 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
3797 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
3798 zilog->zl_replaying_seq;
3799 return (B_TRUE);
3800 }
3801
3802 return (B_FALSE);
3803 }
3804
3805 int
3806 zil_reset(const char *osname, void *arg)
3807 {
3808 (void) arg;
3809
3810 int error = zil_suspend(osname, NULL);
3811 /* EACCES means crypto key not loaded */
3812 if ((error == EACCES) || (error == EBUSY))
3813 return (SET_ERROR(error));
3814 if (error != 0)
3815 return (SET_ERROR(EEXIST));
3816 return (0);
3817 }
3818
3819 EXPORT_SYMBOL(zil_alloc);
3820 EXPORT_SYMBOL(zil_free);
3821 EXPORT_SYMBOL(zil_open);
3822 EXPORT_SYMBOL(zil_close);
3823 EXPORT_SYMBOL(zil_replay);
3824 EXPORT_SYMBOL(zil_replaying);
3825 EXPORT_SYMBOL(zil_destroy);
3826 EXPORT_SYMBOL(zil_destroy_sync);
3827 EXPORT_SYMBOL(zil_itx_create);
3828 EXPORT_SYMBOL(zil_itx_destroy);
3829 EXPORT_SYMBOL(zil_itx_assign);
3830 EXPORT_SYMBOL(zil_commit);
3831 EXPORT_SYMBOL(zil_claim);
3832 EXPORT_SYMBOL(zil_check_log_chain);
3833 EXPORT_SYMBOL(zil_sync);
3834 EXPORT_SYMBOL(zil_clean);
3835 EXPORT_SYMBOL(zil_suspend);
3836 EXPORT_SYMBOL(zil_resume);
3837 EXPORT_SYMBOL(zil_lwb_add_block);
3838 EXPORT_SYMBOL(zil_bp_tree_add);
3839 EXPORT_SYMBOL(zil_set_sync);
3840 EXPORT_SYMBOL(zil_set_logbias);
3841
3842 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, INT, ZMOD_RW,
3843 "ZIL block open timeout percentage");
3844
3845 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
3846 "Disable intent logging replay");
3847
3848 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
3849 "Disable ZIL cache flushes");
3850
3851 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, ULONG, ZMOD_RW,
3852 "Limit in bytes slog sync writes per commit");
3853
3854 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, INT, ZMOD_RW,
3855 "Limit in bytes of ZIL log block size");