]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Extend deadman logic
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/sysmacros.h>
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/txg.h>
32 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio_impl.h>
35 #include <sys/zio_compress.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/ddt.h>
40 #include <sys/blkptr.h>
41 #include <sys/zfeature.h>
42 #include <sys/dsl_scan.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/time.h>
45 #include <sys/trace_zio.h>
46 #include <sys/abd.h>
47 #include <sys/dsl_crypt.h>
48
49 /*
50 * ==========================================================================
51 * I/O type descriptions
52 * ==========================================================================
53 */
54 const char *zio_type_name[ZIO_TYPES] = {
55 /*
56 * Note: Linux kernel thread name length is limited
57 * so these names will differ from upstream open zfs.
58 */
59 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
60 };
61
62 int zio_dva_throttle_enabled = B_TRUE;
63
64 /*
65 * ==========================================================================
66 * I/O kmem caches
67 * ==========================================================================
68 */
69 kmem_cache_t *zio_cache;
70 kmem_cache_t *zio_link_cache;
71 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
72 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
73 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
74 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
75 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
76 #endif
77
78 int zio_delay_max = ZIO_DELAY_MAX;
79
80 #define ZIO_PIPELINE_CONTINUE 0x100
81 #define ZIO_PIPELINE_STOP 0x101
82
83 #define BP_SPANB(indblkshift, level) \
84 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
85 #define COMPARE_META_LEVEL 0x80000000ul
86 /*
87 * The following actions directly effect the spa's sync-to-convergence logic.
88 * The values below define the sync pass when we start performing the action.
89 * Care should be taken when changing these values as they directly impact
90 * spa_sync() performance. Tuning these values may introduce subtle performance
91 * pathologies and should only be done in the context of performance analysis.
92 * These tunables will eventually be removed and replaced with #defines once
93 * enough analysis has been done to determine optimal values.
94 *
95 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
96 * regular blocks are not deferred.
97 */
98 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
99 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
100 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
101
102 /*
103 * An allocating zio is one that either currently has the DVA allocate
104 * stage set or will have it later in its lifetime.
105 */
106 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
107
108 int zio_requeue_io_start_cut_in_line = 1;
109
110 #ifdef ZFS_DEBUG
111 int zio_buf_debug_limit = 16384;
112 #else
113 int zio_buf_debug_limit = 0;
114 #endif
115
116 static inline void __zio_execute(zio_t *zio);
117
118 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
119
120 void
121 zio_init(void)
122 {
123 size_t c;
124 vmem_t *data_alloc_arena = NULL;
125
126 zio_cache = kmem_cache_create("zio_cache",
127 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 zio_link_cache = kmem_cache_create("zio_link_cache",
129 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
130
131 /*
132 * For small buffers, we want a cache for each multiple of
133 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
134 * for each quarter-power of 2.
135 */
136 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
137 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
138 size_t p2 = size;
139 size_t align = 0;
140 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
141
142 #if defined(_ILP32) && defined(_KERNEL)
143 /*
144 * Cache size limited to 1M on 32-bit platforms until ARC
145 * buffers no longer require virtual address space.
146 */
147 if (size > zfs_max_recordsize)
148 break;
149 #endif
150
151 while (!ISP2(p2))
152 p2 &= p2 - 1;
153
154 #ifndef _KERNEL
155 /*
156 * If we are using watchpoints, put each buffer on its own page,
157 * to eliminate the performance overhead of trapping to the
158 * kernel when modifying a non-watched buffer that shares the
159 * page with a watched buffer.
160 */
161 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
162 continue;
163 /*
164 * Here's the problem - on 4K native devices in userland on
165 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
166 * will fail with EINVAL, causing zdb (and others) to coredump.
167 * Since userland probably doesn't need optimized buffer caches,
168 * we just force 4K alignment on everything.
169 */
170 align = 8 * SPA_MINBLOCKSIZE;
171 #else
172 if (size < PAGESIZE) {
173 align = SPA_MINBLOCKSIZE;
174 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
175 align = PAGESIZE;
176 }
177 #endif
178
179 if (align != 0) {
180 char name[36];
181 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
182 zio_buf_cache[c] = kmem_cache_create(name, size,
183 align, NULL, NULL, NULL, NULL, NULL, cflags);
184
185 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
186 zio_data_buf_cache[c] = kmem_cache_create(name, size,
187 align, NULL, NULL, NULL, NULL,
188 data_alloc_arena, cflags);
189 }
190 }
191
192 while (--c != 0) {
193 ASSERT(zio_buf_cache[c] != NULL);
194 if (zio_buf_cache[c - 1] == NULL)
195 zio_buf_cache[c - 1] = zio_buf_cache[c];
196
197 ASSERT(zio_data_buf_cache[c] != NULL);
198 if (zio_data_buf_cache[c - 1] == NULL)
199 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
200 }
201
202 zio_inject_init();
203
204 lz4_init();
205 }
206
207 void
208 zio_fini(void)
209 {
210 size_t c;
211 kmem_cache_t *last_cache = NULL;
212 kmem_cache_t *last_data_cache = NULL;
213
214 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
215 #ifdef _ILP32
216 /*
217 * Cache size limited to 1M on 32-bit platforms until ARC
218 * buffers no longer require virtual address space.
219 */
220 if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize)
221 break;
222 #endif
223 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
224 if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c])
225 (void) printf("zio_fini: [%d] %llu != %llu\n",
226 (int)((c + 1) << SPA_MINBLOCKSHIFT),
227 (long long unsigned)zio_buf_cache_allocs[c],
228 (long long unsigned)zio_buf_cache_frees[c]);
229 #endif
230 if (zio_buf_cache[c] != last_cache) {
231 last_cache = zio_buf_cache[c];
232 kmem_cache_destroy(zio_buf_cache[c]);
233 }
234 zio_buf_cache[c] = NULL;
235
236 if (zio_data_buf_cache[c] != last_data_cache) {
237 last_data_cache = zio_data_buf_cache[c];
238 kmem_cache_destroy(zio_data_buf_cache[c]);
239 }
240 zio_data_buf_cache[c] = NULL;
241 }
242
243 kmem_cache_destroy(zio_link_cache);
244 kmem_cache_destroy(zio_cache);
245
246 zio_inject_fini();
247
248 lz4_fini();
249 }
250
251 /*
252 * ==========================================================================
253 * Allocate and free I/O buffers
254 * ==========================================================================
255 */
256
257 /*
258 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
259 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
260 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
261 * excess / transient data in-core during a crashdump.
262 */
263 void *
264 zio_buf_alloc(size_t size)
265 {
266 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
267
268 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
269 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
270 atomic_add_64(&zio_buf_cache_allocs[c], 1);
271 #endif
272
273 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
274 }
275
276 /*
277 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
278 * crashdump if the kernel panics. This exists so that we will limit the amount
279 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
280 * of kernel heap dumped to disk when the kernel panics)
281 */
282 void *
283 zio_data_buf_alloc(size_t size)
284 {
285 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
286
287 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
288
289 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
290 }
291
292 void
293 zio_buf_free(void *buf, size_t size)
294 {
295 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
296
297 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
298 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
299 atomic_add_64(&zio_buf_cache_frees[c], 1);
300 #endif
301
302 kmem_cache_free(zio_buf_cache[c], buf);
303 }
304
305 void
306 zio_data_buf_free(void *buf, size_t size)
307 {
308 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
309
310 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
311
312 kmem_cache_free(zio_data_buf_cache[c], buf);
313 }
314
315 static void
316 zio_abd_free(void *abd, size_t size)
317 {
318 abd_free((abd_t *)abd);
319 }
320
321 /*
322 * ==========================================================================
323 * Push and pop I/O transform buffers
324 * ==========================================================================
325 */
326 void
327 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
328 zio_transform_func_t *transform)
329 {
330 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
331
332 /*
333 * Ensure that anyone expecting this zio to contain a linear ABD isn't
334 * going to get a nasty surprise when they try to access the data.
335 */
336 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
337
338 zt->zt_orig_abd = zio->io_abd;
339 zt->zt_orig_size = zio->io_size;
340 zt->zt_bufsize = bufsize;
341 zt->zt_transform = transform;
342
343 zt->zt_next = zio->io_transform_stack;
344 zio->io_transform_stack = zt;
345
346 zio->io_abd = data;
347 zio->io_size = size;
348 }
349
350 void
351 zio_pop_transforms(zio_t *zio)
352 {
353 zio_transform_t *zt;
354
355 while ((zt = zio->io_transform_stack) != NULL) {
356 if (zt->zt_transform != NULL)
357 zt->zt_transform(zio,
358 zt->zt_orig_abd, zt->zt_orig_size);
359
360 if (zt->zt_bufsize != 0)
361 abd_free(zio->io_abd);
362
363 zio->io_abd = zt->zt_orig_abd;
364 zio->io_size = zt->zt_orig_size;
365 zio->io_transform_stack = zt->zt_next;
366
367 kmem_free(zt, sizeof (zio_transform_t));
368 }
369 }
370
371 /*
372 * ==========================================================================
373 * I/O transform callbacks for subblocks, decompression, and decryption
374 * ==========================================================================
375 */
376 static void
377 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
378 {
379 ASSERT(zio->io_size > size);
380
381 if (zio->io_type == ZIO_TYPE_READ)
382 abd_copy(data, zio->io_abd, size);
383 }
384
385 static void
386 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
387 {
388 if (zio->io_error == 0) {
389 void *tmp = abd_borrow_buf(data, size);
390 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
391 zio->io_abd, tmp, zio->io_size, size);
392 abd_return_buf_copy(data, tmp, size);
393
394 if (ret != 0)
395 zio->io_error = SET_ERROR(EIO);
396 }
397 }
398
399 static void
400 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
401 {
402 int ret;
403 void *tmp;
404 blkptr_t *bp = zio->io_bp;
405 uint64_t lsize = BP_GET_LSIZE(bp);
406 dmu_object_type_t ot = BP_GET_TYPE(bp);
407 uint8_t salt[ZIO_DATA_SALT_LEN];
408 uint8_t iv[ZIO_DATA_IV_LEN];
409 uint8_t mac[ZIO_DATA_MAC_LEN];
410 boolean_t no_crypt = B_FALSE;
411
412 ASSERT(BP_USES_CRYPT(bp));
413 ASSERT3U(size, !=, 0);
414
415 if (zio->io_error != 0)
416 return;
417
418 /*
419 * Verify the cksum of MACs stored in an indirect bp. It will always
420 * be possible to verify this since it does not require an encryption
421 * key.
422 */
423 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
424 zio_crypt_decode_mac_bp(bp, mac);
425
426 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
427 /*
428 * We haven't decompressed the data yet, but
429 * zio_crypt_do_indirect_mac_checksum() requires
430 * decompressed data to be able to parse out the MACs
431 * from the indirect block. We decompress it now and
432 * throw away the result after we are finished.
433 */
434 tmp = zio_buf_alloc(lsize);
435 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
436 zio->io_abd, tmp, zio->io_size, lsize);
437 if (ret != 0) {
438 ret = SET_ERROR(EIO);
439 goto error;
440 }
441 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
442 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
443 zio_buf_free(tmp, lsize);
444 } else {
445 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
446 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
447 }
448 abd_copy(data, zio->io_abd, size);
449
450 if (ret != 0)
451 goto error;
452
453 return;
454 }
455
456 /*
457 * If this is an authenticated block, just check the MAC. It would be
458 * nice to separate this out into its own flag, but for the moment
459 * enum zio_flag is out of bits.
460 */
461 if (BP_IS_AUTHENTICATED(bp)) {
462 if (ot == DMU_OT_OBJSET) {
463 ret = spa_do_crypt_objset_mac_abd(B_FALSE, zio->io_spa,
464 zio->io_bookmark.zb_objset, zio->io_abd, size,
465 BP_SHOULD_BYTESWAP(bp));
466 } else {
467 zio_crypt_decode_mac_bp(bp, mac);
468 ret = spa_do_crypt_mac_abd(B_FALSE, zio->io_spa,
469 zio->io_bookmark.zb_objset, zio->io_abd, size, mac);
470 }
471 abd_copy(data, zio->io_abd, size);
472
473 if (ret != 0)
474 goto error;
475
476 return;
477 }
478
479 zio_crypt_decode_params_bp(bp, salt, iv);
480
481 if (ot == DMU_OT_INTENT_LOG) {
482 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
483 zio_crypt_decode_mac_zil(tmp, mac);
484 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
485 } else {
486 zio_crypt_decode_mac_bp(bp, mac);
487 }
488
489 ret = spa_do_crypt_abd(B_FALSE, zio->io_spa, zio->io_bookmark.zb_objset,
490 bp, bp->blk_birth, size, data, zio->io_abd, iv, mac, salt,
491 &no_crypt);
492 if (no_crypt)
493 abd_copy(data, zio->io_abd, size);
494
495 if (ret != 0)
496 goto error;
497
498 return;
499
500 error:
501 /* assert that the key was found unless this was speculative */
502 ASSERT(ret != ENOENT || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
503
504 /*
505 * If there was a decryption / authentication error return EIO as
506 * the io_error. If this was not a speculative zio, create an ereport.
507 */
508 if (ret == ECKSUM) {
509 ret = SET_ERROR(EIO);
510 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
511 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
512 zio->io_spa, NULL, &zio->io_bookmark, zio, 0, 0);
513 }
514 } else {
515 zio->io_error = ret;
516 }
517 }
518
519 /*
520 * ==========================================================================
521 * I/O parent/child relationships and pipeline interlocks
522 * ==========================================================================
523 */
524 zio_t *
525 zio_walk_parents(zio_t *cio, zio_link_t **zl)
526 {
527 list_t *pl = &cio->io_parent_list;
528
529 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
530 if (*zl == NULL)
531 return (NULL);
532
533 ASSERT((*zl)->zl_child == cio);
534 return ((*zl)->zl_parent);
535 }
536
537 zio_t *
538 zio_walk_children(zio_t *pio, zio_link_t **zl)
539 {
540 list_t *cl = &pio->io_child_list;
541
542 ASSERT(MUTEX_HELD(&pio->io_lock));
543
544 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
545 if (*zl == NULL)
546 return (NULL);
547
548 ASSERT((*zl)->zl_parent == pio);
549 return ((*zl)->zl_child);
550 }
551
552 zio_t *
553 zio_unique_parent(zio_t *cio)
554 {
555 zio_link_t *zl = NULL;
556 zio_t *pio = zio_walk_parents(cio, &zl);
557
558 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
559 return (pio);
560 }
561
562 void
563 zio_add_child(zio_t *pio, zio_t *cio)
564 {
565 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
566
567 /*
568 * Logical I/Os can have logical, gang, or vdev children.
569 * Gang I/Os can have gang or vdev children.
570 * Vdev I/Os can only have vdev children.
571 * The following ASSERT captures all of these constraints.
572 */
573 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
574
575 zl->zl_parent = pio;
576 zl->zl_child = cio;
577
578 mutex_enter(&pio->io_lock);
579 mutex_enter(&cio->io_lock);
580
581 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
582
583 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
584 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
585
586 list_insert_head(&pio->io_child_list, zl);
587 list_insert_head(&cio->io_parent_list, zl);
588
589 pio->io_child_count++;
590 cio->io_parent_count++;
591
592 mutex_exit(&cio->io_lock);
593 mutex_exit(&pio->io_lock);
594 }
595
596 static void
597 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
598 {
599 ASSERT(zl->zl_parent == pio);
600 ASSERT(zl->zl_child == cio);
601
602 mutex_enter(&pio->io_lock);
603 mutex_enter(&cio->io_lock);
604
605 list_remove(&pio->io_child_list, zl);
606 list_remove(&cio->io_parent_list, zl);
607
608 pio->io_child_count--;
609 cio->io_parent_count--;
610
611 mutex_exit(&cio->io_lock);
612 mutex_exit(&pio->io_lock);
613 kmem_cache_free(zio_link_cache, zl);
614 }
615
616 static boolean_t
617 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
618 {
619 uint64_t *countp = &zio->io_children[child][wait];
620 boolean_t waiting = B_FALSE;
621
622 mutex_enter(&zio->io_lock);
623 ASSERT(zio->io_stall == NULL);
624 if (*countp != 0) {
625 zio->io_stage >>= 1;
626 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
627 zio->io_stall = countp;
628 waiting = B_TRUE;
629 }
630 mutex_exit(&zio->io_lock);
631
632 return (waiting);
633 }
634
635 __attribute__((always_inline))
636 static inline void
637 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
638 {
639 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
640 int *errorp = &pio->io_child_error[zio->io_child_type];
641
642 mutex_enter(&pio->io_lock);
643 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
644 *errorp = zio_worst_error(*errorp, zio->io_error);
645 pio->io_reexecute |= zio->io_reexecute;
646 ASSERT3U(*countp, >, 0);
647
648 (*countp)--;
649
650 if (*countp == 0 && pio->io_stall == countp) {
651 zio_taskq_type_t type =
652 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
653 ZIO_TASKQ_INTERRUPT;
654 pio->io_stall = NULL;
655 mutex_exit(&pio->io_lock);
656 /*
657 * Dispatch the parent zio in its own taskq so that
658 * the child can continue to make progress. This also
659 * prevents overflowing the stack when we have deeply nested
660 * parent-child relationships.
661 */
662 zio_taskq_dispatch(pio, type, B_FALSE);
663 } else {
664 mutex_exit(&pio->io_lock);
665 }
666 }
667
668 static void
669 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
670 {
671 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
672 zio->io_error = zio->io_child_error[c];
673 }
674
675 int
676 zio_bookmark_compare(const void *x1, const void *x2)
677 {
678 const zio_t *z1 = x1;
679 const zio_t *z2 = x2;
680
681 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
682 return (-1);
683 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
684 return (1);
685
686 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
687 return (-1);
688 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
689 return (1);
690
691 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
692 return (-1);
693 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
694 return (1);
695
696 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
697 return (-1);
698 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
699 return (1);
700
701 if (z1 < z2)
702 return (-1);
703 if (z1 > z2)
704 return (1);
705
706 return (0);
707 }
708
709 /*
710 * ==========================================================================
711 * Create the various types of I/O (read, write, free, etc)
712 * ==========================================================================
713 */
714 static zio_t *
715 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
716 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
717 void *private, zio_type_t type, zio_priority_t priority,
718 enum zio_flag flags, vdev_t *vd, uint64_t offset,
719 const zbookmark_phys_t *zb, enum zio_stage stage,
720 enum zio_stage pipeline)
721 {
722 zio_t *zio;
723
724 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
725 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
726 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
727
728 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
729 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
730 ASSERT(vd || stage == ZIO_STAGE_OPEN);
731
732 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
733
734 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
735 bzero(zio, sizeof (zio_t));
736
737 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
738 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
739
740 list_create(&zio->io_parent_list, sizeof (zio_link_t),
741 offsetof(zio_link_t, zl_parent_node));
742 list_create(&zio->io_child_list, sizeof (zio_link_t),
743 offsetof(zio_link_t, zl_child_node));
744 metaslab_trace_init(&zio->io_alloc_list);
745
746 if (vd != NULL)
747 zio->io_child_type = ZIO_CHILD_VDEV;
748 else if (flags & ZIO_FLAG_GANG_CHILD)
749 zio->io_child_type = ZIO_CHILD_GANG;
750 else if (flags & ZIO_FLAG_DDT_CHILD)
751 zio->io_child_type = ZIO_CHILD_DDT;
752 else
753 zio->io_child_type = ZIO_CHILD_LOGICAL;
754
755 if (bp != NULL) {
756 zio->io_bp = (blkptr_t *)bp;
757 zio->io_bp_copy = *bp;
758 zio->io_bp_orig = *bp;
759 if (type != ZIO_TYPE_WRITE ||
760 zio->io_child_type == ZIO_CHILD_DDT)
761 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
762 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
763 zio->io_logical = zio;
764 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
765 pipeline |= ZIO_GANG_STAGES;
766 }
767
768 zio->io_spa = spa;
769 zio->io_txg = txg;
770 zio->io_done = done;
771 zio->io_private = private;
772 zio->io_type = type;
773 zio->io_priority = priority;
774 zio->io_vd = vd;
775 zio->io_offset = offset;
776 zio->io_orig_abd = zio->io_abd = data;
777 zio->io_orig_size = zio->io_size = psize;
778 zio->io_lsize = lsize;
779 zio->io_orig_flags = zio->io_flags = flags;
780 zio->io_orig_stage = zio->io_stage = stage;
781 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
782 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
783
784 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
785 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
786
787 if (zb != NULL)
788 zio->io_bookmark = *zb;
789
790 if (pio != NULL) {
791 if (zio->io_logical == NULL)
792 zio->io_logical = pio->io_logical;
793 if (zio->io_child_type == ZIO_CHILD_GANG)
794 zio->io_gang_leader = pio->io_gang_leader;
795 zio_add_child(pio, zio);
796 }
797
798 taskq_init_ent(&zio->io_tqent);
799
800 return (zio);
801 }
802
803 static void
804 zio_destroy(zio_t *zio)
805 {
806 metaslab_trace_fini(&zio->io_alloc_list);
807 list_destroy(&zio->io_parent_list);
808 list_destroy(&zio->io_child_list);
809 mutex_destroy(&zio->io_lock);
810 cv_destroy(&zio->io_cv);
811 kmem_cache_free(zio_cache, zio);
812 }
813
814 zio_t *
815 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
816 void *private, enum zio_flag flags)
817 {
818 zio_t *zio;
819
820 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
821 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
822 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
823
824 return (zio);
825 }
826
827 zio_t *
828 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
829 {
830 return (zio_null(NULL, spa, NULL, done, private, flags));
831 }
832
833 void
834 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
835 {
836 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
837 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
838 bp, (longlong_t)BP_GET_TYPE(bp));
839 }
840 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
841 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
842 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
843 bp, (longlong_t)BP_GET_CHECKSUM(bp));
844 }
845 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
846 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
847 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
848 bp, (longlong_t)BP_GET_COMPRESS(bp));
849 }
850 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
851 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
852 bp, (longlong_t)BP_GET_LSIZE(bp));
853 }
854 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
855 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
856 bp, (longlong_t)BP_GET_PSIZE(bp));
857 }
858
859 if (BP_IS_EMBEDDED(bp)) {
860 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
861 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
862 bp, (longlong_t)BPE_GET_ETYPE(bp));
863 }
864 }
865
866 /*
867 * Pool-specific checks.
868 *
869 * Note: it would be nice to verify that the blk_birth and
870 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
871 * allows the birth time of log blocks (and dmu_sync()-ed blocks
872 * that are in the log) to be arbitrarily large.
873 */
874 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
875 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
876
877 if (vdevid >= spa->spa_root_vdev->vdev_children) {
878 zfs_panic_recover("blkptr at %p DVA %u has invalid "
879 "VDEV %llu",
880 bp, i, (longlong_t)vdevid);
881 continue;
882 }
883 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
884 if (vd == NULL) {
885 zfs_panic_recover("blkptr at %p DVA %u has invalid "
886 "VDEV %llu",
887 bp, i, (longlong_t)vdevid);
888 continue;
889 }
890 if (vd->vdev_ops == &vdev_hole_ops) {
891 zfs_panic_recover("blkptr at %p DVA %u has hole "
892 "VDEV %llu",
893 bp, i, (longlong_t)vdevid);
894 continue;
895 }
896 if (vd->vdev_ops == &vdev_missing_ops) {
897 /*
898 * "missing" vdevs are valid during import, but we
899 * don't have their detailed info (e.g. asize), so
900 * we can't perform any more checks on them.
901 */
902 continue;
903 }
904 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
905 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
906 if (BP_IS_GANG(bp))
907 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
908 if (offset + asize > vd->vdev_asize) {
909 zfs_panic_recover("blkptr at %p DVA %u has invalid "
910 "OFFSET %llu",
911 bp, i, (longlong_t)offset);
912 }
913 }
914 }
915
916 zio_t *
917 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
918 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
919 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
920 {
921 zio_t *zio;
922
923 zfs_blkptr_verify(spa, bp);
924
925 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
926 data, size, size, done, private,
927 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
928 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
929 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
930
931 return (zio);
932 }
933
934 zio_t *
935 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
936 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
937 zio_done_func_t *ready, zio_done_func_t *children_ready,
938 zio_done_func_t *physdone, zio_done_func_t *done,
939 void *private, zio_priority_t priority, enum zio_flag flags,
940 const zbookmark_phys_t *zb)
941 {
942 zio_t *zio;
943
944 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
945 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
946 zp->zp_compress >= ZIO_COMPRESS_OFF &&
947 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
948 DMU_OT_IS_VALID(zp->zp_type) &&
949 zp->zp_level < 32 &&
950 zp->zp_copies > 0 &&
951 zp->zp_copies <= spa_max_replication(spa));
952
953 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
954 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
955 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
956 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
957
958 zio->io_ready = ready;
959 zio->io_children_ready = children_ready;
960 zio->io_physdone = physdone;
961 zio->io_prop = *zp;
962
963 /*
964 * Data can be NULL if we are going to call zio_write_override() to
965 * provide the already-allocated BP. But we may need the data to
966 * verify a dedup hit (if requested). In this case, don't try to
967 * dedup (just take the already-allocated BP verbatim). Encrypted
968 * dedup blocks need data as well so we also disable dedup in this
969 * case.
970 */
971 if (data == NULL &&
972 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
973 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
974 }
975
976 return (zio);
977 }
978
979 zio_t *
980 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
981 uint64_t size, zio_done_func_t *done, void *private,
982 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
983 {
984 zio_t *zio;
985
986 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
987 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
988 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
989
990 return (zio);
991 }
992
993 void
994 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
995 {
996 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
997 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
998 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
999 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1000
1001 /*
1002 * We must reset the io_prop to match the values that existed
1003 * when the bp was first written by dmu_sync() keeping in mind
1004 * that nopwrite and dedup are mutually exclusive.
1005 */
1006 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1007 zio->io_prop.zp_nopwrite = nopwrite;
1008 zio->io_prop.zp_copies = copies;
1009 zio->io_bp_override = bp;
1010 }
1011
1012 void
1013 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1014 {
1015
1016 /*
1017 * The check for EMBEDDED is a performance optimization. We
1018 * process the free here (by ignoring it) rather than
1019 * putting it on the list and then processing it in zio_free_sync().
1020 */
1021 if (BP_IS_EMBEDDED(bp))
1022 return;
1023 metaslab_check_free(spa, bp);
1024
1025 /*
1026 * Frees that are for the currently-syncing txg, are not going to be
1027 * deferred, and which will not need to do a read (i.e. not GANG or
1028 * DEDUP), can be processed immediately. Otherwise, put them on the
1029 * in-memory list for later processing.
1030 */
1031 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
1032 txg != spa->spa_syncing_txg ||
1033 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
1034 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1035 } else {
1036 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1037 }
1038 }
1039
1040 zio_t *
1041 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1042 enum zio_flag flags)
1043 {
1044 zio_t *zio;
1045 enum zio_stage stage = ZIO_FREE_PIPELINE;
1046
1047 ASSERT(!BP_IS_HOLE(bp));
1048 ASSERT(spa_syncing_txg(spa) == txg);
1049 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
1050
1051 if (BP_IS_EMBEDDED(bp))
1052 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1053
1054 metaslab_check_free(spa, bp);
1055 arc_freed(spa, bp);
1056 dsl_scan_freed(spa, bp);
1057
1058 /*
1059 * GANG and DEDUP blocks can induce a read (for the gang block header,
1060 * or the DDT), so issue them asynchronously so that this thread is
1061 * not tied up.
1062 */
1063 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1064 stage |= ZIO_STAGE_ISSUE_ASYNC;
1065
1066 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1067 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1068 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1069
1070 return (zio);
1071 }
1072
1073 zio_t *
1074 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1075 zio_done_func_t *done, void *private, enum zio_flag flags)
1076 {
1077 zio_t *zio;
1078
1079 dprintf_bp(bp, "claiming in txg %llu", txg);
1080
1081 if (BP_IS_EMBEDDED(bp))
1082 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1083
1084 /*
1085 * A claim is an allocation of a specific block. Claims are needed
1086 * to support immediate writes in the intent log. The issue is that
1087 * immediate writes contain committed data, but in a txg that was
1088 * *not* committed. Upon opening the pool after an unclean shutdown,
1089 * the intent log claims all blocks that contain immediate write data
1090 * so that the SPA knows they're in use.
1091 *
1092 * All claims *must* be resolved in the first txg -- before the SPA
1093 * starts allocating blocks -- so that nothing is allocated twice.
1094 * If txg == 0 we just verify that the block is claimable.
1095 */
1096 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
1097 ASSERT(txg == spa_first_txg(spa) || txg == 0);
1098 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
1099
1100 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1101 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1102 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1103 ASSERT0(zio->io_queued_timestamp);
1104
1105 return (zio);
1106 }
1107
1108 zio_t *
1109 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1110 zio_done_func_t *done, void *private, enum zio_flag flags)
1111 {
1112 zio_t *zio;
1113 int c;
1114
1115 if (vd->vdev_children == 0) {
1116 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1117 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1118 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1119
1120 zio->io_cmd = cmd;
1121 } else {
1122 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1123
1124 for (c = 0; c < vd->vdev_children; c++)
1125 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1126 done, private, flags));
1127 }
1128
1129 return (zio);
1130 }
1131
1132 zio_t *
1133 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1134 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1135 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1136 {
1137 zio_t *zio;
1138
1139 ASSERT(vd->vdev_children == 0);
1140 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1141 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1142 ASSERT3U(offset + size, <=, vd->vdev_psize);
1143
1144 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1145 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1146 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1147
1148 zio->io_prop.zp_checksum = checksum;
1149
1150 return (zio);
1151 }
1152
1153 zio_t *
1154 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1155 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1156 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1157 {
1158 zio_t *zio;
1159
1160 ASSERT(vd->vdev_children == 0);
1161 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1162 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1163 ASSERT3U(offset + size, <=, vd->vdev_psize);
1164
1165 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1166 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1167 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1168
1169 zio->io_prop.zp_checksum = checksum;
1170
1171 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1172 /*
1173 * zec checksums are necessarily destructive -- they modify
1174 * the end of the write buffer to hold the verifier/checksum.
1175 * Therefore, we must make a local copy in case the data is
1176 * being written to multiple places in parallel.
1177 */
1178 abd_t *wbuf = abd_alloc_sametype(data, size);
1179 abd_copy(wbuf, data, size);
1180
1181 zio_push_transform(zio, wbuf, size, size, NULL);
1182 }
1183
1184 return (zio);
1185 }
1186
1187 /*
1188 * Create a child I/O to do some work for us.
1189 */
1190 zio_t *
1191 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1192 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1193 enum zio_flag flags, zio_done_func_t *done, void *private)
1194 {
1195 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1196 zio_t *zio;
1197
1198 ASSERT(vd->vdev_parent ==
1199 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1200
1201 if (type == ZIO_TYPE_READ && bp != NULL) {
1202 /*
1203 * If we have the bp, then the child should perform the
1204 * checksum and the parent need not. This pushes error
1205 * detection as close to the leaves as possible and
1206 * eliminates redundant checksums in the interior nodes.
1207 */
1208 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1209 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1210 }
1211
1212 if (vd->vdev_children == 0)
1213 offset += VDEV_LABEL_START_SIZE;
1214
1215 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1216
1217 /*
1218 * If we've decided to do a repair, the write is not speculative --
1219 * even if the original read was.
1220 */
1221 if (flags & ZIO_FLAG_IO_REPAIR)
1222 flags &= ~ZIO_FLAG_SPECULATIVE;
1223
1224 /*
1225 * If we're creating a child I/O that is not associated with a
1226 * top-level vdev, then the child zio is not an allocating I/O.
1227 * If this is a retried I/O then we ignore it since we will
1228 * have already processed the original allocating I/O.
1229 */
1230 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1231 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1232 ASSERTV(metaslab_class_t *mc = spa_normal_class(pio->io_spa));
1233
1234 ASSERT(mc->mc_alloc_throttle_enabled);
1235 ASSERT(type == ZIO_TYPE_WRITE);
1236 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1237 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1238 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1239 pio->io_child_type == ZIO_CHILD_GANG);
1240
1241 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1242 }
1243
1244
1245 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1246 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1247 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1248 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1249
1250 zio->io_physdone = pio->io_physdone;
1251 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1252 zio->io_logical->io_phys_children++;
1253
1254 return (zio);
1255 }
1256
1257 zio_t *
1258 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1259 int type, zio_priority_t priority, enum zio_flag flags,
1260 zio_done_func_t *done, void *private)
1261 {
1262 zio_t *zio;
1263
1264 ASSERT(vd->vdev_ops->vdev_op_leaf);
1265
1266 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1267 data, size, size, done, private, type, priority,
1268 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1269 vd, offset, NULL,
1270 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1271
1272 return (zio);
1273 }
1274
1275 void
1276 zio_flush(zio_t *zio, vdev_t *vd)
1277 {
1278 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1279 NULL, NULL,
1280 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1281 }
1282
1283 void
1284 zio_shrink(zio_t *zio, uint64_t size)
1285 {
1286 ASSERT3P(zio->io_executor, ==, NULL);
1287 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1288 ASSERT3U(size, <=, zio->io_size);
1289
1290 /*
1291 * We don't shrink for raidz because of problems with the
1292 * reconstruction when reading back less than the block size.
1293 * Note, BP_IS_RAIDZ() assumes no compression.
1294 */
1295 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1296 if (!BP_IS_RAIDZ(zio->io_bp)) {
1297 /* we are not doing a raw write */
1298 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1299 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1300 }
1301 }
1302
1303 /*
1304 * ==========================================================================
1305 * Prepare to read and write logical blocks
1306 * ==========================================================================
1307 */
1308
1309 static int
1310 zio_read_bp_init(zio_t *zio)
1311 {
1312 blkptr_t *bp = zio->io_bp;
1313 uint64_t psize =
1314 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1315
1316 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1317 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1318 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1319 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1320 psize, psize, zio_decompress);
1321 }
1322
1323 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1324 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1325 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1326 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1327 psize, psize, zio_decrypt);
1328 }
1329
1330 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1331 int psize = BPE_GET_PSIZE(bp);
1332 void *data = abd_borrow_buf(zio->io_abd, psize);
1333
1334 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1335 decode_embedded_bp_compressed(bp, data);
1336 abd_return_buf_copy(zio->io_abd, data, psize);
1337 } else {
1338 ASSERT(!BP_IS_EMBEDDED(bp));
1339 }
1340
1341 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1342 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1343
1344 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1345 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1346
1347 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1348 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1349
1350 return (ZIO_PIPELINE_CONTINUE);
1351 }
1352
1353 static int
1354 zio_write_bp_init(zio_t *zio)
1355 {
1356 if (!IO_IS_ALLOCATING(zio))
1357 return (ZIO_PIPELINE_CONTINUE);
1358
1359 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1360
1361 if (zio->io_bp_override) {
1362 blkptr_t *bp = zio->io_bp;
1363 zio_prop_t *zp = &zio->io_prop;
1364
1365 ASSERT(bp->blk_birth != zio->io_txg);
1366 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1367
1368 *bp = *zio->io_bp_override;
1369 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1370
1371 if (BP_IS_EMBEDDED(bp))
1372 return (ZIO_PIPELINE_CONTINUE);
1373
1374 /*
1375 * If we've been overridden and nopwrite is set then
1376 * set the flag accordingly to indicate that a nopwrite
1377 * has already occurred.
1378 */
1379 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1380 ASSERT(!zp->zp_dedup);
1381 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1382 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1383 return (ZIO_PIPELINE_CONTINUE);
1384 }
1385
1386 ASSERT(!zp->zp_nopwrite);
1387
1388 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1389 return (ZIO_PIPELINE_CONTINUE);
1390
1391 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1392 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1393
1394 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1395 !zp->zp_encrypt) {
1396 BP_SET_DEDUP(bp, 1);
1397 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1398 return (ZIO_PIPELINE_CONTINUE);
1399 }
1400
1401 /*
1402 * We were unable to handle this as an override bp, treat
1403 * it as a regular write I/O.
1404 */
1405 zio->io_bp_override = NULL;
1406 *bp = zio->io_bp_orig;
1407 zio->io_pipeline = zio->io_orig_pipeline;
1408 }
1409
1410 return (ZIO_PIPELINE_CONTINUE);
1411 }
1412
1413 static int
1414 zio_write_compress(zio_t *zio)
1415 {
1416 spa_t *spa = zio->io_spa;
1417 zio_prop_t *zp = &zio->io_prop;
1418 enum zio_compress compress = zp->zp_compress;
1419 blkptr_t *bp = zio->io_bp;
1420 uint64_t lsize = zio->io_lsize;
1421 uint64_t psize = zio->io_size;
1422 int pass = 1;
1423
1424 /*
1425 * If our children haven't all reached the ready stage,
1426 * wait for them and then repeat this pipeline stage.
1427 */
1428 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1429 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1430 return (ZIO_PIPELINE_STOP);
1431
1432 if (!IO_IS_ALLOCATING(zio))
1433 return (ZIO_PIPELINE_CONTINUE);
1434
1435 if (zio->io_children_ready != NULL) {
1436 /*
1437 * Now that all our children are ready, run the callback
1438 * associated with this zio in case it wants to modify the
1439 * data to be written.
1440 */
1441 ASSERT3U(zp->zp_level, >, 0);
1442 zio->io_children_ready(zio);
1443 }
1444
1445 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1446 ASSERT(zio->io_bp_override == NULL);
1447
1448 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1449 /*
1450 * We're rewriting an existing block, which means we're
1451 * working on behalf of spa_sync(). For spa_sync() to
1452 * converge, it must eventually be the case that we don't
1453 * have to allocate new blocks. But compression changes
1454 * the blocksize, which forces a reallocate, and makes
1455 * convergence take longer. Therefore, after the first
1456 * few passes, stop compressing to ensure convergence.
1457 */
1458 pass = spa_sync_pass(spa);
1459
1460 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1461 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1462 ASSERT(!BP_GET_DEDUP(bp));
1463
1464 if (pass >= zfs_sync_pass_dont_compress)
1465 compress = ZIO_COMPRESS_OFF;
1466
1467 /* Make sure someone doesn't change their mind on overwrites */
1468 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1469 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1470 }
1471
1472 /* If it's a compressed write that is not raw, compress the buffer. */
1473 if (compress != ZIO_COMPRESS_OFF &&
1474 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1475 void *cbuf = zio_buf_alloc(lsize);
1476 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1477 if (psize == 0 || psize == lsize) {
1478 compress = ZIO_COMPRESS_OFF;
1479 zio_buf_free(cbuf, lsize);
1480 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1481 psize <= BPE_PAYLOAD_SIZE &&
1482 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1483 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1484 encode_embedded_bp_compressed(bp,
1485 cbuf, compress, lsize, psize);
1486 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1487 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1488 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1489 zio_buf_free(cbuf, lsize);
1490 bp->blk_birth = zio->io_txg;
1491 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1492 ASSERT(spa_feature_is_active(spa,
1493 SPA_FEATURE_EMBEDDED_DATA));
1494 return (ZIO_PIPELINE_CONTINUE);
1495 } else {
1496 /*
1497 * Round up compressed size up to the ashift
1498 * of the smallest-ashift device, and zero the tail.
1499 * This ensures that the compressed size of the BP
1500 * (and thus compressratio property) are correct,
1501 * in that we charge for the padding used to fill out
1502 * the last sector.
1503 */
1504 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1505 size_t rounded = (size_t)P2ROUNDUP(psize,
1506 1ULL << spa->spa_min_ashift);
1507 if (rounded >= lsize) {
1508 compress = ZIO_COMPRESS_OFF;
1509 zio_buf_free(cbuf, lsize);
1510 psize = lsize;
1511 } else {
1512 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1513 abd_take_ownership_of_buf(cdata, B_TRUE);
1514 abd_zero_off(cdata, psize, rounded - psize);
1515 psize = rounded;
1516 zio_push_transform(zio, cdata,
1517 psize, lsize, NULL);
1518 }
1519 }
1520
1521 /*
1522 * We were unable to handle this as an override bp, treat
1523 * it as a regular write I/O.
1524 */
1525 zio->io_bp_override = NULL;
1526 *bp = zio->io_bp_orig;
1527 zio->io_pipeline = zio->io_orig_pipeline;
1528
1529 } else {
1530 ASSERT3U(psize, !=, 0);
1531
1532 }
1533
1534 /*
1535 * The final pass of spa_sync() must be all rewrites, but the first
1536 * few passes offer a trade-off: allocating blocks defers convergence,
1537 * but newly allocated blocks are sequential, so they can be written
1538 * to disk faster. Therefore, we allow the first few passes of
1539 * spa_sync() to allocate new blocks, but force rewrites after that.
1540 * There should only be a handful of blocks after pass 1 in any case.
1541 */
1542 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1543 BP_GET_PSIZE(bp) == psize &&
1544 pass >= zfs_sync_pass_rewrite) {
1545 ASSERT(psize != 0);
1546 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1547 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1548 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1549 } else {
1550 BP_ZERO(bp);
1551 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1552 }
1553
1554 if (psize == 0) {
1555 if (zio->io_bp_orig.blk_birth != 0 &&
1556 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1557 BP_SET_LSIZE(bp, lsize);
1558 BP_SET_TYPE(bp, zp->zp_type);
1559 BP_SET_LEVEL(bp, zp->zp_level);
1560 BP_SET_BIRTH(bp, zio->io_txg, 0);
1561 }
1562 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1563 } else {
1564 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1565 BP_SET_LSIZE(bp, lsize);
1566 BP_SET_TYPE(bp, zp->zp_type);
1567 BP_SET_LEVEL(bp, zp->zp_level);
1568 BP_SET_PSIZE(bp, psize);
1569 BP_SET_COMPRESS(bp, compress);
1570 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1571 BP_SET_DEDUP(bp, zp->zp_dedup);
1572 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1573 if (zp->zp_dedup) {
1574 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1575 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1576 ASSERT(!zp->zp_encrypt ||
1577 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1578 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1579 }
1580 if (zp->zp_nopwrite) {
1581 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1582 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1583 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1584 }
1585 }
1586 return (ZIO_PIPELINE_CONTINUE);
1587 }
1588
1589 static int
1590 zio_free_bp_init(zio_t *zio)
1591 {
1592 blkptr_t *bp = zio->io_bp;
1593
1594 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1595 if (BP_GET_DEDUP(bp))
1596 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1597 }
1598
1599 return (ZIO_PIPELINE_CONTINUE);
1600 }
1601
1602 /*
1603 * ==========================================================================
1604 * Execute the I/O pipeline
1605 * ==========================================================================
1606 */
1607
1608 static void
1609 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1610 {
1611 spa_t *spa = zio->io_spa;
1612 zio_type_t t = zio->io_type;
1613 int flags = (cutinline ? TQ_FRONT : 0);
1614
1615 /*
1616 * If we're a config writer or a probe, the normal issue and
1617 * interrupt threads may all be blocked waiting for the config lock.
1618 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1619 */
1620 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1621 t = ZIO_TYPE_NULL;
1622
1623 /*
1624 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1625 */
1626 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1627 t = ZIO_TYPE_NULL;
1628
1629 /*
1630 * If this is a high priority I/O, then use the high priority taskq if
1631 * available.
1632 */
1633 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1634 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1635 q++;
1636
1637 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1638
1639 /*
1640 * NB: We are assuming that the zio can only be dispatched
1641 * to a single taskq at a time. It would be a grievous error
1642 * to dispatch the zio to another taskq at the same time.
1643 */
1644 ASSERT(taskq_empty_ent(&zio->io_tqent));
1645 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1646 flags, &zio->io_tqent);
1647 }
1648
1649 static boolean_t
1650 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1651 {
1652 kthread_t *executor = zio->io_executor;
1653 spa_t *spa = zio->io_spa;
1654
1655 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1656 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1657 uint_t i;
1658 for (i = 0; i < tqs->stqs_count; i++) {
1659 if (taskq_member(tqs->stqs_taskq[i], executor))
1660 return (B_TRUE);
1661 }
1662 }
1663
1664 return (B_FALSE);
1665 }
1666
1667 static int
1668 zio_issue_async(zio_t *zio)
1669 {
1670 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1671
1672 return (ZIO_PIPELINE_STOP);
1673 }
1674
1675 void
1676 zio_interrupt(zio_t *zio)
1677 {
1678 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1679 }
1680
1681 void
1682 zio_delay_interrupt(zio_t *zio)
1683 {
1684 /*
1685 * The timeout_generic() function isn't defined in userspace, so
1686 * rather than trying to implement the function, the zio delay
1687 * functionality has been disabled for userspace builds.
1688 */
1689
1690 #ifdef _KERNEL
1691 /*
1692 * If io_target_timestamp is zero, then no delay has been registered
1693 * for this IO, thus jump to the end of this function and "skip" the
1694 * delay; issuing it directly to the zio layer.
1695 */
1696 if (zio->io_target_timestamp != 0) {
1697 hrtime_t now = gethrtime();
1698
1699 if (now >= zio->io_target_timestamp) {
1700 /*
1701 * This IO has already taken longer than the target
1702 * delay to complete, so we don't want to delay it
1703 * any longer; we "miss" the delay and issue it
1704 * directly to the zio layer. This is likely due to
1705 * the target latency being set to a value less than
1706 * the underlying hardware can satisfy (e.g. delay
1707 * set to 1ms, but the disks take 10ms to complete an
1708 * IO request).
1709 */
1710
1711 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1712 hrtime_t, now);
1713
1714 zio_interrupt(zio);
1715 } else {
1716 taskqid_t tid;
1717 hrtime_t diff = zio->io_target_timestamp - now;
1718 clock_t expire_at_tick = ddi_get_lbolt() +
1719 NSEC_TO_TICK(diff);
1720
1721 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1722 hrtime_t, now, hrtime_t, diff);
1723
1724 if (NSEC_TO_TICK(diff) == 0) {
1725 /* Our delay is less than a jiffy - just spin */
1726 zfs_sleep_until(zio->io_target_timestamp);
1727 } else {
1728 /*
1729 * Use taskq_dispatch_delay() in the place of
1730 * OpenZFS's timeout_generic().
1731 */
1732 tid = taskq_dispatch_delay(system_taskq,
1733 (task_func_t *)zio_interrupt,
1734 zio, TQ_NOSLEEP, expire_at_tick);
1735 if (tid == TASKQID_INVALID) {
1736 /*
1737 * Couldn't allocate a task. Just
1738 * finish the zio without a delay.
1739 */
1740 zio_interrupt(zio);
1741 }
1742 }
1743 }
1744 return;
1745 }
1746 #endif
1747 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1748 zio_interrupt(zio);
1749 }
1750
1751 static void
1752 zio_deadman_impl(zio_t *pio)
1753 {
1754 zio_t *cio, *cio_next;
1755 zio_link_t *zl = NULL;
1756 vdev_t *vd = pio->io_vd;
1757
1758 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
1759 vdev_queue_t *vq = &vd->vdev_queue;
1760 zbookmark_phys_t *zb = &pio->io_bookmark;
1761 uint64_t delta = gethrtime() - pio->io_timestamp;
1762 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
1763
1764 zfs_dbgmsg("slow zio: zio=%p timestamp=%llu "
1765 "delta=%llu queued=%llu io=%llu "
1766 "path=%s last=%llu "
1767 "type=%d priority=%d flags=0x%x "
1768 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
1769 "objset=%llu object=%llu level=%llu blkid=%llu "
1770 "offset=%llu size=%llu error=%d",
1771 pio, pio->io_timestamp,
1772 delta, pio->io_delta, pio->io_delay,
1773 vd->vdev_path, vq->vq_io_complete_ts,
1774 pio->io_type, pio->io_priority, pio->io_flags,
1775 pio->io_state, pio->io_pipeline, pio->io_pipeline_trace,
1776 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1777 pio->io_offset, pio->io_size, pio->io_error);
1778 zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
1779 pio->io_spa, vd, zb, pio, 0, 0);
1780
1781 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
1782 taskq_empty_ent(&pio->io_tqent)) {
1783 zio_interrupt(pio);
1784 }
1785 }
1786
1787 mutex_enter(&pio->io_lock);
1788 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1789 cio_next = zio_walk_children(pio, &zl);
1790 zio_deadman_impl(cio);
1791 }
1792 mutex_exit(&pio->io_lock);
1793 }
1794
1795 /*
1796 * Log the critical information describing this zio and all of its children
1797 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
1798 */
1799 void
1800 zio_deadman(zio_t *pio, char *tag)
1801 {
1802 spa_t *spa = pio->io_spa;
1803 char *name = spa_name(spa);
1804
1805 if (!zfs_deadman_enabled || spa_suspended(spa))
1806 return;
1807
1808 zio_deadman_impl(pio);
1809
1810 switch (spa_get_deadman_failmode(spa)) {
1811 case ZIO_FAILURE_MODE_WAIT:
1812 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
1813 break;
1814
1815 case ZIO_FAILURE_MODE_CONTINUE:
1816 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
1817 break;
1818
1819 case ZIO_FAILURE_MODE_PANIC:
1820 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
1821 break;
1822 }
1823 }
1824
1825 /*
1826 * Execute the I/O pipeline until one of the following occurs:
1827 * (1) the I/O completes; (2) the pipeline stalls waiting for
1828 * dependent child I/Os; (3) the I/O issues, so we're waiting
1829 * for an I/O completion interrupt; (4) the I/O is delegated by
1830 * vdev-level caching or aggregation; (5) the I/O is deferred
1831 * due to vdev-level queueing; (6) the I/O is handed off to
1832 * another thread. In all cases, the pipeline stops whenever
1833 * there's no CPU work; it never burns a thread in cv_wait_io().
1834 *
1835 * There's no locking on io_stage because there's no legitimate way
1836 * for multiple threads to be attempting to process the same I/O.
1837 */
1838 static zio_pipe_stage_t *zio_pipeline[];
1839
1840 /*
1841 * zio_execute() is a wrapper around the static function
1842 * __zio_execute() so that we can force __zio_execute() to be
1843 * inlined. This reduces stack overhead which is important
1844 * because __zio_execute() is called recursively in several zio
1845 * code paths. zio_execute() itself cannot be inlined because
1846 * it is externally visible.
1847 */
1848 void
1849 zio_execute(zio_t *zio)
1850 {
1851 fstrans_cookie_t cookie;
1852
1853 cookie = spl_fstrans_mark();
1854 __zio_execute(zio);
1855 spl_fstrans_unmark(cookie);
1856 }
1857
1858 /*
1859 * Used to determine if in the current context the stack is sized large
1860 * enough to allow zio_execute() to be called recursively. A minimum
1861 * stack size of 16K is required to avoid needing to re-dispatch the zio.
1862 */
1863 boolean_t
1864 zio_execute_stack_check(zio_t *zio)
1865 {
1866 #if !defined(HAVE_LARGE_STACKS)
1867 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
1868
1869 /* Executing in txg_sync_thread() context. */
1870 if (dp && curthread == dp->dp_tx.tx_sync_thread)
1871 return (B_TRUE);
1872
1873 /* Pool initialization outside of zio_taskq context. */
1874 if (dp && spa_is_initializing(dp->dp_spa) &&
1875 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
1876 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
1877 return (B_TRUE);
1878 #endif /* HAVE_LARGE_STACKS */
1879
1880 return (B_FALSE);
1881 }
1882
1883 __attribute__((always_inline))
1884 static inline void
1885 __zio_execute(zio_t *zio)
1886 {
1887 zio->io_executor = curthread;
1888
1889 ASSERT3U(zio->io_queued_timestamp, >, 0);
1890
1891 while (zio->io_stage < ZIO_STAGE_DONE) {
1892 enum zio_stage pipeline = zio->io_pipeline;
1893 enum zio_stage stage = zio->io_stage;
1894 int rv;
1895
1896 ASSERT(!MUTEX_HELD(&zio->io_lock));
1897 ASSERT(ISP2(stage));
1898 ASSERT(zio->io_stall == NULL);
1899
1900 do {
1901 stage <<= 1;
1902 } while ((stage & pipeline) == 0);
1903
1904 ASSERT(stage <= ZIO_STAGE_DONE);
1905
1906 /*
1907 * If we are in interrupt context and this pipeline stage
1908 * will grab a config lock that is held across I/O,
1909 * or may wait for an I/O that needs an interrupt thread
1910 * to complete, issue async to avoid deadlock.
1911 *
1912 * For VDEV_IO_START, we cut in line so that the io will
1913 * be sent to disk promptly.
1914 */
1915 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1916 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1917 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1918 zio_requeue_io_start_cut_in_line : B_FALSE;
1919 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1920 return;
1921 }
1922
1923 /*
1924 * If the current context doesn't have large enough stacks
1925 * the zio must be issued asynchronously to prevent overflow.
1926 */
1927 if (zio_execute_stack_check(zio)) {
1928 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1929 zio_requeue_io_start_cut_in_line : B_FALSE;
1930 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1931 return;
1932 }
1933
1934 zio->io_stage = stage;
1935 zio->io_pipeline_trace |= zio->io_stage;
1936 rv = zio_pipeline[highbit64(stage) - 1](zio);
1937
1938 if (rv == ZIO_PIPELINE_STOP)
1939 return;
1940
1941 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1942 }
1943 }
1944
1945
1946 /*
1947 * ==========================================================================
1948 * Initiate I/O, either sync or async
1949 * ==========================================================================
1950 */
1951 int
1952 zio_wait(zio_t *zio)
1953 {
1954 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
1955 int error;
1956
1957 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
1958 ASSERT3P(zio->io_executor, ==, NULL);
1959
1960 zio->io_waiter = curthread;
1961 ASSERT0(zio->io_queued_timestamp);
1962 zio->io_queued_timestamp = gethrtime();
1963
1964 __zio_execute(zio);
1965
1966 mutex_enter(&zio->io_lock);
1967 while (zio->io_executor != NULL) {
1968 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
1969 ddi_get_lbolt() + timeout);
1970
1971 if (zfs_deadman_enabled && error == -1 &&
1972 gethrtime() - zio->io_queued_timestamp >
1973 spa_deadman_ziotime(zio->io_spa)) {
1974 mutex_exit(&zio->io_lock);
1975 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
1976 zio_deadman(zio, FTAG);
1977 mutex_enter(&zio->io_lock);
1978 }
1979 }
1980 mutex_exit(&zio->io_lock);
1981
1982 error = zio->io_error;
1983 zio_destroy(zio);
1984
1985 return (error);
1986 }
1987
1988 void
1989 zio_nowait(zio_t *zio)
1990 {
1991 ASSERT3P(zio->io_executor, ==, NULL);
1992
1993 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1994 zio_unique_parent(zio) == NULL) {
1995 zio_t *pio;
1996
1997 /*
1998 * This is a logical async I/O with no parent to wait for it.
1999 * We add it to the spa_async_root_zio "Godfather" I/O which
2000 * will ensure they complete prior to unloading the pool.
2001 */
2002 spa_t *spa = zio->io_spa;
2003 kpreempt_disable();
2004 pio = spa->spa_async_zio_root[CPU_SEQID];
2005 kpreempt_enable();
2006
2007 zio_add_child(pio, zio);
2008 }
2009
2010 ASSERT0(zio->io_queued_timestamp);
2011 zio->io_queued_timestamp = gethrtime();
2012 __zio_execute(zio);
2013 }
2014
2015 /*
2016 * ==========================================================================
2017 * Reexecute, cancel, or suspend/resume failed I/O
2018 * ==========================================================================
2019 */
2020
2021 static void
2022 zio_reexecute(zio_t *pio)
2023 {
2024 zio_t *cio, *cio_next;
2025
2026 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2027 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2028 ASSERT(pio->io_gang_leader == NULL);
2029 ASSERT(pio->io_gang_tree == NULL);
2030
2031 pio->io_flags = pio->io_orig_flags;
2032 pio->io_stage = pio->io_orig_stage;
2033 pio->io_pipeline = pio->io_orig_pipeline;
2034 pio->io_reexecute = 0;
2035 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2036 pio->io_pipeline_trace = 0;
2037 pio->io_error = 0;
2038 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2039 pio->io_state[w] = 0;
2040 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2041 pio->io_child_error[c] = 0;
2042
2043 if (IO_IS_ALLOCATING(pio))
2044 BP_ZERO(pio->io_bp);
2045
2046 /*
2047 * As we reexecute pio's children, new children could be created.
2048 * New children go to the head of pio's io_child_list, however,
2049 * so we will (correctly) not reexecute them. The key is that
2050 * the remainder of pio's io_child_list, from 'cio_next' onward,
2051 * cannot be affected by any side effects of reexecuting 'cio'.
2052 */
2053 zio_link_t *zl = NULL;
2054 mutex_enter(&pio->io_lock);
2055 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2056 cio_next = zio_walk_children(pio, &zl);
2057 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2058 pio->io_children[cio->io_child_type][w]++;
2059 mutex_exit(&pio->io_lock);
2060 zio_reexecute(cio);
2061 mutex_enter(&pio->io_lock);
2062 }
2063 mutex_exit(&pio->io_lock);
2064
2065 /*
2066 * Now that all children have been reexecuted, execute the parent.
2067 * We don't reexecute "The Godfather" I/O here as it's the
2068 * responsibility of the caller to wait on it.
2069 */
2070 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2071 pio->io_queued_timestamp = gethrtime();
2072 __zio_execute(pio);
2073 }
2074 }
2075
2076 void
2077 zio_suspend(spa_t *spa, zio_t *zio)
2078 {
2079 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2080 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2081 "failure and the failure mode property for this pool "
2082 "is set to panic.", spa_name(spa));
2083
2084 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2085 "failure and has been suspended.\n", spa_name(spa));
2086
2087 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2088 NULL, NULL, 0, 0);
2089
2090 mutex_enter(&spa->spa_suspend_lock);
2091
2092 if (spa->spa_suspend_zio_root == NULL)
2093 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2094 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2095 ZIO_FLAG_GODFATHER);
2096
2097 spa->spa_suspended = B_TRUE;
2098
2099 if (zio != NULL) {
2100 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2101 ASSERT(zio != spa->spa_suspend_zio_root);
2102 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2103 ASSERT(zio_unique_parent(zio) == NULL);
2104 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2105 zio_add_child(spa->spa_suspend_zio_root, zio);
2106 }
2107
2108 mutex_exit(&spa->spa_suspend_lock);
2109 }
2110
2111 int
2112 zio_resume(spa_t *spa)
2113 {
2114 zio_t *pio;
2115
2116 /*
2117 * Reexecute all previously suspended i/o.
2118 */
2119 mutex_enter(&spa->spa_suspend_lock);
2120 spa->spa_suspended = B_FALSE;
2121 cv_broadcast(&spa->spa_suspend_cv);
2122 pio = spa->spa_suspend_zio_root;
2123 spa->spa_suspend_zio_root = NULL;
2124 mutex_exit(&spa->spa_suspend_lock);
2125
2126 if (pio == NULL)
2127 return (0);
2128
2129 zio_reexecute(pio);
2130 return (zio_wait(pio));
2131 }
2132
2133 void
2134 zio_resume_wait(spa_t *spa)
2135 {
2136 mutex_enter(&spa->spa_suspend_lock);
2137 while (spa_suspended(spa))
2138 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2139 mutex_exit(&spa->spa_suspend_lock);
2140 }
2141
2142 /*
2143 * ==========================================================================
2144 * Gang blocks.
2145 *
2146 * A gang block is a collection of small blocks that looks to the DMU
2147 * like one large block. When zio_dva_allocate() cannot find a block
2148 * of the requested size, due to either severe fragmentation or the pool
2149 * being nearly full, it calls zio_write_gang_block() to construct the
2150 * block from smaller fragments.
2151 *
2152 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2153 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2154 * an indirect block: it's an array of block pointers. It consumes
2155 * only one sector and hence is allocatable regardless of fragmentation.
2156 * The gang header's bps point to its gang members, which hold the data.
2157 *
2158 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2159 * as the verifier to ensure uniqueness of the SHA256 checksum.
2160 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2161 * not the gang header. This ensures that data block signatures (needed for
2162 * deduplication) are independent of how the block is physically stored.
2163 *
2164 * Gang blocks can be nested: a gang member may itself be a gang block.
2165 * Thus every gang block is a tree in which root and all interior nodes are
2166 * gang headers, and the leaves are normal blocks that contain user data.
2167 * The root of the gang tree is called the gang leader.
2168 *
2169 * To perform any operation (read, rewrite, free, claim) on a gang block,
2170 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2171 * in the io_gang_tree field of the original logical i/o by recursively
2172 * reading the gang leader and all gang headers below it. This yields
2173 * an in-core tree containing the contents of every gang header and the
2174 * bps for every constituent of the gang block.
2175 *
2176 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2177 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2178 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2179 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2180 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2181 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2182 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2183 * of the gang header plus zio_checksum_compute() of the data to update the
2184 * gang header's blk_cksum as described above.
2185 *
2186 * The two-phase assemble/issue model solves the problem of partial failure --
2187 * what if you'd freed part of a gang block but then couldn't read the
2188 * gang header for another part? Assembling the entire gang tree first
2189 * ensures that all the necessary gang header I/O has succeeded before
2190 * starting the actual work of free, claim, or write. Once the gang tree
2191 * is assembled, free and claim are in-memory operations that cannot fail.
2192 *
2193 * In the event that a gang write fails, zio_dva_unallocate() walks the
2194 * gang tree to immediately free (i.e. insert back into the space map)
2195 * everything we've allocated. This ensures that we don't get ENOSPC
2196 * errors during repeated suspend/resume cycles due to a flaky device.
2197 *
2198 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2199 * the gang tree, we won't modify the block, so we can safely defer the free
2200 * (knowing that the block is still intact). If we *can* assemble the gang
2201 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2202 * each constituent bp and we can allocate a new block on the next sync pass.
2203 *
2204 * In all cases, the gang tree allows complete recovery from partial failure.
2205 * ==========================================================================
2206 */
2207
2208 static void
2209 zio_gang_issue_func_done(zio_t *zio)
2210 {
2211 abd_put(zio->io_abd);
2212 }
2213
2214 static zio_t *
2215 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2216 uint64_t offset)
2217 {
2218 if (gn != NULL)
2219 return (pio);
2220
2221 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2222 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2223 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2224 &pio->io_bookmark));
2225 }
2226
2227 static zio_t *
2228 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2229 uint64_t offset)
2230 {
2231 zio_t *zio;
2232
2233 if (gn != NULL) {
2234 abd_t *gbh_abd =
2235 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2236 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2237 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2238 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2239 &pio->io_bookmark);
2240 /*
2241 * As we rewrite each gang header, the pipeline will compute
2242 * a new gang block header checksum for it; but no one will
2243 * compute a new data checksum, so we do that here. The one
2244 * exception is the gang leader: the pipeline already computed
2245 * its data checksum because that stage precedes gang assembly.
2246 * (Presently, nothing actually uses interior data checksums;
2247 * this is just good hygiene.)
2248 */
2249 if (gn != pio->io_gang_leader->io_gang_tree) {
2250 abd_t *buf = abd_get_offset(data, offset);
2251
2252 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2253 buf, BP_GET_PSIZE(bp));
2254
2255 abd_put(buf);
2256 }
2257 /*
2258 * If we are here to damage data for testing purposes,
2259 * leave the GBH alone so that we can detect the damage.
2260 */
2261 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2262 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2263 } else {
2264 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2265 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2266 zio_gang_issue_func_done, NULL, pio->io_priority,
2267 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2268 }
2269
2270 return (zio);
2271 }
2272
2273 /* ARGSUSED */
2274 static zio_t *
2275 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2276 uint64_t offset)
2277 {
2278 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2279 ZIO_GANG_CHILD_FLAGS(pio)));
2280 }
2281
2282 /* ARGSUSED */
2283 static zio_t *
2284 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2285 uint64_t offset)
2286 {
2287 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2288 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2289 }
2290
2291 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2292 NULL,
2293 zio_read_gang,
2294 zio_rewrite_gang,
2295 zio_free_gang,
2296 zio_claim_gang,
2297 NULL
2298 };
2299
2300 static void zio_gang_tree_assemble_done(zio_t *zio);
2301
2302 static zio_gang_node_t *
2303 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2304 {
2305 zio_gang_node_t *gn;
2306
2307 ASSERT(*gnpp == NULL);
2308
2309 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2310 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2311 *gnpp = gn;
2312
2313 return (gn);
2314 }
2315
2316 static void
2317 zio_gang_node_free(zio_gang_node_t **gnpp)
2318 {
2319 zio_gang_node_t *gn = *gnpp;
2320
2321 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2322 ASSERT(gn->gn_child[g] == NULL);
2323
2324 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2325 kmem_free(gn, sizeof (*gn));
2326 *gnpp = NULL;
2327 }
2328
2329 static void
2330 zio_gang_tree_free(zio_gang_node_t **gnpp)
2331 {
2332 zio_gang_node_t *gn = *gnpp;
2333
2334 if (gn == NULL)
2335 return;
2336
2337 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2338 zio_gang_tree_free(&gn->gn_child[g]);
2339
2340 zio_gang_node_free(gnpp);
2341 }
2342
2343 static void
2344 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2345 {
2346 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2347 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2348
2349 ASSERT(gio->io_gang_leader == gio);
2350 ASSERT(BP_IS_GANG(bp));
2351
2352 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2353 zio_gang_tree_assemble_done, gn, gio->io_priority,
2354 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2355 }
2356
2357 static void
2358 zio_gang_tree_assemble_done(zio_t *zio)
2359 {
2360 zio_t *gio = zio->io_gang_leader;
2361 zio_gang_node_t *gn = zio->io_private;
2362 blkptr_t *bp = zio->io_bp;
2363
2364 ASSERT(gio == zio_unique_parent(zio));
2365 ASSERT(zio->io_child_count == 0);
2366
2367 if (zio->io_error)
2368 return;
2369
2370 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2371 if (BP_SHOULD_BYTESWAP(bp))
2372 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2373
2374 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2375 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2376 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2377
2378 abd_put(zio->io_abd);
2379
2380 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2381 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2382 if (!BP_IS_GANG(gbp))
2383 continue;
2384 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2385 }
2386 }
2387
2388 static void
2389 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2390 uint64_t offset)
2391 {
2392 zio_t *gio = pio->io_gang_leader;
2393 zio_t *zio;
2394
2395 ASSERT(BP_IS_GANG(bp) == !!gn);
2396 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2397 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2398
2399 /*
2400 * If you're a gang header, your data is in gn->gn_gbh.
2401 * If you're a gang member, your data is in 'data' and gn == NULL.
2402 */
2403 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2404
2405 if (gn != NULL) {
2406 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2407
2408 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2409 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2410 if (BP_IS_HOLE(gbp))
2411 continue;
2412 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2413 offset);
2414 offset += BP_GET_PSIZE(gbp);
2415 }
2416 }
2417
2418 if (gn == gio->io_gang_tree)
2419 ASSERT3U(gio->io_size, ==, offset);
2420
2421 if (zio != pio)
2422 zio_nowait(zio);
2423 }
2424
2425 static int
2426 zio_gang_assemble(zio_t *zio)
2427 {
2428 blkptr_t *bp = zio->io_bp;
2429
2430 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2431 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2432
2433 zio->io_gang_leader = zio;
2434
2435 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2436
2437 return (ZIO_PIPELINE_CONTINUE);
2438 }
2439
2440 static int
2441 zio_gang_issue(zio_t *zio)
2442 {
2443 blkptr_t *bp = zio->io_bp;
2444
2445 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2446 return (ZIO_PIPELINE_STOP);
2447
2448 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2449 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2450
2451 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2452 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2453 0);
2454 else
2455 zio_gang_tree_free(&zio->io_gang_tree);
2456
2457 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2458
2459 return (ZIO_PIPELINE_CONTINUE);
2460 }
2461
2462 static void
2463 zio_write_gang_member_ready(zio_t *zio)
2464 {
2465 zio_t *pio = zio_unique_parent(zio);
2466 dva_t *cdva = zio->io_bp->blk_dva;
2467 dva_t *pdva = pio->io_bp->blk_dva;
2468 uint64_t asize;
2469 ASSERTV(zio_t *gio = zio->io_gang_leader);
2470
2471 if (BP_IS_HOLE(zio->io_bp))
2472 return;
2473
2474 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2475
2476 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2477 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2478 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2479 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2480 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2481
2482 mutex_enter(&pio->io_lock);
2483 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2484 ASSERT(DVA_GET_GANG(&pdva[d]));
2485 asize = DVA_GET_ASIZE(&pdva[d]);
2486 asize += DVA_GET_ASIZE(&cdva[d]);
2487 DVA_SET_ASIZE(&pdva[d], asize);
2488 }
2489 mutex_exit(&pio->io_lock);
2490 }
2491
2492 static void
2493 zio_write_gang_done(zio_t *zio)
2494 {
2495 abd_put(zio->io_abd);
2496 }
2497
2498 static int
2499 zio_write_gang_block(zio_t *pio)
2500 {
2501 spa_t *spa = pio->io_spa;
2502 metaslab_class_t *mc = spa_normal_class(spa);
2503 blkptr_t *bp = pio->io_bp;
2504 zio_t *gio = pio->io_gang_leader;
2505 zio_t *zio;
2506 zio_gang_node_t *gn, **gnpp;
2507 zio_gbh_phys_t *gbh;
2508 abd_t *gbh_abd;
2509 uint64_t txg = pio->io_txg;
2510 uint64_t resid = pio->io_size;
2511 uint64_t lsize;
2512 int copies = gio->io_prop.zp_copies;
2513 int gbh_copies;
2514 zio_prop_t zp;
2515 int error;
2516
2517 /*
2518 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2519 * have a third copy.
2520 */
2521 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2522 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2523 gbh_copies = SPA_DVAS_PER_BP - 1;
2524
2525 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2526 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2527 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2528 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2529
2530 flags |= METASLAB_ASYNC_ALLOC;
2531 VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2532
2533 /*
2534 * The logical zio has already placed a reservation for
2535 * 'copies' allocation slots but gang blocks may require
2536 * additional copies. These additional copies
2537 * (i.e. gbh_copies - copies) are guaranteed to succeed
2538 * since metaslab_class_throttle_reserve() always allows
2539 * additional reservations for gang blocks.
2540 */
2541 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2542 pio, flags));
2543 }
2544
2545 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2546 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2547 &pio->io_alloc_list, pio);
2548 if (error) {
2549 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2550 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2551 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2552
2553 /*
2554 * If we failed to allocate the gang block header then
2555 * we remove any additional allocation reservations that
2556 * we placed here. The original reservation will
2557 * be removed when the logical I/O goes to the ready
2558 * stage.
2559 */
2560 metaslab_class_throttle_unreserve(mc,
2561 gbh_copies - copies, pio);
2562 }
2563
2564 pio->io_error = error;
2565 return (ZIO_PIPELINE_CONTINUE);
2566 }
2567
2568 if (pio == gio) {
2569 gnpp = &gio->io_gang_tree;
2570 } else {
2571 gnpp = pio->io_private;
2572 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2573 }
2574
2575 gn = zio_gang_node_alloc(gnpp);
2576 gbh = gn->gn_gbh;
2577 bzero(gbh, SPA_GANGBLOCKSIZE);
2578 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2579
2580 /*
2581 * Create the gang header.
2582 */
2583 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2584 zio_write_gang_done, NULL, pio->io_priority,
2585 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2586
2587 /*
2588 * Create and nowait the gang children.
2589 */
2590 for (int g = 0; resid != 0; resid -= lsize, g++) {
2591 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2592 SPA_MINBLOCKSIZE);
2593 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2594
2595 zp.zp_checksum = gio->io_prop.zp_checksum;
2596 zp.zp_compress = ZIO_COMPRESS_OFF;
2597 zp.zp_type = DMU_OT_NONE;
2598 zp.zp_level = 0;
2599 zp.zp_copies = gio->io_prop.zp_copies;
2600 zp.zp_dedup = B_FALSE;
2601 zp.zp_dedup_verify = B_FALSE;
2602 zp.zp_nopwrite = B_FALSE;
2603 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2604 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2605 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2606 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2607 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2608
2609 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2610 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2611 lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2612 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2613 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2614
2615 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2616 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2617 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2618
2619 /*
2620 * Gang children won't throttle but we should
2621 * account for their work, so reserve an allocation
2622 * slot for them here.
2623 */
2624 VERIFY(metaslab_class_throttle_reserve(mc,
2625 zp.zp_copies, cio, flags));
2626 }
2627 zio_nowait(cio);
2628 }
2629
2630 /*
2631 * Set pio's pipeline to just wait for zio to finish.
2632 */
2633 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2634
2635 /*
2636 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2637 */
2638 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2639
2640 zio_nowait(zio);
2641
2642 return (ZIO_PIPELINE_CONTINUE);
2643 }
2644
2645 /*
2646 * The zio_nop_write stage in the pipeline determines if allocating a
2647 * new bp is necessary. The nopwrite feature can handle writes in
2648 * either syncing or open context (i.e. zil writes) and as a result is
2649 * mutually exclusive with dedup.
2650 *
2651 * By leveraging a cryptographically secure checksum, such as SHA256, we
2652 * can compare the checksums of the new data and the old to determine if
2653 * allocating a new block is required. Note that our requirements for
2654 * cryptographic strength are fairly weak: there can't be any accidental
2655 * hash collisions, but we don't need to be secure against intentional
2656 * (malicious) collisions. To trigger a nopwrite, you have to be able
2657 * to write the file to begin with, and triggering an incorrect (hash
2658 * collision) nopwrite is no worse than simply writing to the file.
2659 * That said, there are no known attacks against the checksum algorithms
2660 * used for nopwrite, assuming that the salt and the checksums
2661 * themselves remain secret.
2662 */
2663 static int
2664 zio_nop_write(zio_t *zio)
2665 {
2666 blkptr_t *bp = zio->io_bp;
2667 blkptr_t *bp_orig = &zio->io_bp_orig;
2668 zio_prop_t *zp = &zio->io_prop;
2669
2670 ASSERT(BP_GET_LEVEL(bp) == 0);
2671 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2672 ASSERT(zp->zp_nopwrite);
2673 ASSERT(!zp->zp_dedup);
2674 ASSERT(zio->io_bp_override == NULL);
2675 ASSERT(IO_IS_ALLOCATING(zio));
2676
2677 /*
2678 * Check to see if the original bp and the new bp have matching
2679 * characteristics (i.e. same checksum, compression algorithms, etc).
2680 * If they don't then just continue with the pipeline which will
2681 * allocate a new bp.
2682 */
2683 if (BP_IS_HOLE(bp_orig) ||
2684 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2685 ZCHECKSUM_FLAG_NOPWRITE) ||
2686 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2687 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2688 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2689 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2690 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2691 return (ZIO_PIPELINE_CONTINUE);
2692
2693 /*
2694 * If the checksums match then reset the pipeline so that we
2695 * avoid allocating a new bp and issuing any I/O.
2696 */
2697 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2698 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2699 ZCHECKSUM_FLAG_NOPWRITE);
2700 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2701 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2702 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2703 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2704 sizeof (uint64_t)) == 0);
2705
2706 *bp = *bp_orig;
2707 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2708 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2709 }
2710
2711 return (ZIO_PIPELINE_CONTINUE);
2712 }
2713
2714 /*
2715 * ==========================================================================
2716 * Dedup
2717 * ==========================================================================
2718 */
2719 static void
2720 zio_ddt_child_read_done(zio_t *zio)
2721 {
2722 blkptr_t *bp = zio->io_bp;
2723 ddt_entry_t *dde = zio->io_private;
2724 ddt_phys_t *ddp;
2725 zio_t *pio = zio_unique_parent(zio);
2726
2727 mutex_enter(&pio->io_lock);
2728 ddp = ddt_phys_select(dde, bp);
2729 if (zio->io_error == 0)
2730 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2731
2732 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2733 dde->dde_repair_abd = zio->io_abd;
2734 else
2735 abd_free(zio->io_abd);
2736 mutex_exit(&pio->io_lock);
2737 }
2738
2739 static int
2740 zio_ddt_read_start(zio_t *zio)
2741 {
2742 blkptr_t *bp = zio->io_bp;
2743
2744 ASSERT(BP_GET_DEDUP(bp));
2745 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2746 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2747
2748 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2749 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2750 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2751 ddt_phys_t *ddp = dde->dde_phys;
2752 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2753 blkptr_t blk;
2754
2755 ASSERT(zio->io_vsd == NULL);
2756 zio->io_vsd = dde;
2757
2758 if (ddp_self == NULL)
2759 return (ZIO_PIPELINE_CONTINUE);
2760
2761 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2762 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2763 continue;
2764 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2765 &blk);
2766 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2767 abd_alloc_for_io(zio->io_size, B_TRUE),
2768 zio->io_size, zio_ddt_child_read_done, dde,
2769 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2770 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2771 }
2772 return (ZIO_PIPELINE_CONTINUE);
2773 }
2774
2775 zio_nowait(zio_read(zio, zio->io_spa, bp,
2776 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2777 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2778
2779 return (ZIO_PIPELINE_CONTINUE);
2780 }
2781
2782 static int
2783 zio_ddt_read_done(zio_t *zio)
2784 {
2785 blkptr_t *bp = zio->io_bp;
2786
2787 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2788 return (ZIO_PIPELINE_STOP);
2789
2790 ASSERT(BP_GET_DEDUP(bp));
2791 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2792 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2793
2794 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2795 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2796 ddt_entry_t *dde = zio->io_vsd;
2797 if (ddt == NULL) {
2798 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2799 return (ZIO_PIPELINE_CONTINUE);
2800 }
2801 if (dde == NULL) {
2802 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2803 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2804 return (ZIO_PIPELINE_STOP);
2805 }
2806 if (dde->dde_repair_abd != NULL) {
2807 abd_copy(zio->io_abd, dde->dde_repair_abd,
2808 zio->io_size);
2809 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2810 }
2811 ddt_repair_done(ddt, dde);
2812 zio->io_vsd = NULL;
2813 }
2814
2815 ASSERT(zio->io_vsd == NULL);
2816
2817 return (ZIO_PIPELINE_CONTINUE);
2818 }
2819
2820 static boolean_t
2821 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2822 {
2823 spa_t *spa = zio->io_spa;
2824 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2825
2826 ASSERT(!(zio->io_bp_override && do_raw));
2827
2828 /*
2829 * Note: we compare the original data, not the transformed data,
2830 * because when zio->io_bp is an override bp, we will not have
2831 * pushed the I/O transforms. That's an important optimization
2832 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2833 * However, we should never get a raw, override zio so in these
2834 * cases we can compare the io_abd directly. This is useful because
2835 * it allows us to do dedup verification even if we don't have access
2836 * to the original data (for instance, if the encryption keys aren't
2837 * loaded).
2838 */
2839
2840 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2841 zio_t *lio = dde->dde_lead_zio[p];
2842
2843 if (lio != NULL && do_raw) {
2844 return (lio->io_size != zio->io_size ||
2845 abd_cmp(zio->io_abd, lio->io_abd) != 0);
2846 } else if (lio != NULL) {
2847 return (lio->io_orig_size != zio->io_orig_size ||
2848 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
2849 }
2850 }
2851
2852 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2853 ddt_phys_t *ddp = &dde->dde_phys[p];
2854
2855 if (ddp->ddp_phys_birth != 0 && do_raw) {
2856 blkptr_t blk = *zio->io_bp;
2857 uint64_t psize;
2858 abd_t *tmpabd;
2859 int error;
2860
2861 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2862 psize = BP_GET_PSIZE(&blk);
2863
2864 if (psize != zio->io_size)
2865 return (B_TRUE);
2866
2867 ddt_exit(ddt);
2868
2869 tmpabd = abd_alloc_for_io(psize, B_TRUE);
2870
2871 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2872 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2873 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2874 ZIO_FLAG_RAW, &zio->io_bookmark));
2875
2876 if (error == 0) {
2877 if (abd_cmp(tmpabd, zio->io_abd) != 0)
2878 error = SET_ERROR(ENOENT);
2879 }
2880
2881 abd_free(tmpabd);
2882 ddt_enter(ddt);
2883 return (error != 0);
2884 } else if (ddp->ddp_phys_birth != 0) {
2885 arc_buf_t *abuf = NULL;
2886 arc_flags_t aflags = ARC_FLAG_WAIT;
2887 blkptr_t blk = *zio->io_bp;
2888 int error;
2889
2890 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2891
2892 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
2893 return (B_TRUE);
2894
2895 ddt_exit(ddt);
2896
2897 error = arc_read(NULL, spa, &blk,
2898 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2899 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2900 &aflags, &zio->io_bookmark);
2901
2902 if (error == 0) {
2903 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2904 zio->io_orig_size) != 0)
2905 error = SET_ERROR(ENOENT);
2906 arc_buf_destroy(abuf, &abuf);
2907 }
2908
2909 ddt_enter(ddt);
2910 return (error != 0);
2911 }
2912 }
2913
2914 return (B_FALSE);
2915 }
2916
2917 static void
2918 zio_ddt_child_write_ready(zio_t *zio)
2919 {
2920 int p = zio->io_prop.zp_copies;
2921 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2922 ddt_entry_t *dde = zio->io_private;
2923 ddt_phys_t *ddp = &dde->dde_phys[p];
2924 zio_t *pio;
2925
2926 if (zio->io_error)
2927 return;
2928
2929 ddt_enter(ddt);
2930
2931 ASSERT(dde->dde_lead_zio[p] == zio);
2932
2933 ddt_phys_fill(ddp, zio->io_bp);
2934
2935 zio_link_t *zl = NULL;
2936 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2937 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2938
2939 ddt_exit(ddt);
2940 }
2941
2942 static void
2943 zio_ddt_child_write_done(zio_t *zio)
2944 {
2945 int p = zio->io_prop.zp_copies;
2946 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2947 ddt_entry_t *dde = zio->io_private;
2948 ddt_phys_t *ddp = &dde->dde_phys[p];
2949
2950 ddt_enter(ddt);
2951
2952 ASSERT(ddp->ddp_refcnt == 0);
2953 ASSERT(dde->dde_lead_zio[p] == zio);
2954 dde->dde_lead_zio[p] = NULL;
2955
2956 if (zio->io_error == 0) {
2957 zio_link_t *zl = NULL;
2958 while (zio_walk_parents(zio, &zl) != NULL)
2959 ddt_phys_addref(ddp);
2960 } else {
2961 ddt_phys_clear(ddp);
2962 }
2963
2964 ddt_exit(ddt);
2965 }
2966
2967 static void
2968 zio_ddt_ditto_write_done(zio_t *zio)
2969 {
2970 int p = DDT_PHYS_DITTO;
2971 ASSERTV(zio_prop_t *zp = &zio->io_prop);
2972 blkptr_t *bp = zio->io_bp;
2973 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2974 ddt_entry_t *dde = zio->io_private;
2975 ddt_phys_t *ddp = &dde->dde_phys[p];
2976 ddt_key_t *ddk = &dde->dde_key;
2977
2978 ddt_enter(ddt);
2979
2980 ASSERT(ddp->ddp_refcnt == 0);
2981 ASSERT(dde->dde_lead_zio[p] == zio);
2982 dde->dde_lead_zio[p] = NULL;
2983
2984 if (zio->io_error == 0) {
2985 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2986 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2987 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2988 if (ddp->ddp_phys_birth != 0)
2989 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2990 ddt_phys_fill(ddp, bp);
2991 }
2992
2993 ddt_exit(ddt);
2994 }
2995
2996 static int
2997 zio_ddt_write(zio_t *zio)
2998 {
2999 spa_t *spa = zio->io_spa;
3000 blkptr_t *bp = zio->io_bp;
3001 uint64_t txg = zio->io_txg;
3002 zio_prop_t *zp = &zio->io_prop;
3003 int p = zp->zp_copies;
3004 int ditto_copies;
3005 zio_t *cio = NULL;
3006 zio_t *dio = NULL;
3007 ddt_t *ddt = ddt_select(spa, bp);
3008 ddt_entry_t *dde;
3009 ddt_phys_t *ddp;
3010
3011 ASSERT(BP_GET_DEDUP(bp));
3012 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3013 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3014 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3015
3016 ddt_enter(ddt);
3017 dde = ddt_lookup(ddt, bp, B_TRUE);
3018 ddp = &dde->dde_phys[p];
3019
3020 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3021 /*
3022 * If we're using a weak checksum, upgrade to a strong checksum
3023 * and try again. If we're already using a strong checksum,
3024 * we can't resolve it, so just convert to an ordinary write.
3025 * (And automatically e-mail a paper to Nature?)
3026 */
3027 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3028 ZCHECKSUM_FLAG_DEDUP)) {
3029 zp->zp_checksum = spa_dedup_checksum(spa);
3030 zio_pop_transforms(zio);
3031 zio->io_stage = ZIO_STAGE_OPEN;
3032 BP_ZERO(bp);
3033 } else {
3034 zp->zp_dedup = B_FALSE;
3035 }
3036 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3037 ddt_exit(ddt);
3038 return (ZIO_PIPELINE_CONTINUE);
3039 }
3040
3041 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
3042 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
3043
3044 if (ditto_copies > ddt_ditto_copies_present(dde) &&
3045 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
3046 zio_prop_t czp = *zp;
3047
3048 czp.zp_copies = ditto_copies;
3049
3050 /*
3051 * If we arrived here with an override bp, we won't have run
3052 * the transform stack, so we won't have the data we need to
3053 * generate a child i/o. So, toss the override bp and restart.
3054 * This is safe, because using the override bp is just an
3055 * optimization; and it's rare, so the cost doesn't matter.
3056 */
3057 if (zio->io_bp_override) {
3058 zio_pop_transforms(zio);
3059 zio->io_stage = ZIO_STAGE_OPEN;
3060 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3061 zio->io_bp_override = NULL;
3062 BP_ZERO(bp);
3063 ddt_exit(ddt);
3064 return (ZIO_PIPELINE_CONTINUE);
3065 }
3066
3067 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3068 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
3069 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
3070 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3071
3072 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
3073 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
3074 }
3075
3076 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3077 if (ddp->ddp_phys_birth != 0)
3078 ddt_bp_fill(ddp, bp, txg);
3079 if (dde->dde_lead_zio[p] != NULL)
3080 zio_add_child(zio, dde->dde_lead_zio[p]);
3081 else
3082 ddt_phys_addref(ddp);
3083 } else if (zio->io_bp_override) {
3084 ASSERT(bp->blk_birth == txg);
3085 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3086 ddt_phys_fill(ddp, bp);
3087 ddt_phys_addref(ddp);
3088 } else {
3089 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3090 zio->io_orig_size, zio->io_orig_size, zp,
3091 zio_ddt_child_write_ready, NULL, NULL,
3092 zio_ddt_child_write_done, dde, zio->io_priority,
3093 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3094
3095 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3096 dde->dde_lead_zio[p] = cio;
3097 }
3098
3099 ddt_exit(ddt);
3100
3101 if (cio)
3102 zio_nowait(cio);
3103 if (dio)
3104 zio_nowait(dio);
3105
3106 return (ZIO_PIPELINE_CONTINUE);
3107 }
3108
3109 ddt_entry_t *freedde; /* for debugging */
3110
3111 static int
3112 zio_ddt_free(zio_t *zio)
3113 {
3114 spa_t *spa = zio->io_spa;
3115 blkptr_t *bp = zio->io_bp;
3116 ddt_t *ddt = ddt_select(spa, bp);
3117 ddt_entry_t *dde;
3118 ddt_phys_t *ddp;
3119
3120 ASSERT(BP_GET_DEDUP(bp));
3121 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3122
3123 ddt_enter(ddt);
3124 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3125 if (dde) {
3126 ddp = ddt_phys_select(dde, bp);
3127 if (ddp)
3128 ddt_phys_decref(ddp);
3129 }
3130 ddt_exit(ddt);
3131
3132 return (ZIO_PIPELINE_CONTINUE);
3133 }
3134
3135 /*
3136 * ==========================================================================
3137 * Allocate and free blocks
3138 * ==========================================================================
3139 */
3140
3141 static zio_t *
3142 zio_io_to_allocate(spa_t *spa)
3143 {
3144 zio_t *zio;
3145
3146 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
3147
3148 zio = avl_first(&spa->spa_alloc_tree);
3149 if (zio == NULL)
3150 return (NULL);
3151
3152 ASSERT(IO_IS_ALLOCATING(zio));
3153
3154 /*
3155 * Try to place a reservation for this zio. If we're unable to
3156 * reserve then we throttle.
3157 */
3158 if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
3159 zio->io_prop.zp_copies, zio, 0)) {
3160 return (NULL);
3161 }
3162
3163 avl_remove(&spa->spa_alloc_tree, zio);
3164 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3165
3166 return (zio);
3167 }
3168
3169 static int
3170 zio_dva_throttle(zio_t *zio)
3171 {
3172 spa_t *spa = zio->io_spa;
3173 zio_t *nio;
3174
3175 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3176 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
3177 zio->io_child_type == ZIO_CHILD_GANG ||
3178 zio->io_flags & ZIO_FLAG_NODATA) {
3179 return (ZIO_PIPELINE_CONTINUE);
3180 }
3181
3182 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3183
3184 ASSERT3U(zio->io_queued_timestamp, >, 0);
3185 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3186
3187 mutex_enter(&spa->spa_alloc_lock);
3188
3189 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3190 avl_add(&spa->spa_alloc_tree, zio);
3191
3192 nio = zio_io_to_allocate(zio->io_spa);
3193 mutex_exit(&spa->spa_alloc_lock);
3194
3195 if (nio == zio)
3196 return (ZIO_PIPELINE_CONTINUE);
3197
3198 if (nio != NULL) {
3199 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3200 /*
3201 * We are passing control to a new zio so make sure that
3202 * it is processed by a different thread. We do this to
3203 * avoid stack overflows that can occur when parents are
3204 * throttled and children are making progress. We allow
3205 * it to go to the head of the taskq since it's already
3206 * been waiting.
3207 */
3208 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
3209 }
3210 return (ZIO_PIPELINE_STOP);
3211 }
3212
3213 void
3214 zio_allocate_dispatch(spa_t *spa)
3215 {
3216 zio_t *zio;
3217
3218 mutex_enter(&spa->spa_alloc_lock);
3219 zio = zio_io_to_allocate(spa);
3220 mutex_exit(&spa->spa_alloc_lock);
3221 if (zio == NULL)
3222 return;
3223
3224 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3225 ASSERT0(zio->io_error);
3226 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3227 }
3228
3229 static int
3230 zio_dva_allocate(zio_t *zio)
3231 {
3232 spa_t *spa = zio->io_spa;
3233 metaslab_class_t *mc = spa_normal_class(spa);
3234 blkptr_t *bp = zio->io_bp;
3235 int error;
3236 int flags = 0;
3237
3238 if (zio->io_gang_leader == NULL) {
3239 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3240 zio->io_gang_leader = zio;
3241 }
3242
3243 ASSERT(BP_IS_HOLE(bp));
3244 ASSERT0(BP_GET_NDVAS(bp));
3245 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3246 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3247 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3248
3249 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3250 if (zio->io_flags & ZIO_FLAG_NODATA)
3251 flags |= METASLAB_DONT_THROTTLE;
3252 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3253 flags |= METASLAB_GANG_CHILD;
3254 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3255 flags |= METASLAB_ASYNC_ALLOC;
3256
3257 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3258 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3259 &zio->io_alloc_list, zio);
3260
3261 if (error != 0) {
3262 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
3263 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3264 error);
3265 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3266 return (zio_write_gang_block(zio));
3267 zio->io_error = error;
3268 }
3269
3270 return (ZIO_PIPELINE_CONTINUE);
3271 }
3272
3273 static int
3274 zio_dva_free(zio_t *zio)
3275 {
3276 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3277
3278 return (ZIO_PIPELINE_CONTINUE);
3279 }
3280
3281 static int
3282 zio_dva_claim(zio_t *zio)
3283 {
3284 int error;
3285
3286 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3287 if (error)
3288 zio->io_error = error;
3289
3290 return (ZIO_PIPELINE_CONTINUE);
3291 }
3292
3293 /*
3294 * Undo an allocation. This is used by zio_done() when an I/O fails
3295 * and we want to give back the block we just allocated.
3296 * This handles both normal blocks and gang blocks.
3297 */
3298 static void
3299 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3300 {
3301 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3302 ASSERT(zio->io_bp_override == NULL);
3303
3304 if (!BP_IS_HOLE(bp))
3305 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3306
3307 if (gn != NULL) {
3308 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3309 zio_dva_unallocate(zio, gn->gn_child[g],
3310 &gn->gn_gbh->zg_blkptr[g]);
3311 }
3312 }
3313 }
3314
3315 /*
3316 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3317 */
3318 int
3319 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3320 uint64_t size, boolean_t *slog)
3321 {
3322 int error = 1;
3323 zio_alloc_list_t io_alloc_list;
3324
3325 ASSERT(txg > spa_syncing_txg(spa));
3326
3327 metaslab_trace_init(&io_alloc_list);
3328 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3329 txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL);
3330 if (error == 0) {
3331 *slog = TRUE;
3332 } else {
3333 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3334 new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
3335 &io_alloc_list, NULL);
3336 if (error == 0)
3337 *slog = FALSE;
3338 }
3339 metaslab_trace_fini(&io_alloc_list);
3340
3341 if (error == 0) {
3342 BP_SET_LSIZE(new_bp, size);
3343 BP_SET_PSIZE(new_bp, size);
3344 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3345 BP_SET_CHECKSUM(new_bp,
3346 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3347 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3348 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3349 BP_SET_LEVEL(new_bp, 0);
3350 BP_SET_DEDUP(new_bp, 0);
3351 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3352
3353 /*
3354 * encrypted blocks will require an IV and salt. We generate
3355 * these now since we will not be rewriting the bp at
3356 * rewrite time.
3357 */
3358 if (os->os_encrypted) {
3359 uint8_t iv[ZIO_DATA_IV_LEN];
3360 uint8_t salt[ZIO_DATA_SALT_LEN];
3361
3362 BP_SET_CRYPT(new_bp, B_TRUE);
3363 VERIFY0(spa_crypt_get_salt(spa,
3364 dmu_objset_id(os), salt));
3365 VERIFY0(zio_crypt_generate_iv(iv));
3366
3367 zio_crypt_encode_params_bp(new_bp, salt, iv);
3368 }
3369 } else {
3370 zfs_dbgmsg("%s: zil block allocation failure: "
3371 "size %llu, error %d", spa_name(spa), size, error);
3372 }
3373
3374 return (error);
3375 }
3376
3377 /*
3378 * Free an intent log block.
3379 */
3380 void
3381 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
3382 {
3383 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
3384 ASSERT(!BP_IS_GANG(bp));
3385
3386 zio_free(spa, txg, bp);
3387 }
3388
3389 /*
3390 * ==========================================================================
3391 * Read and write to physical devices
3392 * ==========================================================================
3393 */
3394
3395
3396 /*
3397 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3398 * stops after this stage and will resume upon I/O completion.
3399 * However, there are instances where the vdev layer may need to
3400 * continue the pipeline when an I/O was not issued. Since the I/O
3401 * that was sent to the vdev layer might be different than the one
3402 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3403 * force the underlying vdev layers to call either zio_execute() or
3404 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3405 */
3406 static int
3407 zio_vdev_io_start(zio_t *zio)
3408 {
3409 vdev_t *vd = zio->io_vd;
3410 uint64_t align;
3411 spa_t *spa = zio->io_spa;
3412
3413 zio->io_delay = 0;
3414
3415 ASSERT(zio->io_error == 0);
3416 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3417
3418 if (vd == NULL) {
3419 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3420 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3421
3422 /*
3423 * The mirror_ops handle multiple DVAs in a single BP.
3424 */
3425 vdev_mirror_ops.vdev_op_io_start(zio);
3426 return (ZIO_PIPELINE_STOP);
3427 }
3428
3429 ASSERT3P(zio->io_logical, !=, zio);
3430
3431 align = 1ULL << vd->vdev_top->vdev_ashift;
3432
3433 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3434 P2PHASE(zio->io_size, align) != 0) {
3435 /* Transform logical writes to be a full physical block size. */
3436 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3437 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3438 ASSERT(vd == vd->vdev_top);
3439 if (zio->io_type == ZIO_TYPE_WRITE) {
3440 abd_copy(abuf, zio->io_abd, zio->io_size);
3441 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3442 }
3443 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3444 }
3445
3446 /*
3447 * If this is not a physical io, make sure that it is properly aligned
3448 * before proceeding.
3449 */
3450 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3451 ASSERT0(P2PHASE(zio->io_offset, align));
3452 ASSERT0(P2PHASE(zio->io_size, align));
3453 } else {
3454 /*
3455 * For physical writes, we allow 512b aligned writes and assume
3456 * the device will perform a read-modify-write as necessary.
3457 */
3458 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3459 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3460 }
3461
3462 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3463
3464 /*
3465 * If this is a repair I/O, and there's no self-healing involved --
3466 * that is, we're just resilvering what we expect to resilver --
3467 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3468 * This prevents spurious resilvering with nested replication.
3469 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3470 * A is out of date, we'll read from C+D, then use the data to
3471 * resilver A+B -- but we don't actually want to resilver B, just A.
3472 * The top-level mirror has no way to know this, so instead we just
3473 * discard unnecessary repairs as we work our way down the vdev tree.
3474 * The same logic applies to any form of nested replication:
3475 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
3476 */
3477 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3478 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3479 zio->io_txg != 0 && /* not a delegated i/o */
3480 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3481 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3482 zio_vdev_io_bypass(zio);
3483 return (ZIO_PIPELINE_CONTINUE);
3484 }
3485
3486 if (vd->vdev_ops->vdev_op_leaf &&
3487 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3488
3489 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3490 return (ZIO_PIPELINE_CONTINUE);
3491
3492 if ((zio = vdev_queue_io(zio)) == NULL)
3493 return (ZIO_PIPELINE_STOP);
3494
3495 if (!vdev_accessible(vd, zio)) {
3496 zio->io_error = SET_ERROR(ENXIO);
3497 zio_interrupt(zio);
3498 return (ZIO_PIPELINE_STOP);
3499 }
3500 zio->io_delay = gethrtime();
3501 }
3502
3503 vd->vdev_ops->vdev_op_io_start(zio);
3504 return (ZIO_PIPELINE_STOP);
3505 }
3506
3507 static int
3508 zio_vdev_io_done(zio_t *zio)
3509 {
3510 vdev_t *vd = zio->io_vd;
3511 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3512 boolean_t unexpected_error = B_FALSE;
3513
3514 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3515 return (ZIO_PIPELINE_STOP);
3516
3517 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3518
3519 if (zio->io_delay)
3520 zio->io_delay = gethrtime() - zio->io_delay;
3521
3522 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3523
3524 vdev_queue_io_done(zio);
3525
3526 if (zio->io_type == ZIO_TYPE_WRITE)
3527 vdev_cache_write(zio);
3528
3529 if (zio_injection_enabled && zio->io_error == 0)
3530 zio->io_error = zio_handle_device_injections(vd, zio,
3531 EIO, EILSEQ);
3532
3533 if (zio_injection_enabled && zio->io_error == 0)
3534 zio->io_error = zio_handle_label_injection(zio, EIO);
3535
3536 if (zio->io_error) {
3537 if (!vdev_accessible(vd, zio)) {
3538 zio->io_error = SET_ERROR(ENXIO);
3539 } else {
3540 unexpected_error = B_TRUE;
3541 }
3542 }
3543 }
3544
3545 ops->vdev_op_io_done(zio);
3546
3547 if (unexpected_error)
3548 VERIFY(vdev_probe(vd, zio) == NULL);
3549
3550 return (ZIO_PIPELINE_CONTINUE);
3551 }
3552
3553 /*
3554 * This function is used to change the priority of an existing zio that is
3555 * currently in-flight. This is used by the arc to upgrade priority in the
3556 * event that a demand read is made for a block that is currently queued
3557 * as a scrub or async read IO. Otherwise, the high priority read request
3558 * would end up having to wait for the lower priority IO.
3559 */
3560 void
3561 zio_change_priority(zio_t *pio, zio_priority_t priority)
3562 {
3563 zio_t *cio, *cio_next;
3564 zio_link_t *zl = NULL;
3565
3566 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3567
3568 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3569 vdev_queue_change_io_priority(pio, priority);
3570 } else {
3571 pio->io_priority = priority;
3572 }
3573
3574 mutex_enter(&pio->io_lock);
3575 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3576 cio_next = zio_walk_children(pio, &zl);
3577 zio_change_priority(cio, priority);
3578 }
3579 mutex_exit(&pio->io_lock);
3580 }
3581
3582 /*
3583 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3584 * disk, and use that to finish the checksum ereport later.
3585 */
3586 static void
3587 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3588 const abd_t *good_buf)
3589 {
3590 /* no processing needed */
3591 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3592 }
3593
3594 /*ARGSUSED*/
3595 void
3596 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3597 {
3598 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3599
3600 abd_copy(abd, zio->io_abd, zio->io_size);
3601
3602 zcr->zcr_cbinfo = zio->io_size;
3603 zcr->zcr_cbdata = abd;
3604 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3605 zcr->zcr_free = zio_abd_free;
3606 }
3607
3608 static int
3609 zio_vdev_io_assess(zio_t *zio)
3610 {
3611 vdev_t *vd = zio->io_vd;
3612
3613 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3614 return (ZIO_PIPELINE_STOP);
3615
3616 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3617 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3618
3619 if (zio->io_vsd != NULL) {
3620 zio->io_vsd_ops->vsd_free(zio);
3621 zio->io_vsd = NULL;
3622 }
3623
3624 if (zio_injection_enabled && zio->io_error == 0)
3625 zio->io_error = zio_handle_fault_injection(zio, EIO);
3626
3627 /*
3628 * If the I/O failed, determine whether we should attempt to retry it.
3629 *
3630 * On retry, we cut in line in the issue queue, since we don't want
3631 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3632 */
3633 if (zio->io_error && vd == NULL &&
3634 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3635 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3636 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3637 zio->io_error = 0;
3638 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3639 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3640 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3641 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3642 zio_requeue_io_start_cut_in_line);
3643 return (ZIO_PIPELINE_STOP);
3644 }
3645
3646 /*
3647 * If we got an error on a leaf device, convert it to ENXIO
3648 * if the device is not accessible at all.
3649 */
3650 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3651 !vdev_accessible(vd, zio))
3652 zio->io_error = SET_ERROR(ENXIO);
3653
3654 /*
3655 * If we can't write to an interior vdev (mirror or RAID-Z),
3656 * set vdev_cant_write so that we stop trying to allocate from it.
3657 */
3658 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3659 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3660 vd->vdev_cant_write = B_TRUE;
3661 }
3662
3663 /*
3664 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3665 * attempts will ever succeed. In this case we set a persistent bit so
3666 * that we don't bother with it in the future.
3667 */
3668 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3669 zio->io_type == ZIO_TYPE_IOCTL &&
3670 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3671 vd->vdev_nowritecache = B_TRUE;
3672
3673 if (zio->io_error)
3674 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3675
3676 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3677 zio->io_physdone != NULL) {
3678 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3679 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3680 zio->io_physdone(zio->io_logical);
3681 }
3682
3683 return (ZIO_PIPELINE_CONTINUE);
3684 }
3685
3686 void
3687 zio_vdev_io_reissue(zio_t *zio)
3688 {
3689 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3690 ASSERT(zio->io_error == 0);
3691
3692 zio->io_stage >>= 1;
3693 }
3694
3695 void
3696 zio_vdev_io_redone(zio_t *zio)
3697 {
3698 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3699
3700 zio->io_stage >>= 1;
3701 }
3702
3703 void
3704 zio_vdev_io_bypass(zio_t *zio)
3705 {
3706 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3707 ASSERT(zio->io_error == 0);
3708
3709 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3710 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3711 }
3712
3713 /*
3714 * ==========================================================================
3715 * Encrypt and store encryption parameters
3716 * ==========================================================================
3717 */
3718
3719
3720 /*
3721 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3722 * managing the storage of encryption parameters and passing them to the
3723 * lower-level encryption functions.
3724 */
3725 static int
3726 zio_encrypt(zio_t *zio)
3727 {
3728 zio_prop_t *zp = &zio->io_prop;
3729 spa_t *spa = zio->io_spa;
3730 blkptr_t *bp = zio->io_bp;
3731 uint64_t psize = BP_GET_PSIZE(bp);
3732 dmu_object_type_t ot = BP_GET_TYPE(bp);
3733 void *enc_buf = NULL;
3734 abd_t *eabd = NULL;
3735 uint8_t salt[ZIO_DATA_SALT_LEN];
3736 uint8_t iv[ZIO_DATA_IV_LEN];
3737 uint8_t mac[ZIO_DATA_MAC_LEN];
3738 boolean_t no_crypt = B_FALSE;
3739
3740 /* the root zio already encrypted the data */
3741 if (zio->io_child_type == ZIO_CHILD_GANG)
3742 return (ZIO_PIPELINE_CONTINUE);
3743
3744 /* only ZIL blocks are re-encrypted on rewrite */
3745 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3746 return (ZIO_PIPELINE_CONTINUE);
3747
3748 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3749 BP_SET_CRYPT(bp, B_FALSE);
3750 return (ZIO_PIPELINE_CONTINUE);
3751 }
3752
3753 /* if we are doing raw encryption set the provided encryption params */
3754 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3755 BP_SET_CRYPT(bp, B_TRUE);
3756 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3757 if (ot != DMU_OT_OBJSET)
3758 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3759 if (DMU_OT_IS_ENCRYPTED(ot))
3760 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3761 return (ZIO_PIPELINE_CONTINUE);
3762 }
3763
3764 /* indirect blocks only maintain a cksum of the lower level MACs */
3765 if (BP_GET_LEVEL(bp) > 0) {
3766 BP_SET_CRYPT(bp, B_TRUE);
3767 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3768 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3769 mac));
3770 zio_crypt_encode_mac_bp(bp, mac);
3771 return (ZIO_PIPELINE_CONTINUE);
3772 }
3773
3774 /*
3775 * Objset blocks are a special case since they have 2 256-bit MACs
3776 * embedded within them.
3777 */
3778 if (ot == DMU_OT_OBJSET) {
3779 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3780 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3781 BP_SET_CRYPT(bp, B_TRUE);
3782 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa,
3783 zio->io_bookmark.zb_objset, zio->io_abd, psize,
3784 BP_SHOULD_BYTESWAP(bp)));
3785 return (ZIO_PIPELINE_CONTINUE);
3786 }
3787
3788 /* unencrypted object types are only authenticated with a MAC */
3789 if (!DMU_OT_IS_ENCRYPTED(ot)) {
3790 BP_SET_CRYPT(bp, B_TRUE);
3791 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa,
3792 zio->io_bookmark.zb_objset, zio->io_abd, psize, mac));
3793 zio_crypt_encode_mac_bp(bp, mac);
3794 return (ZIO_PIPELINE_CONTINUE);
3795 }
3796
3797 /*
3798 * Later passes of sync-to-convergence may decide to rewrite data
3799 * in place to avoid more disk reallocations. This presents a problem
3800 * for encryption because this consitutes rewriting the new data with
3801 * the same encryption key and IV. However, this only applies to blocks
3802 * in the MOS (particularly the spacemaps) and we do not encrypt the
3803 * MOS. We assert that the zio is allocating or an intent log write
3804 * to enforce this.
3805 */
3806 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3807 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3808 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3809 ASSERT3U(psize, !=, 0);
3810
3811 enc_buf = zio_buf_alloc(psize);
3812 eabd = abd_get_from_buf(enc_buf, psize);
3813 abd_take_ownership_of_buf(eabd, B_TRUE);
3814
3815 /*
3816 * For an explanation of what encryption parameters are stored
3817 * where, see the block comment in zio_crypt.c.
3818 */
3819 if (ot == DMU_OT_INTENT_LOG) {
3820 zio_crypt_decode_params_bp(bp, salt, iv);
3821 } else {
3822 BP_SET_CRYPT(bp, B_TRUE);
3823 }
3824
3825 /* Perform the encryption. This should not fail */
3826 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, zio->io_bookmark.zb_objset, bp,
3827 zio->io_txg, psize, zio->io_abd, eabd, iv, mac, salt, &no_crypt));
3828
3829 /* encode encryption metadata into the bp */
3830 if (ot == DMU_OT_INTENT_LOG) {
3831 /*
3832 * ZIL blocks store the MAC in the embedded checksum, so the
3833 * transform must always be applied.
3834 */
3835 zio_crypt_encode_mac_zil(enc_buf, mac);
3836 zio_push_transform(zio, eabd, psize, psize, NULL);
3837 } else {
3838 BP_SET_CRYPT(bp, B_TRUE);
3839 zio_crypt_encode_params_bp(bp, salt, iv);
3840 zio_crypt_encode_mac_bp(bp, mac);
3841
3842 if (no_crypt) {
3843 ASSERT3U(ot, ==, DMU_OT_DNODE);
3844 abd_free(eabd);
3845 } else {
3846 zio_push_transform(zio, eabd, psize, psize, NULL);
3847 }
3848 }
3849
3850 return (ZIO_PIPELINE_CONTINUE);
3851 }
3852
3853 /*
3854 * ==========================================================================
3855 * Generate and verify checksums
3856 * ==========================================================================
3857 */
3858 static int
3859 zio_checksum_generate(zio_t *zio)
3860 {
3861 blkptr_t *bp = zio->io_bp;
3862 enum zio_checksum checksum;
3863
3864 if (bp == NULL) {
3865 /*
3866 * This is zio_write_phys().
3867 * We're either generating a label checksum, or none at all.
3868 */
3869 checksum = zio->io_prop.zp_checksum;
3870
3871 if (checksum == ZIO_CHECKSUM_OFF)
3872 return (ZIO_PIPELINE_CONTINUE);
3873
3874 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3875 } else {
3876 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3877 ASSERT(!IO_IS_ALLOCATING(zio));
3878 checksum = ZIO_CHECKSUM_GANG_HEADER;
3879 } else {
3880 checksum = BP_GET_CHECKSUM(bp);
3881 }
3882 }
3883
3884 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3885
3886 return (ZIO_PIPELINE_CONTINUE);
3887 }
3888
3889 static int
3890 zio_checksum_verify(zio_t *zio)
3891 {
3892 zio_bad_cksum_t info;
3893 blkptr_t *bp = zio->io_bp;
3894 int error;
3895
3896 ASSERT(zio->io_vd != NULL);
3897
3898 if (bp == NULL) {
3899 /*
3900 * This is zio_read_phys().
3901 * We're either verifying a label checksum, or nothing at all.
3902 */
3903 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3904 return (ZIO_PIPELINE_CONTINUE);
3905
3906 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3907 }
3908
3909 if ((error = zio_checksum_error(zio, &info)) != 0) {
3910 zio->io_error = error;
3911 if (error == ECKSUM &&
3912 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3913 zfs_ereport_start_checksum(zio->io_spa,
3914 zio->io_vd, &zio->io_bookmark, zio,
3915 zio->io_offset, zio->io_size, NULL, &info);
3916 }
3917 }
3918
3919 return (ZIO_PIPELINE_CONTINUE);
3920 }
3921
3922 /*
3923 * Called by RAID-Z to ensure we don't compute the checksum twice.
3924 */
3925 void
3926 zio_checksum_verified(zio_t *zio)
3927 {
3928 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3929 }
3930
3931 /*
3932 * ==========================================================================
3933 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3934 * An error of 0 indicates success. ENXIO indicates whole-device failure,
3935 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
3936 * indicate errors that are specific to one I/O, and most likely permanent.
3937 * Any other error is presumed to be worse because we weren't expecting it.
3938 * ==========================================================================
3939 */
3940 int
3941 zio_worst_error(int e1, int e2)
3942 {
3943 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3944 int r1, r2;
3945
3946 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3947 if (e1 == zio_error_rank[r1])
3948 break;
3949
3950 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3951 if (e2 == zio_error_rank[r2])
3952 break;
3953
3954 return (r1 > r2 ? e1 : e2);
3955 }
3956
3957 /*
3958 * ==========================================================================
3959 * I/O completion
3960 * ==========================================================================
3961 */
3962 static int
3963 zio_ready(zio_t *zio)
3964 {
3965 blkptr_t *bp = zio->io_bp;
3966 zio_t *pio, *pio_next;
3967 zio_link_t *zl = NULL;
3968
3969 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3970 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3971 return (ZIO_PIPELINE_STOP);
3972
3973 if (zio->io_ready) {
3974 ASSERT(IO_IS_ALLOCATING(zio));
3975 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3976 (zio->io_flags & ZIO_FLAG_NOPWRITE));
3977 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3978
3979 zio->io_ready(zio);
3980 }
3981
3982 if (bp != NULL && bp != &zio->io_bp_copy)
3983 zio->io_bp_copy = *bp;
3984
3985 if (zio->io_error != 0) {
3986 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3987
3988 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3989 ASSERT(IO_IS_ALLOCATING(zio));
3990 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3991 /*
3992 * We were unable to allocate anything, unreserve and
3993 * issue the next I/O to allocate.
3994 */
3995 metaslab_class_throttle_unreserve(
3996 spa_normal_class(zio->io_spa),
3997 zio->io_prop.zp_copies, zio);
3998 zio_allocate_dispatch(zio->io_spa);
3999 }
4000 }
4001
4002 mutex_enter(&zio->io_lock);
4003 zio->io_state[ZIO_WAIT_READY] = 1;
4004 pio = zio_walk_parents(zio, &zl);
4005 mutex_exit(&zio->io_lock);
4006
4007 /*
4008 * As we notify zio's parents, new parents could be added.
4009 * New parents go to the head of zio's io_parent_list, however,
4010 * so we will (correctly) not notify them. The remainder of zio's
4011 * io_parent_list, from 'pio_next' onward, cannot change because
4012 * all parents must wait for us to be done before they can be done.
4013 */
4014 for (; pio != NULL; pio = pio_next) {
4015 pio_next = zio_walk_parents(zio, &zl);
4016 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
4017 }
4018
4019 if (zio->io_flags & ZIO_FLAG_NODATA) {
4020 if (BP_IS_GANG(bp)) {
4021 zio->io_flags &= ~ZIO_FLAG_NODATA;
4022 } else {
4023 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4024 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4025 }
4026 }
4027
4028 if (zio_injection_enabled &&
4029 zio->io_spa->spa_syncing_txg == zio->io_txg)
4030 zio_handle_ignored_writes(zio);
4031
4032 return (ZIO_PIPELINE_CONTINUE);
4033 }
4034
4035 /*
4036 * Update the allocation throttle accounting.
4037 */
4038 static void
4039 zio_dva_throttle_done(zio_t *zio)
4040 {
4041 ASSERTV(zio_t *lio = zio->io_logical);
4042 zio_t *pio = zio_unique_parent(zio);
4043 vdev_t *vd = zio->io_vd;
4044 int flags = METASLAB_ASYNC_ALLOC;
4045
4046 ASSERT3P(zio->io_bp, !=, NULL);
4047 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4048 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4049 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4050 ASSERT(vd != NULL);
4051 ASSERT3P(vd, ==, vd->vdev_top);
4052 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4053 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4054 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4055 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4056 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4057
4058 /*
4059 * Parents of gang children can have two flavors -- ones that
4060 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4061 * and ones that allocated the constituent blocks. The allocation
4062 * throttle needs to know the allocating parent zio so we must find
4063 * it here.
4064 */
4065 if (pio->io_child_type == ZIO_CHILD_GANG) {
4066 /*
4067 * If our parent is a rewrite gang child then our grandparent
4068 * would have been the one that performed the allocation.
4069 */
4070 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4071 pio = zio_unique_parent(pio);
4072 flags |= METASLAB_GANG_CHILD;
4073 }
4074
4075 ASSERT(IO_IS_ALLOCATING(pio));
4076 ASSERT3P(zio, !=, zio->io_logical);
4077 ASSERT(zio->io_logical != NULL);
4078 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4079 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4080
4081 mutex_enter(&pio->io_lock);
4082 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
4083 mutex_exit(&pio->io_lock);
4084
4085 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
4086 1, pio);
4087
4088 /*
4089 * Call into the pipeline to see if there is more work that
4090 * needs to be done. If there is work to be done it will be
4091 * dispatched to another taskq thread.
4092 */
4093 zio_allocate_dispatch(zio->io_spa);
4094 }
4095
4096 static int
4097 zio_done(zio_t *zio)
4098 {
4099 /*
4100 * Always attempt to keep stack usage minimal here since
4101 * we can be called recurisvely up to 19 levels deep.
4102 */
4103 const uint64_t psize = zio->io_size;
4104 zio_t *pio, *pio_next;
4105 zio_link_t *zl = NULL;
4106
4107 /*
4108 * If our children haven't all completed,
4109 * wait for them and then repeat this pipeline stage.
4110 */
4111 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
4112 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
4113 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
4114 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
4115 return (ZIO_PIPELINE_STOP);
4116
4117 /*
4118 * If the allocation throttle is enabled, then update the accounting.
4119 * We only track child I/Os that are part of an allocating async
4120 * write. We must do this since the allocation is performed
4121 * by the logical I/O but the actual write is done by child I/Os.
4122 */
4123 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4124 zio->io_child_type == ZIO_CHILD_VDEV) {
4125 ASSERT(spa_normal_class(
4126 zio->io_spa)->mc_alloc_throttle_enabled);
4127 zio_dva_throttle_done(zio);
4128 }
4129
4130 /*
4131 * If the allocation throttle is enabled, verify that
4132 * we have decremented the refcounts for every I/O that was throttled.
4133 */
4134 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4135 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4136 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4137 ASSERT(zio->io_bp != NULL);
4138 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio);
4139 VERIFY(refcount_not_held(
4140 &(spa_normal_class(zio->io_spa)->mc_alloc_slots), zio));
4141 }
4142
4143
4144 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4145 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4146 ASSERT(zio->io_children[c][w] == 0);
4147
4148 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4149 ASSERT(zio->io_bp->blk_pad[0] == 0);
4150 ASSERT(zio->io_bp->blk_pad[1] == 0);
4151 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4152 sizeof (blkptr_t)) == 0 ||
4153 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4154 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4155 zio->io_bp_override == NULL &&
4156 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4157 ASSERT(!BP_SHOULD_BYTESWAP(zio->io_bp));
4158 ASSERT3U(zio->io_prop.zp_copies, <=,
4159 BP_GET_NDVAS(zio->io_bp));
4160 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4161 (BP_COUNT_GANG(zio->io_bp) ==
4162 BP_GET_NDVAS(zio->io_bp)));
4163 }
4164 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4165 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4166 }
4167
4168 /*
4169 * If there were child vdev/gang/ddt errors, they apply to us now.
4170 */
4171 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4172 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4173 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4174
4175 /*
4176 * If the I/O on the transformed data was successful, generate any
4177 * checksum reports now while we still have the transformed data.
4178 */
4179 if (zio->io_error == 0) {
4180 while (zio->io_cksum_report != NULL) {
4181 zio_cksum_report_t *zcr = zio->io_cksum_report;
4182 uint64_t align = zcr->zcr_align;
4183 uint64_t asize = P2ROUNDUP(psize, align);
4184 abd_t *adata = zio->io_abd;
4185
4186 if (asize != psize) {
4187 adata = abd_alloc(asize, B_TRUE);
4188 abd_copy(adata, zio->io_abd, psize);
4189 abd_zero_off(adata, psize, asize - psize);
4190 }
4191
4192 zio->io_cksum_report = zcr->zcr_next;
4193 zcr->zcr_next = NULL;
4194 zcr->zcr_finish(zcr, adata);
4195 zfs_ereport_free_checksum(zcr);
4196
4197 if (asize != psize)
4198 abd_free(adata);
4199 }
4200 }
4201
4202 zio_pop_transforms(zio); /* note: may set zio->io_error */
4203
4204 vdev_stat_update(zio, psize);
4205
4206 /*
4207 * If this I/O is attached to a particular vdev is slow, exceeding
4208 * 30 seconds to complete, post an error described the I/O delay.
4209 * We ignore these errors if the device is currently unavailable.
4210 */
4211 if (zio->io_delay >= MSEC2NSEC(zio_delay_max)) {
4212 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
4213 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
4214 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4215 }
4216
4217 if (zio->io_error) {
4218 /*
4219 * If this I/O is attached to a particular vdev,
4220 * generate an error message describing the I/O failure
4221 * at the block level. We ignore these errors if the
4222 * device is currently unavailable.
4223 */
4224 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4225 !vdev_is_dead(zio->io_vd))
4226 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
4227 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4228
4229 if ((zio->io_error == EIO || !(zio->io_flags &
4230 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4231 zio == zio->io_logical) {
4232 /*
4233 * For logical I/O requests, tell the SPA to log the
4234 * error and generate a logical data ereport.
4235 */
4236 spa_log_error(zio->io_spa, &zio->io_bookmark);
4237 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa,
4238 NULL, &zio->io_bookmark, zio, 0, 0);
4239 }
4240 }
4241
4242 if (zio->io_error && zio == zio->io_logical) {
4243 /*
4244 * Determine whether zio should be reexecuted. This will
4245 * propagate all the way to the root via zio_notify_parent().
4246 */
4247 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4248 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4249
4250 if (IO_IS_ALLOCATING(zio) &&
4251 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4252 if (zio->io_error != ENOSPC)
4253 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4254 else
4255 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4256 }
4257
4258 if ((zio->io_type == ZIO_TYPE_READ ||
4259 zio->io_type == ZIO_TYPE_FREE) &&
4260 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4261 zio->io_error == ENXIO &&
4262 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4263 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4264 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4265
4266 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4267 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4268
4269 /*
4270 * Here is a possibly good place to attempt to do
4271 * either combinatorial reconstruction or error correction
4272 * based on checksums. It also might be a good place
4273 * to send out preliminary ereports before we suspend
4274 * processing.
4275 */
4276 }
4277
4278 /*
4279 * If there were logical child errors, they apply to us now.
4280 * We defer this until now to avoid conflating logical child
4281 * errors with errors that happened to the zio itself when
4282 * updating vdev stats and reporting FMA events above.
4283 */
4284 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4285
4286 if ((zio->io_error || zio->io_reexecute) &&
4287 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4288 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4289 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4290
4291 zio_gang_tree_free(&zio->io_gang_tree);
4292
4293 /*
4294 * Godfather I/Os should never suspend.
4295 */
4296 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4297 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4298 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4299
4300 if (zio->io_reexecute) {
4301 /*
4302 * This is a logical I/O that wants to reexecute.
4303 *
4304 * Reexecute is top-down. When an i/o fails, if it's not
4305 * the root, it simply notifies its parent and sticks around.
4306 * The parent, seeing that it still has children in zio_done(),
4307 * does the same. This percolates all the way up to the root.
4308 * The root i/o will reexecute or suspend the entire tree.
4309 *
4310 * This approach ensures that zio_reexecute() honors
4311 * all the original i/o dependency relationships, e.g.
4312 * parents not executing until children are ready.
4313 */
4314 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4315
4316 zio->io_gang_leader = NULL;
4317
4318 mutex_enter(&zio->io_lock);
4319 zio->io_state[ZIO_WAIT_DONE] = 1;
4320 mutex_exit(&zio->io_lock);
4321
4322 /*
4323 * "The Godfather" I/O monitors its children but is
4324 * not a true parent to them. It will track them through
4325 * the pipeline but severs its ties whenever they get into
4326 * trouble (e.g. suspended). This allows "The Godfather"
4327 * I/O to return status without blocking.
4328 */
4329 zl = NULL;
4330 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4331 pio = pio_next) {
4332 zio_link_t *remove_zl = zl;
4333 pio_next = zio_walk_parents(zio, &zl);
4334
4335 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4336 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4337 zio_remove_child(pio, zio, remove_zl);
4338 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4339 }
4340 }
4341
4342 if ((pio = zio_unique_parent(zio)) != NULL) {
4343 /*
4344 * We're not a root i/o, so there's nothing to do
4345 * but notify our parent. Don't propagate errors
4346 * upward since we haven't permanently failed yet.
4347 */
4348 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4349 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4350 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4351 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4352 /*
4353 * We'd fail again if we reexecuted now, so suspend
4354 * until conditions improve (e.g. device comes online).
4355 */
4356 zio_suspend(zio->io_spa, zio);
4357 } else {
4358 /*
4359 * Reexecution is potentially a huge amount of work.
4360 * Hand it off to the otherwise-unused claim taskq.
4361 */
4362 ASSERT(taskq_empty_ent(&zio->io_tqent));
4363 spa_taskq_dispatch_ent(zio->io_spa,
4364 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4365 (task_func_t *)zio_reexecute, zio, 0,
4366 &zio->io_tqent);
4367 }
4368 return (ZIO_PIPELINE_STOP);
4369 }
4370
4371 ASSERT(zio->io_child_count == 0);
4372 ASSERT(zio->io_reexecute == 0);
4373 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4374
4375 /*
4376 * Report any checksum errors, since the I/O is complete.
4377 */
4378 while (zio->io_cksum_report != NULL) {
4379 zio_cksum_report_t *zcr = zio->io_cksum_report;
4380 zio->io_cksum_report = zcr->zcr_next;
4381 zcr->zcr_next = NULL;
4382 zcr->zcr_finish(zcr, NULL);
4383 zfs_ereport_free_checksum(zcr);
4384 }
4385
4386 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4387 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4388 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4389 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4390 }
4391
4392 /*
4393 * It is the responsibility of the done callback to ensure that this
4394 * particular zio is no longer discoverable for adoption, and as
4395 * such, cannot acquire any new parents.
4396 */
4397 if (zio->io_done)
4398 zio->io_done(zio);
4399
4400 mutex_enter(&zio->io_lock);
4401 zio->io_state[ZIO_WAIT_DONE] = 1;
4402 mutex_exit(&zio->io_lock);
4403
4404 zl = NULL;
4405 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4406 zio_link_t *remove_zl = zl;
4407 pio_next = zio_walk_parents(zio, &zl);
4408 zio_remove_child(pio, zio, remove_zl);
4409 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4410 }
4411
4412 if (zio->io_waiter != NULL) {
4413 mutex_enter(&zio->io_lock);
4414 zio->io_executor = NULL;
4415 cv_broadcast(&zio->io_cv);
4416 mutex_exit(&zio->io_lock);
4417 } else {
4418 zio_destroy(zio);
4419 }
4420
4421 return (ZIO_PIPELINE_STOP);
4422 }
4423
4424 /*
4425 * ==========================================================================
4426 * I/O pipeline definition
4427 * ==========================================================================
4428 */
4429 static zio_pipe_stage_t *zio_pipeline[] = {
4430 NULL,
4431 zio_read_bp_init,
4432 zio_write_bp_init,
4433 zio_free_bp_init,
4434 zio_issue_async,
4435 zio_write_compress,
4436 zio_encrypt,
4437 zio_checksum_generate,
4438 zio_nop_write,
4439 zio_ddt_read_start,
4440 zio_ddt_read_done,
4441 zio_ddt_write,
4442 zio_ddt_free,
4443 zio_gang_assemble,
4444 zio_gang_issue,
4445 zio_dva_throttle,
4446 zio_dva_allocate,
4447 zio_dva_free,
4448 zio_dva_claim,
4449 zio_ready,
4450 zio_vdev_io_start,
4451 zio_vdev_io_done,
4452 zio_vdev_io_assess,
4453 zio_checksum_verify,
4454 zio_done
4455 };
4456
4457
4458
4459
4460 /*
4461 * Compare two zbookmark_phys_t's to see which we would reach first in a
4462 * pre-order traversal of the object tree.
4463 *
4464 * This is simple in every case aside from the meta-dnode object. For all other
4465 * objects, we traverse them in order (object 1 before object 2, and so on).
4466 * However, all of these objects are traversed while traversing object 0, since
4467 * the data it points to is the list of objects. Thus, we need to convert to a
4468 * canonical representation so we can compare meta-dnode bookmarks to
4469 * non-meta-dnode bookmarks.
4470 *
4471 * We do this by calculating "equivalents" for each field of the zbookmark.
4472 * zbookmarks outside of the meta-dnode use their own object and level, and
4473 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4474 * blocks this bookmark refers to) by multiplying their blkid by their span
4475 * (the number of L0 blocks contained within one block at their level).
4476 * zbookmarks inside the meta-dnode calculate their object equivalent
4477 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4478 * level + 1<<31 (any value larger than a level could ever be) for their level.
4479 * This causes them to always compare before a bookmark in their object
4480 * equivalent, compare appropriately to bookmarks in other objects, and to
4481 * compare appropriately to other bookmarks in the meta-dnode.
4482 */
4483 int
4484 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4485 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4486 {
4487 /*
4488 * These variables represent the "equivalent" values for the zbookmark,
4489 * after converting zbookmarks inside the meta dnode to their
4490 * normal-object equivalents.
4491 */
4492 uint64_t zb1obj, zb2obj;
4493 uint64_t zb1L0, zb2L0;
4494 uint64_t zb1level, zb2level;
4495
4496 if (zb1->zb_object == zb2->zb_object &&
4497 zb1->zb_level == zb2->zb_level &&
4498 zb1->zb_blkid == zb2->zb_blkid)
4499 return (0);
4500
4501 /*
4502 * BP_SPANB calculates the span in blocks.
4503 */
4504 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4505 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4506
4507 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4508 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4509 zb1L0 = 0;
4510 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4511 } else {
4512 zb1obj = zb1->zb_object;
4513 zb1level = zb1->zb_level;
4514 }
4515
4516 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4517 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4518 zb2L0 = 0;
4519 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4520 } else {
4521 zb2obj = zb2->zb_object;
4522 zb2level = zb2->zb_level;
4523 }
4524
4525 /* Now that we have a canonical representation, do the comparison. */
4526 if (zb1obj != zb2obj)
4527 return (zb1obj < zb2obj ? -1 : 1);
4528 else if (zb1L0 != zb2L0)
4529 return (zb1L0 < zb2L0 ? -1 : 1);
4530 else if (zb1level != zb2level)
4531 return (zb1level > zb2level ? -1 : 1);
4532 /*
4533 * This can (theoretically) happen if the bookmarks have the same object
4534 * and level, but different blkids, if the block sizes are not the same.
4535 * There is presently no way to change the indirect block sizes
4536 */
4537 return (0);
4538 }
4539
4540 /*
4541 * This function checks the following: given that last_block is the place that
4542 * our traversal stopped last time, does that guarantee that we've visited
4543 * every node under subtree_root? Therefore, we can't just use the raw output
4544 * of zbookmark_compare. We have to pass in a modified version of
4545 * subtree_root; by incrementing the block id, and then checking whether
4546 * last_block is before or equal to that, we can tell whether or not having
4547 * visited last_block implies that all of subtree_root's children have been
4548 * visited.
4549 */
4550 boolean_t
4551 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4552 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4553 {
4554 zbookmark_phys_t mod_zb = *subtree_root;
4555 mod_zb.zb_blkid++;
4556 ASSERT(last_block->zb_level == 0);
4557
4558 /* The objset_phys_t isn't before anything. */
4559 if (dnp == NULL)
4560 return (B_FALSE);
4561
4562 /*
4563 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4564 * data block size in sectors, because that variable is only used if
4565 * the bookmark refers to a block in the meta-dnode. Since we don't
4566 * know without examining it what object it refers to, and there's no
4567 * harm in passing in this value in other cases, we always pass it in.
4568 *
4569 * We pass in 0 for the indirect block size shift because zb2 must be
4570 * level 0. The indirect block size is only used to calculate the span
4571 * of the bookmark, but since the bookmark must be level 0, the span is
4572 * always 1, so the math works out.
4573 *
4574 * If you make changes to how the zbookmark_compare code works, be sure
4575 * to make sure that this code still works afterwards.
4576 */
4577 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4578 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4579 last_block) <= 0);
4580 }
4581
4582 #if defined(_KERNEL) && defined(HAVE_SPL)
4583 EXPORT_SYMBOL(zio_type_name);
4584 EXPORT_SYMBOL(zio_buf_alloc);
4585 EXPORT_SYMBOL(zio_data_buf_alloc);
4586 EXPORT_SYMBOL(zio_buf_free);
4587 EXPORT_SYMBOL(zio_data_buf_free);
4588
4589 module_param(zio_delay_max, int, 0644);
4590 MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
4591
4592 module_param(zio_requeue_io_start_cut_in_line, int, 0644);
4593 MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
4594
4595 module_param(zfs_sync_pass_deferred_free, int, 0644);
4596 MODULE_PARM_DESC(zfs_sync_pass_deferred_free,
4597 "Defer frees starting in this pass");
4598
4599 module_param(zfs_sync_pass_dont_compress, int, 0644);
4600 MODULE_PARM_DESC(zfs_sync_pass_dont_compress,
4601 "Don't compress starting in this pass");
4602
4603 module_param(zfs_sync_pass_rewrite, int, 0644);
4604 MODULE_PARM_DESC(zfs_sync_pass_rewrite,
4605 "Rewrite new bps starting in this pass");
4606
4607 module_param(zio_dva_throttle_enabled, int, 0644);
4608 MODULE_PARM_DESC(zio_dva_throttle_enabled,
4609 "Throttle block allocations in the ZIO pipeline");
4610 #endif