]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
Fix gcc cast warnings
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2010 Robert Milkowski */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa.h>
29 #include <sys/dmu.h>
30 #include <sys/zap.h>
31 #include <sys/arc.h>
32 #include <sys/stat.h>
33 #include <sys/resource.h>
34 #include <sys/zil.h>
35 #include <sys/zil_impl.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_pool.h>
40
41 /*
42 * The zfs intent log (ZIL) saves transaction records of system calls
43 * that change the file system in memory with enough information
44 * to be able to replay them. These are stored in memory until
45 * either the DMU transaction group (txg) commits them to the stable pool
46 * and they can be discarded, or they are flushed to the stable log
47 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
48 * requirement. In the event of a panic or power fail then those log
49 * records (transactions) are replayed.
50 *
51 * There is one ZIL per file system. Its on-disk (pool) format consists
52 * of 3 parts:
53 *
54 * - ZIL header
55 * - ZIL blocks
56 * - ZIL records
57 *
58 * A log record holds a system call transaction. Log blocks can
59 * hold many log records and the blocks are chained together.
60 * Each ZIL block contains a block pointer (blkptr_t) to the next
61 * ZIL block in the chain. The ZIL header points to the first
62 * block in the chain. Note there is not a fixed place in the pool
63 * to hold blocks. They are dynamically allocated and freed as
64 * needed from the blocks available. Figure X shows the ZIL structure:
65 */
66
67 /*
68 * This global ZIL switch affects all pools
69 */
70 int zil_replay_disable = 0; /* disable intent logging replay */
71
72 /*
73 * Tunable parameter for debugging or performance analysis. Setting
74 * zfs_nocacheflush will cause corruption on power loss if a volatile
75 * out-of-order write cache is enabled.
76 */
77 boolean_t zfs_nocacheflush = B_FALSE;
78
79 static kmem_cache_t *zil_lwb_cache;
80
81 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
82
83 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
84 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
85
86
87 /*
88 * ziltest is by and large an ugly hack, but very useful in
89 * checking replay without tedious work.
90 * When running ziltest we want to keep all itx's and so maintain
91 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
92 * We subtract TXG_CONCURRENT_STATES to allow for common code.
93 */
94 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
95
96 static int
97 zil_bp_compare(const void *x1, const void *x2)
98 {
99 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
100 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
101
102 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
103 return (-1);
104 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
105 return (1);
106
107 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
108 return (-1);
109 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
110 return (1);
111
112 return (0);
113 }
114
115 static void
116 zil_bp_tree_init(zilog_t *zilog)
117 {
118 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
119 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
120 }
121
122 static void
123 zil_bp_tree_fini(zilog_t *zilog)
124 {
125 avl_tree_t *t = &zilog->zl_bp_tree;
126 zil_bp_node_t *zn;
127 void *cookie = NULL;
128
129 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
130 kmem_free(zn, sizeof (zil_bp_node_t));
131
132 avl_destroy(t);
133 }
134
135 int
136 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
137 {
138 avl_tree_t *t = &zilog->zl_bp_tree;
139 const dva_t *dva = BP_IDENTITY(bp);
140 zil_bp_node_t *zn;
141 avl_index_t where;
142
143 if (avl_find(t, dva, &where) != NULL)
144 return (EEXIST);
145
146 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
147 zn->zn_dva = *dva;
148 avl_insert(t, zn, where);
149
150 return (0);
151 }
152
153 static zil_header_t *
154 zil_header_in_syncing_context(zilog_t *zilog)
155 {
156 return ((zil_header_t *)zilog->zl_header);
157 }
158
159 static void
160 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
161 {
162 zio_cksum_t *zc = &bp->blk_cksum;
163
164 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
165 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
166 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
167 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
168 }
169
170 /*
171 * Read a log block and make sure it's valid.
172 */
173 static int
174 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
175 char **end)
176 {
177 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
178 uint32_t aflags = ARC_WAIT;
179 arc_buf_t *abuf = NULL;
180 zbookmark_t zb;
181 int error;
182
183 if (zilog->zl_header->zh_claim_txg == 0)
184 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
185
186 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
187 zio_flags |= ZIO_FLAG_SPECULATIVE;
188
189 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
190 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
191
192 error = dsl_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
193 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
194
195 if (error == 0) {
196 zio_cksum_t cksum = bp->blk_cksum;
197
198 /*
199 * Validate the checksummed log block.
200 *
201 * Sequence numbers should be... sequential. The checksum
202 * verifier for the next block should be bp's checksum plus 1.
203 *
204 * Also check the log chain linkage and size used.
205 */
206 cksum.zc_word[ZIL_ZC_SEQ]++;
207
208 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
209 zil_chain_t *zilc = abuf->b_data;
210 char *lr = (char *)(zilc + 1);
211 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
212
213 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
214 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
215 error = ECKSUM;
216 } else {
217 bcopy(lr, dst, len);
218 *end = (char *)dst + len;
219 *nbp = zilc->zc_next_blk;
220 }
221 } else {
222 char *lr = abuf->b_data;
223 uint64_t size = BP_GET_LSIZE(bp);
224 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
225
226 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
227 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
228 (zilc->zc_nused > (size - sizeof (*zilc)))) {
229 error = ECKSUM;
230 } else {
231 bcopy(lr, dst, zilc->zc_nused);
232 *end = (char *)dst + zilc->zc_nused;
233 *nbp = zilc->zc_next_blk;
234 }
235 }
236
237 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
238 }
239
240 return (error);
241 }
242
243 /*
244 * Read a TX_WRITE log data block.
245 */
246 static int
247 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
248 {
249 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
250 const blkptr_t *bp = &lr->lr_blkptr;
251 uint32_t aflags = ARC_WAIT;
252 arc_buf_t *abuf = NULL;
253 zbookmark_t zb;
254 int error;
255
256 if (BP_IS_HOLE(bp)) {
257 if (wbuf != NULL)
258 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
259 return (0);
260 }
261
262 if (zilog->zl_header->zh_claim_txg == 0)
263 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
264
265 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
266 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
267
268 error = arc_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
269 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
270
271 if (error == 0) {
272 if (wbuf != NULL)
273 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
274 (void) arc_buf_remove_ref(abuf, &abuf);
275 }
276
277 return (error);
278 }
279
280 /*
281 * Parse the intent log, and call parse_func for each valid record within.
282 */
283 int
284 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
285 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
286 {
287 const zil_header_t *zh = zilog->zl_header;
288 boolean_t claimed = !!zh->zh_claim_txg;
289 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
290 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
291 uint64_t max_blk_seq = 0;
292 uint64_t max_lr_seq = 0;
293 uint64_t blk_count = 0;
294 uint64_t lr_count = 0;
295 blkptr_t blk, next_blk;
296 char *lrbuf, *lrp;
297 int error = 0;
298
299 /*
300 * Old logs didn't record the maximum zh_claim_lr_seq.
301 */
302 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
303 claim_lr_seq = UINT64_MAX;
304
305 /*
306 * Starting at the block pointed to by zh_log we read the log chain.
307 * For each block in the chain we strongly check that block to
308 * ensure its validity. We stop when an invalid block is found.
309 * For each block pointer in the chain we call parse_blk_func().
310 * For each record in each valid block we call parse_lr_func().
311 * If the log has been claimed, stop if we encounter a sequence
312 * number greater than the highest claimed sequence number.
313 */
314 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
315 zil_bp_tree_init(zilog);
316
317 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
318 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
319 int reclen;
320 char *end;
321
322 if (blk_seq > claim_blk_seq)
323 break;
324 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
325 break;
326 ASSERT3U(max_blk_seq, <, blk_seq);
327 max_blk_seq = blk_seq;
328 blk_count++;
329
330 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
331 break;
332
333 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
334 if (error)
335 break;
336
337 for (lrp = lrbuf; lrp < end; lrp += reclen) {
338 lr_t *lr = (lr_t *)lrp;
339 reclen = lr->lrc_reclen;
340 ASSERT3U(reclen, >=, sizeof (lr_t));
341 if (lr->lrc_seq > claim_lr_seq)
342 goto done;
343 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
344 goto done;
345 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
346 max_lr_seq = lr->lrc_seq;
347 lr_count++;
348 }
349 }
350 done:
351 zilog->zl_parse_error = error;
352 zilog->zl_parse_blk_seq = max_blk_seq;
353 zilog->zl_parse_lr_seq = max_lr_seq;
354 zilog->zl_parse_blk_count = blk_count;
355 zilog->zl_parse_lr_count = lr_count;
356
357 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
358 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
359
360 zil_bp_tree_fini(zilog);
361 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
362
363 return (error);
364 }
365
366 static int
367 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
368 {
369 /*
370 * Claim log block if not already committed and not already claimed.
371 * If tx == NULL, just verify that the block is claimable.
372 */
373 if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0)
374 return (0);
375
376 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
377 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
378 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
379 }
380
381 static int
382 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
383 {
384 lr_write_t *lr = (lr_write_t *)lrc;
385 int error;
386
387 if (lrc->lrc_txtype != TX_WRITE)
388 return (0);
389
390 /*
391 * If the block is not readable, don't claim it. This can happen
392 * in normal operation when a log block is written to disk before
393 * some of the dmu_sync() blocks it points to. In this case, the
394 * transaction cannot have been committed to anyone (we would have
395 * waited for all writes to be stable first), so it is semantically
396 * correct to declare this the end of the log.
397 */
398 if (lr->lr_blkptr.blk_birth >= first_txg &&
399 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
400 return (error);
401 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
402 }
403
404 /* ARGSUSED */
405 static int
406 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
407 {
408 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
409
410 return (0);
411 }
412
413 static int
414 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
415 {
416 lr_write_t *lr = (lr_write_t *)lrc;
417 blkptr_t *bp = &lr->lr_blkptr;
418
419 /*
420 * If we previously claimed it, we need to free it.
421 */
422 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
423 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0)
424 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
425
426 return (0);
427 }
428
429 static lwb_t *
430 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
431 {
432 lwb_t *lwb;
433
434 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
435 lwb->lwb_zilog = zilog;
436 lwb->lwb_blk = *bp;
437 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
438 lwb->lwb_max_txg = txg;
439 lwb->lwb_zio = NULL;
440 lwb->lwb_tx = NULL;
441 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
442 lwb->lwb_nused = sizeof (zil_chain_t);
443 lwb->lwb_sz = BP_GET_LSIZE(bp);
444 } else {
445 lwb->lwb_nused = 0;
446 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
447 }
448
449 mutex_enter(&zilog->zl_lock);
450 list_insert_tail(&zilog->zl_lwb_list, lwb);
451 mutex_exit(&zilog->zl_lock);
452
453 return (lwb);
454 }
455
456 /*
457 * Create an on-disk intent log.
458 */
459 static lwb_t *
460 zil_create(zilog_t *zilog)
461 {
462 const zil_header_t *zh = zilog->zl_header;
463 lwb_t *lwb = NULL;
464 uint64_t txg = 0;
465 dmu_tx_t *tx = NULL;
466 blkptr_t blk;
467 int error = 0;
468
469 /*
470 * Wait for any previous destroy to complete.
471 */
472 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
473
474 ASSERT(zh->zh_claim_txg == 0);
475 ASSERT(zh->zh_replay_seq == 0);
476
477 blk = zh->zh_log;
478
479 /*
480 * Allocate an initial log block if:
481 * - there isn't one already
482 * - the existing block is the wrong endianess
483 */
484 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
485 tx = dmu_tx_create(zilog->zl_os);
486 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
487 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
488 txg = dmu_tx_get_txg(tx);
489
490 if (!BP_IS_HOLE(&blk)) {
491 zio_free_zil(zilog->zl_spa, txg, &blk);
492 BP_ZERO(&blk);
493 }
494
495 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
496 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
497
498 if (error == 0)
499 zil_init_log_chain(zilog, &blk);
500 }
501
502 /*
503 * Allocate a log write buffer (lwb) for the first log block.
504 */
505 if (error == 0)
506 lwb = zil_alloc_lwb(zilog, &blk, txg);
507
508 /*
509 * If we just allocated the first log block, commit our transaction
510 * and wait for zil_sync() to stuff the block poiner into zh_log.
511 * (zh is part of the MOS, so we cannot modify it in open context.)
512 */
513 if (tx != NULL) {
514 dmu_tx_commit(tx);
515 txg_wait_synced(zilog->zl_dmu_pool, txg);
516 }
517
518 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
519
520 return (lwb);
521 }
522
523 /*
524 * In one tx, free all log blocks and clear the log header.
525 * If keep_first is set, then we're replaying a log with no content.
526 * We want to keep the first block, however, so that the first
527 * synchronous transaction doesn't require a txg_wait_synced()
528 * in zil_create(). We don't need to txg_wait_synced() here either
529 * when keep_first is set, because both zil_create() and zil_destroy()
530 * will wait for any in-progress destroys to complete.
531 */
532 void
533 zil_destroy(zilog_t *zilog, boolean_t keep_first)
534 {
535 const zil_header_t *zh = zilog->zl_header;
536 lwb_t *lwb;
537 dmu_tx_t *tx;
538 uint64_t txg;
539
540 /*
541 * Wait for any previous destroy to complete.
542 */
543 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
544
545 zilog->zl_old_header = *zh; /* debugging aid */
546
547 if (BP_IS_HOLE(&zh->zh_log))
548 return;
549
550 tx = dmu_tx_create(zilog->zl_os);
551 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
552 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
553 txg = dmu_tx_get_txg(tx);
554
555 mutex_enter(&zilog->zl_lock);
556
557 ASSERT3U(zilog->zl_destroy_txg, <, txg);
558 zilog->zl_destroy_txg = txg;
559 zilog->zl_keep_first = keep_first;
560
561 if (!list_is_empty(&zilog->zl_lwb_list)) {
562 ASSERT(zh->zh_claim_txg == 0);
563 ASSERT(!keep_first);
564 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
565 list_remove(&zilog->zl_lwb_list, lwb);
566 if (lwb->lwb_buf != NULL)
567 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
568 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
569 kmem_cache_free(zil_lwb_cache, lwb);
570 }
571 } else if (!keep_first) {
572 (void) zil_parse(zilog, zil_free_log_block,
573 zil_free_log_record, tx, zh->zh_claim_txg);
574 }
575 mutex_exit(&zilog->zl_lock);
576
577 dmu_tx_commit(tx);
578 }
579
580 int
581 zil_claim(const char *osname, void *txarg)
582 {
583 dmu_tx_t *tx = txarg;
584 uint64_t first_txg = dmu_tx_get_txg(tx);
585 zilog_t *zilog;
586 zil_header_t *zh;
587 objset_t *os;
588 int error;
589
590 error = dmu_objset_hold(osname, FTAG, &os);
591 if (error) {
592 cmn_err(CE_WARN, "can't open objset for %s", osname);
593 return (0);
594 }
595
596 zilog = dmu_objset_zil(os);
597 zh = zil_header_in_syncing_context(zilog);
598
599 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
600 if (!BP_IS_HOLE(&zh->zh_log))
601 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
602 BP_ZERO(&zh->zh_log);
603 dsl_dataset_dirty(dmu_objset_ds(os), tx);
604 dmu_objset_rele(os, FTAG);
605 return (0);
606 }
607
608 /*
609 * Claim all log blocks if we haven't already done so, and remember
610 * the highest claimed sequence number. This ensures that if we can
611 * read only part of the log now (e.g. due to a missing device),
612 * but we can read the entire log later, we will not try to replay
613 * or destroy beyond the last block we successfully claimed.
614 */
615 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
616 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
617 (void) zil_parse(zilog, zil_claim_log_block,
618 zil_claim_log_record, tx, first_txg);
619 zh->zh_claim_txg = first_txg;
620 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
621 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
622 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
623 zh->zh_flags |= ZIL_REPLAY_NEEDED;
624 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
625 dsl_dataset_dirty(dmu_objset_ds(os), tx);
626 }
627
628 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
629 dmu_objset_rele(os, FTAG);
630 return (0);
631 }
632
633 /*
634 * Check the log by walking the log chain.
635 * Checksum errors are ok as they indicate the end of the chain.
636 * Any other error (no device or read failure) returns an error.
637 */
638 int
639 zil_check_log_chain(const char *osname, void *tx)
640 {
641 zilog_t *zilog;
642 objset_t *os;
643 blkptr_t *bp;
644 int error;
645
646 ASSERT(tx == NULL);
647
648 error = dmu_objset_hold(osname, FTAG, &os);
649 if (error) {
650 cmn_err(CE_WARN, "can't open objset for %s", osname);
651 return (0);
652 }
653
654 zilog = dmu_objset_zil(os);
655 bp = (blkptr_t *)&zilog->zl_header->zh_log;
656
657 /*
658 * Check the first block and determine if it's on a log device
659 * which may have been removed or faulted prior to loading this
660 * pool. If so, there's no point in checking the rest of the log
661 * as its content should have already been synced to the pool.
662 */
663 if (!BP_IS_HOLE(bp)) {
664 vdev_t *vd;
665 boolean_t valid = B_TRUE;
666
667 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
668 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
669 if (vd->vdev_islog && vdev_is_dead(vd))
670 valid = vdev_log_state_valid(vd);
671 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
672
673 if (!valid) {
674 dmu_objset_rele(os, FTAG);
675 return (0);
676 }
677 }
678
679 /*
680 * Because tx == NULL, zil_claim_log_block() will not actually claim
681 * any blocks, but just determine whether it is possible to do so.
682 * In addition to checking the log chain, zil_claim_log_block()
683 * will invoke zio_claim() with a done func of spa_claim_notify(),
684 * which will update spa_max_claim_txg. See spa_load() for details.
685 */
686 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
687 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
688
689 dmu_objset_rele(os, FTAG);
690
691 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
692 }
693
694 static int
695 zil_vdev_compare(const void *x1, const void *x2)
696 {
697 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
698 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
699
700 if (v1 < v2)
701 return (-1);
702 if (v1 > v2)
703 return (1);
704
705 return (0);
706 }
707
708 void
709 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
710 {
711 avl_tree_t *t = &zilog->zl_vdev_tree;
712 avl_index_t where;
713 zil_vdev_node_t *zv, zvsearch;
714 int ndvas = BP_GET_NDVAS(bp);
715 int i;
716
717 if (zfs_nocacheflush)
718 return;
719
720 ASSERT(zilog->zl_writer);
721
722 /*
723 * Even though we're zl_writer, we still need a lock because the
724 * zl_get_data() callbacks may have dmu_sync() done callbacks
725 * that will run concurrently.
726 */
727 mutex_enter(&zilog->zl_vdev_lock);
728 for (i = 0; i < ndvas; i++) {
729 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
730 if (avl_find(t, &zvsearch, &where) == NULL) {
731 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
732 zv->zv_vdev = zvsearch.zv_vdev;
733 avl_insert(t, zv, where);
734 }
735 }
736 mutex_exit(&zilog->zl_vdev_lock);
737 }
738
739 static void
740 zil_flush_vdevs(zilog_t *zilog)
741 {
742 spa_t *spa = zilog->zl_spa;
743 avl_tree_t *t = &zilog->zl_vdev_tree;
744 void *cookie = NULL;
745 zil_vdev_node_t *zv;
746 zio_t *zio;
747
748 ASSERT(zilog->zl_writer);
749
750 /*
751 * We don't need zl_vdev_lock here because we're the zl_writer,
752 * and all zl_get_data() callbacks are done.
753 */
754 if (avl_numnodes(t) == 0)
755 return;
756
757 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
758
759 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
760
761 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
762 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
763 if (vd != NULL)
764 zio_flush(zio, vd);
765 kmem_free(zv, sizeof (*zv));
766 }
767
768 /*
769 * Wait for all the flushes to complete. Not all devices actually
770 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
771 */
772 (void) zio_wait(zio);
773
774 spa_config_exit(spa, SCL_STATE, FTAG);
775 }
776
777 /*
778 * Function called when a log block write completes
779 */
780 static void
781 zil_lwb_write_done(zio_t *zio)
782 {
783 lwb_t *lwb = zio->io_private;
784 zilog_t *zilog = lwb->lwb_zilog;
785 dmu_tx_t *tx = lwb->lwb_tx;
786
787 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
788 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
789 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
790 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
791 ASSERT(!BP_IS_GANG(zio->io_bp));
792 ASSERT(!BP_IS_HOLE(zio->io_bp));
793 ASSERT(zio->io_bp->blk_fill == 0);
794
795 /*
796 * Ensure the lwb buffer pointer is cleared before releasing
797 * the txg. If we have had an allocation failure and
798 * the txg is waiting to sync then we want want zil_sync()
799 * to remove the lwb so that it's not picked up as the next new
800 * one in zil_commit_writer(). zil_sync() will only remove
801 * the lwb if lwb_buf is null.
802 */
803 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
804 mutex_enter(&zilog->zl_lock);
805 lwb->lwb_buf = NULL;
806 lwb->lwb_tx = NULL;
807 mutex_exit(&zilog->zl_lock);
808
809 /*
810 * Now that we've written this log block, we have a stable pointer
811 * to the next block in the chain, so it's OK to let the txg in
812 * which we allocated the next block sync.
813 */
814 dmu_tx_commit(tx);
815 }
816
817 /*
818 * Initialize the io for a log block.
819 */
820 static void
821 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
822 {
823 zbookmark_t zb;
824
825 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
826 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
827 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
828
829 if (zilog->zl_root_zio == NULL) {
830 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
831 ZIO_FLAG_CANFAIL);
832 }
833 if (lwb->lwb_zio == NULL) {
834 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
835 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
836 zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE,
837 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
838 }
839 }
840
841 /*
842 * Define a limited set of intent log block sizes.
843 * These must be a multiple of 4KB. Note only the amount used (again
844 * aligned to 4KB) actually gets written. However, we can't always just
845 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
846 */
847 uint64_t zil_block_buckets[] = {
848 4096, /* non TX_WRITE */
849 8192+4096, /* data base */
850 32*1024 + 4096, /* NFS writes */
851 UINT64_MAX
852 };
853
854 /*
855 * Use the slog as long as the logbias is 'latency' and the current commit size
856 * is less than the limit or the total list size is less than 2X the limit.
857 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
858 */
859 uint64_t zil_slog_limit = 1024 * 1024;
860 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
861 (((zilog)->zl_cur_used < zil_slog_limit) || \
862 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
863
864 /*
865 * Start a log block write and advance to the next log block.
866 * Calls are serialized.
867 */
868 static lwb_t *
869 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
870 {
871 lwb_t *nlwb = NULL;
872 zil_chain_t *zilc;
873 spa_t *spa = zilog->zl_spa;
874 blkptr_t *bp;
875 dmu_tx_t *tx;
876 uint64_t txg;
877 uint64_t zil_blksz, wsz;
878 int i, error;
879
880 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
881 zilc = (zil_chain_t *)lwb->lwb_buf;
882 bp = &zilc->zc_next_blk;
883 } else {
884 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
885 bp = &zilc->zc_next_blk;
886 }
887
888 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
889
890 /*
891 * Allocate the next block and save its address in this block
892 * before writing it in order to establish the log chain.
893 * Note that if the allocation of nlwb synced before we wrote
894 * the block that points at it (lwb), we'd leak it if we crashed.
895 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
896 * We dirty the dataset to ensure that zil_sync() will be called
897 * to clean up in the event of allocation failure or I/O failure.
898 */
899 tx = dmu_tx_create(zilog->zl_os);
900 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
901 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
902 txg = dmu_tx_get_txg(tx);
903
904 lwb->lwb_tx = tx;
905
906 /*
907 * Log blocks are pre-allocated. Here we select the size of the next
908 * block, based on size used in the last block.
909 * - first find the smallest bucket that will fit the block from a
910 * limited set of block sizes. This is because it's faster to write
911 * blocks allocated from the same metaslab as they are adjacent or
912 * close.
913 * - next find the maximum from the new suggested size and an array of
914 * previous sizes. This lessens a picket fence effect of wrongly
915 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
916 * requests.
917 *
918 * Note we only write what is used, but we can't just allocate
919 * the maximum block size because we can exhaust the available
920 * pool log space.
921 */
922 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
923 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
924 continue;
925 zil_blksz = zil_block_buckets[i];
926 if (zil_blksz == UINT64_MAX)
927 zil_blksz = SPA_MAXBLOCKSIZE;
928 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
929 for (i = 0; i < ZIL_PREV_BLKS; i++)
930 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
931 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
932
933 BP_ZERO(bp);
934 /* pass the old blkptr in order to spread log blocks across devs */
935 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
936 USE_SLOG(zilog));
937 if (!error) {
938 ASSERT3U(bp->blk_birth, ==, txg);
939 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
940 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
941
942 /*
943 * Allocate a new log write buffer (lwb).
944 */
945 nlwb = zil_alloc_lwb(zilog, bp, txg);
946
947 /* Record the block for later vdev flushing */
948 zil_add_block(zilog, &lwb->lwb_blk);
949 }
950
951 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
952 /* For Slim ZIL only write what is used. */
953 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
954 ASSERT3U(wsz, <=, lwb->lwb_sz);
955 zio_shrink(lwb->lwb_zio, wsz);
956
957 } else {
958 wsz = lwb->lwb_sz;
959 }
960
961 zilc->zc_pad = 0;
962 zilc->zc_nused = lwb->lwb_nused;
963 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
964
965 /*
966 * clear unused data for security
967 */
968 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
969
970 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
971
972 /*
973 * If there was an allocation failure then nlwb will be null which
974 * forces a txg_wait_synced().
975 */
976 return (nlwb);
977 }
978
979 static lwb_t *
980 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
981 {
982 lr_t *lrc = &itx->itx_lr; /* common log record */
983 lr_write_t *lrw = (lr_write_t *)lrc;
984 char *lr_buf;
985 uint64_t txg = lrc->lrc_txg;
986 uint64_t reclen = lrc->lrc_reclen;
987 uint64_t dlen = 0;
988
989 if (lwb == NULL)
990 return (NULL);
991
992 ASSERT(lwb->lwb_buf != NULL);
993
994 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
995 dlen = P2ROUNDUP_TYPED(
996 lrw->lr_length, sizeof (uint64_t), uint64_t);
997
998 zilog->zl_cur_used += (reclen + dlen);
999
1000 zil_lwb_write_init(zilog, lwb);
1001
1002 /*
1003 * If this record won't fit in the current log block, start a new one.
1004 */
1005 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1006 lwb = zil_lwb_write_start(zilog, lwb);
1007 if (lwb == NULL)
1008 return (NULL);
1009 zil_lwb_write_init(zilog, lwb);
1010 ASSERT(LWB_EMPTY(lwb));
1011 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1012 txg_wait_synced(zilog->zl_dmu_pool, txg);
1013 return (lwb);
1014 }
1015 }
1016
1017 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1018 bcopy(lrc, lr_buf, reclen);
1019 lrc = (lr_t *)lr_buf;
1020 lrw = (lr_write_t *)lrc;
1021
1022 /*
1023 * If it's a write, fetch the data or get its blkptr as appropriate.
1024 */
1025 if (lrc->lrc_txtype == TX_WRITE) {
1026 if (txg > spa_freeze_txg(zilog->zl_spa))
1027 txg_wait_synced(zilog->zl_dmu_pool, txg);
1028 if (itx->itx_wr_state != WR_COPIED) {
1029 char *dbuf;
1030 int error;
1031
1032 if (dlen) {
1033 ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1034 dbuf = lr_buf + reclen;
1035 lrw->lr_common.lrc_reclen += dlen;
1036 } else {
1037 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1038 dbuf = NULL;
1039 }
1040 error = zilog->zl_get_data(
1041 itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1042 if (error == EIO) {
1043 txg_wait_synced(zilog->zl_dmu_pool, txg);
1044 return (lwb);
1045 }
1046 if (error) {
1047 ASSERT(error == ENOENT || error == EEXIST ||
1048 error == EALREADY);
1049 return (lwb);
1050 }
1051 }
1052 }
1053
1054 /*
1055 * We're actually making an entry, so update lrc_seq to be the
1056 * log record sequence number. Note that this is generally not
1057 * equal to the itx sequence number because not all transactions
1058 * are synchronous, and sometimes spa_sync() gets there first.
1059 */
1060 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1061 lwb->lwb_nused += reclen + dlen;
1062 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1063 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1064 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
1065
1066 return (lwb);
1067 }
1068
1069 itx_t *
1070 zil_itx_create(uint64_t txtype, size_t lrsize)
1071 {
1072 itx_t *itx;
1073
1074 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1075
1076 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize, KM_SLEEP);
1077 itx->itx_lr.lrc_txtype = txtype;
1078 itx->itx_lr.lrc_reclen = lrsize;
1079 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1080 itx->itx_lr.lrc_seq = 0; /* defensive */
1081 itx->itx_sync = B_TRUE; /* default is synchronous */
1082
1083 return (itx);
1084 }
1085
1086 void
1087 zil_itx_destroy(itx_t *itx)
1088 {
1089 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1090 }
1091
1092 /*
1093 * Free up the sync and async itxs. The itxs_t has already been detached
1094 * so no locks are needed.
1095 */
1096 static void
1097 zil_itxg_clean(itxs_t *itxs)
1098 {
1099 itx_t *itx;
1100 list_t *list;
1101 avl_tree_t *t;
1102 void *cookie;
1103 itx_async_node_t *ian;
1104
1105 list = &itxs->i_sync_list;
1106 while ((itx = list_head(list)) != NULL) {
1107 list_remove(list, itx);
1108 kmem_free(itx, offsetof(itx_t, itx_lr) +
1109 itx->itx_lr.lrc_reclen);
1110 }
1111
1112 cookie = NULL;
1113 t = &itxs->i_async_tree;
1114 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1115 list = &ian->ia_list;
1116 while ((itx = list_head(list)) != NULL) {
1117 list_remove(list, itx);
1118 kmem_free(itx, offsetof(itx_t, itx_lr) +
1119 itx->itx_lr.lrc_reclen);
1120 }
1121 list_destroy(list);
1122 kmem_free(ian, sizeof (itx_async_node_t));
1123 }
1124 avl_destroy(t);
1125
1126 kmem_free(itxs, sizeof (itxs_t));
1127 }
1128
1129 static int
1130 zil_aitx_compare(const void *x1, const void *x2)
1131 {
1132 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1133 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1134
1135 if (o1 < o2)
1136 return (-1);
1137 if (o1 > o2)
1138 return (1);
1139
1140 return (0);
1141 }
1142
1143 /*
1144 * Remove all async itx with the given oid.
1145 */
1146 static void
1147 zil_remove_async(zilog_t *zilog, uint64_t oid)
1148 {
1149 uint64_t otxg, txg;
1150 itx_async_node_t *ian;
1151 avl_tree_t *t;
1152 avl_index_t where;
1153 list_t clean_list;
1154 itx_t *itx;
1155
1156 ASSERT(oid != 0);
1157 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1158
1159 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1160 otxg = ZILTEST_TXG;
1161 else
1162 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1163
1164 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1165 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1166
1167 mutex_enter(&itxg->itxg_lock);
1168 if (itxg->itxg_txg != txg) {
1169 mutex_exit(&itxg->itxg_lock);
1170 continue;
1171 }
1172
1173 /*
1174 * Locate the object node and append its list.
1175 */
1176 t = &itxg->itxg_itxs->i_async_tree;
1177 ian = avl_find(t, &oid, &where);
1178 if (ian != NULL)
1179 list_move_tail(&clean_list, &ian->ia_list);
1180 mutex_exit(&itxg->itxg_lock);
1181 }
1182 while ((itx = list_head(&clean_list)) != NULL) {
1183 list_remove(&clean_list, itx);
1184 kmem_free(itx, offsetof(itx_t, itx_lr) +
1185 itx->itx_lr.lrc_reclen);
1186 }
1187 list_destroy(&clean_list);
1188 }
1189
1190 void
1191 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1192 {
1193 uint64_t txg;
1194 itxg_t *itxg;
1195 itxs_t *itxs, *clean = NULL;
1196
1197 /*
1198 * Object ids can be re-instantiated in the next txg so
1199 * remove any async transactions to avoid future leaks.
1200 * This can happen if a fsync occurs on the re-instantiated
1201 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1202 * the new file data and flushes a write record for the old object.
1203 */
1204 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1205 zil_remove_async(zilog, itx->itx_oid);
1206
1207 /*
1208 * Ensure the data of a renamed file is committed before the rename.
1209 */
1210 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1211 zil_async_to_sync(zilog, itx->itx_oid);
1212
1213 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1214 txg = ZILTEST_TXG;
1215 else
1216 txg = dmu_tx_get_txg(tx);
1217
1218 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1219 mutex_enter(&itxg->itxg_lock);
1220 itxs = itxg->itxg_itxs;
1221 if (itxg->itxg_txg != txg) {
1222 if (itxs != NULL) {
1223 /*
1224 * The zil_clean callback hasn't got around to cleaning
1225 * this itxg. Save the itxs for release below.
1226 * This should be rare.
1227 */
1228 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1229 itxg->itxg_sod = 0;
1230 clean = itxg->itxg_itxs;
1231 }
1232 ASSERT(itxg->itxg_sod == 0);
1233 itxg->itxg_txg = txg;
1234 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1235
1236 list_create(&itxs->i_sync_list, sizeof (itx_t),
1237 offsetof(itx_t, itx_node));
1238 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1239 sizeof (itx_async_node_t),
1240 offsetof(itx_async_node_t, ia_node));
1241 }
1242 if (itx->itx_sync) {
1243 list_insert_tail(&itxs->i_sync_list, itx);
1244 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1245 itxg->itxg_sod += itx->itx_sod;
1246 } else {
1247 avl_tree_t *t = &itxs->i_async_tree;
1248 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1249 itx_async_node_t *ian;
1250 avl_index_t where;
1251
1252 ian = avl_find(t, &foid, &where);
1253 if (ian == NULL) {
1254 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1255 list_create(&ian->ia_list, sizeof (itx_t),
1256 offsetof(itx_t, itx_node));
1257 ian->ia_foid = foid;
1258 avl_insert(t, ian, where);
1259 }
1260 list_insert_tail(&ian->ia_list, itx);
1261 }
1262
1263 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1264 mutex_exit(&itxg->itxg_lock);
1265
1266 /* Release the old itxs now we've dropped the lock */
1267 if (clean != NULL)
1268 zil_itxg_clean(clean);
1269 }
1270
1271 /*
1272 * If there are any in-memory intent log transactions which have now been
1273 * synced then start up a taskq to free them.
1274 */
1275 void
1276 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1277 {
1278 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1279 itxs_t *clean_me;
1280
1281 mutex_enter(&itxg->itxg_lock);
1282 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1283 mutex_exit(&itxg->itxg_lock);
1284 return;
1285 }
1286 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1287 ASSERT(itxg->itxg_txg != 0);
1288 ASSERT(zilog->zl_clean_taskq != NULL);
1289 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1290 itxg->itxg_sod = 0;
1291 clean_me = itxg->itxg_itxs;
1292 itxg->itxg_itxs = NULL;
1293 itxg->itxg_txg = 0;
1294 mutex_exit(&itxg->itxg_lock);
1295 /*
1296 * Preferably start a task queue to free up the old itxs but
1297 * if taskq_dispatch can't allocate resources to do that then
1298 * free it in-line. This should be rare. Note, using TQ_SLEEP
1299 * created a bad performance problem.
1300 */
1301 if (taskq_dispatch(zilog->zl_clean_taskq,
1302 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1303 zil_itxg_clean(clean_me);
1304 }
1305
1306 /*
1307 * Get the list of itxs to commit into zl_itx_commit_list.
1308 */
1309 static void
1310 zil_get_commit_list(zilog_t *zilog)
1311 {
1312 uint64_t otxg, txg;
1313 list_t *commit_list = &zilog->zl_itx_commit_list;
1314 uint64_t push_sod = 0;
1315
1316 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1317 otxg = ZILTEST_TXG;
1318 else
1319 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1320
1321 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1322 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1323
1324 mutex_enter(&itxg->itxg_lock);
1325 if (itxg->itxg_txg != txg) {
1326 mutex_exit(&itxg->itxg_lock);
1327 continue;
1328 }
1329
1330 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1331 push_sod += itxg->itxg_sod;
1332 itxg->itxg_sod = 0;
1333
1334 mutex_exit(&itxg->itxg_lock);
1335 }
1336 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1337 }
1338
1339 /*
1340 * Move the async itxs for a specified object to commit into sync lists.
1341 */
1342 static void
1343 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1344 {
1345 uint64_t otxg, txg;
1346 itx_async_node_t *ian;
1347 avl_tree_t *t;
1348 avl_index_t where;
1349
1350 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1351 otxg = ZILTEST_TXG;
1352 else
1353 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1354
1355 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1356 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1357
1358 mutex_enter(&itxg->itxg_lock);
1359 if (itxg->itxg_txg != txg) {
1360 mutex_exit(&itxg->itxg_lock);
1361 continue;
1362 }
1363
1364 /*
1365 * If a foid is specified then find that node and append its
1366 * list. Otherwise walk the tree appending all the lists
1367 * to the sync list. We add to the end rather than the
1368 * beginning to ensure the create has happened.
1369 */
1370 t = &itxg->itxg_itxs->i_async_tree;
1371 if (foid != 0) {
1372 ian = avl_find(t, &foid, &where);
1373 if (ian != NULL) {
1374 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1375 &ian->ia_list);
1376 }
1377 } else {
1378 void *cookie = NULL;
1379
1380 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1381 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1382 &ian->ia_list);
1383 list_destroy(&ian->ia_list);
1384 kmem_free(ian, sizeof (itx_async_node_t));
1385 }
1386 }
1387 mutex_exit(&itxg->itxg_lock);
1388 }
1389 }
1390
1391 static void
1392 zil_commit_writer(zilog_t *zilog)
1393 {
1394 uint64_t txg;
1395 itx_t *itx;
1396 lwb_t *lwb;
1397 spa_t *spa = zilog->zl_spa;
1398 int error = 0;
1399
1400 ASSERT(zilog->zl_root_zio == NULL);
1401
1402 mutex_exit(&zilog->zl_lock);
1403
1404 zil_get_commit_list(zilog);
1405
1406 /*
1407 * Return if there's nothing to commit before we dirty the fs by
1408 * calling zil_create().
1409 */
1410 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1411 mutex_enter(&zilog->zl_lock);
1412 return;
1413 }
1414
1415 if (zilog->zl_suspend) {
1416 lwb = NULL;
1417 } else {
1418 lwb = list_tail(&zilog->zl_lwb_list);
1419 if (lwb == NULL)
1420 lwb = zil_create(zilog);
1421 }
1422
1423 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1424 while (itx = list_head(&zilog->zl_itx_commit_list)) {
1425 txg = itx->itx_lr.lrc_txg;
1426 ASSERT(txg);
1427
1428 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1429 lwb = zil_lwb_commit(zilog, itx, lwb);
1430 list_remove(&zilog->zl_itx_commit_list, itx);
1431 kmem_free(itx, offsetof(itx_t, itx_lr)
1432 + itx->itx_lr.lrc_reclen);
1433 }
1434 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1435
1436 /* write the last block out */
1437 if (lwb != NULL && lwb->lwb_zio != NULL)
1438 lwb = zil_lwb_write_start(zilog, lwb);
1439
1440 zilog->zl_cur_used = 0;
1441
1442 /*
1443 * Wait if necessary for the log blocks to be on stable storage.
1444 */
1445 if (zilog->zl_root_zio) {
1446 error = zio_wait(zilog->zl_root_zio);
1447 zilog->zl_root_zio = NULL;
1448 zil_flush_vdevs(zilog);
1449 }
1450
1451 if (error || lwb == NULL)
1452 txg_wait_synced(zilog->zl_dmu_pool, 0);
1453
1454 mutex_enter(&zilog->zl_lock);
1455
1456 /*
1457 * Remember the highest committed log sequence number for ztest.
1458 * We only update this value when all the log writes succeeded,
1459 * because ztest wants to ASSERT that it got the whole log chain.
1460 */
1461 if (error == 0 && lwb != NULL)
1462 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1463 }
1464
1465 /*
1466 * Commit zfs transactions to stable storage.
1467 * If foid is 0 push out all transactions, otherwise push only those
1468 * for that object or might reference that object.
1469 *
1470 * itxs are committed in batches. In a heavily stressed zil there will be
1471 * a commit writer thread who is writing out a bunch of itxs to the log
1472 * for a set of committing threads (cthreads) in the same batch as the writer.
1473 * Those cthreads are all waiting on the same cv for that batch.
1474 *
1475 * There will also be a different and growing batch of threads that are
1476 * waiting to commit (qthreads). When the committing batch completes
1477 * a transition occurs such that the cthreads exit and the qthreads become
1478 * cthreads. One of the new cthreads becomes the writer thread for the
1479 * batch. Any new threads arriving become new qthreads.
1480 *
1481 * Only 2 condition variables are needed and there's no transition
1482 * between the two cvs needed. They just flip-flop between qthreads
1483 * and cthreads.
1484 *
1485 * Using this scheme we can efficiently wakeup up only those threads
1486 * that have been committed.
1487 */
1488 void
1489 zil_commit(zilog_t *zilog, uint64_t foid)
1490 {
1491 uint64_t mybatch;
1492
1493 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1494 return;
1495
1496 /* move the async itxs for the foid to the sync queues */
1497 zil_async_to_sync(zilog, foid);
1498
1499 mutex_enter(&zilog->zl_lock);
1500 mybatch = zilog->zl_next_batch;
1501 while (zilog->zl_writer) {
1502 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1503 if (mybatch <= zilog->zl_com_batch) {
1504 mutex_exit(&zilog->zl_lock);
1505 return;
1506 }
1507 }
1508
1509 zilog->zl_next_batch++;
1510 zilog->zl_writer = B_TRUE;
1511 zil_commit_writer(zilog);
1512 zilog->zl_com_batch = mybatch;
1513 zilog->zl_writer = B_FALSE;
1514 mutex_exit(&zilog->zl_lock);
1515
1516 /* wake up one thread to become the next writer */
1517 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1518
1519 /* wake up all threads waiting for this batch to be committed */
1520 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1521 }
1522
1523 /*
1524 * Called in syncing context to free committed log blocks and update log header.
1525 */
1526 void
1527 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1528 {
1529 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1530 uint64_t txg = dmu_tx_get_txg(tx);
1531 spa_t *spa = zilog->zl_spa;
1532 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1533 lwb_t *lwb;
1534
1535 /*
1536 * We don't zero out zl_destroy_txg, so make sure we don't try
1537 * to destroy it twice.
1538 */
1539 if (spa_sync_pass(spa) != 1)
1540 return;
1541
1542 mutex_enter(&zilog->zl_lock);
1543
1544 ASSERT(zilog->zl_stop_sync == 0);
1545
1546 if (*replayed_seq != 0) {
1547 ASSERT(zh->zh_replay_seq < *replayed_seq);
1548 zh->zh_replay_seq = *replayed_seq;
1549 *replayed_seq = 0;
1550 }
1551
1552 if (zilog->zl_destroy_txg == txg) {
1553 blkptr_t blk = zh->zh_log;
1554
1555 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1556
1557 bzero(zh, sizeof (zil_header_t));
1558 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1559
1560 if (zilog->zl_keep_first) {
1561 /*
1562 * If this block was part of log chain that couldn't
1563 * be claimed because a device was missing during
1564 * zil_claim(), but that device later returns,
1565 * then this block could erroneously appear valid.
1566 * To guard against this, assign a new GUID to the new
1567 * log chain so it doesn't matter what blk points to.
1568 */
1569 zil_init_log_chain(zilog, &blk);
1570 zh->zh_log = blk;
1571 }
1572 }
1573
1574 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1575 zh->zh_log = lwb->lwb_blk;
1576 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1577 break;
1578 list_remove(&zilog->zl_lwb_list, lwb);
1579 zio_free_zil(spa, txg, &lwb->lwb_blk);
1580 kmem_cache_free(zil_lwb_cache, lwb);
1581
1582 /*
1583 * If we don't have anything left in the lwb list then
1584 * we've had an allocation failure and we need to zero
1585 * out the zil_header blkptr so that we don't end
1586 * up freeing the same block twice.
1587 */
1588 if (list_head(&zilog->zl_lwb_list) == NULL)
1589 BP_ZERO(&zh->zh_log);
1590 }
1591 mutex_exit(&zilog->zl_lock);
1592 }
1593
1594 void
1595 zil_init(void)
1596 {
1597 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1598 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1599 }
1600
1601 void
1602 zil_fini(void)
1603 {
1604 kmem_cache_destroy(zil_lwb_cache);
1605 }
1606
1607 void
1608 zil_set_sync(zilog_t *zilog, uint64_t sync)
1609 {
1610 zilog->zl_sync = sync;
1611 }
1612
1613 void
1614 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1615 {
1616 zilog->zl_logbias = logbias;
1617 }
1618
1619 zilog_t *
1620 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1621 {
1622 zilog_t *zilog;
1623 int i;
1624
1625 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1626
1627 zilog->zl_header = zh_phys;
1628 zilog->zl_os = os;
1629 zilog->zl_spa = dmu_objset_spa(os);
1630 zilog->zl_dmu_pool = dmu_objset_pool(os);
1631 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1632 zilog->zl_logbias = dmu_objset_logbias(os);
1633 zilog->zl_sync = dmu_objset_syncprop(os);
1634 zilog->zl_next_batch = 1;
1635
1636 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1637
1638 for (i = 0; i < TXG_SIZE; i++) {
1639 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1640 MUTEX_DEFAULT, NULL);
1641 }
1642
1643 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1644 offsetof(lwb_t, lwb_node));
1645
1646 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1647 offsetof(itx_t, itx_node));
1648
1649 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1650
1651 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1652 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1653
1654 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1655 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1656 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1657 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1658
1659 return (zilog);
1660 }
1661
1662 void
1663 zil_free(zilog_t *zilog)
1664 {
1665 lwb_t *head_lwb;
1666 int i;
1667
1668 zilog->zl_stop_sync = 1;
1669
1670 /*
1671 * After zil_close() there should only be one lwb with a buffer.
1672 */
1673 head_lwb = list_head(&zilog->zl_lwb_list);
1674 if (head_lwb) {
1675 ASSERT(head_lwb == list_tail(&zilog->zl_lwb_list));
1676 list_remove(&zilog->zl_lwb_list, head_lwb);
1677 zio_buf_free(head_lwb->lwb_buf, head_lwb->lwb_sz);
1678 kmem_cache_free(zil_lwb_cache, head_lwb);
1679 }
1680 list_destroy(&zilog->zl_lwb_list);
1681
1682 avl_destroy(&zilog->zl_vdev_tree);
1683 mutex_destroy(&zilog->zl_vdev_lock);
1684
1685 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1686 list_destroy(&zilog->zl_itx_commit_list);
1687
1688 for (i = 0; i < TXG_SIZE; i++) {
1689 /*
1690 * It's possible for an itx to be generated that doesn't dirty
1691 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1692 * callback to remove the entry. We remove those here.
1693 *
1694 * Also free up the ziltest itxs.
1695 */
1696 if (zilog->zl_itxg[i].itxg_itxs)
1697 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1698 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1699 }
1700
1701 mutex_destroy(&zilog->zl_lock);
1702
1703 cv_destroy(&zilog->zl_cv_writer);
1704 cv_destroy(&zilog->zl_cv_suspend);
1705 cv_destroy(&zilog->zl_cv_batch[0]);
1706 cv_destroy(&zilog->zl_cv_batch[1]);
1707
1708 kmem_free(zilog, sizeof (zilog_t));
1709 }
1710
1711 /*
1712 * Open an intent log.
1713 */
1714 zilog_t *
1715 zil_open(objset_t *os, zil_get_data_t *get_data)
1716 {
1717 zilog_t *zilog = dmu_objset_zil(os);
1718
1719 zilog->zl_get_data = get_data;
1720 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1721 2, 2, TASKQ_PREPOPULATE);
1722
1723 return (zilog);
1724 }
1725
1726 /*
1727 * Close an intent log.
1728 */
1729 void
1730 zil_close(zilog_t *zilog)
1731 {
1732 lwb_t *tail_lwb;
1733 uint64_t txg = 0;
1734
1735 zil_commit(zilog, 0); /* commit all itx */
1736
1737 /*
1738 * The lwb_max_txg for the stubby lwb will reflect the last activity
1739 * for the zil. After a txg_wait_synced() on the txg we know all the
1740 * callbacks have occurred that may clean the zil. Only then can we
1741 * destroy the zl_clean_taskq.
1742 */
1743 mutex_enter(&zilog->zl_lock);
1744 tail_lwb = list_tail(&zilog->zl_lwb_list);
1745 if (tail_lwb != NULL)
1746 txg = tail_lwb->lwb_max_txg;
1747 mutex_exit(&zilog->zl_lock);
1748 if (txg)
1749 txg_wait_synced(zilog->zl_dmu_pool, txg);
1750
1751 taskq_destroy(zilog->zl_clean_taskq);
1752 zilog->zl_clean_taskq = NULL;
1753 zilog->zl_get_data = NULL;
1754 }
1755
1756 /*
1757 * Suspend an intent log. While in suspended mode, we still honor
1758 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1759 * We suspend the log briefly when taking a snapshot so that the snapshot
1760 * contains all the data it's supposed to, and has an empty intent log.
1761 */
1762 int
1763 zil_suspend(zilog_t *zilog)
1764 {
1765 const zil_header_t *zh = zilog->zl_header;
1766
1767 mutex_enter(&zilog->zl_lock);
1768 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
1769 mutex_exit(&zilog->zl_lock);
1770 return (EBUSY);
1771 }
1772 if (zilog->zl_suspend++ != 0) {
1773 /*
1774 * Someone else already began a suspend.
1775 * Just wait for them to finish.
1776 */
1777 while (zilog->zl_suspending)
1778 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1779 mutex_exit(&zilog->zl_lock);
1780 return (0);
1781 }
1782 zilog->zl_suspending = B_TRUE;
1783 mutex_exit(&zilog->zl_lock);
1784
1785 zil_commit(zilog, 0);
1786
1787 zil_destroy(zilog, B_FALSE);
1788
1789 mutex_enter(&zilog->zl_lock);
1790 zilog->zl_suspending = B_FALSE;
1791 cv_broadcast(&zilog->zl_cv_suspend);
1792 mutex_exit(&zilog->zl_lock);
1793
1794 return (0);
1795 }
1796
1797 void
1798 zil_resume(zilog_t *zilog)
1799 {
1800 mutex_enter(&zilog->zl_lock);
1801 ASSERT(zilog->zl_suspend != 0);
1802 zilog->zl_suspend--;
1803 mutex_exit(&zilog->zl_lock);
1804 }
1805
1806 typedef struct zil_replay_arg {
1807 zil_replay_func_t **zr_replay;
1808 void *zr_arg;
1809 boolean_t zr_byteswap;
1810 char *zr_lr;
1811 } zil_replay_arg_t;
1812
1813 static int
1814 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1815 {
1816 char name[MAXNAMELEN];
1817
1818 zilog->zl_replaying_seq--; /* didn't actually replay this one */
1819
1820 dmu_objset_name(zilog->zl_os, name);
1821
1822 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1823 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1824 (u_longlong_t)lr->lrc_seq,
1825 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1826 (lr->lrc_txtype & TX_CI) ? "CI" : "");
1827
1828 return (error);
1829 }
1830
1831 static int
1832 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1833 {
1834 zil_replay_arg_t *zr = zra;
1835 const zil_header_t *zh = zilog->zl_header;
1836 uint64_t reclen = lr->lrc_reclen;
1837 uint64_t txtype = lr->lrc_txtype;
1838 int error = 0;
1839
1840 zilog->zl_replaying_seq = lr->lrc_seq;
1841
1842 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
1843 return (0);
1844
1845 if (lr->lrc_txg < claim_txg) /* already committed */
1846 return (0);
1847
1848 /* Strip case-insensitive bit, still present in log record */
1849 txtype &= ~TX_CI;
1850
1851 if (txtype == 0 || txtype >= TX_MAX_TYPE)
1852 return (zil_replay_error(zilog, lr, EINVAL));
1853
1854 /*
1855 * If this record type can be logged out of order, the object
1856 * (lr_foid) may no longer exist. That's legitimate, not an error.
1857 */
1858 if (TX_OOO(txtype)) {
1859 error = dmu_object_info(zilog->zl_os,
1860 ((lr_ooo_t *)lr)->lr_foid, NULL);
1861 if (error == ENOENT || error == EEXIST)
1862 return (0);
1863 }
1864
1865 /*
1866 * Make a copy of the data so we can revise and extend it.
1867 */
1868 bcopy(lr, zr->zr_lr, reclen);
1869
1870 /*
1871 * If this is a TX_WRITE with a blkptr, suck in the data.
1872 */
1873 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
1874 error = zil_read_log_data(zilog, (lr_write_t *)lr,
1875 zr->zr_lr + reclen);
1876 if (error)
1877 return (zil_replay_error(zilog, lr, error));
1878 }
1879
1880 /*
1881 * The log block containing this lr may have been byteswapped
1882 * so that we can easily examine common fields like lrc_txtype.
1883 * However, the log is a mix of different record types, and only the
1884 * replay vectors know how to byteswap their records. Therefore, if
1885 * the lr was byteswapped, undo it before invoking the replay vector.
1886 */
1887 if (zr->zr_byteswap)
1888 byteswap_uint64_array(zr->zr_lr, reclen);
1889
1890 /*
1891 * We must now do two things atomically: replay this log record,
1892 * and update the log header sequence number to reflect the fact that
1893 * we did so. At the end of each replay function the sequence number
1894 * is updated if we are in replay mode.
1895 */
1896 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
1897 if (error) {
1898 /*
1899 * The DMU's dnode layer doesn't see removes until the txg
1900 * commits, so a subsequent claim can spuriously fail with
1901 * EEXIST. So if we receive any error we try syncing out
1902 * any removes then retry the transaction. Note that we
1903 * specify B_FALSE for byteswap now, so we don't do it twice.
1904 */
1905 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
1906 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
1907 if (error)
1908 return (zil_replay_error(zilog, lr, error));
1909 }
1910 return (0);
1911 }
1912
1913 /* ARGSUSED */
1914 static int
1915 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1916 {
1917 zilog->zl_replay_blks++;
1918
1919 return (0);
1920 }
1921
1922 /*
1923 * If this dataset has a non-empty intent log, replay it and destroy it.
1924 */
1925 void
1926 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
1927 {
1928 zilog_t *zilog = dmu_objset_zil(os);
1929 const zil_header_t *zh = zilog->zl_header;
1930 zil_replay_arg_t zr;
1931
1932 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
1933 zil_destroy(zilog, B_TRUE);
1934 return;
1935 }
1936
1937 zr.zr_replay = replay_func;
1938 zr.zr_arg = arg;
1939 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
1940 zr.zr_lr = kmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
1941
1942 /*
1943 * Wait for in-progress removes to sync before starting replay.
1944 */
1945 txg_wait_synced(zilog->zl_dmu_pool, 0);
1946
1947 zilog->zl_replay = B_TRUE;
1948 zilog->zl_replay_time = ddi_get_lbolt();
1949 ASSERT(zilog->zl_replay_blks == 0);
1950 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
1951 zh->zh_claim_txg);
1952 kmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
1953
1954 zil_destroy(zilog, B_FALSE);
1955 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1956 zilog->zl_replay = B_FALSE;
1957 }
1958
1959 boolean_t
1960 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
1961 {
1962 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1963 return (B_TRUE);
1964
1965 if (zilog->zl_replay) {
1966 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1967 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
1968 zilog->zl_replaying_seq;
1969 return (B_TRUE);
1970 }
1971
1972 return (B_FALSE);
1973 }
1974
1975 /* ARGSUSED */
1976 int
1977 zil_vdev_offline(const char *osname, void *arg)
1978 {
1979 objset_t *os;
1980 zilog_t *zilog;
1981 int error;
1982
1983 error = dmu_objset_hold(osname, FTAG, &os);
1984 if (error)
1985 return (error);
1986
1987 zilog = dmu_objset_zil(os);
1988 if (zil_suspend(zilog) != 0)
1989 error = EEXIST;
1990 else
1991 zil_resume(zilog);
1992 dmu_objset_rele(os, FTAG);
1993 return (error);
1994 }