]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
Add missing ZFS tunables
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2010 Robert Milkowski */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa.h>
29 #include <sys/dmu.h>
30 #include <sys/zap.h>
31 #include <sys/arc.h>
32 #include <sys/stat.h>
33 #include <sys/resource.h>
34 #include <sys/zil.h>
35 #include <sys/zil_impl.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_pool.h>
40
41 /*
42 * The zfs intent log (ZIL) saves transaction records of system calls
43 * that change the file system in memory with enough information
44 * to be able to replay them. These are stored in memory until
45 * either the DMU transaction group (txg) commits them to the stable pool
46 * and they can be discarded, or they are flushed to the stable log
47 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
48 * requirement. In the event of a panic or power fail then those log
49 * records (transactions) are replayed.
50 *
51 * There is one ZIL per file system. Its on-disk (pool) format consists
52 * of 3 parts:
53 *
54 * - ZIL header
55 * - ZIL blocks
56 * - ZIL records
57 *
58 * A log record holds a system call transaction. Log blocks can
59 * hold many log records and the blocks are chained together.
60 * Each ZIL block contains a block pointer (blkptr_t) to the next
61 * ZIL block in the chain. The ZIL header points to the first
62 * block in the chain. Note there is not a fixed place in the pool
63 * to hold blocks. They are dynamically allocated and freed as
64 * needed from the blocks available. Figure X shows the ZIL structure:
65 */
66
67 /*
68 * This global ZIL switch affects all pools
69 */
70 int zil_replay_disable = 0; /* disable intent logging replay */
71
72 /*
73 * Tunable parameter for debugging or performance analysis. Setting
74 * zfs_nocacheflush will cause corruption on power loss if a volatile
75 * out-of-order write cache is enabled.
76 */
77 int zfs_nocacheflush = 0;
78
79 static kmem_cache_t *zil_lwb_cache;
80
81 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
82
83 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
84 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
85
86
87 /*
88 * ziltest is by and large an ugly hack, but very useful in
89 * checking replay without tedious work.
90 * When running ziltest we want to keep all itx's and so maintain
91 * a single list in the zl_itxg[] that uses a high txg: ZILTEST_TXG
92 * We subtract TXG_CONCURRENT_STATES to allow for common code.
93 */
94 #define ZILTEST_TXG (UINT64_MAX - TXG_CONCURRENT_STATES)
95
96 static int
97 zil_bp_compare(const void *x1, const void *x2)
98 {
99 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
100 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
101
102 if (DVA_GET_VDEV(dva1) < DVA_GET_VDEV(dva2))
103 return (-1);
104 if (DVA_GET_VDEV(dva1) > DVA_GET_VDEV(dva2))
105 return (1);
106
107 if (DVA_GET_OFFSET(dva1) < DVA_GET_OFFSET(dva2))
108 return (-1);
109 if (DVA_GET_OFFSET(dva1) > DVA_GET_OFFSET(dva2))
110 return (1);
111
112 return (0);
113 }
114
115 static void
116 zil_bp_tree_init(zilog_t *zilog)
117 {
118 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
119 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
120 }
121
122 static void
123 zil_bp_tree_fini(zilog_t *zilog)
124 {
125 avl_tree_t *t = &zilog->zl_bp_tree;
126 zil_bp_node_t *zn;
127 void *cookie = NULL;
128
129 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
130 kmem_free(zn, sizeof (zil_bp_node_t));
131
132 avl_destroy(t);
133 }
134
135 int
136 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
137 {
138 avl_tree_t *t = &zilog->zl_bp_tree;
139 const dva_t *dva = BP_IDENTITY(bp);
140 zil_bp_node_t *zn;
141 avl_index_t where;
142
143 if (avl_find(t, dva, &where) != NULL)
144 return (EEXIST);
145
146 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
147 zn->zn_dva = *dva;
148 avl_insert(t, zn, where);
149
150 return (0);
151 }
152
153 static zil_header_t *
154 zil_header_in_syncing_context(zilog_t *zilog)
155 {
156 return ((zil_header_t *)zilog->zl_header);
157 }
158
159 static void
160 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
161 {
162 zio_cksum_t *zc = &bp->blk_cksum;
163
164 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
165 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
166 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
167 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
168 }
169
170 /*
171 * Read a log block and make sure it's valid.
172 */
173 static int
174 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
175 char **end)
176 {
177 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
178 uint32_t aflags = ARC_WAIT;
179 arc_buf_t *abuf = NULL;
180 zbookmark_t zb;
181 int error;
182
183 if (zilog->zl_header->zh_claim_txg == 0)
184 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
185
186 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
187 zio_flags |= ZIO_FLAG_SPECULATIVE;
188
189 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
190 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
191
192 error = dsl_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
193 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
194
195 if (error == 0) {
196 zio_cksum_t cksum = bp->blk_cksum;
197
198 /*
199 * Validate the checksummed log block.
200 *
201 * Sequence numbers should be... sequential. The checksum
202 * verifier for the next block should be bp's checksum plus 1.
203 *
204 * Also check the log chain linkage and size used.
205 */
206 cksum.zc_word[ZIL_ZC_SEQ]++;
207
208 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
209 zil_chain_t *zilc = abuf->b_data;
210 char *lr = (char *)(zilc + 1);
211 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
212
213 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
214 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
215 error = ECKSUM;
216 } else {
217 bcopy(lr, dst, len);
218 *end = (char *)dst + len;
219 *nbp = zilc->zc_next_blk;
220 }
221 } else {
222 char *lr = abuf->b_data;
223 uint64_t size = BP_GET_LSIZE(bp);
224 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
225
226 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
227 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
228 (zilc->zc_nused > (size - sizeof (*zilc)))) {
229 error = ECKSUM;
230 } else {
231 bcopy(lr, dst, zilc->zc_nused);
232 *end = (char *)dst + zilc->zc_nused;
233 *nbp = zilc->zc_next_blk;
234 }
235 }
236
237 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
238 }
239
240 return (error);
241 }
242
243 /*
244 * Read a TX_WRITE log data block.
245 */
246 static int
247 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
248 {
249 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
250 const blkptr_t *bp = &lr->lr_blkptr;
251 uint32_t aflags = ARC_WAIT;
252 arc_buf_t *abuf = NULL;
253 zbookmark_t zb;
254 int error;
255
256 if (BP_IS_HOLE(bp)) {
257 if (wbuf != NULL)
258 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
259 return (0);
260 }
261
262 if (zilog->zl_header->zh_claim_txg == 0)
263 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
264
265 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
266 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
267
268 error = arc_read_nolock(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
269 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
270
271 if (error == 0) {
272 if (wbuf != NULL)
273 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
274 (void) arc_buf_remove_ref(abuf, &abuf);
275 }
276
277 return (error);
278 }
279
280 /*
281 * Parse the intent log, and call parse_func for each valid record within.
282 */
283 int
284 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
285 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
286 {
287 const zil_header_t *zh = zilog->zl_header;
288 boolean_t claimed = !!zh->zh_claim_txg;
289 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
290 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
291 uint64_t max_blk_seq = 0;
292 uint64_t max_lr_seq = 0;
293 uint64_t blk_count = 0;
294 uint64_t lr_count = 0;
295 blkptr_t blk, next_blk;
296 char *lrbuf, *lrp;
297 int error = 0;
298
299 bzero(&next_blk, sizeof(blkptr_t));
300
301 /*
302 * Old logs didn't record the maximum zh_claim_lr_seq.
303 */
304 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
305 claim_lr_seq = UINT64_MAX;
306
307 /*
308 * Starting at the block pointed to by zh_log we read the log chain.
309 * For each block in the chain we strongly check that block to
310 * ensure its validity. We stop when an invalid block is found.
311 * For each block pointer in the chain we call parse_blk_func().
312 * For each record in each valid block we call parse_lr_func().
313 * If the log has been claimed, stop if we encounter a sequence
314 * number greater than the highest claimed sequence number.
315 */
316 lrbuf = zio_buf_alloc(SPA_MAXBLOCKSIZE);
317 zil_bp_tree_init(zilog);
318
319 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
320 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
321 int reclen;
322 char *end = NULL;
323
324 if (blk_seq > claim_blk_seq)
325 break;
326 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
327 break;
328 ASSERT3U(max_blk_seq, <, blk_seq);
329 max_blk_seq = blk_seq;
330 blk_count++;
331
332 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
333 break;
334
335 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
336 if (error)
337 break;
338
339 for (lrp = lrbuf; lrp < end; lrp += reclen) {
340 lr_t *lr = (lr_t *)lrp;
341 reclen = lr->lrc_reclen;
342 ASSERT3U(reclen, >=, sizeof (lr_t));
343 if (lr->lrc_seq > claim_lr_seq)
344 goto done;
345 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
346 goto done;
347 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
348 max_lr_seq = lr->lrc_seq;
349 lr_count++;
350 }
351 }
352 done:
353 zilog->zl_parse_error = error;
354 zilog->zl_parse_blk_seq = max_blk_seq;
355 zilog->zl_parse_lr_seq = max_lr_seq;
356 zilog->zl_parse_blk_count = blk_count;
357 zilog->zl_parse_lr_count = lr_count;
358
359 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
360 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
361
362 zil_bp_tree_fini(zilog);
363 zio_buf_free(lrbuf, SPA_MAXBLOCKSIZE);
364
365 return (error);
366 }
367
368 static int
369 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
370 {
371 /*
372 * Claim log block if not already committed and not already claimed.
373 * If tx == NULL, just verify that the block is claimable.
374 */
375 if (bp->blk_birth < first_txg || zil_bp_tree_add(zilog, bp) != 0)
376 return (0);
377
378 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
379 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
380 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
381 }
382
383 static int
384 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
385 {
386 lr_write_t *lr = (lr_write_t *)lrc;
387 int error;
388
389 if (lrc->lrc_txtype != TX_WRITE)
390 return (0);
391
392 /*
393 * If the block is not readable, don't claim it. This can happen
394 * in normal operation when a log block is written to disk before
395 * some of the dmu_sync() blocks it points to. In this case, the
396 * transaction cannot have been committed to anyone (we would have
397 * waited for all writes to be stable first), so it is semantically
398 * correct to declare this the end of the log.
399 */
400 if (lr->lr_blkptr.blk_birth >= first_txg &&
401 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
402 return (error);
403 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
404 }
405
406 /* ARGSUSED */
407 static int
408 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
409 {
410 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
411
412 return (0);
413 }
414
415 static int
416 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
417 {
418 lr_write_t *lr = (lr_write_t *)lrc;
419 blkptr_t *bp = &lr->lr_blkptr;
420
421 /*
422 * If we previously claimed it, we need to free it.
423 */
424 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
425 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0)
426 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
427
428 return (0);
429 }
430
431 static lwb_t *
432 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, uint64_t txg)
433 {
434 lwb_t *lwb;
435
436 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
437 lwb->lwb_zilog = zilog;
438 lwb->lwb_blk = *bp;
439 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
440 lwb->lwb_max_txg = txg;
441 lwb->lwb_zio = NULL;
442 lwb->lwb_tx = NULL;
443 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
444 lwb->lwb_nused = sizeof (zil_chain_t);
445 lwb->lwb_sz = BP_GET_LSIZE(bp);
446 } else {
447 lwb->lwb_nused = 0;
448 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
449 }
450
451 mutex_enter(&zilog->zl_lock);
452 list_insert_tail(&zilog->zl_lwb_list, lwb);
453 mutex_exit(&zilog->zl_lock);
454
455 return (lwb);
456 }
457
458 /*
459 * Create an on-disk intent log.
460 */
461 static lwb_t *
462 zil_create(zilog_t *zilog)
463 {
464 const zil_header_t *zh = zilog->zl_header;
465 lwb_t *lwb = NULL;
466 uint64_t txg = 0;
467 dmu_tx_t *tx = NULL;
468 blkptr_t blk;
469 int error = 0;
470
471 /*
472 * Wait for any previous destroy to complete.
473 */
474 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
475
476 ASSERT(zh->zh_claim_txg == 0);
477 ASSERT(zh->zh_replay_seq == 0);
478
479 blk = zh->zh_log;
480
481 /*
482 * Allocate an initial log block if:
483 * - there isn't one already
484 * - the existing block is the wrong endianess
485 */
486 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
487 tx = dmu_tx_create(zilog->zl_os);
488 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
489 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
490 txg = dmu_tx_get_txg(tx);
491
492 if (!BP_IS_HOLE(&blk)) {
493 zio_free_zil(zilog->zl_spa, txg, &blk);
494 BP_ZERO(&blk);
495 }
496
497 error = zio_alloc_zil(zilog->zl_spa, txg, &blk, NULL,
498 ZIL_MIN_BLKSZ, zilog->zl_logbias == ZFS_LOGBIAS_LATENCY);
499
500 if (error == 0)
501 zil_init_log_chain(zilog, &blk);
502 }
503
504 /*
505 * Allocate a log write buffer (lwb) for the first log block.
506 */
507 if (error == 0)
508 lwb = zil_alloc_lwb(zilog, &blk, txg);
509
510 /*
511 * If we just allocated the first log block, commit our transaction
512 * and wait for zil_sync() to stuff the block poiner into zh_log.
513 * (zh is part of the MOS, so we cannot modify it in open context.)
514 */
515 if (tx != NULL) {
516 dmu_tx_commit(tx);
517 txg_wait_synced(zilog->zl_dmu_pool, txg);
518 }
519
520 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
521
522 return (lwb);
523 }
524
525 /*
526 * In one tx, free all log blocks and clear the log header.
527 * If keep_first is set, then we're replaying a log with no content.
528 * We want to keep the first block, however, so that the first
529 * synchronous transaction doesn't require a txg_wait_synced()
530 * in zil_create(). We don't need to txg_wait_synced() here either
531 * when keep_first is set, because both zil_create() and zil_destroy()
532 * will wait for any in-progress destroys to complete.
533 */
534 void
535 zil_destroy(zilog_t *zilog, boolean_t keep_first)
536 {
537 const zil_header_t *zh = zilog->zl_header;
538 lwb_t *lwb;
539 dmu_tx_t *tx;
540 uint64_t txg;
541
542 /*
543 * Wait for any previous destroy to complete.
544 */
545 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
546
547 zilog->zl_old_header = *zh; /* debugging aid */
548
549 if (BP_IS_HOLE(&zh->zh_log))
550 return;
551
552 tx = dmu_tx_create(zilog->zl_os);
553 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
554 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
555 txg = dmu_tx_get_txg(tx);
556
557 mutex_enter(&zilog->zl_lock);
558
559 ASSERT3U(zilog->zl_destroy_txg, <, txg);
560 zilog->zl_destroy_txg = txg;
561 zilog->zl_keep_first = keep_first;
562
563 if (!list_is_empty(&zilog->zl_lwb_list)) {
564 ASSERT(zh->zh_claim_txg == 0);
565 ASSERT(!keep_first);
566 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
567 list_remove(&zilog->zl_lwb_list, lwb);
568 if (lwb->lwb_buf != NULL)
569 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
570 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
571 kmem_cache_free(zil_lwb_cache, lwb);
572 }
573 } else if (!keep_first) {
574 (void) zil_parse(zilog, zil_free_log_block,
575 zil_free_log_record, tx, zh->zh_claim_txg);
576 }
577 mutex_exit(&zilog->zl_lock);
578
579 dmu_tx_commit(tx);
580 }
581
582 int
583 zil_claim(const char *osname, void *txarg)
584 {
585 dmu_tx_t *tx = txarg;
586 uint64_t first_txg = dmu_tx_get_txg(tx);
587 zilog_t *zilog;
588 zil_header_t *zh;
589 objset_t *os;
590 int error;
591
592 error = dmu_objset_hold(osname, FTAG, &os);
593 if (error) {
594 cmn_err(CE_WARN, "can't open objset for %s", osname);
595 return (0);
596 }
597
598 zilog = dmu_objset_zil(os);
599 zh = zil_header_in_syncing_context(zilog);
600
601 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
602 if (!BP_IS_HOLE(&zh->zh_log))
603 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
604 BP_ZERO(&zh->zh_log);
605 dsl_dataset_dirty(dmu_objset_ds(os), tx);
606 dmu_objset_rele(os, FTAG);
607 return (0);
608 }
609
610 /*
611 * Claim all log blocks if we haven't already done so, and remember
612 * the highest claimed sequence number. This ensures that if we can
613 * read only part of the log now (e.g. due to a missing device),
614 * but we can read the entire log later, we will not try to replay
615 * or destroy beyond the last block we successfully claimed.
616 */
617 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
618 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
619 (void) zil_parse(zilog, zil_claim_log_block,
620 zil_claim_log_record, tx, first_txg);
621 zh->zh_claim_txg = first_txg;
622 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
623 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
624 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
625 zh->zh_flags |= ZIL_REPLAY_NEEDED;
626 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
627 dsl_dataset_dirty(dmu_objset_ds(os), tx);
628 }
629
630 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
631 dmu_objset_rele(os, FTAG);
632 return (0);
633 }
634
635 /*
636 * Check the log by walking the log chain.
637 * Checksum errors are ok as they indicate the end of the chain.
638 * Any other error (no device or read failure) returns an error.
639 */
640 int
641 zil_check_log_chain(const char *osname, void *tx)
642 {
643 zilog_t *zilog;
644 objset_t *os;
645 blkptr_t *bp;
646 int error;
647
648 ASSERT(tx == NULL);
649
650 error = dmu_objset_hold(osname, FTAG, &os);
651 if (error) {
652 cmn_err(CE_WARN, "can't open objset for %s", osname);
653 return (0);
654 }
655
656 zilog = dmu_objset_zil(os);
657 bp = (blkptr_t *)&zilog->zl_header->zh_log;
658
659 /*
660 * Check the first block and determine if it's on a log device
661 * which may have been removed or faulted prior to loading this
662 * pool. If so, there's no point in checking the rest of the log
663 * as its content should have already been synced to the pool.
664 */
665 if (!BP_IS_HOLE(bp)) {
666 vdev_t *vd;
667 boolean_t valid = B_TRUE;
668
669 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
670 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
671 if (vd->vdev_islog && vdev_is_dead(vd))
672 valid = vdev_log_state_valid(vd);
673 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
674
675 if (!valid) {
676 dmu_objset_rele(os, FTAG);
677 return (0);
678 }
679 }
680
681 /*
682 * Because tx == NULL, zil_claim_log_block() will not actually claim
683 * any blocks, but just determine whether it is possible to do so.
684 * In addition to checking the log chain, zil_claim_log_block()
685 * will invoke zio_claim() with a done func of spa_claim_notify(),
686 * which will update spa_max_claim_txg. See spa_load() for details.
687 */
688 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
689 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
690
691 dmu_objset_rele(os, FTAG);
692
693 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
694 }
695
696 static int
697 zil_vdev_compare(const void *x1, const void *x2)
698 {
699 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
700 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
701
702 if (v1 < v2)
703 return (-1);
704 if (v1 > v2)
705 return (1);
706
707 return (0);
708 }
709
710 void
711 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
712 {
713 avl_tree_t *t = &zilog->zl_vdev_tree;
714 avl_index_t where;
715 zil_vdev_node_t *zv, zvsearch;
716 int ndvas = BP_GET_NDVAS(bp);
717 int i;
718
719 if (zfs_nocacheflush)
720 return;
721
722 ASSERT(zilog->zl_writer);
723
724 /*
725 * Even though we're zl_writer, we still need a lock because the
726 * zl_get_data() callbacks may have dmu_sync() done callbacks
727 * that will run concurrently.
728 */
729 mutex_enter(&zilog->zl_vdev_lock);
730 for (i = 0; i < ndvas; i++) {
731 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
732 if (avl_find(t, &zvsearch, &where) == NULL) {
733 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
734 zv->zv_vdev = zvsearch.zv_vdev;
735 avl_insert(t, zv, where);
736 }
737 }
738 mutex_exit(&zilog->zl_vdev_lock);
739 }
740
741 static void
742 zil_flush_vdevs(zilog_t *zilog)
743 {
744 spa_t *spa = zilog->zl_spa;
745 avl_tree_t *t = &zilog->zl_vdev_tree;
746 void *cookie = NULL;
747 zil_vdev_node_t *zv;
748 zio_t *zio;
749
750 ASSERT(zilog->zl_writer);
751
752 /*
753 * We don't need zl_vdev_lock here because we're the zl_writer,
754 * and all zl_get_data() callbacks are done.
755 */
756 if (avl_numnodes(t) == 0)
757 return;
758
759 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
760
761 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
762
763 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
764 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
765 if (vd != NULL)
766 zio_flush(zio, vd);
767 kmem_free(zv, sizeof (*zv));
768 }
769
770 /*
771 * Wait for all the flushes to complete. Not all devices actually
772 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
773 */
774 (void) zio_wait(zio);
775
776 spa_config_exit(spa, SCL_STATE, FTAG);
777 }
778
779 /*
780 * Function called when a log block write completes
781 */
782 static void
783 zil_lwb_write_done(zio_t *zio)
784 {
785 lwb_t *lwb = zio->io_private;
786 zilog_t *zilog = lwb->lwb_zilog;
787 dmu_tx_t *tx = lwb->lwb_tx;
788
789 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
790 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
791 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
792 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
793 ASSERT(!BP_IS_GANG(zio->io_bp));
794 ASSERT(!BP_IS_HOLE(zio->io_bp));
795 ASSERT(zio->io_bp->blk_fill == 0);
796
797 /*
798 * Ensure the lwb buffer pointer is cleared before releasing
799 * the txg. If we have had an allocation failure and
800 * the txg is waiting to sync then we want want zil_sync()
801 * to remove the lwb so that it's not picked up as the next new
802 * one in zil_commit_writer(). zil_sync() will only remove
803 * the lwb if lwb_buf is null.
804 */
805 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
806 mutex_enter(&zilog->zl_lock);
807 lwb->lwb_buf = NULL;
808 lwb->lwb_tx = NULL;
809 mutex_exit(&zilog->zl_lock);
810
811 /*
812 * Now that we've written this log block, we have a stable pointer
813 * to the next block in the chain, so it's OK to let the txg in
814 * which we allocated the next block sync.
815 */
816 dmu_tx_commit(tx);
817 }
818
819 /*
820 * Initialize the io for a log block.
821 */
822 static void
823 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
824 {
825 zbookmark_t zb;
826
827 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
828 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
829 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
830
831 if (zilog->zl_root_zio == NULL) {
832 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
833 ZIO_FLAG_CANFAIL);
834 }
835 if (lwb->lwb_zio == NULL) {
836 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
837 0, &lwb->lwb_blk, lwb->lwb_buf, BP_GET_LSIZE(&lwb->lwb_blk),
838 zil_lwb_write_done, lwb, ZIO_PRIORITY_LOG_WRITE,
839 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE, &zb);
840 }
841 }
842
843 /*
844 * Define a limited set of intent log block sizes.
845 * These must be a multiple of 4KB. Note only the amount used (again
846 * aligned to 4KB) actually gets written. However, we can't always just
847 * allocate SPA_MAXBLOCKSIZE as the slog space could be exhausted.
848 */
849 uint64_t zil_block_buckets[] = {
850 4096, /* non TX_WRITE */
851 8192+4096, /* data base */
852 32*1024 + 4096, /* NFS writes */
853 UINT64_MAX
854 };
855
856 /*
857 * Use the slog as long as the logbias is 'latency' and the current commit size
858 * is less than the limit or the total list size is less than 2X the limit.
859 * Limit checking is disabled by setting zil_slog_limit to UINT64_MAX.
860 */
861 uint64_t zil_slog_limit = 1024 * 1024;
862 #define USE_SLOG(zilog) (((zilog)->zl_logbias == ZFS_LOGBIAS_LATENCY) && \
863 (((zilog)->zl_cur_used < zil_slog_limit) || \
864 ((zilog)->zl_itx_list_sz < (zil_slog_limit << 1))))
865
866 /*
867 * Start a log block write and advance to the next log block.
868 * Calls are serialized.
869 */
870 static lwb_t *
871 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
872 {
873 lwb_t *nlwb = NULL;
874 zil_chain_t *zilc;
875 spa_t *spa = zilog->zl_spa;
876 blkptr_t *bp;
877 dmu_tx_t *tx;
878 uint64_t txg;
879 uint64_t zil_blksz, wsz;
880 int i, error;
881
882 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
883 zilc = (zil_chain_t *)lwb->lwb_buf;
884 bp = &zilc->zc_next_blk;
885 } else {
886 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
887 bp = &zilc->zc_next_blk;
888 }
889
890 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
891
892 /*
893 * Allocate the next block and save its address in this block
894 * before writing it in order to establish the log chain.
895 * Note that if the allocation of nlwb synced before we wrote
896 * the block that points at it (lwb), we'd leak it if we crashed.
897 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
898 * We dirty the dataset to ensure that zil_sync() will be called
899 * to clean up in the event of allocation failure or I/O failure.
900 */
901 tx = dmu_tx_create(zilog->zl_os);
902 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
903 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
904 txg = dmu_tx_get_txg(tx);
905
906 lwb->lwb_tx = tx;
907
908 /*
909 * Log blocks are pre-allocated. Here we select the size of the next
910 * block, based on size used in the last block.
911 * - first find the smallest bucket that will fit the block from a
912 * limited set of block sizes. This is because it's faster to write
913 * blocks allocated from the same metaslab as they are adjacent or
914 * close.
915 * - next find the maximum from the new suggested size and an array of
916 * previous sizes. This lessens a picket fence effect of wrongly
917 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
918 * requests.
919 *
920 * Note we only write what is used, but we can't just allocate
921 * the maximum block size because we can exhaust the available
922 * pool log space.
923 */
924 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
925 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
926 continue;
927 zil_blksz = zil_block_buckets[i];
928 if (zil_blksz == UINT64_MAX)
929 zil_blksz = SPA_MAXBLOCKSIZE;
930 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
931 for (i = 0; i < ZIL_PREV_BLKS; i++)
932 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
933 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
934
935 BP_ZERO(bp);
936 /* pass the old blkptr in order to spread log blocks across devs */
937 error = zio_alloc_zil(spa, txg, bp, &lwb->lwb_blk, zil_blksz,
938 USE_SLOG(zilog));
939 if (!error) {
940 ASSERT3U(bp->blk_birth, ==, txg);
941 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
942 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
943
944 /*
945 * Allocate a new log write buffer (lwb).
946 */
947 nlwb = zil_alloc_lwb(zilog, bp, txg);
948
949 /* Record the block for later vdev flushing */
950 zil_add_block(zilog, &lwb->lwb_blk);
951 }
952
953 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
954 /* For Slim ZIL only write what is used. */
955 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
956 ASSERT3U(wsz, <=, lwb->lwb_sz);
957 zio_shrink(lwb->lwb_zio, wsz);
958
959 } else {
960 wsz = lwb->lwb_sz;
961 }
962
963 zilc->zc_pad = 0;
964 zilc->zc_nused = lwb->lwb_nused;
965 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
966
967 /*
968 * clear unused data for security
969 */
970 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
971
972 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
973
974 /*
975 * If there was an allocation failure then nlwb will be null which
976 * forces a txg_wait_synced().
977 */
978 return (nlwb);
979 }
980
981 static lwb_t *
982 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
983 {
984 lr_t *lrc = &itx->itx_lr; /* common log record */
985 lr_write_t *lrw = (lr_write_t *)lrc;
986 char *lr_buf;
987 uint64_t txg = lrc->lrc_txg;
988 uint64_t reclen = lrc->lrc_reclen;
989 uint64_t dlen = 0;
990
991 if (lwb == NULL)
992 return (NULL);
993
994 ASSERT(lwb->lwb_buf != NULL);
995
996 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY)
997 dlen = P2ROUNDUP_TYPED(
998 lrw->lr_length, sizeof (uint64_t), uint64_t);
999
1000 zilog->zl_cur_used += (reclen + dlen);
1001
1002 zil_lwb_write_init(zilog, lwb);
1003
1004 /*
1005 * If this record won't fit in the current log block, start a new one.
1006 */
1007 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1008 lwb = zil_lwb_write_start(zilog, lwb);
1009 if (lwb == NULL)
1010 return (NULL);
1011 zil_lwb_write_init(zilog, lwb);
1012 ASSERT(LWB_EMPTY(lwb));
1013 if (lwb->lwb_nused + reclen + dlen > lwb->lwb_sz) {
1014 txg_wait_synced(zilog->zl_dmu_pool, txg);
1015 return (lwb);
1016 }
1017 }
1018
1019 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1020 bcopy(lrc, lr_buf, reclen);
1021 lrc = (lr_t *)lr_buf;
1022 lrw = (lr_write_t *)lrc;
1023
1024 /*
1025 * If it's a write, fetch the data or get its blkptr as appropriate.
1026 */
1027 if (lrc->lrc_txtype == TX_WRITE) {
1028 if (txg > spa_freeze_txg(zilog->zl_spa))
1029 txg_wait_synced(zilog->zl_dmu_pool, txg);
1030 if (itx->itx_wr_state != WR_COPIED) {
1031 char *dbuf;
1032 int error;
1033
1034 if (dlen) {
1035 ASSERT(itx->itx_wr_state == WR_NEED_COPY);
1036 dbuf = lr_buf + reclen;
1037 lrw->lr_common.lrc_reclen += dlen;
1038 } else {
1039 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1040 dbuf = NULL;
1041 }
1042 error = zilog->zl_get_data(
1043 itx->itx_private, lrw, dbuf, lwb->lwb_zio);
1044 if (error == EIO) {
1045 txg_wait_synced(zilog->zl_dmu_pool, txg);
1046 return (lwb);
1047 }
1048 if (error) {
1049 ASSERT(error == ENOENT || error == EEXIST ||
1050 error == EALREADY);
1051 return (lwb);
1052 }
1053 }
1054 }
1055
1056 /*
1057 * We're actually making an entry, so update lrc_seq to be the
1058 * log record sequence number. Note that this is generally not
1059 * equal to the itx sequence number because not all transactions
1060 * are synchronous, and sometimes spa_sync() gets there first.
1061 */
1062 lrc->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1063 lwb->lwb_nused += reclen + dlen;
1064 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1065 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1066 ASSERT3U(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)), ==, 0);
1067
1068 return (lwb);
1069 }
1070
1071 itx_t *
1072 zil_itx_create(uint64_t txtype, size_t lrsize)
1073 {
1074 itx_t *itx;
1075
1076 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1077
1078 itx = kmem_alloc(offsetof(itx_t, itx_lr) + lrsize,
1079 KM_PUSHPAGE | KM_NODEBUG);
1080 itx->itx_lr.lrc_txtype = txtype;
1081 itx->itx_lr.lrc_reclen = lrsize;
1082 itx->itx_sod = lrsize; /* if write & WR_NEED_COPY will be increased */
1083 itx->itx_lr.lrc_seq = 0; /* defensive */
1084 itx->itx_sync = B_TRUE; /* default is synchronous */
1085
1086 return (itx);
1087 }
1088
1089 void
1090 zil_itx_destroy(itx_t *itx)
1091 {
1092 kmem_free(itx, offsetof(itx_t, itx_lr) + itx->itx_lr.lrc_reclen);
1093 }
1094
1095 /*
1096 * Free up the sync and async itxs. The itxs_t has already been detached
1097 * so no locks are needed.
1098 */
1099 static void
1100 zil_itxg_clean(itxs_t *itxs)
1101 {
1102 itx_t *itx;
1103 list_t *list;
1104 avl_tree_t *t;
1105 void *cookie;
1106 itx_async_node_t *ian;
1107
1108 list = &itxs->i_sync_list;
1109 while ((itx = list_head(list)) != NULL) {
1110 list_remove(list, itx);
1111 kmem_free(itx, offsetof(itx_t, itx_lr) +
1112 itx->itx_lr.lrc_reclen);
1113 }
1114
1115 cookie = NULL;
1116 t = &itxs->i_async_tree;
1117 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1118 list = &ian->ia_list;
1119 while ((itx = list_head(list)) != NULL) {
1120 list_remove(list, itx);
1121 kmem_free(itx, offsetof(itx_t, itx_lr) +
1122 itx->itx_lr.lrc_reclen);
1123 }
1124 list_destroy(list);
1125 kmem_free(ian, sizeof (itx_async_node_t));
1126 }
1127 avl_destroy(t);
1128
1129 kmem_free(itxs, sizeof (itxs_t));
1130 }
1131
1132 static int
1133 zil_aitx_compare(const void *x1, const void *x2)
1134 {
1135 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1136 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1137
1138 if (o1 < o2)
1139 return (-1);
1140 if (o1 > o2)
1141 return (1);
1142
1143 return (0);
1144 }
1145
1146 /*
1147 * Remove all async itx with the given oid.
1148 */
1149 static void
1150 zil_remove_async(zilog_t *zilog, uint64_t oid)
1151 {
1152 uint64_t otxg, txg;
1153 itx_async_node_t *ian;
1154 avl_tree_t *t;
1155 avl_index_t where;
1156 list_t clean_list;
1157 itx_t *itx;
1158
1159 ASSERT(oid != 0);
1160 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1161
1162 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1163 otxg = ZILTEST_TXG;
1164 else
1165 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1166
1167 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1168 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1169
1170 mutex_enter(&itxg->itxg_lock);
1171 if (itxg->itxg_txg != txg) {
1172 mutex_exit(&itxg->itxg_lock);
1173 continue;
1174 }
1175
1176 /*
1177 * Locate the object node and append its list.
1178 */
1179 t = &itxg->itxg_itxs->i_async_tree;
1180 ian = avl_find(t, &oid, &where);
1181 if (ian != NULL)
1182 list_move_tail(&clean_list, &ian->ia_list);
1183 mutex_exit(&itxg->itxg_lock);
1184 }
1185 while ((itx = list_head(&clean_list)) != NULL) {
1186 list_remove(&clean_list, itx);
1187 kmem_free(itx, offsetof(itx_t, itx_lr) +
1188 itx->itx_lr.lrc_reclen);
1189 }
1190 list_destroy(&clean_list);
1191 }
1192
1193 void
1194 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1195 {
1196 uint64_t txg;
1197 itxg_t *itxg;
1198 itxs_t *itxs, *clean = NULL;
1199
1200 /*
1201 * Object ids can be re-instantiated in the next txg so
1202 * remove any async transactions to avoid future leaks.
1203 * This can happen if a fsync occurs on the re-instantiated
1204 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1205 * the new file data and flushes a write record for the old object.
1206 */
1207 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1208 zil_remove_async(zilog, itx->itx_oid);
1209
1210 /*
1211 * Ensure the data of a renamed file is committed before the rename.
1212 */
1213 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1214 zil_async_to_sync(zilog, itx->itx_oid);
1215
1216 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1217 txg = ZILTEST_TXG;
1218 else
1219 txg = dmu_tx_get_txg(tx);
1220
1221 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1222 mutex_enter(&itxg->itxg_lock);
1223 itxs = itxg->itxg_itxs;
1224 if (itxg->itxg_txg != txg) {
1225 if (itxs != NULL) {
1226 /*
1227 * The zil_clean callback hasn't got around to cleaning
1228 * this itxg. Save the itxs for release below.
1229 * This should be rare.
1230 */
1231 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1232 itxg->itxg_sod = 0;
1233 clean = itxg->itxg_itxs;
1234 }
1235 ASSERT(itxg->itxg_sod == 0);
1236 itxg->itxg_txg = txg;
1237 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t), KM_SLEEP);
1238
1239 list_create(&itxs->i_sync_list, sizeof (itx_t),
1240 offsetof(itx_t, itx_node));
1241 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1242 sizeof (itx_async_node_t),
1243 offsetof(itx_async_node_t, ia_node));
1244 }
1245 if (itx->itx_sync) {
1246 list_insert_tail(&itxs->i_sync_list, itx);
1247 atomic_add_64(&zilog->zl_itx_list_sz, itx->itx_sod);
1248 itxg->itxg_sod += itx->itx_sod;
1249 } else {
1250 avl_tree_t *t = &itxs->i_async_tree;
1251 uint64_t foid = ((lr_ooo_t *)&itx->itx_lr)->lr_foid;
1252 itx_async_node_t *ian;
1253 avl_index_t where;
1254
1255 ian = avl_find(t, &foid, &where);
1256 if (ian == NULL) {
1257 ian = kmem_alloc(sizeof (itx_async_node_t), KM_SLEEP);
1258 list_create(&ian->ia_list, sizeof (itx_t),
1259 offsetof(itx_t, itx_node));
1260 ian->ia_foid = foid;
1261 avl_insert(t, ian, where);
1262 }
1263 list_insert_tail(&ian->ia_list, itx);
1264 }
1265
1266 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1267 mutex_exit(&itxg->itxg_lock);
1268
1269 /* Release the old itxs now we've dropped the lock */
1270 if (clean != NULL)
1271 zil_itxg_clean(clean);
1272 }
1273
1274 /*
1275 * If there are any in-memory intent log transactions which have now been
1276 * synced then start up a taskq to free them.
1277 */
1278 void
1279 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1280 {
1281 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1282 itxs_t *clean_me;
1283
1284 mutex_enter(&itxg->itxg_lock);
1285 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1286 mutex_exit(&itxg->itxg_lock);
1287 return;
1288 }
1289 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1290 ASSERT(itxg->itxg_txg != 0);
1291 ASSERT(zilog->zl_clean_taskq != NULL);
1292 atomic_add_64(&zilog->zl_itx_list_sz, -itxg->itxg_sod);
1293 itxg->itxg_sod = 0;
1294 clean_me = itxg->itxg_itxs;
1295 itxg->itxg_itxs = NULL;
1296 itxg->itxg_txg = 0;
1297 mutex_exit(&itxg->itxg_lock);
1298 /*
1299 * Preferably start a task queue to free up the old itxs but
1300 * if taskq_dispatch can't allocate resources to do that then
1301 * free it in-line. This should be rare. Note, using TQ_SLEEP
1302 * created a bad performance problem.
1303 */
1304 if (taskq_dispatch(zilog->zl_clean_taskq,
1305 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1306 zil_itxg_clean(clean_me);
1307 }
1308
1309 /*
1310 * Get the list of itxs to commit into zl_itx_commit_list.
1311 */
1312 static void
1313 zil_get_commit_list(zilog_t *zilog)
1314 {
1315 uint64_t otxg, txg;
1316 list_t *commit_list = &zilog->zl_itx_commit_list;
1317 uint64_t push_sod = 0;
1318
1319 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1320 otxg = ZILTEST_TXG;
1321 else
1322 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1323
1324 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1325 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1326
1327 mutex_enter(&itxg->itxg_lock);
1328 if (itxg->itxg_txg != txg) {
1329 mutex_exit(&itxg->itxg_lock);
1330 continue;
1331 }
1332
1333 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1334 push_sod += itxg->itxg_sod;
1335 itxg->itxg_sod = 0;
1336
1337 mutex_exit(&itxg->itxg_lock);
1338 }
1339 atomic_add_64(&zilog->zl_itx_list_sz, -push_sod);
1340 }
1341
1342 /*
1343 * Move the async itxs for a specified object to commit into sync lists.
1344 */
1345 static void
1346 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1347 {
1348 uint64_t otxg, txg;
1349 itx_async_node_t *ian;
1350 avl_tree_t *t;
1351 avl_index_t where;
1352
1353 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1354 otxg = ZILTEST_TXG;
1355 else
1356 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1357
1358 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1359 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1360
1361 mutex_enter(&itxg->itxg_lock);
1362 if (itxg->itxg_txg != txg) {
1363 mutex_exit(&itxg->itxg_lock);
1364 continue;
1365 }
1366
1367 /*
1368 * If a foid is specified then find that node and append its
1369 * list. Otherwise walk the tree appending all the lists
1370 * to the sync list. We add to the end rather than the
1371 * beginning to ensure the create has happened.
1372 */
1373 t = &itxg->itxg_itxs->i_async_tree;
1374 if (foid != 0) {
1375 ian = avl_find(t, &foid, &where);
1376 if (ian != NULL) {
1377 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1378 &ian->ia_list);
1379 }
1380 } else {
1381 void *cookie = NULL;
1382
1383 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1384 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1385 &ian->ia_list);
1386 list_destroy(&ian->ia_list);
1387 kmem_free(ian, sizeof (itx_async_node_t));
1388 }
1389 }
1390 mutex_exit(&itxg->itxg_lock);
1391 }
1392 }
1393
1394 static void
1395 zil_commit_writer(zilog_t *zilog)
1396 {
1397 uint64_t txg;
1398 itx_t *itx;
1399 lwb_t *lwb;
1400 spa_t *spa = zilog->zl_spa;
1401 int error = 0;
1402
1403 ASSERT(zilog->zl_root_zio == NULL);
1404
1405 mutex_exit(&zilog->zl_lock);
1406
1407 zil_get_commit_list(zilog);
1408
1409 /*
1410 * Return if there's nothing to commit before we dirty the fs by
1411 * calling zil_create().
1412 */
1413 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1414 mutex_enter(&zilog->zl_lock);
1415 return;
1416 }
1417
1418 if (zilog->zl_suspend) {
1419 lwb = NULL;
1420 } else {
1421 lwb = list_tail(&zilog->zl_lwb_list);
1422 if (lwb == NULL)
1423 lwb = zil_create(zilog);
1424 }
1425
1426 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1427 while ((itx = list_head(&zilog->zl_itx_commit_list))) {
1428 txg = itx->itx_lr.lrc_txg;
1429 ASSERT(txg);
1430
1431 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1432 lwb = zil_lwb_commit(zilog, itx, lwb);
1433 list_remove(&zilog->zl_itx_commit_list, itx);
1434 kmem_free(itx, offsetof(itx_t, itx_lr)
1435 + itx->itx_lr.lrc_reclen);
1436 }
1437 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1438
1439 /* write the last block out */
1440 if (lwb != NULL && lwb->lwb_zio != NULL)
1441 lwb = zil_lwb_write_start(zilog, lwb);
1442
1443 zilog->zl_cur_used = 0;
1444
1445 /*
1446 * Wait if necessary for the log blocks to be on stable storage.
1447 */
1448 if (zilog->zl_root_zio) {
1449 error = zio_wait(zilog->zl_root_zio);
1450 zilog->zl_root_zio = NULL;
1451 zil_flush_vdevs(zilog);
1452 }
1453
1454 if (error || lwb == NULL)
1455 txg_wait_synced(zilog->zl_dmu_pool, 0);
1456
1457 mutex_enter(&zilog->zl_lock);
1458
1459 /*
1460 * Remember the highest committed log sequence number for ztest.
1461 * We only update this value when all the log writes succeeded,
1462 * because ztest wants to ASSERT that it got the whole log chain.
1463 */
1464 if (error == 0 && lwb != NULL)
1465 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1466 }
1467
1468 /*
1469 * Commit zfs transactions to stable storage.
1470 * If foid is 0 push out all transactions, otherwise push only those
1471 * for that object or might reference that object.
1472 *
1473 * itxs are committed in batches. In a heavily stressed zil there will be
1474 * a commit writer thread who is writing out a bunch of itxs to the log
1475 * for a set of committing threads (cthreads) in the same batch as the writer.
1476 * Those cthreads are all waiting on the same cv for that batch.
1477 *
1478 * There will also be a different and growing batch of threads that are
1479 * waiting to commit (qthreads). When the committing batch completes
1480 * a transition occurs such that the cthreads exit and the qthreads become
1481 * cthreads. One of the new cthreads becomes the writer thread for the
1482 * batch. Any new threads arriving become new qthreads.
1483 *
1484 * Only 2 condition variables are needed and there's no transition
1485 * between the two cvs needed. They just flip-flop between qthreads
1486 * and cthreads.
1487 *
1488 * Using this scheme we can efficiently wakeup up only those threads
1489 * that have been committed.
1490 */
1491 void
1492 zil_commit(zilog_t *zilog, uint64_t foid)
1493 {
1494 uint64_t mybatch;
1495
1496 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1497 return;
1498
1499 /* move the async itxs for the foid to the sync queues */
1500 zil_async_to_sync(zilog, foid);
1501
1502 mutex_enter(&zilog->zl_lock);
1503 mybatch = zilog->zl_next_batch;
1504 while (zilog->zl_writer) {
1505 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1506 if (mybatch <= zilog->zl_com_batch) {
1507 mutex_exit(&zilog->zl_lock);
1508 return;
1509 }
1510 }
1511
1512 zilog->zl_next_batch++;
1513 zilog->zl_writer = B_TRUE;
1514 zil_commit_writer(zilog);
1515 zilog->zl_com_batch = mybatch;
1516 zilog->zl_writer = B_FALSE;
1517 mutex_exit(&zilog->zl_lock);
1518
1519 /* wake up one thread to become the next writer */
1520 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1521
1522 /* wake up all threads waiting for this batch to be committed */
1523 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1524 }
1525
1526 /*
1527 * Called in syncing context to free committed log blocks and update log header.
1528 */
1529 void
1530 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1531 {
1532 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1533 uint64_t txg = dmu_tx_get_txg(tx);
1534 spa_t *spa = zilog->zl_spa;
1535 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1536 lwb_t *lwb;
1537
1538 /*
1539 * We don't zero out zl_destroy_txg, so make sure we don't try
1540 * to destroy it twice.
1541 */
1542 if (spa_sync_pass(spa) != 1)
1543 return;
1544
1545 mutex_enter(&zilog->zl_lock);
1546
1547 ASSERT(zilog->zl_stop_sync == 0);
1548
1549 if (*replayed_seq != 0) {
1550 ASSERT(zh->zh_replay_seq < *replayed_seq);
1551 zh->zh_replay_seq = *replayed_seq;
1552 *replayed_seq = 0;
1553 }
1554
1555 if (zilog->zl_destroy_txg == txg) {
1556 blkptr_t blk = zh->zh_log;
1557
1558 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1559
1560 bzero(zh, sizeof (zil_header_t));
1561 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1562
1563 if (zilog->zl_keep_first) {
1564 /*
1565 * If this block was part of log chain that couldn't
1566 * be claimed because a device was missing during
1567 * zil_claim(), but that device later returns,
1568 * then this block could erroneously appear valid.
1569 * To guard against this, assign a new GUID to the new
1570 * log chain so it doesn't matter what blk points to.
1571 */
1572 zil_init_log_chain(zilog, &blk);
1573 zh->zh_log = blk;
1574 }
1575 }
1576
1577 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1578 zh->zh_log = lwb->lwb_blk;
1579 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1580 break;
1581 list_remove(&zilog->zl_lwb_list, lwb);
1582 zio_free_zil(spa, txg, &lwb->lwb_blk);
1583 kmem_cache_free(zil_lwb_cache, lwb);
1584
1585 /*
1586 * If we don't have anything left in the lwb list then
1587 * we've had an allocation failure and we need to zero
1588 * out the zil_header blkptr so that we don't end
1589 * up freeing the same block twice.
1590 */
1591 if (list_head(&zilog->zl_lwb_list) == NULL)
1592 BP_ZERO(&zh->zh_log);
1593 }
1594 mutex_exit(&zilog->zl_lock);
1595 }
1596
1597 void
1598 zil_init(void)
1599 {
1600 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1601 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1602 }
1603
1604 void
1605 zil_fini(void)
1606 {
1607 kmem_cache_destroy(zil_lwb_cache);
1608 }
1609
1610 void
1611 zil_set_sync(zilog_t *zilog, uint64_t sync)
1612 {
1613 zilog->zl_sync = sync;
1614 }
1615
1616 void
1617 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1618 {
1619 zilog->zl_logbias = logbias;
1620 }
1621
1622 zilog_t *
1623 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1624 {
1625 zilog_t *zilog;
1626 int i;
1627
1628 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1629
1630 zilog->zl_header = zh_phys;
1631 zilog->zl_os = os;
1632 zilog->zl_spa = dmu_objset_spa(os);
1633 zilog->zl_dmu_pool = dmu_objset_pool(os);
1634 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1635 zilog->zl_logbias = dmu_objset_logbias(os);
1636 zilog->zl_sync = dmu_objset_syncprop(os);
1637 zilog->zl_next_batch = 1;
1638
1639 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1640
1641 for (i = 0; i < TXG_SIZE; i++) {
1642 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1643 MUTEX_DEFAULT, NULL);
1644 }
1645
1646 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1647 offsetof(lwb_t, lwb_node));
1648
1649 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1650 offsetof(itx_t, itx_node));
1651
1652 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1653
1654 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1655 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1656
1657 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1658 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1659 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1660 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1661
1662 return (zilog);
1663 }
1664
1665 void
1666 zil_free(zilog_t *zilog)
1667 {
1668 lwb_t *head_lwb;
1669 int i;
1670
1671 zilog->zl_stop_sync = 1;
1672
1673 /*
1674 * After zil_close() there should only be one lwb with a buffer.
1675 */
1676 head_lwb = list_head(&zilog->zl_lwb_list);
1677 if (head_lwb) {
1678 ASSERT(head_lwb == list_tail(&zilog->zl_lwb_list));
1679 list_remove(&zilog->zl_lwb_list, head_lwb);
1680 zio_buf_free(head_lwb->lwb_buf, head_lwb->lwb_sz);
1681 kmem_cache_free(zil_lwb_cache, head_lwb);
1682 }
1683 list_destroy(&zilog->zl_lwb_list);
1684
1685 avl_destroy(&zilog->zl_vdev_tree);
1686 mutex_destroy(&zilog->zl_vdev_lock);
1687
1688 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1689 list_destroy(&zilog->zl_itx_commit_list);
1690
1691 for (i = 0; i < TXG_SIZE; i++) {
1692 /*
1693 * It's possible for an itx to be generated that doesn't dirty
1694 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1695 * callback to remove the entry. We remove those here.
1696 *
1697 * Also free up the ziltest itxs.
1698 */
1699 if (zilog->zl_itxg[i].itxg_itxs)
1700 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1701 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1702 }
1703
1704 mutex_destroy(&zilog->zl_lock);
1705
1706 cv_destroy(&zilog->zl_cv_writer);
1707 cv_destroy(&zilog->zl_cv_suspend);
1708 cv_destroy(&zilog->zl_cv_batch[0]);
1709 cv_destroy(&zilog->zl_cv_batch[1]);
1710
1711 kmem_free(zilog, sizeof (zilog_t));
1712 }
1713
1714 /*
1715 * Open an intent log.
1716 */
1717 zilog_t *
1718 zil_open(objset_t *os, zil_get_data_t *get_data)
1719 {
1720 zilog_t *zilog = dmu_objset_zil(os);
1721
1722 zilog->zl_get_data = get_data;
1723 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, minclsyspri,
1724 2, 2, TASKQ_PREPOPULATE);
1725
1726 return (zilog);
1727 }
1728
1729 /*
1730 * Close an intent log.
1731 */
1732 void
1733 zil_close(zilog_t *zilog)
1734 {
1735 lwb_t *tail_lwb;
1736 uint64_t txg = 0;
1737
1738 zil_commit(zilog, 0); /* commit all itx */
1739
1740 /*
1741 * The lwb_max_txg for the stubby lwb will reflect the last activity
1742 * for the zil. After a txg_wait_synced() on the txg we know all the
1743 * callbacks have occurred that may clean the zil. Only then can we
1744 * destroy the zl_clean_taskq.
1745 */
1746 mutex_enter(&zilog->zl_lock);
1747 tail_lwb = list_tail(&zilog->zl_lwb_list);
1748 if (tail_lwb != NULL)
1749 txg = tail_lwb->lwb_max_txg;
1750 mutex_exit(&zilog->zl_lock);
1751 if (txg)
1752 txg_wait_synced(zilog->zl_dmu_pool, txg);
1753
1754 taskq_destroy(zilog->zl_clean_taskq);
1755 zilog->zl_clean_taskq = NULL;
1756 zilog->zl_get_data = NULL;
1757 }
1758
1759 /*
1760 * Suspend an intent log. While in suspended mode, we still honor
1761 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1762 * We suspend the log briefly when taking a snapshot so that the snapshot
1763 * contains all the data it's supposed to, and has an empty intent log.
1764 */
1765 int
1766 zil_suspend(zilog_t *zilog)
1767 {
1768 const zil_header_t *zh = zilog->zl_header;
1769
1770 mutex_enter(&zilog->zl_lock);
1771 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
1772 mutex_exit(&zilog->zl_lock);
1773 return (EBUSY);
1774 }
1775 if (zilog->zl_suspend++ != 0) {
1776 /*
1777 * Someone else already began a suspend.
1778 * Just wait for them to finish.
1779 */
1780 while (zilog->zl_suspending)
1781 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
1782 mutex_exit(&zilog->zl_lock);
1783 return (0);
1784 }
1785 zilog->zl_suspending = B_TRUE;
1786 mutex_exit(&zilog->zl_lock);
1787
1788 zil_commit(zilog, 0);
1789
1790 zil_destroy(zilog, B_FALSE);
1791
1792 mutex_enter(&zilog->zl_lock);
1793 zilog->zl_suspending = B_FALSE;
1794 cv_broadcast(&zilog->zl_cv_suspend);
1795 mutex_exit(&zilog->zl_lock);
1796
1797 return (0);
1798 }
1799
1800 void
1801 zil_resume(zilog_t *zilog)
1802 {
1803 mutex_enter(&zilog->zl_lock);
1804 ASSERT(zilog->zl_suspend != 0);
1805 zilog->zl_suspend--;
1806 mutex_exit(&zilog->zl_lock);
1807 }
1808
1809 typedef struct zil_replay_arg {
1810 zil_replay_func_t **zr_replay;
1811 void *zr_arg;
1812 boolean_t zr_byteswap;
1813 char *zr_lr;
1814 } zil_replay_arg_t;
1815
1816 static int
1817 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
1818 {
1819 char name[MAXNAMELEN];
1820
1821 zilog->zl_replaying_seq--; /* didn't actually replay this one */
1822
1823 dmu_objset_name(zilog->zl_os, name);
1824
1825 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
1826 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
1827 (u_longlong_t)lr->lrc_seq,
1828 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
1829 (lr->lrc_txtype & TX_CI) ? "CI" : "");
1830
1831 return (error);
1832 }
1833
1834 static int
1835 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
1836 {
1837 zil_replay_arg_t *zr = zra;
1838 const zil_header_t *zh = zilog->zl_header;
1839 uint64_t reclen = lr->lrc_reclen;
1840 uint64_t txtype = lr->lrc_txtype;
1841 int error = 0;
1842
1843 zilog->zl_replaying_seq = lr->lrc_seq;
1844
1845 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
1846 return (0);
1847
1848 if (lr->lrc_txg < claim_txg) /* already committed */
1849 return (0);
1850
1851 /* Strip case-insensitive bit, still present in log record */
1852 txtype &= ~TX_CI;
1853
1854 if (txtype == 0 || txtype >= TX_MAX_TYPE)
1855 return (zil_replay_error(zilog, lr, EINVAL));
1856
1857 /*
1858 * If this record type can be logged out of order, the object
1859 * (lr_foid) may no longer exist. That's legitimate, not an error.
1860 */
1861 if (TX_OOO(txtype)) {
1862 error = dmu_object_info(zilog->zl_os,
1863 ((lr_ooo_t *)lr)->lr_foid, NULL);
1864 if (error == ENOENT || error == EEXIST)
1865 return (0);
1866 }
1867
1868 /*
1869 * Make a copy of the data so we can revise and extend it.
1870 */
1871 bcopy(lr, zr->zr_lr, reclen);
1872
1873 /*
1874 * If this is a TX_WRITE with a blkptr, suck in the data.
1875 */
1876 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
1877 error = zil_read_log_data(zilog, (lr_write_t *)lr,
1878 zr->zr_lr + reclen);
1879 if (error)
1880 return (zil_replay_error(zilog, lr, error));
1881 }
1882
1883 /*
1884 * The log block containing this lr may have been byteswapped
1885 * so that we can easily examine common fields like lrc_txtype.
1886 * However, the log is a mix of different record types, and only the
1887 * replay vectors know how to byteswap their records. Therefore, if
1888 * the lr was byteswapped, undo it before invoking the replay vector.
1889 */
1890 if (zr->zr_byteswap)
1891 byteswap_uint64_array(zr->zr_lr, reclen);
1892
1893 /*
1894 * We must now do two things atomically: replay this log record,
1895 * and update the log header sequence number to reflect the fact that
1896 * we did so. At the end of each replay function the sequence number
1897 * is updated if we are in replay mode.
1898 */
1899 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
1900 if (error) {
1901 /*
1902 * The DMU's dnode layer doesn't see removes until the txg
1903 * commits, so a subsequent claim can spuriously fail with
1904 * EEXIST. So if we receive any error we try syncing out
1905 * any removes then retry the transaction. Note that we
1906 * specify B_FALSE for byteswap now, so we don't do it twice.
1907 */
1908 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
1909 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
1910 if (error)
1911 return (zil_replay_error(zilog, lr, error));
1912 }
1913 return (0);
1914 }
1915
1916 /* ARGSUSED */
1917 static int
1918 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
1919 {
1920 zilog->zl_replay_blks++;
1921
1922 return (0);
1923 }
1924
1925 /*
1926 * If this dataset has a non-empty intent log, replay it and destroy it.
1927 */
1928 void
1929 zil_replay(objset_t *os, void *arg, zil_replay_func_t *replay_func[TX_MAX_TYPE])
1930 {
1931 zilog_t *zilog = dmu_objset_zil(os);
1932 const zil_header_t *zh = zilog->zl_header;
1933 zil_replay_arg_t zr;
1934
1935 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
1936 zil_destroy(zilog, B_TRUE);
1937 return;
1938 }
1939
1940 zr.zr_replay = replay_func;
1941 zr.zr_arg = arg;
1942 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
1943 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
1944
1945 /*
1946 * Wait for in-progress removes to sync before starting replay.
1947 */
1948 txg_wait_synced(zilog->zl_dmu_pool, 0);
1949
1950 zilog->zl_replay = B_TRUE;
1951 zilog->zl_replay_time = ddi_get_lbolt();
1952 ASSERT(zilog->zl_replay_blks == 0);
1953 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
1954 zh->zh_claim_txg);
1955 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
1956
1957 zil_destroy(zilog, B_FALSE);
1958 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1959 zilog->zl_replay = B_FALSE;
1960 }
1961
1962 boolean_t
1963 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
1964 {
1965 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1966 return (B_TRUE);
1967
1968 if (zilog->zl_replay) {
1969 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1970 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
1971 zilog->zl_replaying_seq;
1972 return (B_TRUE);
1973 }
1974
1975 return (B_FALSE);
1976 }
1977
1978 /* ARGSUSED */
1979 int
1980 zil_vdev_offline(const char *osname, void *arg)
1981 {
1982 objset_t *os;
1983 zilog_t *zilog;
1984 int error;
1985
1986 error = dmu_objset_hold(osname, FTAG, &os);
1987 if (error)
1988 return (error);
1989
1990 zilog = dmu_objset_zil(os);
1991 if (zil_suspend(zilog) != 0)
1992 error = EEXIST;
1993 else
1994 zil_resume(zilog);
1995 dmu_objset_rele(os, FTAG);
1996 return (error);
1997 }
1998
1999 #if defined(_KERNEL) && defined(HAVE_SPL)
2000 module_param(zil_replay_disable, int, 0644);
2001 MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
2002
2003 module_param(zfs_nocacheflush, int, 0644);
2004 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
2005 #endif