]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Encrypted dnode blocks should be prefetched raw
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/sysmacros.h>
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/txg.h>
32 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio_impl.h>
35 #include <sys/zio_compress.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/ddt.h>
40 #include <sys/blkptr.h>
41 #include <sys/zfeature.h>
42 #include <sys/dsl_scan.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/time.h>
45 #include <sys/trace_zio.h>
46 #include <sys/abd.h>
47 #include <sys/dsl_crypt.h>
48
49 /*
50 * ==========================================================================
51 * I/O type descriptions
52 * ==========================================================================
53 */
54 const char *zio_type_name[ZIO_TYPES] = {
55 /*
56 * Note: Linux kernel thread name length is limited
57 * so these names will differ from upstream open zfs.
58 */
59 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
60 };
61
62 int zio_dva_throttle_enabled = B_TRUE;
63
64 /*
65 * ==========================================================================
66 * I/O kmem caches
67 * ==========================================================================
68 */
69 kmem_cache_t *zio_cache;
70 kmem_cache_t *zio_link_cache;
71 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
72 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
73 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
74 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
75 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
76 #endif
77
78 int zio_delay_max = ZIO_DELAY_MAX;
79
80 #define ZIO_PIPELINE_CONTINUE 0x100
81 #define ZIO_PIPELINE_STOP 0x101
82
83 #define BP_SPANB(indblkshift, level) \
84 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
85 #define COMPARE_META_LEVEL 0x80000000ul
86 /*
87 * The following actions directly effect the spa's sync-to-convergence logic.
88 * The values below define the sync pass when we start performing the action.
89 * Care should be taken when changing these values as they directly impact
90 * spa_sync() performance. Tuning these values may introduce subtle performance
91 * pathologies and should only be done in the context of performance analysis.
92 * These tunables will eventually be removed and replaced with #defines once
93 * enough analysis has been done to determine optimal values.
94 *
95 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
96 * regular blocks are not deferred.
97 */
98 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
99 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
100 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
101
102 /*
103 * An allocating zio is one that either currently has the DVA allocate
104 * stage set or will have it later in its lifetime.
105 */
106 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
107
108 int zio_requeue_io_start_cut_in_line = 1;
109
110 #ifdef ZFS_DEBUG
111 int zio_buf_debug_limit = 16384;
112 #else
113 int zio_buf_debug_limit = 0;
114 #endif
115
116 static inline void __zio_execute(zio_t *zio);
117
118 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
119
120 void
121 zio_init(void)
122 {
123 size_t c;
124 vmem_t *data_alloc_arena = NULL;
125
126 zio_cache = kmem_cache_create("zio_cache",
127 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 zio_link_cache = kmem_cache_create("zio_link_cache",
129 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
130
131 /*
132 * For small buffers, we want a cache for each multiple of
133 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
134 * for each quarter-power of 2.
135 */
136 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
137 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
138 size_t p2 = size;
139 size_t align = 0;
140 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
141
142 #if defined(_ILP32) && defined(_KERNEL)
143 /*
144 * Cache size limited to 1M on 32-bit platforms until ARC
145 * buffers no longer require virtual address space.
146 */
147 if (size > zfs_max_recordsize)
148 break;
149 #endif
150
151 while (!ISP2(p2))
152 p2 &= p2 - 1;
153
154 #ifndef _KERNEL
155 /*
156 * If we are using watchpoints, put each buffer on its own page,
157 * to eliminate the performance overhead of trapping to the
158 * kernel when modifying a non-watched buffer that shares the
159 * page with a watched buffer.
160 */
161 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
162 continue;
163 /*
164 * Here's the problem - on 4K native devices in userland on
165 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
166 * will fail with EINVAL, causing zdb (and others) to coredump.
167 * Since userland probably doesn't need optimized buffer caches,
168 * we just force 4K alignment on everything.
169 */
170 align = 8 * SPA_MINBLOCKSIZE;
171 #else
172 if (size < PAGESIZE) {
173 align = SPA_MINBLOCKSIZE;
174 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
175 align = PAGESIZE;
176 }
177 #endif
178
179 if (align != 0) {
180 char name[36];
181 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
182 zio_buf_cache[c] = kmem_cache_create(name, size,
183 align, NULL, NULL, NULL, NULL, NULL, cflags);
184
185 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
186 zio_data_buf_cache[c] = kmem_cache_create(name, size,
187 align, NULL, NULL, NULL, NULL,
188 data_alloc_arena, cflags);
189 }
190 }
191
192 while (--c != 0) {
193 ASSERT(zio_buf_cache[c] != NULL);
194 if (zio_buf_cache[c - 1] == NULL)
195 zio_buf_cache[c - 1] = zio_buf_cache[c];
196
197 ASSERT(zio_data_buf_cache[c] != NULL);
198 if (zio_data_buf_cache[c - 1] == NULL)
199 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
200 }
201
202 zio_inject_init();
203
204 lz4_init();
205 }
206
207 void
208 zio_fini(void)
209 {
210 size_t c;
211 kmem_cache_t *last_cache = NULL;
212 kmem_cache_t *last_data_cache = NULL;
213
214 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
215 #ifdef _ILP32
216 /*
217 * Cache size limited to 1M on 32-bit platforms until ARC
218 * buffers no longer require virtual address space.
219 */
220 if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize)
221 break;
222 #endif
223 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
224 if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c])
225 (void) printf("zio_fini: [%d] %llu != %llu\n",
226 (int)((c + 1) << SPA_MINBLOCKSHIFT),
227 (long long unsigned)zio_buf_cache_allocs[c],
228 (long long unsigned)zio_buf_cache_frees[c]);
229 #endif
230 if (zio_buf_cache[c] != last_cache) {
231 last_cache = zio_buf_cache[c];
232 kmem_cache_destroy(zio_buf_cache[c]);
233 }
234 zio_buf_cache[c] = NULL;
235
236 if (zio_data_buf_cache[c] != last_data_cache) {
237 last_data_cache = zio_data_buf_cache[c];
238 kmem_cache_destroy(zio_data_buf_cache[c]);
239 }
240 zio_data_buf_cache[c] = NULL;
241 }
242
243 kmem_cache_destroy(zio_link_cache);
244 kmem_cache_destroy(zio_cache);
245
246 zio_inject_fini();
247
248 lz4_fini();
249 }
250
251 /*
252 * ==========================================================================
253 * Allocate and free I/O buffers
254 * ==========================================================================
255 */
256
257 /*
258 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
259 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
260 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
261 * excess / transient data in-core during a crashdump.
262 */
263 void *
264 zio_buf_alloc(size_t size)
265 {
266 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
267
268 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
269 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
270 atomic_add_64(&zio_buf_cache_allocs[c], 1);
271 #endif
272
273 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
274 }
275
276 /*
277 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
278 * crashdump if the kernel panics. This exists so that we will limit the amount
279 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
280 * of kernel heap dumped to disk when the kernel panics)
281 */
282 void *
283 zio_data_buf_alloc(size_t size)
284 {
285 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
286
287 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
288
289 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
290 }
291
292 void
293 zio_buf_free(void *buf, size_t size)
294 {
295 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
296
297 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
298 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
299 atomic_add_64(&zio_buf_cache_frees[c], 1);
300 #endif
301
302 kmem_cache_free(zio_buf_cache[c], buf);
303 }
304
305 void
306 zio_data_buf_free(void *buf, size_t size)
307 {
308 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
309
310 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
311
312 kmem_cache_free(zio_data_buf_cache[c], buf);
313 }
314
315 static void
316 zio_abd_free(void *abd, size_t size)
317 {
318 abd_free((abd_t *)abd);
319 }
320
321 /*
322 * ==========================================================================
323 * Push and pop I/O transform buffers
324 * ==========================================================================
325 */
326 void
327 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
328 zio_transform_func_t *transform)
329 {
330 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
331
332 /*
333 * Ensure that anyone expecting this zio to contain a linear ABD isn't
334 * going to get a nasty surprise when they try to access the data.
335 */
336 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
337
338 zt->zt_orig_abd = zio->io_abd;
339 zt->zt_orig_size = zio->io_size;
340 zt->zt_bufsize = bufsize;
341 zt->zt_transform = transform;
342
343 zt->zt_next = zio->io_transform_stack;
344 zio->io_transform_stack = zt;
345
346 zio->io_abd = data;
347 zio->io_size = size;
348 }
349
350 void
351 zio_pop_transforms(zio_t *zio)
352 {
353 zio_transform_t *zt;
354
355 while ((zt = zio->io_transform_stack) != NULL) {
356 if (zt->zt_transform != NULL)
357 zt->zt_transform(zio,
358 zt->zt_orig_abd, zt->zt_orig_size);
359
360 if (zt->zt_bufsize != 0)
361 abd_free(zio->io_abd);
362
363 zio->io_abd = zt->zt_orig_abd;
364 zio->io_size = zt->zt_orig_size;
365 zio->io_transform_stack = zt->zt_next;
366
367 kmem_free(zt, sizeof (zio_transform_t));
368 }
369 }
370
371 /*
372 * ==========================================================================
373 * I/O transform callbacks for subblocks, decompression, and decryption
374 * ==========================================================================
375 */
376 static void
377 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
378 {
379 ASSERT(zio->io_size > size);
380
381 if (zio->io_type == ZIO_TYPE_READ)
382 abd_copy(data, zio->io_abd, size);
383 }
384
385 static void
386 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
387 {
388 if (zio->io_error == 0) {
389 void *tmp = abd_borrow_buf(data, size);
390 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
391 zio->io_abd, tmp, zio->io_size, size);
392 abd_return_buf_copy(data, tmp, size);
393
394 if (ret != 0)
395 zio->io_error = SET_ERROR(EIO);
396 }
397 }
398
399 static void
400 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
401 {
402 int ret;
403 void *tmp;
404 blkptr_t *bp = zio->io_bp;
405 spa_t *spa = zio->io_spa;
406 uint64_t dsobj = zio->io_bookmark.zb_objset;
407 uint64_t lsize = BP_GET_LSIZE(bp);
408 dmu_object_type_t ot = BP_GET_TYPE(bp);
409 uint8_t salt[ZIO_DATA_SALT_LEN];
410 uint8_t iv[ZIO_DATA_IV_LEN];
411 uint8_t mac[ZIO_DATA_MAC_LEN];
412 boolean_t no_crypt = B_FALSE;
413
414 ASSERT(BP_USES_CRYPT(bp));
415 ASSERT3U(size, !=, 0);
416
417 if (zio->io_error != 0)
418 return;
419
420 /*
421 * Verify the cksum of MACs stored in an indirect bp. It will always
422 * be possible to verify this since it does not require an encryption
423 * key.
424 */
425 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
426 zio_crypt_decode_mac_bp(bp, mac);
427
428 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
429 /*
430 * We haven't decompressed the data yet, but
431 * zio_crypt_do_indirect_mac_checksum() requires
432 * decompressed data to be able to parse out the MACs
433 * from the indirect block. We decompress it now and
434 * throw away the result after we are finished.
435 */
436 tmp = zio_buf_alloc(lsize);
437 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
438 zio->io_abd, tmp, zio->io_size, lsize);
439 if (ret != 0) {
440 ret = SET_ERROR(EIO);
441 goto error;
442 }
443 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
444 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
445 zio_buf_free(tmp, lsize);
446 } else {
447 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
448 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
449 }
450 abd_copy(data, zio->io_abd, size);
451
452 if (ret != 0)
453 goto error;
454
455 return;
456 }
457
458 /*
459 * If this is an authenticated block, just check the MAC. It would be
460 * nice to separate this out into its own flag, but for the moment
461 * enum zio_flag is out of bits.
462 */
463 if (BP_IS_AUTHENTICATED(bp)) {
464 if (ot == DMU_OT_OBJSET) {
465 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
466 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
467 } else {
468 zio_crypt_decode_mac_bp(bp, mac);
469 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
470 zio->io_abd, size, mac);
471 }
472 abd_copy(data, zio->io_abd, size);
473
474 if (ret != 0)
475 goto error;
476
477 return;
478 }
479
480 zio_crypt_decode_params_bp(bp, salt, iv);
481
482 if (ot == DMU_OT_INTENT_LOG) {
483 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
484 zio_crypt_decode_mac_zil(tmp, mac);
485 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
486 } else {
487 zio_crypt_decode_mac_bp(bp, mac);
488 }
489
490 ret = spa_do_crypt_abd(B_FALSE, spa, dsobj, bp, bp->blk_birth,
491 size, data, zio->io_abd, iv, mac, salt, &no_crypt);
492 if (no_crypt)
493 abd_copy(data, zio->io_abd, size);
494
495 if (ret != 0)
496 goto error;
497
498 return;
499
500 error:
501 /* assert that the key was found unless this was speculative */
502 ASSERT(ret != ENOENT || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
503
504 /*
505 * If there was a decryption / authentication error return EIO as
506 * the io_error. If this was not a speculative zio, create an ereport.
507 */
508 if (ret == ECKSUM) {
509 ret = SET_ERROR(EIO);
510 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
511 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
512 spa, NULL, &zio->io_bookmark, zio, 0, 0);
513 }
514 } else {
515 zio->io_error = ret;
516 }
517 }
518
519 /*
520 * ==========================================================================
521 * I/O parent/child relationships and pipeline interlocks
522 * ==========================================================================
523 */
524 zio_t *
525 zio_walk_parents(zio_t *cio, zio_link_t **zl)
526 {
527 list_t *pl = &cio->io_parent_list;
528
529 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
530 if (*zl == NULL)
531 return (NULL);
532
533 ASSERT((*zl)->zl_child == cio);
534 return ((*zl)->zl_parent);
535 }
536
537 zio_t *
538 zio_walk_children(zio_t *pio, zio_link_t **zl)
539 {
540 list_t *cl = &pio->io_child_list;
541
542 ASSERT(MUTEX_HELD(&pio->io_lock));
543
544 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
545 if (*zl == NULL)
546 return (NULL);
547
548 ASSERT((*zl)->zl_parent == pio);
549 return ((*zl)->zl_child);
550 }
551
552 zio_t *
553 zio_unique_parent(zio_t *cio)
554 {
555 zio_link_t *zl = NULL;
556 zio_t *pio = zio_walk_parents(cio, &zl);
557
558 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
559 return (pio);
560 }
561
562 void
563 zio_add_child(zio_t *pio, zio_t *cio)
564 {
565 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
566
567 /*
568 * Logical I/Os can have logical, gang, or vdev children.
569 * Gang I/Os can have gang or vdev children.
570 * Vdev I/Os can only have vdev children.
571 * The following ASSERT captures all of these constraints.
572 */
573 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
574
575 zl->zl_parent = pio;
576 zl->zl_child = cio;
577
578 mutex_enter(&pio->io_lock);
579 mutex_enter(&cio->io_lock);
580
581 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
582
583 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
584 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
585
586 list_insert_head(&pio->io_child_list, zl);
587 list_insert_head(&cio->io_parent_list, zl);
588
589 pio->io_child_count++;
590 cio->io_parent_count++;
591
592 mutex_exit(&cio->io_lock);
593 mutex_exit(&pio->io_lock);
594 }
595
596 static void
597 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
598 {
599 ASSERT(zl->zl_parent == pio);
600 ASSERT(zl->zl_child == cio);
601
602 mutex_enter(&pio->io_lock);
603 mutex_enter(&cio->io_lock);
604
605 list_remove(&pio->io_child_list, zl);
606 list_remove(&cio->io_parent_list, zl);
607
608 pio->io_child_count--;
609 cio->io_parent_count--;
610
611 mutex_exit(&cio->io_lock);
612 mutex_exit(&pio->io_lock);
613 kmem_cache_free(zio_link_cache, zl);
614 }
615
616 static boolean_t
617 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
618 {
619 boolean_t waiting = B_FALSE;
620
621 mutex_enter(&zio->io_lock);
622 ASSERT(zio->io_stall == NULL);
623 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
624 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
625 continue;
626
627 uint64_t *countp = &zio->io_children[c][wait];
628 if (*countp != 0) {
629 zio->io_stage >>= 1;
630 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
631 zio->io_stall = countp;
632 waiting = B_TRUE;
633 break;
634 }
635 }
636 mutex_exit(&zio->io_lock);
637 return (waiting);
638 }
639
640 __attribute__((always_inline))
641 static inline void
642 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
643 {
644 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
645 int *errorp = &pio->io_child_error[zio->io_child_type];
646
647 mutex_enter(&pio->io_lock);
648 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
649 *errorp = zio_worst_error(*errorp, zio->io_error);
650 pio->io_reexecute |= zio->io_reexecute;
651 ASSERT3U(*countp, >, 0);
652
653 (*countp)--;
654
655 if (*countp == 0 && pio->io_stall == countp) {
656 zio_taskq_type_t type =
657 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
658 ZIO_TASKQ_INTERRUPT;
659 pio->io_stall = NULL;
660 mutex_exit(&pio->io_lock);
661 /*
662 * Dispatch the parent zio in its own taskq so that
663 * the child can continue to make progress. This also
664 * prevents overflowing the stack when we have deeply nested
665 * parent-child relationships.
666 */
667 zio_taskq_dispatch(pio, type, B_FALSE);
668 } else {
669 mutex_exit(&pio->io_lock);
670 }
671 }
672
673 static void
674 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
675 {
676 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
677 zio->io_error = zio->io_child_error[c];
678 }
679
680 int
681 zio_bookmark_compare(const void *x1, const void *x2)
682 {
683 const zio_t *z1 = x1;
684 const zio_t *z2 = x2;
685
686 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
687 return (-1);
688 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
689 return (1);
690
691 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
692 return (-1);
693 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
694 return (1);
695
696 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
697 return (-1);
698 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
699 return (1);
700
701 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
702 return (-1);
703 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
704 return (1);
705
706 if (z1 < z2)
707 return (-1);
708 if (z1 > z2)
709 return (1);
710
711 return (0);
712 }
713
714 /*
715 * ==========================================================================
716 * Create the various types of I/O (read, write, free, etc)
717 * ==========================================================================
718 */
719 static zio_t *
720 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
721 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
722 void *private, zio_type_t type, zio_priority_t priority,
723 enum zio_flag flags, vdev_t *vd, uint64_t offset,
724 const zbookmark_phys_t *zb, enum zio_stage stage,
725 enum zio_stage pipeline)
726 {
727 zio_t *zio;
728
729 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
730 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
731 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
732
733 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
734 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
735 ASSERT(vd || stage == ZIO_STAGE_OPEN);
736
737 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
738
739 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
740 bzero(zio, sizeof (zio_t));
741
742 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
743 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
744
745 list_create(&zio->io_parent_list, sizeof (zio_link_t),
746 offsetof(zio_link_t, zl_parent_node));
747 list_create(&zio->io_child_list, sizeof (zio_link_t),
748 offsetof(zio_link_t, zl_child_node));
749 metaslab_trace_init(&zio->io_alloc_list);
750
751 if (vd != NULL)
752 zio->io_child_type = ZIO_CHILD_VDEV;
753 else if (flags & ZIO_FLAG_GANG_CHILD)
754 zio->io_child_type = ZIO_CHILD_GANG;
755 else if (flags & ZIO_FLAG_DDT_CHILD)
756 zio->io_child_type = ZIO_CHILD_DDT;
757 else
758 zio->io_child_type = ZIO_CHILD_LOGICAL;
759
760 if (bp != NULL) {
761 zio->io_bp = (blkptr_t *)bp;
762 zio->io_bp_copy = *bp;
763 zio->io_bp_orig = *bp;
764 if (type != ZIO_TYPE_WRITE ||
765 zio->io_child_type == ZIO_CHILD_DDT)
766 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
767 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
768 zio->io_logical = zio;
769 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
770 pipeline |= ZIO_GANG_STAGES;
771 }
772
773 zio->io_spa = spa;
774 zio->io_txg = txg;
775 zio->io_done = done;
776 zio->io_private = private;
777 zio->io_type = type;
778 zio->io_priority = priority;
779 zio->io_vd = vd;
780 zio->io_offset = offset;
781 zio->io_orig_abd = zio->io_abd = data;
782 zio->io_orig_size = zio->io_size = psize;
783 zio->io_lsize = lsize;
784 zio->io_orig_flags = zio->io_flags = flags;
785 zio->io_orig_stage = zio->io_stage = stage;
786 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
787 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
788
789 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
790 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
791
792 if (zb != NULL)
793 zio->io_bookmark = *zb;
794
795 if (pio != NULL) {
796 if (zio->io_logical == NULL)
797 zio->io_logical = pio->io_logical;
798 if (zio->io_child_type == ZIO_CHILD_GANG)
799 zio->io_gang_leader = pio->io_gang_leader;
800 zio_add_child(pio, zio);
801 }
802
803 taskq_init_ent(&zio->io_tqent);
804
805 return (zio);
806 }
807
808 static void
809 zio_destroy(zio_t *zio)
810 {
811 metaslab_trace_fini(&zio->io_alloc_list);
812 list_destroy(&zio->io_parent_list);
813 list_destroy(&zio->io_child_list);
814 mutex_destroy(&zio->io_lock);
815 cv_destroy(&zio->io_cv);
816 kmem_cache_free(zio_cache, zio);
817 }
818
819 zio_t *
820 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
821 void *private, enum zio_flag flags)
822 {
823 zio_t *zio;
824
825 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
826 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
827 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
828
829 return (zio);
830 }
831
832 zio_t *
833 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
834 {
835 return (zio_null(NULL, spa, NULL, done, private, flags));
836 }
837
838 void
839 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
840 {
841 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
842 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
843 bp, (longlong_t)BP_GET_TYPE(bp));
844 }
845 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
846 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
847 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
848 bp, (longlong_t)BP_GET_CHECKSUM(bp));
849 }
850 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
851 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
852 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
853 bp, (longlong_t)BP_GET_COMPRESS(bp));
854 }
855 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
856 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
857 bp, (longlong_t)BP_GET_LSIZE(bp));
858 }
859 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
860 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
861 bp, (longlong_t)BP_GET_PSIZE(bp));
862 }
863
864 if (BP_IS_EMBEDDED(bp)) {
865 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
866 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
867 bp, (longlong_t)BPE_GET_ETYPE(bp));
868 }
869 }
870
871 /*
872 * Pool-specific checks.
873 *
874 * Note: it would be nice to verify that the blk_birth and
875 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
876 * allows the birth time of log blocks (and dmu_sync()-ed blocks
877 * that are in the log) to be arbitrarily large.
878 */
879 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
880 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
881
882 if (vdevid >= spa->spa_root_vdev->vdev_children) {
883 zfs_panic_recover("blkptr at %p DVA %u has invalid "
884 "VDEV %llu",
885 bp, i, (longlong_t)vdevid);
886 continue;
887 }
888 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
889 if (vd == NULL) {
890 zfs_panic_recover("blkptr at %p DVA %u has invalid "
891 "VDEV %llu",
892 bp, i, (longlong_t)vdevid);
893 continue;
894 }
895 if (vd->vdev_ops == &vdev_hole_ops) {
896 zfs_panic_recover("blkptr at %p DVA %u has hole "
897 "VDEV %llu",
898 bp, i, (longlong_t)vdevid);
899 continue;
900 }
901 if (vd->vdev_ops == &vdev_missing_ops) {
902 /*
903 * "missing" vdevs are valid during import, but we
904 * don't have their detailed info (e.g. asize), so
905 * we can't perform any more checks on them.
906 */
907 continue;
908 }
909 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
910 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
911 if (BP_IS_GANG(bp))
912 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
913 if (offset + asize > vd->vdev_asize) {
914 zfs_panic_recover("blkptr at %p DVA %u has invalid "
915 "OFFSET %llu",
916 bp, i, (longlong_t)offset);
917 }
918 }
919 }
920
921 zio_t *
922 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
923 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
924 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
925 {
926 zio_t *zio;
927
928 zfs_blkptr_verify(spa, bp);
929
930 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
931 data, size, size, done, private,
932 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
933 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
934 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
935
936 return (zio);
937 }
938
939 zio_t *
940 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
941 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
942 zio_done_func_t *ready, zio_done_func_t *children_ready,
943 zio_done_func_t *physdone, zio_done_func_t *done,
944 void *private, zio_priority_t priority, enum zio_flag flags,
945 const zbookmark_phys_t *zb)
946 {
947 zio_t *zio;
948
949 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
950 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
951 zp->zp_compress >= ZIO_COMPRESS_OFF &&
952 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
953 DMU_OT_IS_VALID(zp->zp_type) &&
954 zp->zp_level < 32 &&
955 zp->zp_copies > 0 &&
956 zp->zp_copies <= spa_max_replication(spa));
957
958 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
959 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
960 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
961 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
962
963 zio->io_ready = ready;
964 zio->io_children_ready = children_ready;
965 zio->io_physdone = physdone;
966 zio->io_prop = *zp;
967
968 /*
969 * Data can be NULL if we are going to call zio_write_override() to
970 * provide the already-allocated BP. But we may need the data to
971 * verify a dedup hit (if requested). In this case, don't try to
972 * dedup (just take the already-allocated BP verbatim). Encrypted
973 * dedup blocks need data as well so we also disable dedup in this
974 * case.
975 */
976 if (data == NULL &&
977 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
978 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
979 }
980
981 return (zio);
982 }
983
984 zio_t *
985 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
986 uint64_t size, zio_done_func_t *done, void *private,
987 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
988 {
989 zio_t *zio;
990
991 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
992 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
993 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
994
995 return (zio);
996 }
997
998 void
999 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1000 {
1001 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1002 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1003 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1004 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1005
1006 /*
1007 * We must reset the io_prop to match the values that existed
1008 * when the bp was first written by dmu_sync() keeping in mind
1009 * that nopwrite and dedup are mutually exclusive.
1010 */
1011 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1012 zio->io_prop.zp_nopwrite = nopwrite;
1013 zio->io_prop.zp_copies = copies;
1014 zio->io_bp_override = bp;
1015 }
1016
1017 void
1018 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1019 {
1020
1021 /*
1022 * The check for EMBEDDED is a performance optimization. We
1023 * process the free here (by ignoring it) rather than
1024 * putting it on the list and then processing it in zio_free_sync().
1025 */
1026 if (BP_IS_EMBEDDED(bp))
1027 return;
1028 metaslab_check_free(spa, bp);
1029
1030 /*
1031 * Frees that are for the currently-syncing txg, are not going to be
1032 * deferred, and which will not need to do a read (i.e. not GANG or
1033 * DEDUP), can be processed immediately. Otherwise, put them on the
1034 * in-memory list for later processing.
1035 */
1036 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
1037 txg != spa->spa_syncing_txg ||
1038 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
1039 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1040 } else {
1041 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1042 }
1043 }
1044
1045 zio_t *
1046 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1047 enum zio_flag flags)
1048 {
1049 zio_t *zio;
1050 enum zio_stage stage = ZIO_FREE_PIPELINE;
1051
1052 ASSERT(!BP_IS_HOLE(bp));
1053 ASSERT(spa_syncing_txg(spa) == txg);
1054 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
1055
1056 if (BP_IS_EMBEDDED(bp))
1057 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1058
1059 metaslab_check_free(spa, bp);
1060 arc_freed(spa, bp);
1061 dsl_scan_freed(spa, bp);
1062
1063 /*
1064 * GANG and DEDUP blocks can induce a read (for the gang block header,
1065 * or the DDT), so issue them asynchronously so that this thread is
1066 * not tied up.
1067 */
1068 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1069 stage |= ZIO_STAGE_ISSUE_ASYNC;
1070
1071 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1072 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1073 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1074
1075 return (zio);
1076 }
1077
1078 zio_t *
1079 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1080 zio_done_func_t *done, void *private, enum zio_flag flags)
1081 {
1082 zio_t *zio;
1083
1084 dprintf_bp(bp, "claiming in txg %llu", txg);
1085
1086 if (BP_IS_EMBEDDED(bp))
1087 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1088
1089 /*
1090 * A claim is an allocation of a specific block. Claims are needed
1091 * to support immediate writes in the intent log. The issue is that
1092 * immediate writes contain committed data, but in a txg that was
1093 * *not* committed. Upon opening the pool after an unclean shutdown,
1094 * the intent log claims all blocks that contain immediate write data
1095 * so that the SPA knows they're in use.
1096 *
1097 * All claims *must* be resolved in the first txg -- before the SPA
1098 * starts allocating blocks -- so that nothing is allocated twice.
1099 * If txg == 0 we just verify that the block is claimable.
1100 */
1101 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
1102 ASSERT(txg == spa_first_txg(spa) || txg == 0);
1103 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
1104
1105 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1106 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1107 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1108 ASSERT0(zio->io_queued_timestamp);
1109
1110 return (zio);
1111 }
1112
1113 zio_t *
1114 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1115 zio_done_func_t *done, void *private, enum zio_flag flags)
1116 {
1117 zio_t *zio;
1118 int c;
1119
1120 if (vd->vdev_children == 0) {
1121 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1122 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1123 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1124
1125 zio->io_cmd = cmd;
1126 } else {
1127 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1128
1129 for (c = 0; c < vd->vdev_children; c++)
1130 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1131 done, private, flags));
1132 }
1133
1134 return (zio);
1135 }
1136
1137 zio_t *
1138 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1139 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1140 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1141 {
1142 zio_t *zio;
1143
1144 ASSERT(vd->vdev_children == 0);
1145 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1146 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1147 ASSERT3U(offset + size, <=, vd->vdev_psize);
1148
1149 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1150 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1151 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1152
1153 zio->io_prop.zp_checksum = checksum;
1154
1155 return (zio);
1156 }
1157
1158 zio_t *
1159 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1160 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1161 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1162 {
1163 zio_t *zio;
1164
1165 ASSERT(vd->vdev_children == 0);
1166 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1167 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1168 ASSERT3U(offset + size, <=, vd->vdev_psize);
1169
1170 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1171 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1172 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1173
1174 zio->io_prop.zp_checksum = checksum;
1175
1176 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1177 /*
1178 * zec checksums are necessarily destructive -- they modify
1179 * the end of the write buffer to hold the verifier/checksum.
1180 * Therefore, we must make a local copy in case the data is
1181 * being written to multiple places in parallel.
1182 */
1183 abd_t *wbuf = abd_alloc_sametype(data, size);
1184 abd_copy(wbuf, data, size);
1185
1186 zio_push_transform(zio, wbuf, size, size, NULL);
1187 }
1188
1189 return (zio);
1190 }
1191
1192 /*
1193 * Create a child I/O to do some work for us.
1194 */
1195 zio_t *
1196 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1197 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1198 enum zio_flag flags, zio_done_func_t *done, void *private)
1199 {
1200 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1201 zio_t *zio;
1202
1203 ASSERT(vd->vdev_parent ==
1204 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1205
1206 if (type == ZIO_TYPE_READ && bp != NULL) {
1207 /*
1208 * If we have the bp, then the child should perform the
1209 * checksum and the parent need not. This pushes error
1210 * detection as close to the leaves as possible and
1211 * eliminates redundant checksums in the interior nodes.
1212 */
1213 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1214 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1215 }
1216
1217 if (vd->vdev_children == 0)
1218 offset += VDEV_LABEL_START_SIZE;
1219
1220 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1221
1222 /*
1223 * If we've decided to do a repair, the write is not speculative --
1224 * even if the original read was.
1225 */
1226 if (flags & ZIO_FLAG_IO_REPAIR)
1227 flags &= ~ZIO_FLAG_SPECULATIVE;
1228
1229 /*
1230 * If we're creating a child I/O that is not associated with a
1231 * top-level vdev, then the child zio is not an allocating I/O.
1232 * If this is a retried I/O then we ignore it since we will
1233 * have already processed the original allocating I/O.
1234 */
1235 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1236 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1237 ASSERTV(metaslab_class_t *mc = spa_normal_class(pio->io_spa));
1238
1239 ASSERT(mc->mc_alloc_throttle_enabled);
1240 ASSERT(type == ZIO_TYPE_WRITE);
1241 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1242 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1243 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1244 pio->io_child_type == ZIO_CHILD_GANG);
1245
1246 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1247 }
1248
1249
1250 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1251 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1252 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1253 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1254
1255 zio->io_physdone = pio->io_physdone;
1256 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1257 zio->io_logical->io_phys_children++;
1258
1259 return (zio);
1260 }
1261
1262 zio_t *
1263 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1264 int type, zio_priority_t priority, enum zio_flag flags,
1265 zio_done_func_t *done, void *private)
1266 {
1267 zio_t *zio;
1268
1269 ASSERT(vd->vdev_ops->vdev_op_leaf);
1270
1271 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1272 data, size, size, done, private, type, priority,
1273 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1274 vd, offset, NULL,
1275 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1276
1277 return (zio);
1278 }
1279
1280 void
1281 zio_flush(zio_t *zio, vdev_t *vd)
1282 {
1283 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1284 NULL, NULL,
1285 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1286 }
1287
1288 void
1289 zio_shrink(zio_t *zio, uint64_t size)
1290 {
1291 ASSERT3P(zio->io_executor, ==, NULL);
1292 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1293 ASSERT3U(size, <=, zio->io_size);
1294
1295 /*
1296 * We don't shrink for raidz because of problems with the
1297 * reconstruction when reading back less than the block size.
1298 * Note, BP_IS_RAIDZ() assumes no compression.
1299 */
1300 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1301 if (!BP_IS_RAIDZ(zio->io_bp)) {
1302 /* we are not doing a raw write */
1303 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1304 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1305 }
1306 }
1307
1308 /*
1309 * ==========================================================================
1310 * Prepare to read and write logical blocks
1311 * ==========================================================================
1312 */
1313
1314 static int
1315 zio_read_bp_init(zio_t *zio)
1316 {
1317 blkptr_t *bp = zio->io_bp;
1318 uint64_t psize =
1319 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1320
1321 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1322 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1323 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1324 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1325 psize, psize, zio_decompress);
1326 }
1327
1328 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1329 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1330 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1331 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1332 psize, psize, zio_decrypt);
1333 }
1334
1335 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1336 int psize = BPE_GET_PSIZE(bp);
1337 void *data = abd_borrow_buf(zio->io_abd, psize);
1338
1339 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1340 decode_embedded_bp_compressed(bp, data);
1341 abd_return_buf_copy(zio->io_abd, data, psize);
1342 } else {
1343 ASSERT(!BP_IS_EMBEDDED(bp));
1344 }
1345
1346 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1347 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1348
1349 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1350 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1351
1352 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1353 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1354
1355 return (ZIO_PIPELINE_CONTINUE);
1356 }
1357
1358 static int
1359 zio_write_bp_init(zio_t *zio)
1360 {
1361 if (!IO_IS_ALLOCATING(zio))
1362 return (ZIO_PIPELINE_CONTINUE);
1363
1364 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1365
1366 if (zio->io_bp_override) {
1367 blkptr_t *bp = zio->io_bp;
1368 zio_prop_t *zp = &zio->io_prop;
1369
1370 ASSERT(bp->blk_birth != zio->io_txg);
1371 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1372
1373 *bp = *zio->io_bp_override;
1374 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1375
1376 if (BP_IS_EMBEDDED(bp))
1377 return (ZIO_PIPELINE_CONTINUE);
1378
1379 /*
1380 * If we've been overridden and nopwrite is set then
1381 * set the flag accordingly to indicate that a nopwrite
1382 * has already occurred.
1383 */
1384 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1385 ASSERT(!zp->zp_dedup);
1386 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1387 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1388 return (ZIO_PIPELINE_CONTINUE);
1389 }
1390
1391 ASSERT(!zp->zp_nopwrite);
1392
1393 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1394 return (ZIO_PIPELINE_CONTINUE);
1395
1396 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1397 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1398
1399 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1400 !zp->zp_encrypt) {
1401 BP_SET_DEDUP(bp, 1);
1402 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1403 return (ZIO_PIPELINE_CONTINUE);
1404 }
1405
1406 /*
1407 * We were unable to handle this as an override bp, treat
1408 * it as a regular write I/O.
1409 */
1410 zio->io_bp_override = NULL;
1411 *bp = zio->io_bp_orig;
1412 zio->io_pipeline = zio->io_orig_pipeline;
1413 }
1414
1415 return (ZIO_PIPELINE_CONTINUE);
1416 }
1417
1418 static int
1419 zio_write_compress(zio_t *zio)
1420 {
1421 spa_t *spa = zio->io_spa;
1422 zio_prop_t *zp = &zio->io_prop;
1423 enum zio_compress compress = zp->zp_compress;
1424 blkptr_t *bp = zio->io_bp;
1425 uint64_t lsize = zio->io_lsize;
1426 uint64_t psize = zio->io_size;
1427 int pass = 1;
1428
1429 /*
1430 * If our children haven't all reached the ready stage,
1431 * wait for them and then repeat this pipeline stage.
1432 */
1433 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1434 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1435 return (ZIO_PIPELINE_STOP);
1436 }
1437
1438 if (!IO_IS_ALLOCATING(zio))
1439 return (ZIO_PIPELINE_CONTINUE);
1440
1441 if (zio->io_children_ready != NULL) {
1442 /*
1443 * Now that all our children are ready, run the callback
1444 * associated with this zio in case it wants to modify the
1445 * data to be written.
1446 */
1447 ASSERT3U(zp->zp_level, >, 0);
1448 zio->io_children_ready(zio);
1449 }
1450
1451 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1452 ASSERT(zio->io_bp_override == NULL);
1453
1454 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1455 /*
1456 * We're rewriting an existing block, which means we're
1457 * working on behalf of spa_sync(). For spa_sync() to
1458 * converge, it must eventually be the case that we don't
1459 * have to allocate new blocks. But compression changes
1460 * the blocksize, which forces a reallocate, and makes
1461 * convergence take longer. Therefore, after the first
1462 * few passes, stop compressing to ensure convergence.
1463 */
1464 pass = spa_sync_pass(spa);
1465
1466 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1467 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1468 ASSERT(!BP_GET_DEDUP(bp));
1469
1470 if (pass >= zfs_sync_pass_dont_compress)
1471 compress = ZIO_COMPRESS_OFF;
1472
1473 /* Make sure someone doesn't change their mind on overwrites */
1474 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1475 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1476 }
1477
1478 /* If it's a compressed write that is not raw, compress the buffer. */
1479 if (compress != ZIO_COMPRESS_OFF &&
1480 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1481 void *cbuf = zio_buf_alloc(lsize);
1482 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1483 if (psize == 0 || psize == lsize) {
1484 compress = ZIO_COMPRESS_OFF;
1485 zio_buf_free(cbuf, lsize);
1486 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1487 psize <= BPE_PAYLOAD_SIZE &&
1488 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1489 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1490 encode_embedded_bp_compressed(bp,
1491 cbuf, compress, lsize, psize);
1492 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1493 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1494 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1495 zio_buf_free(cbuf, lsize);
1496 bp->blk_birth = zio->io_txg;
1497 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1498 ASSERT(spa_feature_is_active(spa,
1499 SPA_FEATURE_EMBEDDED_DATA));
1500 return (ZIO_PIPELINE_CONTINUE);
1501 } else {
1502 /*
1503 * Round up compressed size up to the ashift
1504 * of the smallest-ashift device, and zero the tail.
1505 * This ensures that the compressed size of the BP
1506 * (and thus compressratio property) are correct,
1507 * in that we charge for the padding used to fill out
1508 * the last sector.
1509 */
1510 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1511 size_t rounded = (size_t)P2ROUNDUP(psize,
1512 1ULL << spa->spa_min_ashift);
1513 if (rounded >= lsize) {
1514 compress = ZIO_COMPRESS_OFF;
1515 zio_buf_free(cbuf, lsize);
1516 psize = lsize;
1517 } else {
1518 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1519 abd_take_ownership_of_buf(cdata, B_TRUE);
1520 abd_zero_off(cdata, psize, rounded - psize);
1521 psize = rounded;
1522 zio_push_transform(zio, cdata,
1523 psize, lsize, NULL);
1524 }
1525 }
1526
1527 /*
1528 * We were unable to handle this as an override bp, treat
1529 * it as a regular write I/O.
1530 */
1531 zio->io_bp_override = NULL;
1532 *bp = zio->io_bp_orig;
1533 zio->io_pipeline = zio->io_orig_pipeline;
1534
1535 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1536 zp->zp_type == DMU_OT_DNODE) {
1537 /*
1538 * The DMU actually relies on the zio layer's compression
1539 * to free metadnode blocks that have had all contained
1540 * dnodes freed. As a result, even when doing a raw
1541 * receive, we must check whether the block can be compressed
1542 * to a hole.
1543 */
1544 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1545 zio->io_abd, NULL, lsize);
1546 if (psize == 0)
1547 compress = ZIO_COMPRESS_OFF;
1548 } else {
1549 ASSERT3U(psize, !=, 0);
1550 }
1551
1552 /*
1553 * The final pass of spa_sync() must be all rewrites, but the first
1554 * few passes offer a trade-off: allocating blocks defers convergence,
1555 * but newly allocated blocks are sequential, so they can be written
1556 * to disk faster. Therefore, we allow the first few passes of
1557 * spa_sync() to allocate new blocks, but force rewrites after that.
1558 * There should only be a handful of blocks after pass 1 in any case.
1559 */
1560 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1561 BP_GET_PSIZE(bp) == psize &&
1562 pass >= zfs_sync_pass_rewrite) {
1563 ASSERT(psize != 0);
1564 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1565 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1566 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1567 } else {
1568 BP_ZERO(bp);
1569 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1570 }
1571
1572 if (psize == 0) {
1573 if (zio->io_bp_orig.blk_birth != 0 &&
1574 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1575 BP_SET_LSIZE(bp, lsize);
1576 BP_SET_TYPE(bp, zp->zp_type);
1577 BP_SET_LEVEL(bp, zp->zp_level);
1578 BP_SET_BIRTH(bp, zio->io_txg, 0);
1579 }
1580 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1581 } else {
1582 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1583 BP_SET_LSIZE(bp, lsize);
1584 BP_SET_TYPE(bp, zp->zp_type);
1585 BP_SET_LEVEL(bp, zp->zp_level);
1586 BP_SET_PSIZE(bp, psize);
1587 BP_SET_COMPRESS(bp, compress);
1588 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1589 BP_SET_DEDUP(bp, zp->zp_dedup);
1590 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1591 if (zp->zp_dedup) {
1592 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1593 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1594 ASSERT(!zp->zp_encrypt ||
1595 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1596 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1597 }
1598 if (zp->zp_nopwrite) {
1599 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1600 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1601 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1602 }
1603 }
1604 return (ZIO_PIPELINE_CONTINUE);
1605 }
1606
1607 static int
1608 zio_free_bp_init(zio_t *zio)
1609 {
1610 blkptr_t *bp = zio->io_bp;
1611
1612 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1613 if (BP_GET_DEDUP(bp))
1614 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1615 }
1616
1617 return (ZIO_PIPELINE_CONTINUE);
1618 }
1619
1620 /*
1621 * ==========================================================================
1622 * Execute the I/O pipeline
1623 * ==========================================================================
1624 */
1625
1626 static void
1627 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1628 {
1629 spa_t *spa = zio->io_spa;
1630 zio_type_t t = zio->io_type;
1631 int flags = (cutinline ? TQ_FRONT : 0);
1632
1633 /*
1634 * If we're a config writer or a probe, the normal issue and
1635 * interrupt threads may all be blocked waiting for the config lock.
1636 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1637 */
1638 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1639 t = ZIO_TYPE_NULL;
1640
1641 /*
1642 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1643 */
1644 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1645 t = ZIO_TYPE_NULL;
1646
1647 /*
1648 * If this is a high priority I/O, then use the high priority taskq if
1649 * available.
1650 */
1651 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1652 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1653 q++;
1654
1655 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1656
1657 /*
1658 * NB: We are assuming that the zio can only be dispatched
1659 * to a single taskq at a time. It would be a grievous error
1660 * to dispatch the zio to another taskq at the same time.
1661 */
1662 ASSERT(taskq_empty_ent(&zio->io_tqent));
1663 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1664 flags, &zio->io_tqent);
1665 }
1666
1667 static boolean_t
1668 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1669 {
1670 kthread_t *executor = zio->io_executor;
1671 spa_t *spa = zio->io_spa;
1672
1673 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1674 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1675 uint_t i;
1676 for (i = 0; i < tqs->stqs_count; i++) {
1677 if (taskq_member(tqs->stqs_taskq[i], executor))
1678 return (B_TRUE);
1679 }
1680 }
1681
1682 return (B_FALSE);
1683 }
1684
1685 static int
1686 zio_issue_async(zio_t *zio)
1687 {
1688 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1689
1690 return (ZIO_PIPELINE_STOP);
1691 }
1692
1693 void
1694 zio_interrupt(zio_t *zio)
1695 {
1696 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1697 }
1698
1699 void
1700 zio_delay_interrupt(zio_t *zio)
1701 {
1702 /*
1703 * The timeout_generic() function isn't defined in userspace, so
1704 * rather than trying to implement the function, the zio delay
1705 * functionality has been disabled for userspace builds.
1706 */
1707
1708 #ifdef _KERNEL
1709 /*
1710 * If io_target_timestamp is zero, then no delay has been registered
1711 * for this IO, thus jump to the end of this function and "skip" the
1712 * delay; issuing it directly to the zio layer.
1713 */
1714 if (zio->io_target_timestamp != 0) {
1715 hrtime_t now = gethrtime();
1716
1717 if (now >= zio->io_target_timestamp) {
1718 /*
1719 * This IO has already taken longer than the target
1720 * delay to complete, so we don't want to delay it
1721 * any longer; we "miss" the delay and issue it
1722 * directly to the zio layer. This is likely due to
1723 * the target latency being set to a value less than
1724 * the underlying hardware can satisfy (e.g. delay
1725 * set to 1ms, but the disks take 10ms to complete an
1726 * IO request).
1727 */
1728
1729 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1730 hrtime_t, now);
1731
1732 zio_interrupt(zio);
1733 } else {
1734 taskqid_t tid;
1735 hrtime_t diff = zio->io_target_timestamp - now;
1736 clock_t expire_at_tick = ddi_get_lbolt() +
1737 NSEC_TO_TICK(diff);
1738
1739 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1740 hrtime_t, now, hrtime_t, diff);
1741
1742 if (NSEC_TO_TICK(diff) == 0) {
1743 /* Our delay is less than a jiffy - just spin */
1744 zfs_sleep_until(zio->io_target_timestamp);
1745 } else {
1746 /*
1747 * Use taskq_dispatch_delay() in the place of
1748 * OpenZFS's timeout_generic().
1749 */
1750 tid = taskq_dispatch_delay(system_taskq,
1751 (task_func_t *)zio_interrupt,
1752 zio, TQ_NOSLEEP, expire_at_tick);
1753 if (tid == TASKQID_INVALID) {
1754 /*
1755 * Couldn't allocate a task. Just
1756 * finish the zio without a delay.
1757 */
1758 zio_interrupt(zio);
1759 }
1760 }
1761 }
1762 return;
1763 }
1764 #endif
1765 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1766 zio_interrupt(zio);
1767 }
1768
1769 static void
1770 zio_deadman_impl(zio_t *pio)
1771 {
1772 zio_t *cio, *cio_next;
1773 zio_link_t *zl = NULL;
1774 vdev_t *vd = pio->io_vd;
1775
1776 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
1777 vdev_queue_t *vq = &vd->vdev_queue;
1778 zbookmark_phys_t *zb = &pio->io_bookmark;
1779 uint64_t delta = gethrtime() - pio->io_timestamp;
1780 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
1781
1782 zfs_dbgmsg("slow zio: zio=%p timestamp=%llu "
1783 "delta=%llu queued=%llu io=%llu "
1784 "path=%s last=%llu "
1785 "type=%d priority=%d flags=0x%x "
1786 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
1787 "objset=%llu object=%llu level=%llu blkid=%llu "
1788 "offset=%llu size=%llu error=%d",
1789 pio, pio->io_timestamp,
1790 delta, pio->io_delta, pio->io_delay,
1791 vd->vdev_path, vq->vq_io_complete_ts,
1792 pio->io_type, pio->io_priority, pio->io_flags,
1793 pio->io_state, pio->io_pipeline, pio->io_pipeline_trace,
1794 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1795 pio->io_offset, pio->io_size, pio->io_error);
1796 zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
1797 pio->io_spa, vd, zb, pio, 0, 0);
1798
1799 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
1800 taskq_empty_ent(&pio->io_tqent)) {
1801 zio_interrupt(pio);
1802 }
1803 }
1804
1805 mutex_enter(&pio->io_lock);
1806 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1807 cio_next = zio_walk_children(pio, &zl);
1808 zio_deadman_impl(cio);
1809 }
1810 mutex_exit(&pio->io_lock);
1811 }
1812
1813 /*
1814 * Log the critical information describing this zio and all of its children
1815 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
1816 */
1817 void
1818 zio_deadman(zio_t *pio, char *tag)
1819 {
1820 spa_t *spa = pio->io_spa;
1821 char *name = spa_name(spa);
1822
1823 if (!zfs_deadman_enabled || spa_suspended(spa))
1824 return;
1825
1826 zio_deadman_impl(pio);
1827
1828 switch (spa_get_deadman_failmode(spa)) {
1829 case ZIO_FAILURE_MODE_WAIT:
1830 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
1831 break;
1832
1833 case ZIO_FAILURE_MODE_CONTINUE:
1834 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
1835 break;
1836
1837 case ZIO_FAILURE_MODE_PANIC:
1838 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
1839 break;
1840 }
1841 }
1842
1843 /*
1844 * Execute the I/O pipeline until one of the following occurs:
1845 * (1) the I/O completes; (2) the pipeline stalls waiting for
1846 * dependent child I/Os; (3) the I/O issues, so we're waiting
1847 * for an I/O completion interrupt; (4) the I/O is delegated by
1848 * vdev-level caching or aggregation; (5) the I/O is deferred
1849 * due to vdev-level queueing; (6) the I/O is handed off to
1850 * another thread. In all cases, the pipeline stops whenever
1851 * there's no CPU work; it never burns a thread in cv_wait_io().
1852 *
1853 * There's no locking on io_stage because there's no legitimate way
1854 * for multiple threads to be attempting to process the same I/O.
1855 */
1856 static zio_pipe_stage_t *zio_pipeline[];
1857
1858 /*
1859 * zio_execute() is a wrapper around the static function
1860 * __zio_execute() so that we can force __zio_execute() to be
1861 * inlined. This reduces stack overhead which is important
1862 * because __zio_execute() is called recursively in several zio
1863 * code paths. zio_execute() itself cannot be inlined because
1864 * it is externally visible.
1865 */
1866 void
1867 zio_execute(zio_t *zio)
1868 {
1869 fstrans_cookie_t cookie;
1870
1871 cookie = spl_fstrans_mark();
1872 __zio_execute(zio);
1873 spl_fstrans_unmark(cookie);
1874 }
1875
1876 /*
1877 * Used to determine if in the current context the stack is sized large
1878 * enough to allow zio_execute() to be called recursively. A minimum
1879 * stack size of 16K is required to avoid needing to re-dispatch the zio.
1880 */
1881 boolean_t
1882 zio_execute_stack_check(zio_t *zio)
1883 {
1884 #if !defined(HAVE_LARGE_STACKS)
1885 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
1886
1887 /* Executing in txg_sync_thread() context. */
1888 if (dp && curthread == dp->dp_tx.tx_sync_thread)
1889 return (B_TRUE);
1890
1891 /* Pool initialization outside of zio_taskq context. */
1892 if (dp && spa_is_initializing(dp->dp_spa) &&
1893 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
1894 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
1895 return (B_TRUE);
1896 #endif /* HAVE_LARGE_STACKS */
1897
1898 return (B_FALSE);
1899 }
1900
1901 __attribute__((always_inline))
1902 static inline void
1903 __zio_execute(zio_t *zio)
1904 {
1905 zio->io_executor = curthread;
1906
1907 ASSERT3U(zio->io_queued_timestamp, >, 0);
1908
1909 while (zio->io_stage < ZIO_STAGE_DONE) {
1910 enum zio_stage pipeline = zio->io_pipeline;
1911 enum zio_stage stage = zio->io_stage;
1912 int rv;
1913
1914 ASSERT(!MUTEX_HELD(&zio->io_lock));
1915 ASSERT(ISP2(stage));
1916 ASSERT(zio->io_stall == NULL);
1917
1918 do {
1919 stage <<= 1;
1920 } while ((stage & pipeline) == 0);
1921
1922 ASSERT(stage <= ZIO_STAGE_DONE);
1923
1924 /*
1925 * If we are in interrupt context and this pipeline stage
1926 * will grab a config lock that is held across I/O,
1927 * or may wait for an I/O that needs an interrupt thread
1928 * to complete, issue async to avoid deadlock.
1929 *
1930 * For VDEV_IO_START, we cut in line so that the io will
1931 * be sent to disk promptly.
1932 */
1933 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1934 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1935 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1936 zio_requeue_io_start_cut_in_line : B_FALSE;
1937 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1938 return;
1939 }
1940
1941 /*
1942 * If the current context doesn't have large enough stacks
1943 * the zio must be issued asynchronously to prevent overflow.
1944 */
1945 if (zio_execute_stack_check(zio)) {
1946 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1947 zio_requeue_io_start_cut_in_line : B_FALSE;
1948 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1949 return;
1950 }
1951
1952 zio->io_stage = stage;
1953 zio->io_pipeline_trace |= zio->io_stage;
1954 rv = zio_pipeline[highbit64(stage) - 1](zio);
1955
1956 if (rv == ZIO_PIPELINE_STOP)
1957 return;
1958
1959 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1960 }
1961 }
1962
1963
1964 /*
1965 * ==========================================================================
1966 * Initiate I/O, either sync or async
1967 * ==========================================================================
1968 */
1969 int
1970 zio_wait(zio_t *zio)
1971 {
1972 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
1973 int error;
1974
1975 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
1976 ASSERT3P(zio->io_executor, ==, NULL);
1977
1978 zio->io_waiter = curthread;
1979 ASSERT0(zio->io_queued_timestamp);
1980 zio->io_queued_timestamp = gethrtime();
1981
1982 __zio_execute(zio);
1983
1984 mutex_enter(&zio->io_lock);
1985 while (zio->io_executor != NULL) {
1986 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
1987 ddi_get_lbolt() + timeout);
1988
1989 if (zfs_deadman_enabled && error == -1 &&
1990 gethrtime() - zio->io_queued_timestamp >
1991 spa_deadman_ziotime(zio->io_spa)) {
1992 mutex_exit(&zio->io_lock);
1993 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
1994 zio_deadman(zio, FTAG);
1995 mutex_enter(&zio->io_lock);
1996 }
1997 }
1998 mutex_exit(&zio->io_lock);
1999
2000 error = zio->io_error;
2001 zio_destroy(zio);
2002
2003 return (error);
2004 }
2005
2006 void
2007 zio_nowait(zio_t *zio)
2008 {
2009 ASSERT3P(zio->io_executor, ==, NULL);
2010
2011 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2012 zio_unique_parent(zio) == NULL) {
2013 zio_t *pio;
2014
2015 /*
2016 * This is a logical async I/O with no parent to wait for it.
2017 * We add it to the spa_async_root_zio "Godfather" I/O which
2018 * will ensure they complete prior to unloading the pool.
2019 */
2020 spa_t *spa = zio->io_spa;
2021 kpreempt_disable();
2022 pio = spa->spa_async_zio_root[CPU_SEQID];
2023 kpreempt_enable();
2024
2025 zio_add_child(pio, zio);
2026 }
2027
2028 ASSERT0(zio->io_queued_timestamp);
2029 zio->io_queued_timestamp = gethrtime();
2030 __zio_execute(zio);
2031 }
2032
2033 /*
2034 * ==========================================================================
2035 * Reexecute, cancel, or suspend/resume failed I/O
2036 * ==========================================================================
2037 */
2038
2039 static void
2040 zio_reexecute(zio_t *pio)
2041 {
2042 zio_t *cio, *cio_next;
2043
2044 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2045 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2046 ASSERT(pio->io_gang_leader == NULL);
2047 ASSERT(pio->io_gang_tree == NULL);
2048
2049 pio->io_flags = pio->io_orig_flags;
2050 pio->io_stage = pio->io_orig_stage;
2051 pio->io_pipeline = pio->io_orig_pipeline;
2052 pio->io_reexecute = 0;
2053 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2054 pio->io_pipeline_trace = 0;
2055 pio->io_error = 0;
2056 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2057 pio->io_state[w] = 0;
2058 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2059 pio->io_child_error[c] = 0;
2060
2061 if (IO_IS_ALLOCATING(pio))
2062 BP_ZERO(pio->io_bp);
2063
2064 /*
2065 * As we reexecute pio's children, new children could be created.
2066 * New children go to the head of pio's io_child_list, however,
2067 * so we will (correctly) not reexecute them. The key is that
2068 * the remainder of pio's io_child_list, from 'cio_next' onward,
2069 * cannot be affected by any side effects of reexecuting 'cio'.
2070 */
2071 zio_link_t *zl = NULL;
2072 mutex_enter(&pio->io_lock);
2073 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2074 cio_next = zio_walk_children(pio, &zl);
2075 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2076 pio->io_children[cio->io_child_type][w]++;
2077 mutex_exit(&pio->io_lock);
2078 zio_reexecute(cio);
2079 mutex_enter(&pio->io_lock);
2080 }
2081 mutex_exit(&pio->io_lock);
2082
2083 /*
2084 * Now that all children have been reexecuted, execute the parent.
2085 * We don't reexecute "The Godfather" I/O here as it's the
2086 * responsibility of the caller to wait on it.
2087 */
2088 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2089 pio->io_queued_timestamp = gethrtime();
2090 __zio_execute(pio);
2091 }
2092 }
2093
2094 void
2095 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2096 {
2097 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2098 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2099 "failure and the failure mode property for this pool "
2100 "is set to panic.", spa_name(spa));
2101
2102 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2103 "failure and has been suspended.\n", spa_name(spa));
2104
2105 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2106 NULL, NULL, 0, 0);
2107
2108 mutex_enter(&spa->spa_suspend_lock);
2109
2110 if (spa->spa_suspend_zio_root == NULL)
2111 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2112 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2113 ZIO_FLAG_GODFATHER);
2114
2115 spa->spa_suspended = reason;
2116
2117 if (zio != NULL) {
2118 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2119 ASSERT(zio != spa->spa_suspend_zio_root);
2120 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2121 ASSERT(zio_unique_parent(zio) == NULL);
2122 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2123 zio_add_child(spa->spa_suspend_zio_root, zio);
2124 }
2125
2126 mutex_exit(&spa->spa_suspend_lock);
2127 }
2128
2129 int
2130 zio_resume(spa_t *spa)
2131 {
2132 zio_t *pio;
2133
2134 /*
2135 * Reexecute all previously suspended i/o.
2136 */
2137 mutex_enter(&spa->spa_suspend_lock);
2138 spa->spa_suspended = ZIO_SUSPEND_NONE;
2139 cv_broadcast(&spa->spa_suspend_cv);
2140 pio = spa->spa_suspend_zio_root;
2141 spa->spa_suspend_zio_root = NULL;
2142 mutex_exit(&spa->spa_suspend_lock);
2143
2144 if (pio == NULL)
2145 return (0);
2146
2147 zio_reexecute(pio);
2148 return (zio_wait(pio));
2149 }
2150
2151 void
2152 zio_resume_wait(spa_t *spa)
2153 {
2154 mutex_enter(&spa->spa_suspend_lock);
2155 while (spa_suspended(spa))
2156 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2157 mutex_exit(&spa->spa_suspend_lock);
2158 }
2159
2160 /*
2161 * ==========================================================================
2162 * Gang blocks.
2163 *
2164 * A gang block is a collection of small blocks that looks to the DMU
2165 * like one large block. When zio_dva_allocate() cannot find a block
2166 * of the requested size, due to either severe fragmentation or the pool
2167 * being nearly full, it calls zio_write_gang_block() to construct the
2168 * block from smaller fragments.
2169 *
2170 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2171 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2172 * an indirect block: it's an array of block pointers. It consumes
2173 * only one sector and hence is allocatable regardless of fragmentation.
2174 * The gang header's bps point to its gang members, which hold the data.
2175 *
2176 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2177 * as the verifier to ensure uniqueness of the SHA256 checksum.
2178 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2179 * not the gang header. This ensures that data block signatures (needed for
2180 * deduplication) are independent of how the block is physically stored.
2181 *
2182 * Gang blocks can be nested: a gang member may itself be a gang block.
2183 * Thus every gang block is a tree in which root and all interior nodes are
2184 * gang headers, and the leaves are normal blocks that contain user data.
2185 * The root of the gang tree is called the gang leader.
2186 *
2187 * To perform any operation (read, rewrite, free, claim) on a gang block,
2188 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2189 * in the io_gang_tree field of the original logical i/o by recursively
2190 * reading the gang leader and all gang headers below it. This yields
2191 * an in-core tree containing the contents of every gang header and the
2192 * bps for every constituent of the gang block.
2193 *
2194 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2195 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2196 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2197 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2198 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2199 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2200 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2201 * of the gang header plus zio_checksum_compute() of the data to update the
2202 * gang header's blk_cksum as described above.
2203 *
2204 * The two-phase assemble/issue model solves the problem of partial failure --
2205 * what if you'd freed part of a gang block but then couldn't read the
2206 * gang header for another part? Assembling the entire gang tree first
2207 * ensures that all the necessary gang header I/O has succeeded before
2208 * starting the actual work of free, claim, or write. Once the gang tree
2209 * is assembled, free and claim are in-memory operations that cannot fail.
2210 *
2211 * In the event that a gang write fails, zio_dva_unallocate() walks the
2212 * gang tree to immediately free (i.e. insert back into the space map)
2213 * everything we've allocated. This ensures that we don't get ENOSPC
2214 * errors during repeated suspend/resume cycles due to a flaky device.
2215 *
2216 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2217 * the gang tree, we won't modify the block, so we can safely defer the free
2218 * (knowing that the block is still intact). If we *can* assemble the gang
2219 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2220 * each constituent bp and we can allocate a new block on the next sync pass.
2221 *
2222 * In all cases, the gang tree allows complete recovery from partial failure.
2223 * ==========================================================================
2224 */
2225
2226 static void
2227 zio_gang_issue_func_done(zio_t *zio)
2228 {
2229 abd_put(zio->io_abd);
2230 }
2231
2232 static zio_t *
2233 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2234 uint64_t offset)
2235 {
2236 if (gn != NULL)
2237 return (pio);
2238
2239 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2240 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2241 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2242 &pio->io_bookmark));
2243 }
2244
2245 static zio_t *
2246 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2247 uint64_t offset)
2248 {
2249 zio_t *zio;
2250
2251 if (gn != NULL) {
2252 abd_t *gbh_abd =
2253 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2254 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2255 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2256 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2257 &pio->io_bookmark);
2258 /*
2259 * As we rewrite each gang header, the pipeline will compute
2260 * a new gang block header checksum for it; but no one will
2261 * compute a new data checksum, so we do that here. The one
2262 * exception is the gang leader: the pipeline already computed
2263 * its data checksum because that stage precedes gang assembly.
2264 * (Presently, nothing actually uses interior data checksums;
2265 * this is just good hygiene.)
2266 */
2267 if (gn != pio->io_gang_leader->io_gang_tree) {
2268 abd_t *buf = abd_get_offset(data, offset);
2269
2270 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2271 buf, BP_GET_PSIZE(bp));
2272
2273 abd_put(buf);
2274 }
2275 /*
2276 * If we are here to damage data for testing purposes,
2277 * leave the GBH alone so that we can detect the damage.
2278 */
2279 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2280 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2281 } else {
2282 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2283 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2284 zio_gang_issue_func_done, NULL, pio->io_priority,
2285 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2286 }
2287
2288 return (zio);
2289 }
2290
2291 /* ARGSUSED */
2292 static zio_t *
2293 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2294 uint64_t offset)
2295 {
2296 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2297 ZIO_GANG_CHILD_FLAGS(pio)));
2298 }
2299
2300 /* ARGSUSED */
2301 static zio_t *
2302 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2303 uint64_t offset)
2304 {
2305 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2306 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2307 }
2308
2309 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2310 NULL,
2311 zio_read_gang,
2312 zio_rewrite_gang,
2313 zio_free_gang,
2314 zio_claim_gang,
2315 NULL
2316 };
2317
2318 static void zio_gang_tree_assemble_done(zio_t *zio);
2319
2320 static zio_gang_node_t *
2321 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2322 {
2323 zio_gang_node_t *gn;
2324
2325 ASSERT(*gnpp == NULL);
2326
2327 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2328 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2329 *gnpp = gn;
2330
2331 return (gn);
2332 }
2333
2334 static void
2335 zio_gang_node_free(zio_gang_node_t **gnpp)
2336 {
2337 zio_gang_node_t *gn = *gnpp;
2338
2339 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2340 ASSERT(gn->gn_child[g] == NULL);
2341
2342 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2343 kmem_free(gn, sizeof (*gn));
2344 *gnpp = NULL;
2345 }
2346
2347 static void
2348 zio_gang_tree_free(zio_gang_node_t **gnpp)
2349 {
2350 zio_gang_node_t *gn = *gnpp;
2351
2352 if (gn == NULL)
2353 return;
2354
2355 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2356 zio_gang_tree_free(&gn->gn_child[g]);
2357
2358 zio_gang_node_free(gnpp);
2359 }
2360
2361 static void
2362 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2363 {
2364 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2365 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2366
2367 ASSERT(gio->io_gang_leader == gio);
2368 ASSERT(BP_IS_GANG(bp));
2369
2370 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2371 zio_gang_tree_assemble_done, gn, gio->io_priority,
2372 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2373 }
2374
2375 static void
2376 zio_gang_tree_assemble_done(zio_t *zio)
2377 {
2378 zio_t *gio = zio->io_gang_leader;
2379 zio_gang_node_t *gn = zio->io_private;
2380 blkptr_t *bp = zio->io_bp;
2381
2382 ASSERT(gio == zio_unique_parent(zio));
2383 ASSERT(zio->io_child_count == 0);
2384
2385 if (zio->io_error)
2386 return;
2387
2388 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2389 if (BP_SHOULD_BYTESWAP(bp))
2390 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2391
2392 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2393 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2394 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2395
2396 abd_put(zio->io_abd);
2397
2398 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2399 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2400 if (!BP_IS_GANG(gbp))
2401 continue;
2402 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2403 }
2404 }
2405
2406 static void
2407 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2408 uint64_t offset)
2409 {
2410 zio_t *gio = pio->io_gang_leader;
2411 zio_t *zio;
2412
2413 ASSERT(BP_IS_GANG(bp) == !!gn);
2414 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2415 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2416
2417 /*
2418 * If you're a gang header, your data is in gn->gn_gbh.
2419 * If you're a gang member, your data is in 'data' and gn == NULL.
2420 */
2421 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2422
2423 if (gn != NULL) {
2424 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2425
2426 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2427 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2428 if (BP_IS_HOLE(gbp))
2429 continue;
2430 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2431 offset);
2432 offset += BP_GET_PSIZE(gbp);
2433 }
2434 }
2435
2436 if (gn == gio->io_gang_tree)
2437 ASSERT3U(gio->io_size, ==, offset);
2438
2439 if (zio != pio)
2440 zio_nowait(zio);
2441 }
2442
2443 static int
2444 zio_gang_assemble(zio_t *zio)
2445 {
2446 blkptr_t *bp = zio->io_bp;
2447
2448 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2449 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2450
2451 zio->io_gang_leader = zio;
2452
2453 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2454
2455 return (ZIO_PIPELINE_CONTINUE);
2456 }
2457
2458 static int
2459 zio_gang_issue(zio_t *zio)
2460 {
2461 blkptr_t *bp = zio->io_bp;
2462
2463 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2464 return (ZIO_PIPELINE_STOP);
2465 }
2466
2467 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2468 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2469
2470 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2471 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2472 0);
2473 else
2474 zio_gang_tree_free(&zio->io_gang_tree);
2475
2476 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2477
2478 return (ZIO_PIPELINE_CONTINUE);
2479 }
2480
2481 static void
2482 zio_write_gang_member_ready(zio_t *zio)
2483 {
2484 zio_t *pio = zio_unique_parent(zio);
2485 dva_t *cdva = zio->io_bp->blk_dva;
2486 dva_t *pdva = pio->io_bp->blk_dva;
2487 uint64_t asize;
2488 ASSERTV(zio_t *gio = zio->io_gang_leader);
2489
2490 if (BP_IS_HOLE(zio->io_bp))
2491 return;
2492
2493 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2494
2495 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2496 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2497 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2498 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2499 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2500
2501 mutex_enter(&pio->io_lock);
2502 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2503 ASSERT(DVA_GET_GANG(&pdva[d]));
2504 asize = DVA_GET_ASIZE(&pdva[d]);
2505 asize += DVA_GET_ASIZE(&cdva[d]);
2506 DVA_SET_ASIZE(&pdva[d], asize);
2507 }
2508 mutex_exit(&pio->io_lock);
2509 }
2510
2511 static void
2512 zio_write_gang_done(zio_t *zio)
2513 {
2514 abd_put(zio->io_abd);
2515 }
2516
2517 static int
2518 zio_write_gang_block(zio_t *pio)
2519 {
2520 spa_t *spa = pio->io_spa;
2521 metaslab_class_t *mc = spa_normal_class(spa);
2522 blkptr_t *bp = pio->io_bp;
2523 zio_t *gio = pio->io_gang_leader;
2524 zio_t *zio;
2525 zio_gang_node_t *gn, **gnpp;
2526 zio_gbh_phys_t *gbh;
2527 abd_t *gbh_abd;
2528 uint64_t txg = pio->io_txg;
2529 uint64_t resid = pio->io_size;
2530 uint64_t lsize;
2531 int copies = gio->io_prop.zp_copies;
2532 int gbh_copies;
2533 zio_prop_t zp;
2534 int error;
2535
2536 /*
2537 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2538 * have a third copy.
2539 */
2540 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2541 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2542 gbh_copies = SPA_DVAS_PER_BP - 1;
2543
2544 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2545 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2546 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2547 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2548
2549 flags |= METASLAB_ASYNC_ALLOC;
2550 VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2551
2552 /*
2553 * The logical zio has already placed a reservation for
2554 * 'copies' allocation slots but gang blocks may require
2555 * additional copies. These additional copies
2556 * (i.e. gbh_copies - copies) are guaranteed to succeed
2557 * since metaslab_class_throttle_reserve() always allows
2558 * additional reservations for gang blocks.
2559 */
2560 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2561 pio, flags));
2562 }
2563
2564 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2565 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2566 &pio->io_alloc_list, pio);
2567 if (error) {
2568 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2569 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2570 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2571
2572 /*
2573 * If we failed to allocate the gang block header then
2574 * we remove any additional allocation reservations that
2575 * we placed here. The original reservation will
2576 * be removed when the logical I/O goes to the ready
2577 * stage.
2578 */
2579 metaslab_class_throttle_unreserve(mc,
2580 gbh_copies - copies, pio);
2581 }
2582
2583 pio->io_error = error;
2584 return (ZIO_PIPELINE_CONTINUE);
2585 }
2586
2587 if (pio == gio) {
2588 gnpp = &gio->io_gang_tree;
2589 } else {
2590 gnpp = pio->io_private;
2591 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2592 }
2593
2594 gn = zio_gang_node_alloc(gnpp);
2595 gbh = gn->gn_gbh;
2596 bzero(gbh, SPA_GANGBLOCKSIZE);
2597 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2598
2599 /*
2600 * Create the gang header.
2601 */
2602 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2603 zio_write_gang_done, NULL, pio->io_priority,
2604 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2605
2606 /*
2607 * Create and nowait the gang children.
2608 */
2609 for (int g = 0; resid != 0; resid -= lsize, g++) {
2610 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2611 SPA_MINBLOCKSIZE);
2612 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2613
2614 zp.zp_checksum = gio->io_prop.zp_checksum;
2615 zp.zp_compress = ZIO_COMPRESS_OFF;
2616 zp.zp_type = DMU_OT_NONE;
2617 zp.zp_level = 0;
2618 zp.zp_copies = gio->io_prop.zp_copies;
2619 zp.zp_dedup = B_FALSE;
2620 zp.zp_dedup_verify = B_FALSE;
2621 zp.zp_nopwrite = B_FALSE;
2622 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2623 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2624 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2625 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2626 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2627
2628 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2629 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2630 lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2631 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2632 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2633
2634 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2635 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2636 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2637
2638 /*
2639 * Gang children won't throttle but we should
2640 * account for their work, so reserve an allocation
2641 * slot for them here.
2642 */
2643 VERIFY(metaslab_class_throttle_reserve(mc,
2644 zp.zp_copies, cio, flags));
2645 }
2646 zio_nowait(cio);
2647 }
2648
2649 /*
2650 * Set pio's pipeline to just wait for zio to finish.
2651 */
2652 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2653
2654 /*
2655 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2656 */
2657 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2658
2659 zio_nowait(zio);
2660
2661 return (ZIO_PIPELINE_CONTINUE);
2662 }
2663
2664 /*
2665 * The zio_nop_write stage in the pipeline determines if allocating a
2666 * new bp is necessary. The nopwrite feature can handle writes in
2667 * either syncing or open context (i.e. zil writes) and as a result is
2668 * mutually exclusive with dedup.
2669 *
2670 * By leveraging a cryptographically secure checksum, such as SHA256, we
2671 * can compare the checksums of the new data and the old to determine if
2672 * allocating a new block is required. Note that our requirements for
2673 * cryptographic strength are fairly weak: there can't be any accidental
2674 * hash collisions, but we don't need to be secure against intentional
2675 * (malicious) collisions. To trigger a nopwrite, you have to be able
2676 * to write the file to begin with, and triggering an incorrect (hash
2677 * collision) nopwrite is no worse than simply writing to the file.
2678 * That said, there are no known attacks against the checksum algorithms
2679 * used for nopwrite, assuming that the salt and the checksums
2680 * themselves remain secret.
2681 */
2682 static int
2683 zio_nop_write(zio_t *zio)
2684 {
2685 blkptr_t *bp = zio->io_bp;
2686 blkptr_t *bp_orig = &zio->io_bp_orig;
2687 zio_prop_t *zp = &zio->io_prop;
2688
2689 ASSERT(BP_GET_LEVEL(bp) == 0);
2690 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2691 ASSERT(zp->zp_nopwrite);
2692 ASSERT(!zp->zp_dedup);
2693 ASSERT(zio->io_bp_override == NULL);
2694 ASSERT(IO_IS_ALLOCATING(zio));
2695
2696 /*
2697 * Check to see if the original bp and the new bp have matching
2698 * characteristics (i.e. same checksum, compression algorithms, etc).
2699 * If they don't then just continue with the pipeline which will
2700 * allocate a new bp.
2701 */
2702 if (BP_IS_HOLE(bp_orig) ||
2703 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2704 ZCHECKSUM_FLAG_NOPWRITE) ||
2705 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2706 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2707 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2708 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2709 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2710 return (ZIO_PIPELINE_CONTINUE);
2711
2712 /*
2713 * If the checksums match then reset the pipeline so that we
2714 * avoid allocating a new bp and issuing any I/O.
2715 */
2716 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2717 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2718 ZCHECKSUM_FLAG_NOPWRITE);
2719 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2720 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2721 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2722 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2723 sizeof (uint64_t)) == 0);
2724
2725 *bp = *bp_orig;
2726 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2727 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2728 }
2729
2730 return (ZIO_PIPELINE_CONTINUE);
2731 }
2732
2733 /*
2734 * ==========================================================================
2735 * Dedup
2736 * ==========================================================================
2737 */
2738 static void
2739 zio_ddt_child_read_done(zio_t *zio)
2740 {
2741 blkptr_t *bp = zio->io_bp;
2742 ddt_entry_t *dde = zio->io_private;
2743 ddt_phys_t *ddp;
2744 zio_t *pio = zio_unique_parent(zio);
2745
2746 mutex_enter(&pio->io_lock);
2747 ddp = ddt_phys_select(dde, bp);
2748 if (zio->io_error == 0)
2749 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2750
2751 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2752 dde->dde_repair_abd = zio->io_abd;
2753 else
2754 abd_free(zio->io_abd);
2755 mutex_exit(&pio->io_lock);
2756 }
2757
2758 static int
2759 zio_ddt_read_start(zio_t *zio)
2760 {
2761 blkptr_t *bp = zio->io_bp;
2762
2763 ASSERT(BP_GET_DEDUP(bp));
2764 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2765 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2766
2767 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2768 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2769 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2770 ddt_phys_t *ddp = dde->dde_phys;
2771 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2772 blkptr_t blk;
2773
2774 ASSERT(zio->io_vsd == NULL);
2775 zio->io_vsd = dde;
2776
2777 if (ddp_self == NULL)
2778 return (ZIO_PIPELINE_CONTINUE);
2779
2780 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2781 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2782 continue;
2783 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2784 &blk);
2785 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2786 abd_alloc_for_io(zio->io_size, B_TRUE),
2787 zio->io_size, zio_ddt_child_read_done, dde,
2788 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2789 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2790 }
2791 return (ZIO_PIPELINE_CONTINUE);
2792 }
2793
2794 zio_nowait(zio_read(zio, zio->io_spa, bp,
2795 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2796 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2797
2798 return (ZIO_PIPELINE_CONTINUE);
2799 }
2800
2801 static int
2802 zio_ddt_read_done(zio_t *zio)
2803 {
2804 blkptr_t *bp = zio->io_bp;
2805
2806 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2807 return (ZIO_PIPELINE_STOP);
2808 }
2809
2810 ASSERT(BP_GET_DEDUP(bp));
2811 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2812 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2813
2814 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2815 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2816 ddt_entry_t *dde = zio->io_vsd;
2817 if (ddt == NULL) {
2818 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2819 return (ZIO_PIPELINE_CONTINUE);
2820 }
2821 if (dde == NULL) {
2822 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2823 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2824 return (ZIO_PIPELINE_STOP);
2825 }
2826 if (dde->dde_repair_abd != NULL) {
2827 abd_copy(zio->io_abd, dde->dde_repair_abd,
2828 zio->io_size);
2829 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2830 }
2831 ddt_repair_done(ddt, dde);
2832 zio->io_vsd = NULL;
2833 }
2834
2835 ASSERT(zio->io_vsd == NULL);
2836
2837 return (ZIO_PIPELINE_CONTINUE);
2838 }
2839
2840 static boolean_t
2841 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2842 {
2843 spa_t *spa = zio->io_spa;
2844 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2845
2846 ASSERT(!(zio->io_bp_override && do_raw));
2847
2848 /*
2849 * Note: we compare the original data, not the transformed data,
2850 * because when zio->io_bp is an override bp, we will not have
2851 * pushed the I/O transforms. That's an important optimization
2852 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2853 * However, we should never get a raw, override zio so in these
2854 * cases we can compare the io_abd directly. This is useful because
2855 * it allows us to do dedup verification even if we don't have access
2856 * to the original data (for instance, if the encryption keys aren't
2857 * loaded).
2858 */
2859
2860 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2861 zio_t *lio = dde->dde_lead_zio[p];
2862
2863 if (lio != NULL && do_raw) {
2864 return (lio->io_size != zio->io_size ||
2865 abd_cmp(zio->io_abd, lio->io_abd) != 0);
2866 } else if (lio != NULL) {
2867 return (lio->io_orig_size != zio->io_orig_size ||
2868 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
2869 }
2870 }
2871
2872 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2873 ddt_phys_t *ddp = &dde->dde_phys[p];
2874
2875 if (ddp->ddp_phys_birth != 0 && do_raw) {
2876 blkptr_t blk = *zio->io_bp;
2877 uint64_t psize;
2878 abd_t *tmpabd;
2879 int error;
2880
2881 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2882 psize = BP_GET_PSIZE(&blk);
2883
2884 if (psize != zio->io_size)
2885 return (B_TRUE);
2886
2887 ddt_exit(ddt);
2888
2889 tmpabd = abd_alloc_for_io(psize, B_TRUE);
2890
2891 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2892 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2893 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2894 ZIO_FLAG_RAW, &zio->io_bookmark));
2895
2896 if (error == 0) {
2897 if (abd_cmp(tmpabd, zio->io_abd) != 0)
2898 error = SET_ERROR(ENOENT);
2899 }
2900
2901 abd_free(tmpabd);
2902 ddt_enter(ddt);
2903 return (error != 0);
2904 } else if (ddp->ddp_phys_birth != 0) {
2905 arc_buf_t *abuf = NULL;
2906 arc_flags_t aflags = ARC_FLAG_WAIT;
2907 blkptr_t blk = *zio->io_bp;
2908 int error;
2909
2910 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2911
2912 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
2913 return (B_TRUE);
2914
2915 ddt_exit(ddt);
2916
2917 error = arc_read(NULL, spa, &blk,
2918 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2919 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2920 &aflags, &zio->io_bookmark);
2921
2922 if (error == 0) {
2923 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2924 zio->io_orig_size) != 0)
2925 error = SET_ERROR(ENOENT);
2926 arc_buf_destroy(abuf, &abuf);
2927 }
2928
2929 ddt_enter(ddt);
2930 return (error != 0);
2931 }
2932 }
2933
2934 return (B_FALSE);
2935 }
2936
2937 static void
2938 zio_ddt_child_write_ready(zio_t *zio)
2939 {
2940 int p = zio->io_prop.zp_copies;
2941 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2942 ddt_entry_t *dde = zio->io_private;
2943 ddt_phys_t *ddp = &dde->dde_phys[p];
2944 zio_t *pio;
2945
2946 if (zio->io_error)
2947 return;
2948
2949 ddt_enter(ddt);
2950
2951 ASSERT(dde->dde_lead_zio[p] == zio);
2952
2953 ddt_phys_fill(ddp, zio->io_bp);
2954
2955 zio_link_t *zl = NULL;
2956 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2957 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2958
2959 ddt_exit(ddt);
2960 }
2961
2962 static void
2963 zio_ddt_child_write_done(zio_t *zio)
2964 {
2965 int p = zio->io_prop.zp_copies;
2966 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2967 ddt_entry_t *dde = zio->io_private;
2968 ddt_phys_t *ddp = &dde->dde_phys[p];
2969
2970 ddt_enter(ddt);
2971
2972 ASSERT(ddp->ddp_refcnt == 0);
2973 ASSERT(dde->dde_lead_zio[p] == zio);
2974 dde->dde_lead_zio[p] = NULL;
2975
2976 if (zio->io_error == 0) {
2977 zio_link_t *zl = NULL;
2978 while (zio_walk_parents(zio, &zl) != NULL)
2979 ddt_phys_addref(ddp);
2980 } else {
2981 ddt_phys_clear(ddp);
2982 }
2983
2984 ddt_exit(ddt);
2985 }
2986
2987 static void
2988 zio_ddt_ditto_write_done(zio_t *zio)
2989 {
2990 int p = DDT_PHYS_DITTO;
2991 ASSERTV(zio_prop_t *zp = &zio->io_prop);
2992 blkptr_t *bp = zio->io_bp;
2993 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2994 ddt_entry_t *dde = zio->io_private;
2995 ddt_phys_t *ddp = &dde->dde_phys[p];
2996 ddt_key_t *ddk = &dde->dde_key;
2997
2998 ddt_enter(ddt);
2999
3000 ASSERT(ddp->ddp_refcnt == 0);
3001 ASSERT(dde->dde_lead_zio[p] == zio);
3002 dde->dde_lead_zio[p] = NULL;
3003
3004 if (zio->io_error == 0) {
3005 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
3006 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
3007 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
3008 if (ddp->ddp_phys_birth != 0)
3009 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
3010 ddt_phys_fill(ddp, bp);
3011 }
3012
3013 ddt_exit(ddt);
3014 }
3015
3016 static int
3017 zio_ddt_write(zio_t *zio)
3018 {
3019 spa_t *spa = zio->io_spa;
3020 blkptr_t *bp = zio->io_bp;
3021 uint64_t txg = zio->io_txg;
3022 zio_prop_t *zp = &zio->io_prop;
3023 int p = zp->zp_copies;
3024 int ditto_copies;
3025 zio_t *cio = NULL;
3026 zio_t *dio = NULL;
3027 ddt_t *ddt = ddt_select(spa, bp);
3028 ddt_entry_t *dde;
3029 ddt_phys_t *ddp;
3030
3031 ASSERT(BP_GET_DEDUP(bp));
3032 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3033 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3034 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3035
3036 ddt_enter(ddt);
3037 dde = ddt_lookup(ddt, bp, B_TRUE);
3038 ddp = &dde->dde_phys[p];
3039
3040 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3041 /*
3042 * If we're using a weak checksum, upgrade to a strong checksum
3043 * and try again. If we're already using a strong checksum,
3044 * we can't resolve it, so just convert to an ordinary write.
3045 * (And automatically e-mail a paper to Nature?)
3046 */
3047 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3048 ZCHECKSUM_FLAG_DEDUP)) {
3049 zp->zp_checksum = spa_dedup_checksum(spa);
3050 zio_pop_transforms(zio);
3051 zio->io_stage = ZIO_STAGE_OPEN;
3052 BP_ZERO(bp);
3053 } else {
3054 zp->zp_dedup = B_FALSE;
3055 }
3056 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3057 ddt_exit(ddt);
3058 return (ZIO_PIPELINE_CONTINUE);
3059 }
3060
3061 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
3062 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
3063
3064 if (ditto_copies > ddt_ditto_copies_present(dde) &&
3065 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
3066 zio_prop_t czp = *zp;
3067
3068 czp.zp_copies = ditto_copies;
3069
3070 /*
3071 * If we arrived here with an override bp, we won't have run
3072 * the transform stack, so we won't have the data we need to
3073 * generate a child i/o. So, toss the override bp and restart.
3074 * This is safe, because using the override bp is just an
3075 * optimization; and it's rare, so the cost doesn't matter.
3076 */
3077 if (zio->io_bp_override) {
3078 zio_pop_transforms(zio);
3079 zio->io_stage = ZIO_STAGE_OPEN;
3080 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3081 zio->io_bp_override = NULL;
3082 BP_ZERO(bp);
3083 ddt_exit(ddt);
3084 return (ZIO_PIPELINE_CONTINUE);
3085 }
3086
3087 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3088 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
3089 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
3090 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3091
3092 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
3093 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
3094 }
3095
3096 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3097 if (ddp->ddp_phys_birth != 0)
3098 ddt_bp_fill(ddp, bp, txg);
3099 if (dde->dde_lead_zio[p] != NULL)
3100 zio_add_child(zio, dde->dde_lead_zio[p]);
3101 else
3102 ddt_phys_addref(ddp);
3103 } else if (zio->io_bp_override) {
3104 ASSERT(bp->blk_birth == txg);
3105 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3106 ddt_phys_fill(ddp, bp);
3107 ddt_phys_addref(ddp);
3108 } else {
3109 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3110 zio->io_orig_size, zio->io_orig_size, zp,
3111 zio_ddt_child_write_ready, NULL, NULL,
3112 zio_ddt_child_write_done, dde, zio->io_priority,
3113 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3114
3115 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3116 dde->dde_lead_zio[p] = cio;
3117 }
3118
3119 ddt_exit(ddt);
3120
3121 if (cio)
3122 zio_nowait(cio);
3123 if (dio)
3124 zio_nowait(dio);
3125
3126 return (ZIO_PIPELINE_CONTINUE);
3127 }
3128
3129 ddt_entry_t *freedde; /* for debugging */
3130
3131 static int
3132 zio_ddt_free(zio_t *zio)
3133 {
3134 spa_t *spa = zio->io_spa;
3135 blkptr_t *bp = zio->io_bp;
3136 ddt_t *ddt = ddt_select(spa, bp);
3137 ddt_entry_t *dde;
3138 ddt_phys_t *ddp;
3139
3140 ASSERT(BP_GET_DEDUP(bp));
3141 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3142
3143 ddt_enter(ddt);
3144 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3145 if (dde) {
3146 ddp = ddt_phys_select(dde, bp);
3147 if (ddp)
3148 ddt_phys_decref(ddp);
3149 }
3150 ddt_exit(ddt);
3151
3152 return (ZIO_PIPELINE_CONTINUE);
3153 }
3154
3155 /*
3156 * ==========================================================================
3157 * Allocate and free blocks
3158 * ==========================================================================
3159 */
3160
3161 static zio_t *
3162 zio_io_to_allocate(spa_t *spa)
3163 {
3164 zio_t *zio;
3165
3166 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
3167
3168 zio = avl_first(&spa->spa_alloc_tree);
3169 if (zio == NULL)
3170 return (NULL);
3171
3172 ASSERT(IO_IS_ALLOCATING(zio));
3173
3174 /*
3175 * Try to place a reservation for this zio. If we're unable to
3176 * reserve then we throttle.
3177 */
3178 if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
3179 zio->io_prop.zp_copies, zio, 0)) {
3180 return (NULL);
3181 }
3182
3183 avl_remove(&spa->spa_alloc_tree, zio);
3184 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3185
3186 return (zio);
3187 }
3188
3189 static int
3190 zio_dva_throttle(zio_t *zio)
3191 {
3192 spa_t *spa = zio->io_spa;
3193 zio_t *nio;
3194
3195 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3196 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
3197 zio->io_child_type == ZIO_CHILD_GANG ||
3198 zio->io_flags & ZIO_FLAG_NODATA) {
3199 return (ZIO_PIPELINE_CONTINUE);
3200 }
3201
3202 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3203
3204 ASSERT3U(zio->io_queued_timestamp, >, 0);
3205 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3206
3207 mutex_enter(&spa->spa_alloc_lock);
3208
3209 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3210 avl_add(&spa->spa_alloc_tree, zio);
3211
3212 nio = zio_io_to_allocate(zio->io_spa);
3213 mutex_exit(&spa->spa_alloc_lock);
3214
3215 if (nio == zio)
3216 return (ZIO_PIPELINE_CONTINUE);
3217
3218 if (nio != NULL) {
3219 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3220 /*
3221 * We are passing control to a new zio so make sure that
3222 * it is processed by a different thread. We do this to
3223 * avoid stack overflows that can occur when parents are
3224 * throttled and children are making progress. We allow
3225 * it to go to the head of the taskq since it's already
3226 * been waiting.
3227 */
3228 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
3229 }
3230 return (ZIO_PIPELINE_STOP);
3231 }
3232
3233 void
3234 zio_allocate_dispatch(spa_t *spa)
3235 {
3236 zio_t *zio;
3237
3238 mutex_enter(&spa->spa_alloc_lock);
3239 zio = zio_io_to_allocate(spa);
3240 mutex_exit(&spa->spa_alloc_lock);
3241 if (zio == NULL)
3242 return;
3243
3244 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3245 ASSERT0(zio->io_error);
3246 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3247 }
3248
3249 static int
3250 zio_dva_allocate(zio_t *zio)
3251 {
3252 spa_t *spa = zio->io_spa;
3253 metaslab_class_t *mc = spa_normal_class(spa);
3254 blkptr_t *bp = zio->io_bp;
3255 int error;
3256 int flags = 0;
3257
3258 if (zio->io_gang_leader == NULL) {
3259 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3260 zio->io_gang_leader = zio;
3261 }
3262
3263 ASSERT(BP_IS_HOLE(bp));
3264 ASSERT0(BP_GET_NDVAS(bp));
3265 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3266 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3267 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3268
3269 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3270 if (zio->io_flags & ZIO_FLAG_NODATA)
3271 flags |= METASLAB_DONT_THROTTLE;
3272 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3273 flags |= METASLAB_GANG_CHILD;
3274 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3275 flags |= METASLAB_ASYNC_ALLOC;
3276
3277 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3278 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3279 &zio->io_alloc_list, zio);
3280
3281 if (error != 0) {
3282 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
3283 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3284 error);
3285 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3286 return (zio_write_gang_block(zio));
3287 zio->io_error = error;
3288 }
3289
3290 return (ZIO_PIPELINE_CONTINUE);
3291 }
3292
3293 static int
3294 zio_dva_free(zio_t *zio)
3295 {
3296 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3297
3298 return (ZIO_PIPELINE_CONTINUE);
3299 }
3300
3301 static int
3302 zio_dva_claim(zio_t *zio)
3303 {
3304 int error;
3305
3306 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3307 if (error)
3308 zio->io_error = error;
3309
3310 return (ZIO_PIPELINE_CONTINUE);
3311 }
3312
3313 /*
3314 * Undo an allocation. This is used by zio_done() when an I/O fails
3315 * and we want to give back the block we just allocated.
3316 * This handles both normal blocks and gang blocks.
3317 */
3318 static void
3319 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3320 {
3321 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3322 ASSERT(zio->io_bp_override == NULL);
3323
3324 if (!BP_IS_HOLE(bp))
3325 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3326
3327 if (gn != NULL) {
3328 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3329 zio_dva_unallocate(zio, gn->gn_child[g],
3330 &gn->gn_gbh->zg_blkptr[g]);
3331 }
3332 }
3333 }
3334
3335 /*
3336 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3337 */
3338 int
3339 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3340 uint64_t size, boolean_t *slog)
3341 {
3342 int error = 1;
3343 zio_alloc_list_t io_alloc_list;
3344
3345 ASSERT(txg > spa_syncing_txg(spa));
3346
3347 metaslab_trace_init(&io_alloc_list);
3348 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3349 txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL);
3350 if (error == 0) {
3351 *slog = TRUE;
3352 } else {
3353 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3354 new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
3355 &io_alloc_list, NULL);
3356 if (error == 0)
3357 *slog = FALSE;
3358 }
3359 metaslab_trace_fini(&io_alloc_list);
3360
3361 if (error == 0) {
3362 BP_SET_LSIZE(new_bp, size);
3363 BP_SET_PSIZE(new_bp, size);
3364 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3365 BP_SET_CHECKSUM(new_bp,
3366 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3367 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3368 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3369 BP_SET_LEVEL(new_bp, 0);
3370 BP_SET_DEDUP(new_bp, 0);
3371 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3372
3373 /*
3374 * encrypted blocks will require an IV and salt. We generate
3375 * these now since we will not be rewriting the bp at
3376 * rewrite time.
3377 */
3378 if (os->os_encrypted) {
3379 uint8_t iv[ZIO_DATA_IV_LEN];
3380 uint8_t salt[ZIO_DATA_SALT_LEN];
3381
3382 BP_SET_CRYPT(new_bp, B_TRUE);
3383 VERIFY0(spa_crypt_get_salt(spa,
3384 dmu_objset_id(os), salt));
3385 VERIFY0(zio_crypt_generate_iv(iv));
3386
3387 zio_crypt_encode_params_bp(new_bp, salt, iv);
3388 }
3389 } else {
3390 zfs_dbgmsg("%s: zil block allocation failure: "
3391 "size %llu, error %d", spa_name(spa), size, error);
3392 }
3393
3394 return (error);
3395 }
3396
3397 /*
3398 * Free an intent log block.
3399 */
3400 void
3401 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
3402 {
3403 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
3404 ASSERT(!BP_IS_GANG(bp));
3405
3406 zio_free(spa, txg, bp);
3407 }
3408
3409 /*
3410 * ==========================================================================
3411 * Read and write to physical devices
3412 * ==========================================================================
3413 */
3414
3415
3416 /*
3417 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3418 * stops after this stage and will resume upon I/O completion.
3419 * However, there are instances where the vdev layer may need to
3420 * continue the pipeline when an I/O was not issued. Since the I/O
3421 * that was sent to the vdev layer might be different than the one
3422 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3423 * force the underlying vdev layers to call either zio_execute() or
3424 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3425 */
3426 static int
3427 zio_vdev_io_start(zio_t *zio)
3428 {
3429 vdev_t *vd = zio->io_vd;
3430 uint64_t align;
3431 spa_t *spa = zio->io_spa;
3432
3433 zio->io_delay = 0;
3434
3435 ASSERT(zio->io_error == 0);
3436 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3437
3438 if (vd == NULL) {
3439 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3440 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3441
3442 /*
3443 * The mirror_ops handle multiple DVAs in a single BP.
3444 */
3445 vdev_mirror_ops.vdev_op_io_start(zio);
3446 return (ZIO_PIPELINE_STOP);
3447 }
3448
3449 ASSERT3P(zio->io_logical, !=, zio);
3450
3451 align = 1ULL << vd->vdev_top->vdev_ashift;
3452
3453 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3454 P2PHASE(zio->io_size, align) != 0) {
3455 /* Transform logical writes to be a full physical block size. */
3456 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3457 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3458 ASSERT(vd == vd->vdev_top);
3459 if (zio->io_type == ZIO_TYPE_WRITE) {
3460 abd_copy(abuf, zio->io_abd, zio->io_size);
3461 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3462 }
3463 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3464 }
3465
3466 /*
3467 * If this is not a physical io, make sure that it is properly aligned
3468 * before proceeding.
3469 */
3470 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3471 ASSERT0(P2PHASE(zio->io_offset, align));
3472 ASSERT0(P2PHASE(zio->io_size, align));
3473 } else {
3474 /*
3475 * For physical writes, we allow 512b aligned writes and assume
3476 * the device will perform a read-modify-write as necessary.
3477 */
3478 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3479 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3480 }
3481
3482 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3483
3484 /*
3485 * If this is a repair I/O, and there's no self-healing involved --
3486 * that is, we're just resilvering what we expect to resilver --
3487 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3488 * This prevents spurious resilvering with nested replication.
3489 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3490 * A is out of date, we'll read from C+D, then use the data to
3491 * resilver A+B -- but we don't actually want to resilver B, just A.
3492 * The top-level mirror has no way to know this, so instead we just
3493 * discard unnecessary repairs as we work our way down the vdev tree.
3494 * The same logic applies to any form of nested replication:
3495 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
3496 */
3497 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3498 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3499 zio->io_txg != 0 && /* not a delegated i/o */
3500 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3501 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3502 zio_vdev_io_bypass(zio);
3503 return (ZIO_PIPELINE_CONTINUE);
3504 }
3505
3506 if (vd->vdev_ops->vdev_op_leaf &&
3507 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3508
3509 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3510 return (ZIO_PIPELINE_CONTINUE);
3511
3512 if ((zio = vdev_queue_io(zio)) == NULL)
3513 return (ZIO_PIPELINE_STOP);
3514
3515 if (!vdev_accessible(vd, zio)) {
3516 zio->io_error = SET_ERROR(ENXIO);
3517 zio_interrupt(zio);
3518 return (ZIO_PIPELINE_STOP);
3519 }
3520 zio->io_delay = gethrtime();
3521 }
3522
3523 vd->vdev_ops->vdev_op_io_start(zio);
3524 return (ZIO_PIPELINE_STOP);
3525 }
3526
3527 static int
3528 zio_vdev_io_done(zio_t *zio)
3529 {
3530 vdev_t *vd = zio->io_vd;
3531 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3532 boolean_t unexpected_error = B_FALSE;
3533
3534 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3535 return (ZIO_PIPELINE_STOP);
3536 }
3537
3538 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3539
3540 if (zio->io_delay)
3541 zio->io_delay = gethrtime() - zio->io_delay;
3542
3543 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3544
3545 vdev_queue_io_done(zio);
3546
3547 if (zio->io_type == ZIO_TYPE_WRITE)
3548 vdev_cache_write(zio);
3549
3550 if (zio_injection_enabled && zio->io_error == 0)
3551 zio->io_error = zio_handle_device_injections(vd, zio,
3552 EIO, EILSEQ);
3553
3554 if (zio_injection_enabled && zio->io_error == 0)
3555 zio->io_error = zio_handle_label_injection(zio, EIO);
3556
3557 if (zio->io_error) {
3558 if (!vdev_accessible(vd, zio)) {
3559 zio->io_error = SET_ERROR(ENXIO);
3560 } else {
3561 unexpected_error = B_TRUE;
3562 }
3563 }
3564 }
3565
3566 ops->vdev_op_io_done(zio);
3567
3568 if (unexpected_error)
3569 VERIFY(vdev_probe(vd, zio) == NULL);
3570
3571 return (ZIO_PIPELINE_CONTINUE);
3572 }
3573
3574 /*
3575 * This function is used to change the priority of an existing zio that is
3576 * currently in-flight. This is used by the arc to upgrade priority in the
3577 * event that a demand read is made for a block that is currently queued
3578 * as a scrub or async read IO. Otherwise, the high priority read request
3579 * would end up having to wait for the lower priority IO.
3580 */
3581 void
3582 zio_change_priority(zio_t *pio, zio_priority_t priority)
3583 {
3584 zio_t *cio, *cio_next;
3585 zio_link_t *zl = NULL;
3586
3587 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3588
3589 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3590 vdev_queue_change_io_priority(pio, priority);
3591 } else {
3592 pio->io_priority = priority;
3593 }
3594
3595 mutex_enter(&pio->io_lock);
3596 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3597 cio_next = zio_walk_children(pio, &zl);
3598 zio_change_priority(cio, priority);
3599 }
3600 mutex_exit(&pio->io_lock);
3601 }
3602
3603 /*
3604 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3605 * disk, and use that to finish the checksum ereport later.
3606 */
3607 static void
3608 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3609 const abd_t *good_buf)
3610 {
3611 /* no processing needed */
3612 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3613 }
3614
3615 /*ARGSUSED*/
3616 void
3617 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3618 {
3619 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3620
3621 abd_copy(abd, zio->io_abd, zio->io_size);
3622
3623 zcr->zcr_cbinfo = zio->io_size;
3624 zcr->zcr_cbdata = abd;
3625 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3626 zcr->zcr_free = zio_abd_free;
3627 }
3628
3629 static int
3630 zio_vdev_io_assess(zio_t *zio)
3631 {
3632 vdev_t *vd = zio->io_vd;
3633
3634 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3635 return (ZIO_PIPELINE_STOP);
3636 }
3637
3638 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3639 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3640
3641 if (zio->io_vsd != NULL) {
3642 zio->io_vsd_ops->vsd_free(zio);
3643 zio->io_vsd = NULL;
3644 }
3645
3646 if (zio_injection_enabled && zio->io_error == 0)
3647 zio->io_error = zio_handle_fault_injection(zio, EIO);
3648
3649 /*
3650 * If the I/O failed, determine whether we should attempt to retry it.
3651 *
3652 * On retry, we cut in line in the issue queue, since we don't want
3653 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3654 */
3655 if (zio->io_error && vd == NULL &&
3656 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3657 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3658 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3659 zio->io_error = 0;
3660 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3661 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3662 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3663 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3664 zio_requeue_io_start_cut_in_line);
3665 return (ZIO_PIPELINE_STOP);
3666 }
3667
3668 /*
3669 * If we got an error on a leaf device, convert it to ENXIO
3670 * if the device is not accessible at all.
3671 */
3672 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3673 !vdev_accessible(vd, zio))
3674 zio->io_error = SET_ERROR(ENXIO);
3675
3676 /*
3677 * If we can't write to an interior vdev (mirror or RAID-Z),
3678 * set vdev_cant_write so that we stop trying to allocate from it.
3679 */
3680 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3681 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3682 vd->vdev_cant_write = B_TRUE;
3683 }
3684
3685 /*
3686 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3687 * attempts will ever succeed. In this case we set a persistent bit so
3688 * that we don't bother with it in the future.
3689 */
3690 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3691 zio->io_type == ZIO_TYPE_IOCTL &&
3692 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3693 vd->vdev_nowritecache = B_TRUE;
3694
3695 if (zio->io_error)
3696 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3697
3698 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3699 zio->io_physdone != NULL) {
3700 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3701 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3702 zio->io_physdone(zio->io_logical);
3703 }
3704
3705 return (ZIO_PIPELINE_CONTINUE);
3706 }
3707
3708 void
3709 zio_vdev_io_reissue(zio_t *zio)
3710 {
3711 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3712 ASSERT(zio->io_error == 0);
3713
3714 zio->io_stage >>= 1;
3715 }
3716
3717 void
3718 zio_vdev_io_redone(zio_t *zio)
3719 {
3720 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3721
3722 zio->io_stage >>= 1;
3723 }
3724
3725 void
3726 zio_vdev_io_bypass(zio_t *zio)
3727 {
3728 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3729 ASSERT(zio->io_error == 0);
3730
3731 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3732 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3733 }
3734
3735 /*
3736 * ==========================================================================
3737 * Encrypt and store encryption parameters
3738 * ==========================================================================
3739 */
3740
3741
3742 /*
3743 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3744 * managing the storage of encryption parameters and passing them to the
3745 * lower-level encryption functions.
3746 */
3747 static int
3748 zio_encrypt(zio_t *zio)
3749 {
3750 zio_prop_t *zp = &zio->io_prop;
3751 spa_t *spa = zio->io_spa;
3752 blkptr_t *bp = zio->io_bp;
3753 uint64_t psize = BP_GET_PSIZE(bp);
3754 uint64_t dsobj = zio->io_bookmark.zb_objset;
3755 dmu_object_type_t ot = BP_GET_TYPE(bp);
3756 void *enc_buf = NULL;
3757 abd_t *eabd = NULL;
3758 uint8_t salt[ZIO_DATA_SALT_LEN];
3759 uint8_t iv[ZIO_DATA_IV_LEN];
3760 uint8_t mac[ZIO_DATA_MAC_LEN];
3761 boolean_t no_crypt = B_FALSE;
3762
3763 /* the root zio already encrypted the data */
3764 if (zio->io_child_type == ZIO_CHILD_GANG)
3765 return (ZIO_PIPELINE_CONTINUE);
3766
3767 /* only ZIL blocks are re-encrypted on rewrite */
3768 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3769 return (ZIO_PIPELINE_CONTINUE);
3770
3771 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3772 BP_SET_CRYPT(bp, B_FALSE);
3773 return (ZIO_PIPELINE_CONTINUE);
3774 }
3775
3776 /* if we are doing raw encryption set the provided encryption params */
3777 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3778 ASSERT0(BP_GET_LEVEL(bp));
3779 BP_SET_CRYPT(bp, B_TRUE);
3780 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3781 if (ot != DMU_OT_OBJSET)
3782 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3783
3784 /* dnode blocks must be written out in the provided byteorder */
3785 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
3786 ot == DMU_OT_DNODE) {
3787 void *bswap_buf = zio_buf_alloc(psize);
3788 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
3789
3790 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3791 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
3792 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
3793 psize);
3794
3795 abd_take_ownership_of_buf(babd, B_TRUE);
3796 zio_push_transform(zio, babd, psize, psize, NULL);
3797 }
3798
3799 if (DMU_OT_IS_ENCRYPTED(ot))
3800 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3801 return (ZIO_PIPELINE_CONTINUE);
3802 }
3803
3804 /* indirect blocks only maintain a cksum of the lower level MACs */
3805 if (BP_GET_LEVEL(bp) > 0) {
3806 BP_SET_CRYPT(bp, B_TRUE);
3807 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3808 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3809 mac));
3810 zio_crypt_encode_mac_bp(bp, mac);
3811 return (ZIO_PIPELINE_CONTINUE);
3812 }
3813
3814 /*
3815 * Objset blocks are a special case since they have 2 256-bit MACs
3816 * embedded within them.
3817 */
3818 if (ot == DMU_OT_OBJSET) {
3819 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3820 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3821 BP_SET_CRYPT(bp, B_TRUE);
3822 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
3823 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
3824 return (ZIO_PIPELINE_CONTINUE);
3825 }
3826
3827 /* unencrypted object types are only authenticated with a MAC */
3828 if (!DMU_OT_IS_ENCRYPTED(ot)) {
3829 BP_SET_CRYPT(bp, B_TRUE);
3830 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
3831 zio->io_abd, psize, mac));
3832 zio_crypt_encode_mac_bp(bp, mac);
3833 return (ZIO_PIPELINE_CONTINUE);
3834 }
3835
3836 /*
3837 * Later passes of sync-to-convergence may decide to rewrite data
3838 * in place to avoid more disk reallocations. This presents a problem
3839 * for encryption because this consitutes rewriting the new data with
3840 * the same encryption key and IV. However, this only applies to blocks
3841 * in the MOS (particularly the spacemaps) and we do not encrypt the
3842 * MOS. We assert that the zio is allocating or an intent log write
3843 * to enforce this.
3844 */
3845 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3846 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3847 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3848 ASSERT3U(psize, !=, 0);
3849
3850 enc_buf = zio_buf_alloc(psize);
3851 eabd = abd_get_from_buf(enc_buf, psize);
3852 abd_take_ownership_of_buf(eabd, B_TRUE);
3853
3854 /*
3855 * For an explanation of what encryption parameters are stored
3856 * where, see the block comment in zio_crypt.c.
3857 */
3858 if (ot == DMU_OT_INTENT_LOG) {
3859 zio_crypt_decode_params_bp(bp, salt, iv);
3860 } else {
3861 BP_SET_CRYPT(bp, B_TRUE);
3862 }
3863
3864 /* Perform the encryption. This should not fail */
3865 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, dsobj, bp, zio->io_txg,
3866 psize, zio->io_abd, eabd, iv, mac, salt, &no_crypt));
3867
3868 /* encode encryption metadata into the bp */
3869 if (ot == DMU_OT_INTENT_LOG) {
3870 /*
3871 * ZIL blocks store the MAC in the embedded checksum, so the
3872 * transform must always be applied.
3873 */
3874 zio_crypt_encode_mac_zil(enc_buf, mac);
3875 zio_push_transform(zio, eabd, psize, psize, NULL);
3876 } else {
3877 BP_SET_CRYPT(bp, B_TRUE);
3878 zio_crypt_encode_params_bp(bp, salt, iv);
3879 zio_crypt_encode_mac_bp(bp, mac);
3880
3881 if (no_crypt) {
3882 ASSERT3U(ot, ==, DMU_OT_DNODE);
3883 abd_free(eabd);
3884 } else {
3885 zio_push_transform(zio, eabd, psize, psize, NULL);
3886 }
3887 }
3888
3889 return (ZIO_PIPELINE_CONTINUE);
3890 }
3891
3892 /*
3893 * ==========================================================================
3894 * Generate and verify checksums
3895 * ==========================================================================
3896 */
3897 static int
3898 zio_checksum_generate(zio_t *zio)
3899 {
3900 blkptr_t *bp = zio->io_bp;
3901 enum zio_checksum checksum;
3902
3903 if (bp == NULL) {
3904 /*
3905 * This is zio_write_phys().
3906 * We're either generating a label checksum, or none at all.
3907 */
3908 checksum = zio->io_prop.zp_checksum;
3909
3910 if (checksum == ZIO_CHECKSUM_OFF)
3911 return (ZIO_PIPELINE_CONTINUE);
3912
3913 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3914 } else {
3915 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3916 ASSERT(!IO_IS_ALLOCATING(zio));
3917 checksum = ZIO_CHECKSUM_GANG_HEADER;
3918 } else {
3919 checksum = BP_GET_CHECKSUM(bp);
3920 }
3921 }
3922
3923 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3924
3925 return (ZIO_PIPELINE_CONTINUE);
3926 }
3927
3928 static int
3929 zio_checksum_verify(zio_t *zio)
3930 {
3931 zio_bad_cksum_t info;
3932 blkptr_t *bp = zio->io_bp;
3933 int error;
3934
3935 ASSERT(zio->io_vd != NULL);
3936
3937 if (bp == NULL) {
3938 /*
3939 * This is zio_read_phys().
3940 * We're either verifying a label checksum, or nothing at all.
3941 */
3942 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3943 return (ZIO_PIPELINE_CONTINUE);
3944
3945 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3946 }
3947
3948 if ((error = zio_checksum_error(zio, &info)) != 0) {
3949 zio->io_error = error;
3950 if (error == ECKSUM &&
3951 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3952 zfs_ereport_start_checksum(zio->io_spa,
3953 zio->io_vd, &zio->io_bookmark, zio,
3954 zio->io_offset, zio->io_size, NULL, &info);
3955 }
3956 }
3957
3958 return (ZIO_PIPELINE_CONTINUE);
3959 }
3960
3961 /*
3962 * Called by RAID-Z to ensure we don't compute the checksum twice.
3963 */
3964 void
3965 zio_checksum_verified(zio_t *zio)
3966 {
3967 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3968 }
3969
3970 /*
3971 * ==========================================================================
3972 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3973 * An error of 0 indicates success. ENXIO indicates whole-device failure,
3974 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
3975 * indicate errors that are specific to one I/O, and most likely permanent.
3976 * Any other error is presumed to be worse because we weren't expecting it.
3977 * ==========================================================================
3978 */
3979 int
3980 zio_worst_error(int e1, int e2)
3981 {
3982 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3983 int r1, r2;
3984
3985 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3986 if (e1 == zio_error_rank[r1])
3987 break;
3988
3989 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3990 if (e2 == zio_error_rank[r2])
3991 break;
3992
3993 return (r1 > r2 ? e1 : e2);
3994 }
3995
3996 /*
3997 * ==========================================================================
3998 * I/O completion
3999 * ==========================================================================
4000 */
4001 static int
4002 zio_ready(zio_t *zio)
4003 {
4004 blkptr_t *bp = zio->io_bp;
4005 zio_t *pio, *pio_next;
4006 zio_link_t *zl = NULL;
4007
4008 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4009 ZIO_WAIT_READY)) {
4010 return (ZIO_PIPELINE_STOP);
4011 }
4012
4013 if (zio->io_ready) {
4014 ASSERT(IO_IS_ALLOCATING(zio));
4015 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4016 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4017 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4018
4019 zio->io_ready(zio);
4020 }
4021
4022 if (bp != NULL && bp != &zio->io_bp_copy)
4023 zio->io_bp_copy = *bp;
4024
4025 if (zio->io_error != 0) {
4026 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4027
4028 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4029 ASSERT(IO_IS_ALLOCATING(zio));
4030 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4031 /*
4032 * We were unable to allocate anything, unreserve and
4033 * issue the next I/O to allocate.
4034 */
4035 metaslab_class_throttle_unreserve(
4036 spa_normal_class(zio->io_spa),
4037 zio->io_prop.zp_copies, zio);
4038 zio_allocate_dispatch(zio->io_spa);
4039 }
4040 }
4041
4042 mutex_enter(&zio->io_lock);
4043 zio->io_state[ZIO_WAIT_READY] = 1;
4044 pio = zio_walk_parents(zio, &zl);
4045 mutex_exit(&zio->io_lock);
4046
4047 /*
4048 * As we notify zio's parents, new parents could be added.
4049 * New parents go to the head of zio's io_parent_list, however,
4050 * so we will (correctly) not notify them. The remainder of zio's
4051 * io_parent_list, from 'pio_next' onward, cannot change because
4052 * all parents must wait for us to be done before they can be done.
4053 */
4054 for (; pio != NULL; pio = pio_next) {
4055 pio_next = zio_walk_parents(zio, &zl);
4056 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
4057 }
4058
4059 if (zio->io_flags & ZIO_FLAG_NODATA) {
4060 if (BP_IS_GANG(bp)) {
4061 zio->io_flags &= ~ZIO_FLAG_NODATA;
4062 } else {
4063 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4064 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4065 }
4066 }
4067
4068 if (zio_injection_enabled &&
4069 zio->io_spa->spa_syncing_txg == zio->io_txg)
4070 zio_handle_ignored_writes(zio);
4071
4072 return (ZIO_PIPELINE_CONTINUE);
4073 }
4074
4075 /*
4076 * Update the allocation throttle accounting.
4077 */
4078 static void
4079 zio_dva_throttle_done(zio_t *zio)
4080 {
4081 ASSERTV(zio_t *lio = zio->io_logical);
4082 zio_t *pio = zio_unique_parent(zio);
4083 vdev_t *vd = zio->io_vd;
4084 int flags = METASLAB_ASYNC_ALLOC;
4085
4086 ASSERT3P(zio->io_bp, !=, NULL);
4087 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4088 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4089 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4090 ASSERT(vd != NULL);
4091 ASSERT3P(vd, ==, vd->vdev_top);
4092 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4093 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4094 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4095 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4096 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4097
4098 /*
4099 * Parents of gang children can have two flavors -- ones that
4100 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4101 * and ones that allocated the constituent blocks. The allocation
4102 * throttle needs to know the allocating parent zio so we must find
4103 * it here.
4104 */
4105 if (pio->io_child_type == ZIO_CHILD_GANG) {
4106 /*
4107 * If our parent is a rewrite gang child then our grandparent
4108 * would have been the one that performed the allocation.
4109 */
4110 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4111 pio = zio_unique_parent(pio);
4112 flags |= METASLAB_GANG_CHILD;
4113 }
4114
4115 ASSERT(IO_IS_ALLOCATING(pio));
4116 ASSERT3P(zio, !=, zio->io_logical);
4117 ASSERT(zio->io_logical != NULL);
4118 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4119 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4120
4121 mutex_enter(&pio->io_lock);
4122 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
4123 mutex_exit(&pio->io_lock);
4124
4125 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
4126 1, pio);
4127
4128 /*
4129 * Call into the pipeline to see if there is more work that
4130 * needs to be done. If there is work to be done it will be
4131 * dispatched to another taskq thread.
4132 */
4133 zio_allocate_dispatch(zio->io_spa);
4134 }
4135
4136 static int
4137 zio_done(zio_t *zio)
4138 {
4139 /*
4140 * Always attempt to keep stack usage minimal here since
4141 * we can be called recurisvely up to 19 levels deep.
4142 */
4143 const uint64_t psize = zio->io_size;
4144 zio_t *pio, *pio_next;
4145 zio_link_t *zl = NULL;
4146
4147 /*
4148 * If our children haven't all completed,
4149 * wait for them and then repeat this pipeline stage.
4150 */
4151 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4152 return (ZIO_PIPELINE_STOP);
4153 }
4154
4155 /*
4156 * If the allocation throttle is enabled, then update the accounting.
4157 * We only track child I/Os that are part of an allocating async
4158 * write. We must do this since the allocation is performed
4159 * by the logical I/O but the actual write is done by child I/Os.
4160 */
4161 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4162 zio->io_child_type == ZIO_CHILD_VDEV) {
4163 ASSERT(spa_normal_class(
4164 zio->io_spa)->mc_alloc_throttle_enabled);
4165 zio_dva_throttle_done(zio);
4166 }
4167
4168 /*
4169 * If the allocation throttle is enabled, verify that
4170 * we have decremented the refcounts for every I/O that was throttled.
4171 */
4172 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4173 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4174 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4175 ASSERT(zio->io_bp != NULL);
4176 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio);
4177 VERIFY(refcount_not_held(
4178 &(spa_normal_class(zio->io_spa)->mc_alloc_slots), zio));
4179 }
4180
4181
4182 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4183 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4184 ASSERT(zio->io_children[c][w] == 0);
4185
4186 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4187 ASSERT(zio->io_bp->blk_pad[0] == 0);
4188 ASSERT(zio->io_bp->blk_pad[1] == 0);
4189 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4190 sizeof (blkptr_t)) == 0 ||
4191 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4192 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4193 zio->io_bp_override == NULL &&
4194 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4195 ASSERT3U(zio->io_prop.zp_copies, <=,
4196 BP_GET_NDVAS(zio->io_bp));
4197 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4198 (BP_COUNT_GANG(zio->io_bp) ==
4199 BP_GET_NDVAS(zio->io_bp)));
4200 }
4201 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4202 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4203 }
4204
4205 /*
4206 * If there were child vdev/gang/ddt errors, they apply to us now.
4207 */
4208 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4209 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4210 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4211
4212 /*
4213 * If the I/O on the transformed data was successful, generate any
4214 * checksum reports now while we still have the transformed data.
4215 */
4216 if (zio->io_error == 0) {
4217 while (zio->io_cksum_report != NULL) {
4218 zio_cksum_report_t *zcr = zio->io_cksum_report;
4219 uint64_t align = zcr->zcr_align;
4220 uint64_t asize = P2ROUNDUP(psize, align);
4221 abd_t *adata = zio->io_abd;
4222
4223 if (asize != psize) {
4224 adata = abd_alloc(asize, B_TRUE);
4225 abd_copy(adata, zio->io_abd, psize);
4226 abd_zero_off(adata, psize, asize - psize);
4227 }
4228
4229 zio->io_cksum_report = zcr->zcr_next;
4230 zcr->zcr_next = NULL;
4231 zcr->zcr_finish(zcr, adata);
4232 zfs_ereport_free_checksum(zcr);
4233
4234 if (asize != psize)
4235 abd_free(adata);
4236 }
4237 }
4238
4239 zio_pop_transforms(zio); /* note: may set zio->io_error */
4240
4241 vdev_stat_update(zio, psize);
4242
4243 /*
4244 * If this I/O is attached to a particular vdev is slow, exceeding
4245 * 30 seconds to complete, post an error described the I/O delay.
4246 * We ignore these errors if the device is currently unavailable.
4247 */
4248 if (zio->io_delay >= MSEC2NSEC(zio_delay_max)) {
4249 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
4250 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
4251 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4252 }
4253
4254 if (zio->io_error) {
4255 /*
4256 * If this I/O is attached to a particular vdev,
4257 * generate an error message describing the I/O failure
4258 * at the block level. We ignore these errors if the
4259 * device is currently unavailable.
4260 */
4261 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4262 !vdev_is_dead(zio->io_vd))
4263 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
4264 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4265
4266 if ((zio->io_error == EIO || !(zio->io_flags &
4267 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4268 zio == zio->io_logical) {
4269 /*
4270 * For logical I/O requests, tell the SPA to log the
4271 * error and generate a logical data ereport.
4272 */
4273 spa_log_error(zio->io_spa, &zio->io_bookmark);
4274 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa,
4275 NULL, &zio->io_bookmark, zio, 0, 0);
4276 }
4277 }
4278
4279 if (zio->io_error && zio == zio->io_logical) {
4280 /*
4281 * Determine whether zio should be reexecuted. This will
4282 * propagate all the way to the root via zio_notify_parent().
4283 */
4284 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4285 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4286
4287 if (IO_IS_ALLOCATING(zio) &&
4288 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4289 if (zio->io_error != ENOSPC)
4290 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4291 else
4292 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4293 }
4294
4295 if ((zio->io_type == ZIO_TYPE_READ ||
4296 zio->io_type == ZIO_TYPE_FREE) &&
4297 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4298 zio->io_error == ENXIO &&
4299 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4300 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4301 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4302
4303 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4304 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4305
4306 /*
4307 * Here is a possibly good place to attempt to do
4308 * either combinatorial reconstruction or error correction
4309 * based on checksums. It also might be a good place
4310 * to send out preliminary ereports before we suspend
4311 * processing.
4312 */
4313 }
4314
4315 /*
4316 * If there were logical child errors, they apply to us now.
4317 * We defer this until now to avoid conflating logical child
4318 * errors with errors that happened to the zio itself when
4319 * updating vdev stats and reporting FMA events above.
4320 */
4321 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4322
4323 if ((zio->io_error || zio->io_reexecute) &&
4324 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4325 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4326 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4327
4328 zio_gang_tree_free(&zio->io_gang_tree);
4329
4330 /*
4331 * Godfather I/Os should never suspend.
4332 */
4333 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4334 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4335 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4336
4337 if (zio->io_reexecute) {
4338 /*
4339 * This is a logical I/O that wants to reexecute.
4340 *
4341 * Reexecute is top-down. When an i/o fails, if it's not
4342 * the root, it simply notifies its parent and sticks around.
4343 * The parent, seeing that it still has children in zio_done(),
4344 * does the same. This percolates all the way up to the root.
4345 * The root i/o will reexecute or suspend the entire tree.
4346 *
4347 * This approach ensures that zio_reexecute() honors
4348 * all the original i/o dependency relationships, e.g.
4349 * parents not executing until children are ready.
4350 */
4351 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4352
4353 zio->io_gang_leader = NULL;
4354
4355 mutex_enter(&zio->io_lock);
4356 zio->io_state[ZIO_WAIT_DONE] = 1;
4357 mutex_exit(&zio->io_lock);
4358
4359 /*
4360 * "The Godfather" I/O monitors its children but is
4361 * not a true parent to them. It will track them through
4362 * the pipeline but severs its ties whenever they get into
4363 * trouble (e.g. suspended). This allows "The Godfather"
4364 * I/O to return status without blocking.
4365 */
4366 zl = NULL;
4367 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4368 pio = pio_next) {
4369 zio_link_t *remove_zl = zl;
4370 pio_next = zio_walk_parents(zio, &zl);
4371
4372 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4373 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4374 zio_remove_child(pio, zio, remove_zl);
4375 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4376 }
4377 }
4378
4379 if ((pio = zio_unique_parent(zio)) != NULL) {
4380 /*
4381 * We're not a root i/o, so there's nothing to do
4382 * but notify our parent. Don't propagate errors
4383 * upward since we haven't permanently failed yet.
4384 */
4385 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4386 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4387 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4388 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4389 /*
4390 * We'd fail again if we reexecuted now, so suspend
4391 * until conditions improve (e.g. device comes online).
4392 */
4393 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4394 } else {
4395 /*
4396 * Reexecution is potentially a huge amount of work.
4397 * Hand it off to the otherwise-unused claim taskq.
4398 */
4399 ASSERT(taskq_empty_ent(&zio->io_tqent));
4400 spa_taskq_dispatch_ent(zio->io_spa,
4401 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4402 (task_func_t *)zio_reexecute, zio, 0,
4403 &zio->io_tqent);
4404 }
4405 return (ZIO_PIPELINE_STOP);
4406 }
4407
4408 ASSERT(zio->io_child_count == 0);
4409 ASSERT(zio->io_reexecute == 0);
4410 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4411
4412 /*
4413 * Report any checksum errors, since the I/O is complete.
4414 */
4415 while (zio->io_cksum_report != NULL) {
4416 zio_cksum_report_t *zcr = zio->io_cksum_report;
4417 zio->io_cksum_report = zcr->zcr_next;
4418 zcr->zcr_next = NULL;
4419 zcr->zcr_finish(zcr, NULL);
4420 zfs_ereport_free_checksum(zcr);
4421 }
4422
4423 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4424 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4425 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4426 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4427 }
4428
4429 /*
4430 * It is the responsibility of the done callback to ensure that this
4431 * particular zio is no longer discoverable for adoption, and as
4432 * such, cannot acquire any new parents.
4433 */
4434 if (zio->io_done)
4435 zio->io_done(zio);
4436
4437 mutex_enter(&zio->io_lock);
4438 zio->io_state[ZIO_WAIT_DONE] = 1;
4439 mutex_exit(&zio->io_lock);
4440
4441 zl = NULL;
4442 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4443 zio_link_t *remove_zl = zl;
4444 pio_next = zio_walk_parents(zio, &zl);
4445 zio_remove_child(pio, zio, remove_zl);
4446 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4447 }
4448
4449 if (zio->io_waiter != NULL) {
4450 mutex_enter(&zio->io_lock);
4451 zio->io_executor = NULL;
4452 cv_broadcast(&zio->io_cv);
4453 mutex_exit(&zio->io_lock);
4454 } else {
4455 zio_destroy(zio);
4456 }
4457
4458 return (ZIO_PIPELINE_STOP);
4459 }
4460
4461 /*
4462 * ==========================================================================
4463 * I/O pipeline definition
4464 * ==========================================================================
4465 */
4466 static zio_pipe_stage_t *zio_pipeline[] = {
4467 NULL,
4468 zio_read_bp_init,
4469 zio_write_bp_init,
4470 zio_free_bp_init,
4471 zio_issue_async,
4472 zio_write_compress,
4473 zio_encrypt,
4474 zio_checksum_generate,
4475 zio_nop_write,
4476 zio_ddt_read_start,
4477 zio_ddt_read_done,
4478 zio_ddt_write,
4479 zio_ddt_free,
4480 zio_gang_assemble,
4481 zio_gang_issue,
4482 zio_dva_throttle,
4483 zio_dva_allocate,
4484 zio_dva_free,
4485 zio_dva_claim,
4486 zio_ready,
4487 zio_vdev_io_start,
4488 zio_vdev_io_done,
4489 zio_vdev_io_assess,
4490 zio_checksum_verify,
4491 zio_done
4492 };
4493
4494
4495
4496
4497 /*
4498 * Compare two zbookmark_phys_t's to see which we would reach first in a
4499 * pre-order traversal of the object tree.
4500 *
4501 * This is simple in every case aside from the meta-dnode object. For all other
4502 * objects, we traverse them in order (object 1 before object 2, and so on).
4503 * However, all of these objects are traversed while traversing object 0, since
4504 * the data it points to is the list of objects. Thus, we need to convert to a
4505 * canonical representation so we can compare meta-dnode bookmarks to
4506 * non-meta-dnode bookmarks.
4507 *
4508 * We do this by calculating "equivalents" for each field of the zbookmark.
4509 * zbookmarks outside of the meta-dnode use their own object and level, and
4510 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4511 * blocks this bookmark refers to) by multiplying their blkid by their span
4512 * (the number of L0 blocks contained within one block at their level).
4513 * zbookmarks inside the meta-dnode calculate their object equivalent
4514 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4515 * level + 1<<31 (any value larger than a level could ever be) for their level.
4516 * This causes them to always compare before a bookmark in their object
4517 * equivalent, compare appropriately to bookmarks in other objects, and to
4518 * compare appropriately to other bookmarks in the meta-dnode.
4519 */
4520 int
4521 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4522 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4523 {
4524 /*
4525 * These variables represent the "equivalent" values for the zbookmark,
4526 * after converting zbookmarks inside the meta dnode to their
4527 * normal-object equivalents.
4528 */
4529 uint64_t zb1obj, zb2obj;
4530 uint64_t zb1L0, zb2L0;
4531 uint64_t zb1level, zb2level;
4532
4533 if (zb1->zb_object == zb2->zb_object &&
4534 zb1->zb_level == zb2->zb_level &&
4535 zb1->zb_blkid == zb2->zb_blkid)
4536 return (0);
4537
4538 /*
4539 * BP_SPANB calculates the span in blocks.
4540 */
4541 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4542 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4543
4544 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4545 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4546 zb1L0 = 0;
4547 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4548 } else {
4549 zb1obj = zb1->zb_object;
4550 zb1level = zb1->zb_level;
4551 }
4552
4553 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4554 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4555 zb2L0 = 0;
4556 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4557 } else {
4558 zb2obj = zb2->zb_object;
4559 zb2level = zb2->zb_level;
4560 }
4561
4562 /* Now that we have a canonical representation, do the comparison. */
4563 if (zb1obj != zb2obj)
4564 return (zb1obj < zb2obj ? -1 : 1);
4565 else if (zb1L0 != zb2L0)
4566 return (zb1L0 < zb2L0 ? -1 : 1);
4567 else if (zb1level != zb2level)
4568 return (zb1level > zb2level ? -1 : 1);
4569 /*
4570 * This can (theoretically) happen if the bookmarks have the same object
4571 * and level, but different blkids, if the block sizes are not the same.
4572 * There is presently no way to change the indirect block sizes
4573 */
4574 return (0);
4575 }
4576
4577 /*
4578 * This function checks the following: given that last_block is the place that
4579 * our traversal stopped last time, does that guarantee that we've visited
4580 * every node under subtree_root? Therefore, we can't just use the raw output
4581 * of zbookmark_compare. We have to pass in a modified version of
4582 * subtree_root; by incrementing the block id, and then checking whether
4583 * last_block is before or equal to that, we can tell whether or not having
4584 * visited last_block implies that all of subtree_root's children have been
4585 * visited.
4586 */
4587 boolean_t
4588 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4589 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4590 {
4591 zbookmark_phys_t mod_zb = *subtree_root;
4592 mod_zb.zb_blkid++;
4593 ASSERT(last_block->zb_level == 0);
4594
4595 /* The objset_phys_t isn't before anything. */
4596 if (dnp == NULL)
4597 return (B_FALSE);
4598
4599 /*
4600 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4601 * data block size in sectors, because that variable is only used if
4602 * the bookmark refers to a block in the meta-dnode. Since we don't
4603 * know without examining it what object it refers to, and there's no
4604 * harm in passing in this value in other cases, we always pass it in.
4605 *
4606 * We pass in 0 for the indirect block size shift because zb2 must be
4607 * level 0. The indirect block size is only used to calculate the span
4608 * of the bookmark, but since the bookmark must be level 0, the span is
4609 * always 1, so the math works out.
4610 *
4611 * If you make changes to how the zbookmark_compare code works, be sure
4612 * to make sure that this code still works afterwards.
4613 */
4614 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4615 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4616 last_block) <= 0);
4617 }
4618
4619 #if defined(_KERNEL) && defined(HAVE_SPL)
4620 EXPORT_SYMBOL(zio_type_name);
4621 EXPORT_SYMBOL(zio_buf_alloc);
4622 EXPORT_SYMBOL(zio_data_buf_alloc);
4623 EXPORT_SYMBOL(zio_buf_free);
4624 EXPORT_SYMBOL(zio_data_buf_free);
4625
4626 module_param(zio_delay_max, int, 0644);
4627 MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
4628
4629 module_param(zio_requeue_io_start_cut_in_line, int, 0644);
4630 MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
4631
4632 module_param(zfs_sync_pass_deferred_free, int, 0644);
4633 MODULE_PARM_DESC(zfs_sync_pass_deferred_free,
4634 "Defer frees starting in this pass");
4635
4636 module_param(zfs_sync_pass_dont_compress, int, 0644);
4637 MODULE_PARM_DESC(zfs_sync_pass_dont_compress,
4638 "Don't compress starting in this pass");
4639
4640 module_param(zfs_sync_pass_rewrite, int, 0644);
4641 MODULE_PARM_DESC(zfs_sync_pass_rewrite,
4642 "Rewrite new bps starting in this pass");
4643
4644 module_param(zio_dva_throttle_enabled, int, 0644);
4645 MODULE_PARM_DESC(zio_dva_throttle_enabled,
4646 "Throttle block allocations in the ZIO pipeline");
4647 #endif