]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Add linux kernel module support
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <sys/zfs_context.h>
26 #include <sys/fm/fs/zfs.h>
27 #include <sys/spa.h>
28 #include <sys/txg.h>
29 #include <sys/spa_impl.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/zio_impl.h>
32 #include <sys/zio_compress.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/arc.h>
36 #include <sys/ddt.h>
37
38 /*
39 * ==========================================================================
40 * I/O priority table
41 * ==========================================================================
42 */
43 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
44 0, /* ZIO_PRIORITY_NOW */
45 0, /* ZIO_PRIORITY_SYNC_READ */
46 0, /* ZIO_PRIORITY_SYNC_WRITE */
47 0, /* ZIO_PRIORITY_LOG_WRITE */
48 1, /* ZIO_PRIORITY_CACHE_FILL */
49 1, /* ZIO_PRIORITY_AGG */
50 4, /* ZIO_PRIORITY_FREE */
51 4, /* ZIO_PRIORITY_ASYNC_WRITE */
52 6, /* ZIO_PRIORITY_ASYNC_READ */
53 10, /* ZIO_PRIORITY_RESILVER */
54 20, /* ZIO_PRIORITY_SCRUB */
55 2, /* ZIO_PRIORITY_DDT_PREFETCH */
56 };
57
58 /*
59 * ==========================================================================
60 * I/O type descriptions
61 * ==========================================================================
62 */
63 char *zio_type_name[ZIO_TYPES] = {
64 "zio_null", "zio_read", "zio_write", "zio_free", "zio_claim",
65 "zio_ioctl"
66 };
67
68 /*
69 * ==========================================================================
70 * I/O kmem caches
71 * ==========================================================================
72 */
73 kmem_cache_t *zio_cache;
74 kmem_cache_t *zio_link_cache;
75 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
76 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
77 int zio_bulk_flags = 0;
78
79 #ifdef _KERNEL
80 extern vmem_t *zio_alloc_arena;
81 #endif
82
83 /*
84 * An allocating zio is one that either currently has the DVA allocate
85 * stage set or will have it later in its lifetime.
86 */
87 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
88
89 boolean_t zio_requeue_io_start_cut_in_line = B_TRUE;
90
91 #ifdef ZFS_DEBUG
92 int zio_buf_debug_limit = 16384;
93 #else
94 int zio_buf_debug_limit = 0;
95 #endif
96
97 static inline void __zio_execute(zio_t *zio);
98
99 void
100 zio_init(void)
101 {
102 size_t c;
103 vmem_t *data_alloc_arena = NULL;
104
105 #ifdef _KERNEL
106 data_alloc_arena = zio_alloc_arena;
107 #endif
108 zio_cache = kmem_cache_create("zio_cache",
109 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
110 zio_link_cache = kmem_cache_create("zio_link_cache",
111 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
112
113 /*
114 * For small buffers, we want a cache for each multiple of
115 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache
116 * for each quarter-power of 2. For large buffers, we want
117 * a cache for each multiple of PAGESIZE.
118 */
119 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
120 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
121 size_t p2 = size;
122 size_t align = 0;
123
124 while (p2 & (p2 - 1))
125 p2 &= p2 - 1;
126
127 if (size <= 4 * SPA_MINBLOCKSIZE) {
128 align = SPA_MINBLOCKSIZE;
129 } else if (P2PHASE(size, PAGESIZE) == 0) {
130 align = PAGESIZE;
131 } else if (P2PHASE(size, p2 >> 2) == 0) {
132 align = p2 >> 2;
133 }
134
135 if (align != 0) {
136 char name[36];
137 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
138 zio_buf_cache[c] = kmem_cache_create(name, size,
139 align, NULL, NULL, NULL, NULL, NULL,
140 (size > zio_buf_debug_limit ? KMC_NODEBUG : 0) |
141 zio_bulk_flags);
142
143 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
144 zio_data_buf_cache[c] = kmem_cache_create(name, size,
145 align, NULL, NULL, NULL, NULL, data_alloc_arena,
146 (size > zio_buf_debug_limit ? KMC_NODEBUG : 0) |
147 zio_bulk_flags);
148 }
149 }
150
151 while (--c != 0) {
152 ASSERT(zio_buf_cache[c] != NULL);
153 if (zio_buf_cache[c - 1] == NULL)
154 zio_buf_cache[c - 1] = zio_buf_cache[c];
155
156 ASSERT(zio_data_buf_cache[c] != NULL);
157 if (zio_data_buf_cache[c - 1] == NULL)
158 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
159 }
160
161 zio_inject_init();
162 }
163
164 void
165 zio_fini(void)
166 {
167 size_t c;
168 kmem_cache_t *last_cache = NULL;
169 kmem_cache_t *last_data_cache = NULL;
170
171 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
172 if (zio_buf_cache[c] != last_cache) {
173 last_cache = zio_buf_cache[c];
174 kmem_cache_destroy(zio_buf_cache[c]);
175 }
176 zio_buf_cache[c] = NULL;
177
178 if (zio_data_buf_cache[c] != last_data_cache) {
179 last_data_cache = zio_data_buf_cache[c];
180 kmem_cache_destroy(zio_data_buf_cache[c]);
181 }
182 zio_data_buf_cache[c] = NULL;
183 }
184
185 kmem_cache_destroy(zio_link_cache);
186 kmem_cache_destroy(zio_cache);
187
188 zio_inject_fini();
189 }
190
191 /*
192 * ==========================================================================
193 * Allocate and free I/O buffers
194 * ==========================================================================
195 */
196
197 /*
198 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
199 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
200 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
201 * excess / transient data in-core during a crashdump.
202 */
203 void *
204 zio_buf_alloc(size_t size)
205 {
206 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
207
208 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
209
210 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
211 }
212
213 /*
214 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
215 * crashdump if the kernel panics. This exists so that we will limit the amount
216 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
217 * of kernel heap dumped to disk when the kernel panics)
218 */
219 void *
220 zio_data_buf_alloc(size_t size)
221 {
222 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
223
224 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
225
226 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
227 }
228
229 void
230 zio_buf_free(void *buf, size_t size)
231 {
232 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
233
234 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
235
236 kmem_cache_free(zio_buf_cache[c], buf);
237 }
238
239 void
240 zio_data_buf_free(void *buf, size_t size)
241 {
242 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
243
244 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
245
246 kmem_cache_free(zio_data_buf_cache[c], buf);
247 }
248
249 /*
250 * ==========================================================================
251 * Push and pop I/O transform buffers
252 * ==========================================================================
253 */
254 static void
255 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
256 zio_transform_func_t *transform)
257 {
258 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
259
260 zt->zt_orig_data = zio->io_data;
261 zt->zt_orig_size = zio->io_size;
262 zt->zt_bufsize = bufsize;
263 zt->zt_transform = transform;
264
265 zt->zt_next = zio->io_transform_stack;
266 zio->io_transform_stack = zt;
267
268 zio->io_data = data;
269 zio->io_size = size;
270 }
271
272 static void
273 zio_pop_transforms(zio_t *zio)
274 {
275 zio_transform_t *zt;
276
277 while ((zt = zio->io_transform_stack) != NULL) {
278 if (zt->zt_transform != NULL)
279 zt->zt_transform(zio,
280 zt->zt_orig_data, zt->zt_orig_size);
281
282 if (zt->zt_bufsize != 0)
283 zio_buf_free(zio->io_data, zt->zt_bufsize);
284
285 zio->io_data = zt->zt_orig_data;
286 zio->io_size = zt->zt_orig_size;
287 zio->io_transform_stack = zt->zt_next;
288
289 kmem_free(zt, sizeof (zio_transform_t));
290 }
291 }
292
293 /*
294 * ==========================================================================
295 * I/O transform callbacks for subblocks and decompression
296 * ==========================================================================
297 */
298 static void
299 zio_subblock(zio_t *zio, void *data, uint64_t size)
300 {
301 ASSERT(zio->io_size > size);
302
303 if (zio->io_type == ZIO_TYPE_READ)
304 bcopy(zio->io_data, data, size);
305 }
306
307 static void
308 zio_decompress(zio_t *zio, void *data, uint64_t size)
309 {
310 if (zio->io_error == 0 &&
311 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
312 zio->io_data, data, zio->io_size, size) != 0)
313 zio->io_error = EIO;
314 }
315
316 /*
317 * ==========================================================================
318 * I/O parent/child relationships and pipeline interlocks
319 * ==========================================================================
320 */
321 /*
322 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
323 * continue calling these functions until they return NULL.
324 * Otherwise, the next caller will pick up the list walk in
325 * some indeterminate state. (Otherwise every caller would
326 * have to pass in a cookie to keep the state represented by
327 * io_walk_link, which gets annoying.)
328 */
329 zio_t *
330 zio_walk_parents(zio_t *cio)
331 {
332 zio_link_t *zl = cio->io_walk_link;
333 list_t *pl = &cio->io_parent_list;
334
335 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
336 cio->io_walk_link = zl;
337
338 if (zl == NULL)
339 return (NULL);
340
341 ASSERT(zl->zl_child == cio);
342 return (zl->zl_parent);
343 }
344
345 zio_t *
346 zio_walk_children(zio_t *pio)
347 {
348 zio_link_t *zl = pio->io_walk_link;
349 list_t *cl = &pio->io_child_list;
350
351 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
352 pio->io_walk_link = zl;
353
354 if (zl == NULL)
355 return (NULL);
356
357 ASSERT(zl->zl_parent == pio);
358 return (zl->zl_child);
359 }
360
361 zio_t *
362 zio_unique_parent(zio_t *cio)
363 {
364 zio_t *pio = zio_walk_parents(cio);
365
366 VERIFY(zio_walk_parents(cio) == NULL);
367 return (pio);
368 }
369
370 void
371 zio_add_child(zio_t *pio, zio_t *cio)
372 {
373 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
374 int w;
375
376 /*
377 * Logical I/Os can have logical, gang, or vdev children.
378 * Gang I/Os can have gang or vdev children.
379 * Vdev I/Os can only have vdev children.
380 * The following ASSERT captures all of these constraints.
381 */
382 ASSERT(cio->io_child_type <= pio->io_child_type);
383
384 zl->zl_parent = pio;
385 zl->zl_child = cio;
386
387 mutex_enter(&cio->io_lock);
388 mutex_enter(&pio->io_lock);
389
390 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
391
392 for (w = 0; w < ZIO_WAIT_TYPES; w++)
393 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
394
395 list_insert_head(&pio->io_child_list, zl);
396 list_insert_head(&cio->io_parent_list, zl);
397
398 pio->io_child_count++;
399 cio->io_parent_count++;
400
401 mutex_exit(&pio->io_lock);
402 mutex_exit(&cio->io_lock);
403 }
404
405 static void
406 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
407 {
408 ASSERT(zl->zl_parent == pio);
409 ASSERT(zl->zl_child == cio);
410
411 mutex_enter(&cio->io_lock);
412 mutex_enter(&pio->io_lock);
413
414 list_remove(&pio->io_child_list, zl);
415 list_remove(&cio->io_parent_list, zl);
416
417 pio->io_child_count--;
418 cio->io_parent_count--;
419
420 mutex_exit(&pio->io_lock);
421 mutex_exit(&cio->io_lock);
422
423 kmem_cache_free(zio_link_cache, zl);
424 }
425
426 static boolean_t
427 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
428 {
429 uint64_t *countp = &zio->io_children[child][wait];
430 boolean_t waiting = B_FALSE;
431
432 mutex_enter(&zio->io_lock);
433 ASSERT(zio->io_stall == NULL);
434 if (*countp != 0) {
435 zio->io_stage >>= 1;
436 zio->io_stall = countp;
437 waiting = B_TRUE;
438 }
439 mutex_exit(&zio->io_lock);
440
441 return (waiting);
442 }
443
444 __attribute__((always_inline))
445 static inline void
446 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
447 {
448 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
449 int *errorp = &pio->io_child_error[zio->io_child_type];
450
451 mutex_enter(&pio->io_lock);
452 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
453 *errorp = zio_worst_error(*errorp, zio->io_error);
454 pio->io_reexecute |= zio->io_reexecute;
455 ASSERT3U(*countp, >, 0);
456 if (--*countp == 0 && pio->io_stall == countp) {
457 pio->io_stall = NULL;
458 mutex_exit(&pio->io_lock);
459 __zio_execute(pio);
460 } else {
461 mutex_exit(&pio->io_lock);
462 }
463 }
464
465 static void
466 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
467 {
468 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
469 zio->io_error = zio->io_child_error[c];
470 }
471
472 /*
473 * ==========================================================================
474 * Create the various types of I/O (read, write, free, etc)
475 * ==========================================================================
476 */
477 static zio_t *
478 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
479 void *data, uint64_t size, zio_done_func_t *done, void *private,
480 zio_type_t type, int priority, enum zio_flag flags,
481 vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
482 enum zio_stage stage, enum zio_stage pipeline)
483 {
484 zio_t *zio;
485
486 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
487 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
488 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
489
490 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
491 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
492 ASSERT(vd || stage == ZIO_STAGE_OPEN);
493
494 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
495 bzero(zio, sizeof (zio_t));
496
497 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
498 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
499
500 list_create(&zio->io_parent_list, sizeof (zio_link_t),
501 offsetof(zio_link_t, zl_parent_node));
502 list_create(&zio->io_child_list, sizeof (zio_link_t),
503 offsetof(zio_link_t, zl_child_node));
504
505 if (vd != NULL)
506 zio->io_child_type = ZIO_CHILD_VDEV;
507 else if (flags & ZIO_FLAG_GANG_CHILD)
508 zio->io_child_type = ZIO_CHILD_GANG;
509 else if (flags & ZIO_FLAG_DDT_CHILD)
510 zio->io_child_type = ZIO_CHILD_DDT;
511 else
512 zio->io_child_type = ZIO_CHILD_LOGICAL;
513
514 if (bp != NULL) {
515 zio->io_bp = (blkptr_t *)bp;
516 zio->io_bp_copy = *bp;
517 zio->io_bp_orig = *bp;
518 if (type != ZIO_TYPE_WRITE ||
519 zio->io_child_type == ZIO_CHILD_DDT)
520 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
521 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
522 zio->io_logical = zio;
523 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
524 pipeline |= ZIO_GANG_STAGES;
525 }
526
527 zio->io_spa = spa;
528 zio->io_txg = txg;
529 zio->io_done = done;
530 zio->io_private = private;
531 zio->io_type = type;
532 zio->io_priority = priority;
533 zio->io_vd = vd;
534 zio->io_offset = offset;
535 zio->io_orig_data = zio->io_data = data;
536 zio->io_orig_size = zio->io_size = size;
537 zio->io_orig_flags = zio->io_flags = flags;
538 zio->io_orig_stage = zio->io_stage = stage;
539 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
540
541 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
542 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
543
544 if (zb != NULL)
545 zio->io_bookmark = *zb;
546
547 if (pio != NULL) {
548 if (zio->io_logical == NULL)
549 zio->io_logical = pio->io_logical;
550 if (zio->io_child_type == ZIO_CHILD_GANG)
551 zio->io_gang_leader = pio->io_gang_leader;
552 zio_add_child(pio, zio);
553 }
554
555 return (zio);
556 }
557
558 static void
559 zio_destroy(zio_t *zio)
560 {
561 list_destroy(&zio->io_parent_list);
562 list_destroy(&zio->io_child_list);
563 mutex_destroy(&zio->io_lock);
564 cv_destroy(&zio->io_cv);
565 kmem_cache_free(zio_cache, zio);
566 }
567
568 zio_t *
569 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
570 void *private, enum zio_flag flags)
571 {
572 zio_t *zio;
573
574 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
575 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
576 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
577
578 return (zio);
579 }
580
581 zio_t *
582 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
583 {
584 return (zio_null(NULL, spa, NULL, done, private, flags));
585 }
586
587 zio_t *
588 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
589 void *data, uint64_t size, zio_done_func_t *done, void *private,
590 int priority, enum zio_flag flags, const zbookmark_t *zb)
591 {
592 zio_t *zio;
593
594 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
595 data, size, done, private,
596 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
597 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
598 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
599
600 return (zio);
601 }
602
603 zio_t *
604 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
605 void *data, uint64_t size, const zio_prop_t *zp,
606 zio_done_func_t *ready, zio_done_func_t *done, void *private,
607 int priority, enum zio_flag flags, const zbookmark_t *zb)
608 {
609 zio_t *zio;
610
611 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
612 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
613 zp->zp_compress >= ZIO_COMPRESS_OFF &&
614 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
615 zp->zp_type < DMU_OT_NUMTYPES &&
616 zp->zp_level < 32 &&
617 zp->zp_copies > 0 &&
618 zp->zp_copies <= spa_max_replication(spa) &&
619 zp->zp_dedup <= 1 &&
620 zp->zp_dedup_verify <= 1);
621
622 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
623 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
624 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
625 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
626
627 zio->io_ready = ready;
628 zio->io_prop = *zp;
629
630 return (zio);
631 }
632
633 zio_t *
634 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
635 uint64_t size, zio_done_func_t *done, void *private, int priority,
636 enum zio_flag flags, zbookmark_t *zb)
637 {
638 zio_t *zio;
639
640 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
641 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
642 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
643
644 return (zio);
645 }
646
647 void
648 zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
649 {
650 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
651 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
652 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
653 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
654
655 zio->io_prop.zp_copies = copies;
656 zio->io_bp_override = bp;
657 }
658
659 void
660 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
661 {
662 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
663 }
664
665 zio_t *
666 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
667 enum zio_flag flags)
668 {
669 zio_t *zio;
670
671 dprintf_bp(bp, "freeing in txg %llu, pass %u",
672 (longlong_t)txg, spa->spa_sync_pass);
673
674 ASSERT(!BP_IS_HOLE(bp));
675 ASSERT(spa_syncing_txg(spa) == txg);
676 ASSERT(spa_sync_pass(spa) <= SYNC_PASS_DEFERRED_FREE);
677
678 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
679 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
680 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
681
682 return (zio);
683 }
684
685 zio_t *
686 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
687 zio_done_func_t *done, void *private, enum zio_flag flags)
688 {
689 zio_t *zio;
690
691 /*
692 * A claim is an allocation of a specific block. Claims are needed
693 * to support immediate writes in the intent log. The issue is that
694 * immediate writes contain committed data, but in a txg that was
695 * *not* committed. Upon opening the pool after an unclean shutdown,
696 * the intent log claims all blocks that contain immediate write data
697 * so that the SPA knows they're in use.
698 *
699 * All claims *must* be resolved in the first txg -- before the SPA
700 * starts allocating blocks -- so that nothing is allocated twice.
701 * If txg == 0 we just verify that the block is claimable.
702 */
703 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
704 ASSERT(txg == spa_first_txg(spa) || txg == 0);
705 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
706
707 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
708 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
709 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
710
711 return (zio);
712 }
713
714 zio_t *
715 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
716 zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
717 {
718 zio_t *zio;
719 int c;
720
721 if (vd->vdev_children == 0) {
722 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
723 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
724 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
725
726 zio->io_cmd = cmd;
727 } else {
728 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
729
730 for (c = 0; c < vd->vdev_children; c++)
731 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
732 done, private, priority, flags));
733 }
734
735 return (zio);
736 }
737
738 zio_t *
739 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
740 void *data, int checksum, zio_done_func_t *done, void *private,
741 int priority, enum zio_flag flags, boolean_t labels)
742 {
743 zio_t *zio;
744
745 ASSERT(vd->vdev_children == 0);
746 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
747 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
748 ASSERT3U(offset + size, <=, vd->vdev_psize);
749
750 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
751 ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
752 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
753
754 zio->io_prop.zp_checksum = checksum;
755
756 return (zio);
757 }
758
759 zio_t *
760 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
761 void *data, int checksum, zio_done_func_t *done, void *private,
762 int priority, enum zio_flag flags, boolean_t labels)
763 {
764 zio_t *zio;
765
766 ASSERT(vd->vdev_children == 0);
767 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
768 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
769 ASSERT3U(offset + size, <=, vd->vdev_psize);
770
771 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
772 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
773 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
774
775 zio->io_prop.zp_checksum = checksum;
776
777 if (zio_checksum_table[checksum].ci_eck) {
778 /*
779 * zec checksums are necessarily destructive -- they modify
780 * the end of the write buffer to hold the verifier/checksum.
781 * Therefore, we must make a local copy in case the data is
782 * being written to multiple places in parallel.
783 */
784 void *wbuf = zio_buf_alloc(size);
785 bcopy(data, wbuf, size);
786 zio_push_transform(zio, wbuf, size, size, NULL);
787 }
788
789 return (zio);
790 }
791
792 /*
793 * Create a child I/O to do some work for us.
794 */
795 zio_t *
796 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
797 void *data, uint64_t size, int type, int priority, enum zio_flag flags,
798 zio_done_func_t *done, void *private)
799 {
800 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
801 zio_t *zio;
802
803 ASSERT(vd->vdev_parent ==
804 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
805
806 if (type == ZIO_TYPE_READ && bp != NULL) {
807 /*
808 * If we have the bp, then the child should perform the
809 * checksum and the parent need not. This pushes error
810 * detection as close to the leaves as possible and
811 * eliminates redundant checksums in the interior nodes.
812 */
813 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
814 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
815 }
816
817 if (vd->vdev_children == 0)
818 offset += VDEV_LABEL_START_SIZE;
819
820 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
821
822 /*
823 * If we've decided to do a repair, the write is not speculative --
824 * even if the original read was.
825 */
826 if (flags & ZIO_FLAG_IO_REPAIR)
827 flags &= ~ZIO_FLAG_SPECULATIVE;
828
829 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
830 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
831 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
832
833 return (zio);
834 }
835
836 zio_t *
837 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
838 int type, int priority, enum zio_flag flags,
839 zio_done_func_t *done, void *private)
840 {
841 zio_t *zio;
842
843 ASSERT(vd->vdev_ops->vdev_op_leaf);
844
845 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
846 data, size, done, private, type, priority,
847 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
848 vd, offset, NULL,
849 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
850
851 return (zio);
852 }
853
854 void
855 zio_flush(zio_t *zio, vdev_t *vd)
856 {
857 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
858 NULL, NULL, ZIO_PRIORITY_NOW,
859 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
860 }
861
862 void
863 zio_shrink(zio_t *zio, uint64_t size)
864 {
865 ASSERT(zio->io_executor == NULL);
866 ASSERT(zio->io_orig_size == zio->io_size);
867 ASSERT(size <= zio->io_size);
868
869 /*
870 * We don't shrink for raidz because of problems with the
871 * reconstruction when reading back less than the block size.
872 * Note, BP_IS_RAIDZ() assumes no compression.
873 */
874 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
875 if (!BP_IS_RAIDZ(zio->io_bp))
876 zio->io_orig_size = zio->io_size = size;
877 }
878
879 /*
880 * ==========================================================================
881 * Prepare to read and write logical blocks
882 * ==========================================================================
883 */
884
885 static int
886 zio_read_bp_init(zio_t *zio)
887 {
888 blkptr_t *bp = zio->io_bp;
889
890 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
891 zio->io_child_type == ZIO_CHILD_LOGICAL &&
892 !(zio->io_flags & ZIO_FLAG_RAW)) {
893 uint64_t psize = BP_GET_PSIZE(bp);
894 void *cbuf = zio_buf_alloc(psize);
895
896 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
897 }
898
899 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0)
900 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
901
902 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
903 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
904
905 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
906 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
907
908 return (ZIO_PIPELINE_CONTINUE);
909 }
910
911 static int
912 zio_write_bp_init(zio_t *zio)
913 {
914 spa_t *spa = zio->io_spa;
915 zio_prop_t *zp = &zio->io_prop;
916 enum zio_compress compress = zp->zp_compress;
917 blkptr_t *bp = zio->io_bp;
918 uint64_t lsize = zio->io_size;
919 uint64_t psize = lsize;
920 int pass = 1;
921
922 /*
923 * If our children haven't all reached the ready stage,
924 * wait for them and then repeat this pipeline stage.
925 */
926 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
927 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
928 return (ZIO_PIPELINE_STOP);
929
930 if (!IO_IS_ALLOCATING(zio))
931 return (ZIO_PIPELINE_CONTINUE);
932
933 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
934
935 if (zio->io_bp_override) {
936 ASSERT(bp->blk_birth != zio->io_txg);
937 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
938
939 *bp = *zio->io_bp_override;
940 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
941
942 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
943 return (ZIO_PIPELINE_CONTINUE);
944
945 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
946 zp->zp_dedup_verify);
947
948 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
949 BP_SET_DEDUP(bp, 1);
950 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
951 return (ZIO_PIPELINE_CONTINUE);
952 }
953 zio->io_bp_override = NULL;
954 BP_ZERO(bp);
955 }
956
957 if (bp->blk_birth == zio->io_txg) {
958 /*
959 * We're rewriting an existing block, which means we're
960 * working on behalf of spa_sync(). For spa_sync() to
961 * converge, it must eventually be the case that we don't
962 * have to allocate new blocks. But compression changes
963 * the blocksize, which forces a reallocate, and makes
964 * convergence take longer. Therefore, after the first
965 * few passes, stop compressing to ensure convergence.
966 */
967 pass = spa_sync_pass(spa);
968
969 ASSERT(zio->io_txg == spa_syncing_txg(spa));
970 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
971 ASSERT(!BP_GET_DEDUP(bp));
972
973 if (pass > SYNC_PASS_DONT_COMPRESS)
974 compress = ZIO_COMPRESS_OFF;
975
976 /* Make sure someone doesn't change their mind on overwrites */
977 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
978 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
979 }
980
981 if (compress != ZIO_COMPRESS_OFF) {
982 void *cbuf = zio_buf_alloc(lsize);
983 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
984 if (psize == 0 || psize == lsize) {
985 compress = ZIO_COMPRESS_OFF;
986 zio_buf_free(cbuf, lsize);
987 } else {
988 ASSERT(psize < lsize);
989 zio_push_transform(zio, cbuf, psize, lsize, NULL);
990 }
991 }
992
993 /*
994 * The final pass of spa_sync() must be all rewrites, but the first
995 * few passes offer a trade-off: allocating blocks defers convergence,
996 * but newly allocated blocks are sequential, so they can be written
997 * to disk faster. Therefore, we allow the first few passes of
998 * spa_sync() to allocate new blocks, but force rewrites after that.
999 * There should only be a handful of blocks after pass 1 in any case.
1000 */
1001 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1002 pass > SYNC_PASS_REWRITE) {
1003 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1004 ASSERT(psize != 0);
1005 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1006 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1007 } else {
1008 BP_ZERO(bp);
1009 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1010 }
1011
1012 if (psize == 0) {
1013 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1014 } else {
1015 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1016 BP_SET_LSIZE(bp, lsize);
1017 BP_SET_PSIZE(bp, psize);
1018 BP_SET_COMPRESS(bp, compress);
1019 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1020 BP_SET_TYPE(bp, zp->zp_type);
1021 BP_SET_LEVEL(bp, zp->zp_level);
1022 BP_SET_DEDUP(bp, zp->zp_dedup);
1023 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1024 if (zp->zp_dedup) {
1025 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1026 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1027 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1028 }
1029 }
1030
1031 return (ZIO_PIPELINE_CONTINUE);
1032 }
1033
1034 static int
1035 zio_free_bp_init(zio_t *zio)
1036 {
1037 blkptr_t *bp = zio->io_bp;
1038
1039 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1040 if (BP_GET_DEDUP(bp))
1041 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1042 }
1043
1044 return (ZIO_PIPELINE_CONTINUE);
1045 }
1046
1047 /*
1048 * ==========================================================================
1049 * Execute the I/O pipeline
1050 * ==========================================================================
1051 */
1052
1053 static void
1054 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1055 {
1056 spa_t *spa = zio->io_spa;
1057 zio_type_t t = zio->io_type;
1058 int flags = TQ_NOSLEEP | (cutinline ? TQ_FRONT : 0);
1059
1060 /*
1061 * If we're a config writer or a probe, the normal issue and
1062 * interrupt threads may all be blocked waiting for the config lock.
1063 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1064 */
1065 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1066 t = ZIO_TYPE_NULL;
1067
1068 /*
1069 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1070 */
1071 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1072 t = ZIO_TYPE_NULL;
1073
1074 /*
1075 * If this is a high priority I/O, then use the high priority taskq.
1076 */
1077 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1078 spa->spa_zio_taskq[t][q + 1] != NULL)
1079 q++;
1080
1081 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1082
1083 while (taskq_dispatch(spa->spa_zio_taskq[t][q],
1084 (task_func_t *)zio_execute, zio, flags) == 0); /* do nothing */
1085 }
1086
1087 static boolean_t
1088 zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1089 {
1090 kthread_t *executor = zio->io_executor;
1091 spa_t *spa = zio->io_spa;
1092 zio_type_t t;
1093
1094 for (t = 0; t < ZIO_TYPES; t++)
1095 if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1096 return (B_TRUE);
1097
1098 return (B_FALSE);
1099 }
1100
1101 static int
1102 zio_issue_async(zio_t *zio)
1103 {
1104 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1105
1106 return (ZIO_PIPELINE_STOP);
1107 }
1108
1109 void
1110 zio_interrupt(zio_t *zio)
1111 {
1112 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1113 }
1114
1115 /*
1116 * Execute the I/O pipeline until one of the following occurs:
1117 * (1) the I/O completes; (2) the pipeline stalls waiting for
1118 * dependent child I/Os; (3) the I/O issues, so we're waiting
1119 * for an I/O completion interrupt; (4) the I/O is delegated by
1120 * vdev-level caching or aggregation; (5) the I/O is deferred
1121 * due to vdev-level queueing; (6) the I/O is handed off to
1122 * another thread. In all cases, the pipeline stops whenever
1123 * there's no CPU work; it never burns a thread in cv_wait().
1124 *
1125 * There's no locking on io_stage because there's no legitimate way
1126 * for multiple threads to be attempting to process the same I/O.
1127 */
1128 static zio_pipe_stage_t *zio_pipeline[];
1129
1130 /*
1131 * zio_execute() is a wrapper around the static function
1132 * __zio_execute() so that we can force __zio_execute() to be
1133 * inlined. This reduces stack overhead which is important
1134 * because __zio_execute() is called recursively in several zio
1135 * code paths. zio_execute() itself cannot be inlined because
1136 * it is externally visible.
1137 */
1138 void
1139 zio_execute(zio_t *zio)
1140 {
1141 __zio_execute(zio);
1142 }
1143
1144 __attribute__((always_inline))
1145 static inline void
1146 __zio_execute(zio_t *zio)
1147 {
1148 zio->io_executor = curthread;
1149
1150 while (zio->io_stage < ZIO_STAGE_DONE) {
1151 enum zio_stage pipeline = zio->io_pipeline;
1152 enum zio_stage stage = zio->io_stage;
1153 int rv;
1154
1155 ASSERT(!MUTEX_HELD(&zio->io_lock));
1156 ASSERT(ISP2(stage));
1157 ASSERT(zio->io_stall == NULL);
1158
1159 do {
1160 stage <<= 1;
1161 } while ((stage & pipeline) == 0);
1162
1163 ASSERT(stage <= ZIO_STAGE_DONE);
1164
1165 /*
1166 * If we are in interrupt context and this pipeline stage
1167 * will grab a config lock that is held across I/O,
1168 * or may wait for an I/O that needs an interrupt thread
1169 * to complete, issue async to avoid deadlock.
1170 *
1171 * For VDEV_IO_START, we cut in line so that the io will
1172 * be sent to disk promptly.
1173 */
1174 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1175 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1176 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1177 zio_requeue_io_start_cut_in_line : B_FALSE;
1178 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1179 return;
1180 }
1181
1182 zio->io_stage = stage;
1183 rv = zio_pipeline[highbit(stage) - 1](zio);
1184
1185 if (rv == ZIO_PIPELINE_STOP)
1186 return;
1187
1188 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1189 }
1190 }
1191
1192
1193 /*
1194 * ==========================================================================
1195 * Initiate I/O, either sync or async
1196 * ==========================================================================
1197 */
1198 int
1199 zio_wait(zio_t *zio)
1200 {
1201 int error;
1202
1203 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1204 ASSERT(zio->io_executor == NULL);
1205
1206 zio->io_waiter = curthread;
1207
1208 __zio_execute(zio);
1209
1210 mutex_enter(&zio->io_lock);
1211 while (zio->io_executor != NULL)
1212 cv_wait(&zio->io_cv, &zio->io_lock);
1213 mutex_exit(&zio->io_lock);
1214
1215 error = zio->io_error;
1216 zio_destroy(zio);
1217
1218 return (error);
1219 }
1220
1221 void
1222 zio_nowait(zio_t *zio)
1223 {
1224 ASSERT(zio->io_executor == NULL);
1225
1226 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1227 zio_unique_parent(zio) == NULL) {
1228 /*
1229 * This is a logical async I/O with no parent to wait for it.
1230 * We add it to the spa_async_root_zio "Godfather" I/O which
1231 * will ensure they complete prior to unloading the pool.
1232 */
1233 spa_t *spa = zio->io_spa;
1234
1235 zio_add_child(spa->spa_async_zio_root, zio);
1236 }
1237
1238 __zio_execute(zio);
1239 }
1240
1241 /*
1242 * ==========================================================================
1243 * Reexecute or suspend/resume failed I/O
1244 * ==========================================================================
1245 */
1246
1247 static void
1248 zio_reexecute(zio_t *pio)
1249 {
1250 zio_t *cio, *cio_next;
1251 int c, w;
1252
1253 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1254 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1255 ASSERT(pio->io_gang_leader == NULL);
1256 ASSERT(pio->io_gang_tree == NULL);
1257
1258 pio->io_flags = pio->io_orig_flags;
1259 pio->io_stage = pio->io_orig_stage;
1260 pio->io_pipeline = pio->io_orig_pipeline;
1261 pio->io_reexecute = 0;
1262 pio->io_error = 0;
1263 for (w = 0; w < ZIO_WAIT_TYPES; w++)
1264 pio->io_state[w] = 0;
1265 for (c = 0; c < ZIO_CHILD_TYPES; c++)
1266 pio->io_child_error[c] = 0;
1267
1268 if (IO_IS_ALLOCATING(pio))
1269 BP_ZERO(pio->io_bp);
1270
1271 /*
1272 * As we reexecute pio's children, new children could be created.
1273 * New children go to the head of pio's io_child_list, however,
1274 * so we will (correctly) not reexecute them. The key is that
1275 * the remainder of pio's io_child_list, from 'cio_next' onward,
1276 * cannot be affected by any side effects of reexecuting 'cio'.
1277 */
1278 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1279 cio_next = zio_walk_children(pio);
1280 mutex_enter(&pio->io_lock);
1281 for (w = 0; w < ZIO_WAIT_TYPES; w++)
1282 pio->io_children[cio->io_child_type][w]++;
1283 mutex_exit(&pio->io_lock);
1284 zio_reexecute(cio);
1285 }
1286
1287 /*
1288 * Now that all children have been reexecuted, execute the parent.
1289 * We don't reexecute "The Godfather" I/O here as it's the
1290 * responsibility of the caller to wait on him.
1291 */
1292 if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1293 __zio_execute(pio);
1294 }
1295
1296 void
1297 zio_suspend(spa_t *spa, zio_t *zio)
1298 {
1299 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1300 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1301 "failure and the failure mode property for this pool "
1302 "is set to panic.", spa_name(spa));
1303
1304 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1305
1306 mutex_enter(&spa->spa_suspend_lock);
1307
1308 if (spa->spa_suspend_zio_root == NULL)
1309 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1310 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1311 ZIO_FLAG_GODFATHER);
1312
1313 spa->spa_suspended = B_TRUE;
1314
1315 if (zio != NULL) {
1316 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1317 ASSERT(zio != spa->spa_suspend_zio_root);
1318 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1319 ASSERT(zio_unique_parent(zio) == NULL);
1320 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1321 zio_add_child(spa->spa_suspend_zio_root, zio);
1322 }
1323
1324 mutex_exit(&spa->spa_suspend_lock);
1325 }
1326
1327 int
1328 zio_resume(spa_t *spa)
1329 {
1330 zio_t *pio;
1331
1332 /*
1333 * Reexecute all previously suspended i/o.
1334 */
1335 mutex_enter(&spa->spa_suspend_lock);
1336 spa->spa_suspended = B_FALSE;
1337 cv_broadcast(&spa->spa_suspend_cv);
1338 pio = spa->spa_suspend_zio_root;
1339 spa->spa_suspend_zio_root = NULL;
1340 mutex_exit(&spa->spa_suspend_lock);
1341
1342 if (pio == NULL)
1343 return (0);
1344
1345 zio_reexecute(pio);
1346 return (zio_wait(pio));
1347 }
1348
1349 void
1350 zio_resume_wait(spa_t *spa)
1351 {
1352 mutex_enter(&spa->spa_suspend_lock);
1353 while (spa_suspended(spa))
1354 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1355 mutex_exit(&spa->spa_suspend_lock);
1356 }
1357
1358 /*
1359 * ==========================================================================
1360 * Gang blocks.
1361 *
1362 * A gang block is a collection of small blocks that looks to the DMU
1363 * like one large block. When zio_dva_allocate() cannot find a block
1364 * of the requested size, due to either severe fragmentation or the pool
1365 * being nearly full, it calls zio_write_gang_block() to construct the
1366 * block from smaller fragments.
1367 *
1368 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1369 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1370 * an indirect block: it's an array of block pointers. It consumes
1371 * only one sector and hence is allocatable regardless of fragmentation.
1372 * The gang header's bps point to its gang members, which hold the data.
1373 *
1374 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1375 * as the verifier to ensure uniqueness of the SHA256 checksum.
1376 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1377 * not the gang header. This ensures that data block signatures (needed for
1378 * deduplication) are independent of how the block is physically stored.
1379 *
1380 * Gang blocks can be nested: a gang member may itself be a gang block.
1381 * Thus every gang block is a tree in which root and all interior nodes are
1382 * gang headers, and the leaves are normal blocks that contain user data.
1383 * The root of the gang tree is called the gang leader.
1384 *
1385 * To perform any operation (read, rewrite, free, claim) on a gang block,
1386 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1387 * in the io_gang_tree field of the original logical i/o by recursively
1388 * reading the gang leader and all gang headers below it. This yields
1389 * an in-core tree containing the contents of every gang header and the
1390 * bps for every constituent of the gang block.
1391 *
1392 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1393 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1394 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1395 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1396 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1397 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1398 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1399 * of the gang header plus zio_checksum_compute() of the data to update the
1400 * gang header's blk_cksum as described above.
1401 *
1402 * The two-phase assemble/issue model solves the problem of partial failure --
1403 * what if you'd freed part of a gang block but then couldn't read the
1404 * gang header for another part? Assembling the entire gang tree first
1405 * ensures that all the necessary gang header I/O has succeeded before
1406 * starting the actual work of free, claim, or write. Once the gang tree
1407 * is assembled, free and claim are in-memory operations that cannot fail.
1408 *
1409 * In the event that a gang write fails, zio_dva_unallocate() walks the
1410 * gang tree to immediately free (i.e. insert back into the space map)
1411 * everything we've allocated. This ensures that we don't get ENOSPC
1412 * errors during repeated suspend/resume cycles due to a flaky device.
1413 *
1414 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1415 * the gang tree, we won't modify the block, so we can safely defer the free
1416 * (knowing that the block is still intact). If we *can* assemble the gang
1417 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1418 * each constituent bp and we can allocate a new block on the next sync pass.
1419 *
1420 * In all cases, the gang tree allows complete recovery from partial failure.
1421 * ==========================================================================
1422 */
1423
1424 static zio_t *
1425 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1426 {
1427 if (gn != NULL)
1428 return (pio);
1429
1430 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1431 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1432 &pio->io_bookmark));
1433 }
1434
1435 zio_t *
1436 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1437 {
1438 zio_t *zio;
1439
1440 if (gn != NULL) {
1441 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1442 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1443 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1444 /*
1445 * As we rewrite each gang header, the pipeline will compute
1446 * a new gang block header checksum for it; but no one will
1447 * compute a new data checksum, so we do that here. The one
1448 * exception is the gang leader: the pipeline already computed
1449 * its data checksum because that stage precedes gang assembly.
1450 * (Presently, nothing actually uses interior data checksums;
1451 * this is just good hygiene.)
1452 */
1453 if (gn != pio->io_gang_leader->io_gang_tree) {
1454 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1455 data, BP_GET_PSIZE(bp));
1456 }
1457 /*
1458 * If we are here to damage data for testing purposes,
1459 * leave the GBH alone so that we can detect the damage.
1460 */
1461 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1462 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1463 } else {
1464 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1465 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1466 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1467 }
1468
1469 return (zio);
1470 }
1471
1472 /* ARGSUSED */
1473 zio_t *
1474 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1475 {
1476 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1477 ZIO_GANG_CHILD_FLAGS(pio)));
1478 }
1479
1480 /* ARGSUSED */
1481 zio_t *
1482 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1483 {
1484 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1485 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1486 }
1487
1488 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1489 NULL,
1490 zio_read_gang,
1491 zio_rewrite_gang,
1492 zio_free_gang,
1493 zio_claim_gang,
1494 NULL
1495 };
1496
1497 static void zio_gang_tree_assemble_done(zio_t *zio);
1498
1499 static zio_gang_node_t *
1500 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1501 {
1502 zio_gang_node_t *gn;
1503
1504 ASSERT(*gnpp == NULL);
1505
1506 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
1507 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1508 *gnpp = gn;
1509
1510 return (gn);
1511 }
1512
1513 static void
1514 zio_gang_node_free(zio_gang_node_t **gnpp)
1515 {
1516 zio_gang_node_t *gn = *gnpp;
1517 int g;
1518
1519 for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
1520 ASSERT(gn->gn_child[g] == NULL);
1521
1522 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1523 kmem_free(gn, sizeof (*gn));
1524 *gnpp = NULL;
1525 }
1526
1527 static void
1528 zio_gang_tree_free(zio_gang_node_t **gnpp)
1529 {
1530 zio_gang_node_t *gn = *gnpp;
1531 int g;
1532
1533 if (gn == NULL)
1534 return;
1535
1536 for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
1537 zio_gang_tree_free(&gn->gn_child[g]);
1538
1539 zio_gang_node_free(gnpp);
1540 }
1541
1542 static void
1543 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1544 {
1545 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1546
1547 ASSERT(gio->io_gang_leader == gio);
1548 ASSERT(BP_IS_GANG(bp));
1549
1550 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1551 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1552 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1553 }
1554
1555 static void
1556 zio_gang_tree_assemble_done(zio_t *zio)
1557 {
1558 zio_t *gio = zio->io_gang_leader;
1559 zio_gang_node_t *gn = zio->io_private;
1560 blkptr_t *bp = zio->io_bp;
1561 int g;
1562
1563 ASSERT(gio == zio_unique_parent(zio));
1564 ASSERT(zio->io_child_count == 0);
1565
1566 if (zio->io_error)
1567 return;
1568
1569 if (BP_SHOULD_BYTESWAP(bp))
1570 byteswap_uint64_array(zio->io_data, zio->io_size);
1571
1572 ASSERT(zio->io_data == gn->gn_gbh);
1573 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1574 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1575
1576 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1577 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1578 if (!BP_IS_GANG(gbp))
1579 continue;
1580 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1581 }
1582 }
1583
1584 static void
1585 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1586 {
1587 zio_t *gio = pio->io_gang_leader;
1588 zio_t *zio;
1589 int g;
1590
1591 ASSERT(BP_IS_GANG(bp) == !!gn);
1592 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1593 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1594
1595 /*
1596 * If you're a gang header, your data is in gn->gn_gbh.
1597 * If you're a gang member, your data is in 'data' and gn == NULL.
1598 */
1599 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1600
1601 if (gn != NULL) {
1602 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1603
1604 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1605 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1606 if (BP_IS_HOLE(gbp))
1607 continue;
1608 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1609 data = (char *)data + BP_GET_PSIZE(gbp);
1610 }
1611 }
1612
1613 if (gn == gio->io_gang_tree)
1614 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1615
1616 if (zio != pio)
1617 zio_nowait(zio);
1618 }
1619
1620 static int
1621 zio_gang_assemble(zio_t *zio)
1622 {
1623 blkptr_t *bp = zio->io_bp;
1624
1625 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1626 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1627
1628 zio->io_gang_leader = zio;
1629
1630 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1631
1632 return (ZIO_PIPELINE_CONTINUE);
1633 }
1634
1635 static int
1636 zio_gang_issue(zio_t *zio)
1637 {
1638 blkptr_t *bp = zio->io_bp;
1639
1640 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1641 return (ZIO_PIPELINE_STOP);
1642
1643 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1644 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1645
1646 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1647 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1648 else
1649 zio_gang_tree_free(&zio->io_gang_tree);
1650
1651 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1652
1653 return (ZIO_PIPELINE_CONTINUE);
1654 }
1655
1656 static void
1657 zio_write_gang_member_ready(zio_t *zio)
1658 {
1659 zio_t *pio = zio_unique_parent(zio);
1660 ASSERTV(zio_t *gio = zio->io_gang_leader;)
1661 dva_t *cdva = zio->io_bp->blk_dva;
1662 dva_t *pdva = pio->io_bp->blk_dva;
1663 uint64_t asize;
1664 int d;
1665
1666 if (BP_IS_HOLE(zio->io_bp))
1667 return;
1668
1669 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1670
1671 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1672 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1673 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1674 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1675 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1676
1677 mutex_enter(&pio->io_lock);
1678 for (d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1679 ASSERT(DVA_GET_GANG(&pdva[d]));
1680 asize = DVA_GET_ASIZE(&pdva[d]);
1681 asize += DVA_GET_ASIZE(&cdva[d]);
1682 DVA_SET_ASIZE(&pdva[d], asize);
1683 }
1684 mutex_exit(&pio->io_lock);
1685 }
1686
1687 static int
1688 zio_write_gang_block(zio_t *pio)
1689 {
1690 spa_t *spa = pio->io_spa;
1691 blkptr_t *bp = pio->io_bp;
1692 zio_t *gio = pio->io_gang_leader;
1693 zio_t *zio;
1694 zio_gang_node_t *gn, **gnpp;
1695 zio_gbh_phys_t *gbh;
1696 uint64_t txg = pio->io_txg;
1697 uint64_t resid = pio->io_size;
1698 uint64_t lsize;
1699 int copies = gio->io_prop.zp_copies;
1700 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1701 zio_prop_t zp;
1702 int g, error;
1703
1704 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1705 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1706 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1707 if (error) {
1708 pio->io_error = error;
1709 return (ZIO_PIPELINE_CONTINUE);
1710 }
1711
1712 if (pio == gio) {
1713 gnpp = &gio->io_gang_tree;
1714 } else {
1715 gnpp = pio->io_private;
1716 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1717 }
1718
1719 gn = zio_gang_node_alloc(gnpp);
1720 gbh = gn->gn_gbh;
1721 bzero(gbh, SPA_GANGBLOCKSIZE);
1722
1723 /*
1724 * Create the gang header.
1725 */
1726 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1727 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1728
1729 /*
1730 * Create and nowait the gang children.
1731 */
1732 for (g = 0; resid != 0; resid -= lsize, g++) {
1733 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1734 SPA_MINBLOCKSIZE);
1735 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1736
1737 zp.zp_checksum = gio->io_prop.zp_checksum;
1738 zp.zp_compress = ZIO_COMPRESS_OFF;
1739 zp.zp_type = DMU_OT_NONE;
1740 zp.zp_level = 0;
1741 zp.zp_copies = gio->io_prop.zp_copies;
1742 zp.zp_dedup = 0;
1743 zp.zp_dedup_verify = 0;
1744
1745 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1746 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1747 zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1748 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1749 &pio->io_bookmark));
1750 }
1751
1752 /*
1753 * Set pio's pipeline to just wait for zio to finish.
1754 */
1755 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1756
1757 zio_nowait(zio);
1758
1759 return (ZIO_PIPELINE_CONTINUE);
1760 }
1761
1762 /*
1763 * ==========================================================================
1764 * Dedup
1765 * ==========================================================================
1766 */
1767 static void
1768 zio_ddt_child_read_done(zio_t *zio)
1769 {
1770 blkptr_t *bp = zio->io_bp;
1771 ddt_entry_t *dde = zio->io_private;
1772 ddt_phys_t *ddp;
1773 zio_t *pio = zio_unique_parent(zio);
1774
1775 mutex_enter(&pio->io_lock);
1776 ddp = ddt_phys_select(dde, bp);
1777 if (zio->io_error == 0)
1778 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
1779 if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1780 dde->dde_repair_data = zio->io_data;
1781 else
1782 zio_buf_free(zio->io_data, zio->io_size);
1783 mutex_exit(&pio->io_lock);
1784 }
1785
1786 static int
1787 zio_ddt_read_start(zio_t *zio)
1788 {
1789 blkptr_t *bp = zio->io_bp;
1790 int p;
1791
1792 ASSERT(BP_GET_DEDUP(bp));
1793 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1794 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1795
1796 if (zio->io_child_error[ZIO_CHILD_DDT]) {
1797 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1798 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1799 ddt_phys_t *ddp = dde->dde_phys;
1800 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1801 blkptr_t blk;
1802
1803 ASSERT(zio->io_vsd == NULL);
1804 zio->io_vsd = dde;
1805
1806 if (ddp_self == NULL)
1807 return (ZIO_PIPELINE_CONTINUE);
1808
1809 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1810 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1811 continue;
1812 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1813 &blk);
1814 zio_nowait(zio_read(zio, zio->io_spa, &blk,
1815 zio_buf_alloc(zio->io_size), zio->io_size,
1816 zio_ddt_child_read_done, dde, zio->io_priority,
1817 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1818 &zio->io_bookmark));
1819 }
1820 return (ZIO_PIPELINE_CONTINUE);
1821 }
1822
1823 zio_nowait(zio_read(zio, zio->io_spa, bp,
1824 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1825 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1826
1827 return (ZIO_PIPELINE_CONTINUE);
1828 }
1829
1830 static int
1831 zio_ddt_read_done(zio_t *zio)
1832 {
1833 blkptr_t *bp = zio->io_bp;
1834
1835 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1836 return (ZIO_PIPELINE_STOP);
1837
1838 ASSERT(BP_GET_DEDUP(bp));
1839 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1840 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1841
1842 if (zio->io_child_error[ZIO_CHILD_DDT]) {
1843 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1844 ddt_entry_t *dde = zio->io_vsd;
1845 if (ddt == NULL) {
1846 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1847 return (ZIO_PIPELINE_CONTINUE);
1848 }
1849 if (dde == NULL) {
1850 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1851 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1852 return (ZIO_PIPELINE_STOP);
1853 }
1854 if (dde->dde_repair_data != NULL) {
1855 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1856 zio->io_child_error[ZIO_CHILD_DDT] = 0;
1857 }
1858 ddt_repair_done(ddt, dde);
1859 zio->io_vsd = NULL;
1860 }
1861
1862 ASSERT(zio->io_vsd == NULL);
1863
1864 return (ZIO_PIPELINE_CONTINUE);
1865 }
1866
1867 static boolean_t
1868 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1869 {
1870 spa_t *spa = zio->io_spa;
1871 int p;
1872
1873 /*
1874 * Note: we compare the original data, not the transformed data,
1875 * because when zio->io_bp is an override bp, we will not have
1876 * pushed the I/O transforms. That's an important optimization
1877 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1878 */
1879 for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1880 zio_t *lio = dde->dde_lead_zio[p];
1881
1882 if (lio != NULL) {
1883 return (lio->io_orig_size != zio->io_orig_size ||
1884 bcmp(zio->io_orig_data, lio->io_orig_data,
1885 zio->io_orig_size) != 0);
1886 }
1887 }
1888
1889 for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
1890 ddt_phys_t *ddp = &dde->dde_phys[p];
1891
1892 if (ddp->ddp_phys_birth != 0) {
1893 arc_buf_t *abuf = NULL;
1894 uint32_t aflags = ARC_WAIT;
1895 blkptr_t blk = *zio->io_bp;
1896 int error;
1897
1898 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
1899
1900 ddt_exit(ddt);
1901
1902 error = arc_read_nolock(NULL, spa, &blk,
1903 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
1904 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
1905 &aflags, &zio->io_bookmark);
1906
1907 if (error == 0) {
1908 if (arc_buf_size(abuf) != zio->io_orig_size ||
1909 bcmp(abuf->b_data, zio->io_orig_data,
1910 zio->io_orig_size) != 0)
1911 error = EEXIST;
1912 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
1913 }
1914
1915 ddt_enter(ddt);
1916 return (error != 0);
1917 }
1918 }
1919
1920 return (B_FALSE);
1921 }
1922
1923 static void
1924 zio_ddt_child_write_ready(zio_t *zio)
1925 {
1926 int p = zio->io_prop.zp_copies;
1927 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1928 ddt_entry_t *dde = zio->io_private;
1929 ddt_phys_t *ddp = &dde->dde_phys[p];
1930 zio_t *pio;
1931
1932 if (zio->io_error)
1933 return;
1934
1935 ddt_enter(ddt);
1936
1937 ASSERT(dde->dde_lead_zio[p] == zio);
1938
1939 ddt_phys_fill(ddp, zio->io_bp);
1940
1941 while ((pio = zio_walk_parents(zio)) != NULL)
1942 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
1943
1944 ddt_exit(ddt);
1945 }
1946
1947 static void
1948 zio_ddt_child_write_done(zio_t *zio)
1949 {
1950 int p = zio->io_prop.zp_copies;
1951 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
1952 ddt_entry_t *dde = zio->io_private;
1953 ddt_phys_t *ddp = &dde->dde_phys[p];
1954
1955 ddt_enter(ddt);
1956
1957 ASSERT(ddp->ddp_refcnt == 0);
1958 ASSERT(dde->dde_lead_zio[p] == zio);
1959 dde->dde_lead_zio[p] = NULL;
1960
1961 if (zio->io_error == 0) {
1962 while (zio_walk_parents(zio) != NULL)
1963 ddt_phys_addref(ddp);
1964 } else {
1965 ddt_phys_clear(ddp);
1966 }
1967
1968 ddt_exit(ddt);
1969 }
1970
1971 static void
1972 zio_ddt_ditto_write_done(zio_t *zio)
1973 {
1974 int p = DDT_PHYS_DITTO;
1975 blkptr_t *bp = zio->io_bp;
1976 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1977 ddt_entry_t *dde = zio->io_private;
1978 ddt_phys_t *ddp = &dde->dde_phys[p];
1979 ddt_key_t *ddk = &dde->dde_key;
1980 ASSERTV(zio_prop_t *zp = &zio->io_prop);
1981
1982 ddt_enter(ddt);
1983
1984 ASSERT(ddp->ddp_refcnt == 0);
1985 ASSERT(dde->dde_lead_zio[p] == zio);
1986 dde->dde_lead_zio[p] = NULL;
1987
1988 if (zio->io_error == 0) {
1989 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
1990 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
1991 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
1992 if (ddp->ddp_phys_birth != 0)
1993 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
1994 ddt_phys_fill(ddp, bp);
1995 }
1996
1997 ddt_exit(ddt);
1998 }
1999
2000 static int
2001 zio_ddt_write(zio_t *zio)
2002 {
2003 spa_t *spa = zio->io_spa;
2004 blkptr_t *bp = zio->io_bp;
2005 uint64_t txg = zio->io_txg;
2006 zio_prop_t *zp = &zio->io_prop;
2007 int p = zp->zp_copies;
2008 int ditto_copies;
2009 zio_t *cio = NULL;
2010 zio_t *dio = NULL;
2011 ddt_t *ddt = ddt_select(spa, bp);
2012 ddt_entry_t *dde;
2013 ddt_phys_t *ddp;
2014
2015 ASSERT(BP_GET_DEDUP(bp));
2016 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2017 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2018
2019 ddt_enter(ddt);
2020 dde = ddt_lookup(ddt, bp, B_TRUE);
2021 ddp = &dde->dde_phys[p];
2022
2023 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2024 /*
2025 * If we're using a weak checksum, upgrade to a strong checksum
2026 * and try again. If we're already using a strong checksum,
2027 * we can't resolve it, so just convert to an ordinary write.
2028 * (And automatically e-mail a paper to Nature?)
2029 */
2030 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2031 zp->zp_checksum = spa_dedup_checksum(spa);
2032 zio_pop_transforms(zio);
2033 zio->io_stage = ZIO_STAGE_OPEN;
2034 BP_ZERO(bp);
2035 } else {
2036 zp->zp_dedup = 0;
2037 }
2038 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2039 ddt_exit(ddt);
2040 return (ZIO_PIPELINE_CONTINUE);
2041 }
2042
2043 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2044 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2045
2046 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2047 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2048 zio_prop_t czp = *zp;
2049
2050 czp.zp_copies = ditto_copies;
2051
2052 /*
2053 * If we arrived here with an override bp, we won't have run
2054 * the transform stack, so we won't have the data we need to
2055 * generate a child i/o. So, toss the override bp and restart.
2056 * This is safe, because using the override bp is just an
2057 * optimization; and it's rare, so the cost doesn't matter.
2058 */
2059 if (zio->io_bp_override) {
2060 zio_pop_transforms(zio);
2061 zio->io_stage = ZIO_STAGE_OPEN;
2062 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2063 zio->io_bp_override = NULL;
2064 BP_ZERO(bp);
2065 ddt_exit(ddt);
2066 return (ZIO_PIPELINE_CONTINUE);
2067 }
2068
2069 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2070 zio->io_orig_size, &czp, NULL,
2071 zio_ddt_ditto_write_done, dde, zio->io_priority,
2072 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2073
2074 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2075 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2076 }
2077
2078 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2079 if (ddp->ddp_phys_birth != 0)
2080 ddt_bp_fill(ddp, bp, txg);
2081 if (dde->dde_lead_zio[p] != NULL)
2082 zio_add_child(zio, dde->dde_lead_zio[p]);
2083 else
2084 ddt_phys_addref(ddp);
2085 } else if (zio->io_bp_override) {
2086 ASSERT(bp->blk_birth == txg);
2087 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2088 ddt_phys_fill(ddp, bp);
2089 ddt_phys_addref(ddp);
2090 } else {
2091 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2092 zio->io_orig_size, zp, zio_ddt_child_write_ready,
2093 zio_ddt_child_write_done, dde, zio->io_priority,
2094 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2095
2096 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2097 dde->dde_lead_zio[p] = cio;
2098 }
2099
2100 ddt_exit(ddt);
2101
2102 if (cio)
2103 zio_nowait(cio);
2104 if (dio)
2105 zio_nowait(dio);
2106
2107 return (ZIO_PIPELINE_CONTINUE);
2108 }
2109
2110 ddt_entry_t *freedde; /* for debugging */
2111
2112 static int
2113 zio_ddt_free(zio_t *zio)
2114 {
2115 spa_t *spa = zio->io_spa;
2116 blkptr_t *bp = zio->io_bp;
2117 ddt_t *ddt = ddt_select(spa, bp);
2118 ddt_entry_t *dde;
2119 ddt_phys_t *ddp;
2120
2121 ASSERT(BP_GET_DEDUP(bp));
2122 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2123
2124 ddt_enter(ddt);
2125 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2126 ddp = ddt_phys_select(dde, bp);
2127 ddt_phys_decref(ddp);
2128 ddt_exit(ddt);
2129
2130 return (ZIO_PIPELINE_CONTINUE);
2131 }
2132
2133 /*
2134 * ==========================================================================
2135 * Allocate and free blocks
2136 * ==========================================================================
2137 */
2138 static int
2139 zio_dva_allocate(zio_t *zio)
2140 {
2141 spa_t *spa = zio->io_spa;
2142 metaslab_class_t *mc = spa_normal_class(spa);
2143 blkptr_t *bp = zio->io_bp;
2144 int error;
2145
2146 if (zio->io_gang_leader == NULL) {
2147 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2148 zio->io_gang_leader = zio;
2149 }
2150
2151 ASSERT(BP_IS_HOLE(bp));
2152 ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
2153 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2154 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2155 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2156
2157 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2158 zio->io_prop.zp_copies, zio->io_txg, NULL, 0);
2159
2160 if (error) {
2161 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2162 return (zio_write_gang_block(zio));
2163 zio->io_error = error;
2164 }
2165
2166 return (ZIO_PIPELINE_CONTINUE);
2167 }
2168
2169 static int
2170 zio_dva_free(zio_t *zio)
2171 {
2172 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2173
2174 return (ZIO_PIPELINE_CONTINUE);
2175 }
2176
2177 static int
2178 zio_dva_claim(zio_t *zio)
2179 {
2180 int error;
2181
2182 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2183 if (error)
2184 zio->io_error = error;
2185
2186 return (ZIO_PIPELINE_CONTINUE);
2187 }
2188
2189 /*
2190 * Undo an allocation. This is used by zio_done() when an I/O fails
2191 * and we want to give back the block we just allocated.
2192 * This handles both normal blocks and gang blocks.
2193 */
2194 static void
2195 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2196 {
2197 int g;
2198
2199 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2200 ASSERT(zio->io_bp_override == NULL);
2201
2202 if (!BP_IS_HOLE(bp))
2203 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2204
2205 if (gn != NULL) {
2206 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2207 zio_dva_unallocate(zio, gn->gn_child[g],
2208 &gn->gn_gbh->zg_blkptr[g]);
2209 }
2210 }
2211 }
2212
2213 /*
2214 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2215 */
2216 int
2217 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, blkptr_t *old_bp,
2218 uint64_t size, boolean_t use_slog)
2219 {
2220 int error = 1;
2221
2222 ASSERT(txg > spa_syncing_txg(spa));
2223
2224 if (use_slog)
2225 error = metaslab_alloc(spa, spa_log_class(spa), size,
2226 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
2227
2228 if (error)
2229 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2230 new_bp, 1, txg, old_bp, METASLAB_HINTBP_AVOID);
2231
2232 if (error == 0) {
2233 BP_SET_LSIZE(new_bp, size);
2234 BP_SET_PSIZE(new_bp, size);
2235 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2236 BP_SET_CHECKSUM(new_bp,
2237 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2238 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2239 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2240 BP_SET_LEVEL(new_bp, 0);
2241 BP_SET_DEDUP(new_bp, 0);
2242 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2243 }
2244
2245 return (error);
2246 }
2247
2248 /*
2249 * Free an intent log block.
2250 */
2251 void
2252 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2253 {
2254 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2255 ASSERT(!BP_IS_GANG(bp));
2256
2257 zio_free(spa, txg, bp);
2258 }
2259
2260 /*
2261 * ==========================================================================
2262 * Read and write to physical devices
2263 * ==========================================================================
2264 */
2265 static int
2266 zio_vdev_io_start(zio_t *zio)
2267 {
2268 vdev_t *vd = zio->io_vd;
2269 uint64_t align;
2270 spa_t *spa = zio->io_spa;
2271
2272 ASSERT(zio->io_error == 0);
2273 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2274
2275 if (vd == NULL) {
2276 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2277 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2278
2279 /*
2280 * The mirror_ops handle multiple DVAs in a single BP.
2281 */
2282 return (vdev_mirror_ops.vdev_op_io_start(zio));
2283 }
2284
2285 /*
2286 * We keep track of time-sensitive I/Os so that the scan thread
2287 * can quickly react to certain workloads. In particular, we care
2288 * about non-scrubbing, top-level reads and writes with the following
2289 * characteristics:
2290 * - synchronous writes of user data to non-slog devices
2291 * - any reads of user data
2292 * When these conditions are met, adjust the timestamp of spa_last_io
2293 * which allows the scan thread to adjust its workload accordingly.
2294 */
2295 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2296 vd == vd->vdev_top && !vd->vdev_islog &&
2297 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2298 zio->io_txg != spa_syncing_txg(spa)) {
2299 uint64_t old = spa->spa_last_io;
2300 uint64_t new = ddi_get_lbolt64();
2301 if (old != new)
2302 (void) atomic_cas_64(&spa->spa_last_io, old, new);
2303 }
2304
2305 align = 1ULL << vd->vdev_top->vdev_ashift;
2306
2307 if (P2PHASE(zio->io_size, align) != 0) {
2308 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2309 char *abuf = zio_buf_alloc(asize);
2310 ASSERT(vd == vd->vdev_top);
2311 if (zio->io_type == ZIO_TYPE_WRITE) {
2312 bcopy(zio->io_data, abuf, zio->io_size);
2313 bzero(abuf + zio->io_size, asize - zio->io_size);
2314 }
2315 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2316 }
2317
2318 ASSERT(P2PHASE(zio->io_offset, align) == 0);
2319 ASSERT(P2PHASE(zio->io_size, align) == 0);
2320 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2321
2322 /*
2323 * If this is a repair I/O, and there's no self-healing involved --
2324 * that is, we're just resilvering what we expect to resilver --
2325 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2326 * This prevents spurious resilvering with nested replication.
2327 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2328 * A is out of date, we'll read from C+D, then use the data to
2329 * resilver A+B -- but we don't actually want to resilver B, just A.
2330 * The top-level mirror has no way to know this, so instead we just
2331 * discard unnecessary repairs as we work our way down the vdev tree.
2332 * The same logic applies to any form of nested replication:
2333 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
2334 */
2335 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2336 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2337 zio->io_txg != 0 && /* not a delegated i/o */
2338 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2339 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2340 zio_vdev_io_bypass(zio);
2341 return (ZIO_PIPELINE_CONTINUE);
2342 }
2343
2344 if (vd->vdev_ops->vdev_op_leaf &&
2345 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2346
2347 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2348 return (ZIO_PIPELINE_CONTINUE);
2349
2350 if ((zio = vdev_queue_io(zio)) == NULL)
2351 return (ZIO_PIPELINE_STOP);
2352
2353 if (!vdev_accessible(vd, zio)) {
2354 zio->io_error = ENXIO;
2355 zio_interrupt(zio);
2356 return (ZIO_PIPELINE_STOP);
2357 }
2358 }
2359
2360 return (vd->vdev_ops->vdev_op_io_start(zio));
2361 }
2362
2363 static int
2364 zio_vdev_io_done(zio_t *zio)
2365 {
2366 vdev_t *vd = zio->io_vd;
2367 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2368 boolean_t unexpected_error = B_FALSE;
2369
2370 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2371 return (ZIO_PIPELINE_STOP);
2372
2373 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2374
2375 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2376
2377 vdev_queue_io_done(zio);
2378
2379 if (zio->io_type == ZIO_TYPE_WRITE)
2380 vdev_cache_write(zio);
2381
2382 if (zio_injection_enabled && zio->io_error == 0)
2383 zio->io_error = zio_handle_device_injection(vd,
2384 zio, EIO);
2385
2386 if (zio_injection_enabled && zio->io_error == 0)
2387 zio->io_error = zio_handle_label_injection(zio, EIO);
2388
2389 if (zio->io_error) {
2390 if (!vdev_accessible(vd, zio)) {
2391 zio->io_error = ENXIO;
2392 } else {
2393 unexpected_error = B_TRUE;
2394 }
2395 }
2396 }
2397
2398 ops->vdev_op_io_done(zio);
2399
2400 if (unexpected_error)
2401 VERIFY(vdev_probe(vd, zio) == NULL);
2402
2403 return (ZIO_PIPELINE_CONTINUE);
2404 }
2405
2406 /*
2407 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2408 * disk, and use that to finish the checksum ereport later.
2409 */
2410 static void
2411 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2412 const void *good_buf)
2413 {
2414 /* no processing needed */
2415 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2416 }
2417
2418 /*ARGSUSED*/
2419 void
2420 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2421 {
2422 void *buf = zio_buf_alloc(zio->io_size);
2423
2424 bcopy(zio->io_data, buf, zio->io_size);
2425
2426 zcr->zcr_cbinfo = zio->io_size;
2427 zcr->zcr_cbdata = buf;
2428 zcr->zcr_finish = zio_vsd_default_cksum_finish;
2429 zcr->zcr_free = zio_buf_free;
2430 }
2431
2432 static int
2433 zio_vdev_io_assess(zio_t *zio)
2434 {
2435 vdev_t *vd = zio->io_vd;
2436
2437 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2438 return (ZIO_PIPELINE_STOP);
2439
2440 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2441 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2442
2443 if (zio->io_vsd != NULL) {
2444 zio->io_vsd_ops->vsd_free(zio);
2445 zio->io_vsd = NULL;
2446 }
2447
2448 if (zio_injection_enabled && zio->io_error == 0)
2449 zio->io_error = zio_handle_fault_injection(zio, EIO);
2450
2451 /*
2452 * If the I/O failed, determine whether we should attempt to retry it.
2453 *
2454 * On retry, we cut in line in the issue queue, since we don't want
2455 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2456 */
2457 if (zio->io_error && vd == NULL &&
2458 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2459 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
2460 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
2461 zio->io_error = 0;
2462 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2463 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2464 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2465 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2466 zio_requeue_io_start_cut_in_line);
2467 return (ZIO_PIPELINE_STOP);
2468 }
2469
2470 /*
2471 * If we got an error on a leaf device, convert it to ENXIO
2472 * if the device is not accessible at all.
2473 */
2474 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2475 !vdev_accessible(vd, zio))
2476 zio->io_error = ENXIO;
2477
2478 /*
2479 * If we can't write to an interior vdev (mirror or RAID-Z),
2480 * set vdev_cant_write so that we stop trying to allocate from it.
2481 */
2482 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2483 vd != NULL && !vd->vdev_ops->vdev_op_leaf)
2484 vd->vdev_cant_write = B_TRUE;
2485
2486 if (zio->io_error)
2487 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2488
2489 return (ZIO_PIPELINE_CONTINUE);
2490 }
2491
2492 void
2493 zio_vdev_io_reissue(zio_t *zio)
2494 {
2495 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2496 ASSERT(zio->io_error == 0);
2497
2498 zio->io_stage >>= 1;
2499 }
2500
2501 void
2502 zio_vdev_io_redone(zio_t *zio)
2503 {
2504 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2505
2506 zio->io_stage >>= 1;
2507 }
2508
2509 void
2510 zio_vdev_io_bypass(zio_t *zio)
2511 {
2512 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2513 ASSERT(zio->io_error == 0);
2514
2515 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2516 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2517 }
2518
2519 /*
2520 * ==========================================================================
2521 * Generate and verify checksums
2522 * ==========================================================================
2523 */
2524 static int
2525 zio_checksum_generate(zio_t *zio)
2526 {
2527 blkptr_t *bp = zio->io_bp;
2528 enum zio_checksum checksum;
2529
2530 if (bp == NULL) {
2531 /*
2532 * This is zio_write_phys().
2533 * We're either generating a label checksum, or none at all.
2534 */
2535 checksum = zio->io_prop.zp_checksum;
2536
2537 if (checksum == ZIO_CHECKSUM_OFF)
2538 return (ZIO_PIPELINE_CONTINUE);
2539
2540 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2541 } else {
2542 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2543 ASSERT(!IO_IS_ALLOCATING(zio));
2544 checksum = ZIO_CHECKSUM_GANG_HEADER;
2545 } else {
2546 checksum = BP_GET_CHECKSUM(bp);
2547 }
2548 }
2549
2550 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2551
2552 return (ZIO_PIPELINE_CONTINUE);
2553 }
2554
2555 static int
2556 zio_checksum_verify(zio_t *zio)
2557 {
2558 zio_bad_cksum_t info;
2559 blkptr_t *bp = zio->io_bp;
2560 int error;
2561
2562 ASSERT(zio->io_vd != NULL);
2563
2564 if (bp == NULL) {
2565 /*
2566 * This is zio_read_phys().
2567 * We're either verifying a label checksum, or nothing at all.
2568 */
2569 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2570 return (ZIO_PIPELINE_CONTINUE);
2571
2572 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2573 }
2574
2575 if ((error = zio_checksum_error(zio, &info)) != 0) {
2576 zio->io_error = error;
2577 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2578 zfs_ereport_start_checksum(zio->io_spa,
2579 zio->io_vd, zio, zio->io_offset,
2580 zio->io_size, NULL, &info);
2581 }
2582 }
2583
2584 return (ZIO_PIPELINE_CONTINUE);
2585 }
2586
2587 /*
2588 * Called by RAID-Z to ensure we don't compute the checksum twice.
2589 */
2590 void
2591 zio_checksum_verified(zio_t *zio)
2592 {
2593 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2594 }
2595
2596 /*
2597 * ==========================================================================
2598 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2599 * An error of 0 indictes success. ENXIO indicates whole-device failure,
2600 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
2601 * indicate errors that are specific to one I/O, and most likely permanent.
2602 * Any other error is presumed to be worse because we weren't expecting it.
2603 * ==========================================================================
2604 */
2605 int
2606 zio_worst_error(int e1, int e2)
2607 {
2608 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2609 int r1, r2;
2610
2611 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2612 if (e1 == zio_error_rank[r1])
2613 break;
2614
2615 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2616 if (e2 == zio_error_rank[r2])
2617 break;
2618
2619 return (r1 > r2 ? e1 : e2);
2620 }
2621
2622 /*
2623 * ==========================================================================
2624 * I/O completion
2625 * ==========================================================================
2626 */
2627 static int
2628 zio_ready(zio_t *zio)
2629 {
2630 blkptr_t *bp = zio->io_bp;
2631 zio_t *pio, *pio_next;
2632
2633 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2634 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2635 return (ZIO_PIPELINE_STOP);
2636
2637 if (zio->io_ready) {
2638 ASSERT(IO_IS_ALLOCATING(zio));
2639 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2640 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2641
2642 zio->io_ready(zio);
2643 }
2644
2645 if (bp != NULL && bp != &zio->io_bp_copy)
2646 zio->io_bp_copy = *bp;
2647
2648 if (zio->io_error)
2649 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2650
2651 mutex_enter(&zio->io_lock);
2652 zio->io_state[ZIO_WAIT_READY] = 1;
2653 pio = zio_walk_parents(zio);
2654 mutex_exit(&zio->io_lock);
2655
2656 /*
2657 * As we notify zio's parents, new parents could be added.
2658 * New parents go to the head of zio's io_parent_list, however,
2659 * so we will (correctly) not notify them. The remainder of zio's
2660 * io_parent_list, from 'pio_next' onward, cannot change because
2661 * all parents must wait for us to be done before they can be done.
2662 */
2663 for (; pio != NULL; pio = pio_next) {
2664 pio_next = zio_walk_parents(zio);
2665 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2666 }
2667
2668 if (zio->io_flags & ZIO_FLAG_NODATA) {
2669 if (BP_IS_GANG(bp)) {
2670 zio->io_flags &= ~ZIO_FLAG_NODATA;
2671 } else {
2672 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2673 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2674 }
2675 }
2676
2677 if (zio_injection_enabled &&
2678 zio->io_spa->spa_syncing_txg == zio->io_txg)
2679 zio_handle_ignored_writes(zio);
2680
2681 return (ZIO_PIPELINE_CONTINUE);
2682 }
2683
2684 static int
2685 zio_done(zio_t *zio)
2686 {
2687 zio_t *pio, *pio_next;
2688 int c, w;
2689
2690 /*
2691 * If our children haven't all completed,
2692 * wait for them and then repeat this pipeline stage.
2693 */
2694 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2695 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2696 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2697 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2698 return (ZIO_PIPELINE_STOP);
2699
2700 for (c = 0; c < ZIO_CHILD_TYPES; c++)
2701 for (w = 0; w < ZIO_WAIT_TYPES; w++)
2702 ASSERT(zio->io_children[c][w] == 0);
2703
2704 if (zio->io_bp != NULL) {
2705 ASSERT(zio->io_bp->blk_pad[0] == 0);
2706 ASSERT(zio->io_bp->blk_pad[1] == 0);
2707 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2708 (zio->io_bp == zio_unique_parent(zio)->io_bp));
2709 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
2710 zio->io_bp_override == NULL &&
2711 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2712 ASSERT(!BP_SHOULD_BYTESWAP(zio->io_bp));
2713 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2714 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
2715 (BP_COUNT_GANG(zio->io_bp) == BP_GET_NDVAS(zio->io_bp)));
2716 }
2717 }
2718
2719 /*
2720 * If there were child vdev/gang/ddt errors, they apply to us now.
2721 */
2722 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2723 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2724 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2725
2726 /*
2727 * If the I/O on the transformed data was successful, generate any
2728 * checksum reports now while we still have the transformed data.
2729 */
2730 if (zio->io_error == 0) {
2731 while (zio->io_cksum_report != NULL) {
2732 zio_cksum_report_t *zcr = zio->io_cksum_report;
2733 uint64_t align = zcr->zcr_align;
2734 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2735 char *abuf = zio->io_data;
2736
2737 if (asize != zio->io_size) {
2738 abuf = zio_buf_alloc(asize);
2739 bcopy(zio->io_data, abuf, zio->io_size);
2740 bzero(abuf + zio->io_size, asize - zio->io_size);
2741 }
2742
2743 zio->io_cksum_report = zcr->zcr_next;
2744 zcr->zcr_next = NULL;
2745 zcr->zcr_finish(zcr, abuf);
2746 zfs_ereport_free_checksum(zcr);
2747
2748 if (asize != zio->io_size)
2749 zio_buf_free(abuf, asize);
2750 }
2751 }
2752
2753 zio_pop_transforms(zio); /* note: may set zio->io_error */
2754
2755 vdev_stat_update(zio, zio->io_size);
2756
2757 if (zio->io_error) {
2758 /*
2759 * If this I/O is attached to a particular vdev,
2760 * generate an error message describing the I/O failure
2761 * at the block level. We ignore these errors if the
2762 * device is currently unavailable.
2763 */
2764 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
2765 !vdev_is_dead(zio->io_vd))
2766 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
2767 zio->io_vd, zio, 0, 0);
2768
2769 if ((zio->io_error == EIO || !(zio->io_flags &
2770 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2771 zio == zio->io_logical) {
2772 /*
2773 * For logical I/O requests, tell the SPA to log the
2774 * error and generate a logical data ereport.
2775 */
2776 spa_log_error(zio->io_spa, zio);
2777 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa, NULL, zio,
2778 0, 0);
2779 }
2780 }
2781
2782 if (zio->io_error && zio == zio->io_logical) {
2783 /*
2784 * Determine whether zio should be reexecuted. This will
2785 * propagate all the way to the root via zio_notify_parent().
2786 */
2787 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
2788 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2789
2790 if (IO_IS_ALLOCATING(zio) &&
2791 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2792 if (zio->io_error != ENOSPC)
2793 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2794 else
2795 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2796 }
2797
2798 if ((zio->io_type == ZIO_TYPE_READ ||
2799 zio->io_type == ZIO_TYPE_FREE) &&
2800 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2801 zio->io_error == ENXIO &&
2802 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
2803 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
2804 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2805
2806 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2807 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2808
2809 /*
2810 * Here is a possibly good place to attempt to do
2811 * either combinatorial reconstruction or error correction
2812 * based on checksums. It also might be a good place
2813 * to send out preliminary ereports before we suspend
2814 * processing.
2815 */
2816 }
2817
2818 /*
2819 * If there were logical child errors, they apply to us now.
2820 * We defer this until now to avoid conflating logical child
2821 * errors with errors that happened to the zio itself when
2822 * updating vdev stats and reporting FMA events above.
2823 */
2824 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2825
2826 if ((zio->io_error || zio->io_reexecute) &&
2827 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2828 !(zio->io_flags & ZIO_FLAG_IO_REWRITE))
2829 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
2830
2831 zio_gang_tree_free(&zio->io_gang_tree);
2832
2833 /*
2834 * Godfather I/Os should never suspend.
2835 */
2836 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2837 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2838 zio->io_reexecute = 0;
2839
2840 if (zio->io_reexecute) {
2841 /*
2842 * This is a logical I/O that wants to reexecute.
2843 *
2844 * Reexecute is top-down. When an i/o fails, if it's not
2845 * the root, it simply notifies its parent and sticks around.
2846 * The parent, seeing that it still has children in zio_done(),
2847 * does the same. This percolates all the way up to the root.
2848 * The root i/o will reexecute or suspend the entire tree.
2849 *
2850 * This approach ensures that zio_reexecute() honors
2851 * all the original i/o dependency relationships, e.g.
2852 * parents not executing until children are ready.
2853 */
2854 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2855
2856 zio->io_gang_leader = NULL;
2857
2858 mutex_enter(&zio->io_lock);
2859 zio->io_state[ZIO_WAIT_DONE] = 1;
2860 mutex_exit(&zio->io_lock);
2861
2862 /*
2863 * "The Godfather" I/O monitors its children but is
2864 * not a true parent to them. It will track them through
2865 * the pipeline but severs its ties whenever they get into
2866 * trouble (e.g. suspended). This allows "The Godfather"
2867 * I/O to return status without blocking.
2868 */
2869 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2870 zio_link_t *zl = zio->io_walk_link;
2871 pio_next = zio_walk_parents(zio);
2872
2873 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
2874 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
2875 zio_remove_child(pio, zio, zl);
2876 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2877 }
2878 }
2879
2880 if ((pio = zio_unique_parent(zio)) != NULL) {
2881 /*
2882 * We're not a root i/o, so there's nothing to do
2883 * but notify our parent. Don't propagate errors
2884 * upward since we haven't permanently failed yet.
2885 */
2886 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2887 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
2888 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2889 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
2890 /*
2891 * We'd fail again if we reexecuted now, so suspend
2892 * until conditions improve (e.g. device comes online).
2893 */
2894 zio_suspend(zio->io_spa, zio);
2895 } else {
2896 /*
2897 * Reexecution is potentially a huge amount of work.
2898 * Hand it off to the otherwise-unused claim taskq.
2899 */
2900 (void) taskq_dispatch(
2901 zio->io_spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
2902 (task_func_t *)zio_reexecute, zio, TQ_SLEEP);
2903 }
2904 return (ZIO_PIPELINE_STOP);
2905 }
2906
2907 ASSERT(zio->io_child_count == 0);
2908 ASSERT(zio->io_reexecute == 0);
2909 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
2910
2911 /*
2912 * Report any checksum errors, since the I/O is complete.
2913 */
2914 while (zio->io_cksum_report != NULL) {
2915 zio_cksum_report_t *zcr = zio->io_cksum_report;
2916 zio->io_cksum_report = zcr->zcr_next;
2917 zcr->zcr_next = NULL;
2918 zcr->zcr_finish(zcr, NULL);
2919 zfs_ereport_free_checksum(zcr);
2920 }
2921
2922 /*
2923 * It is the responsibility of the done callback to ensure that this
2924 * particular zio is no longer discoverable for adoption, and as
2925 * such, cannot acquire any new parents.
2926 */
2927 if (zio->io_done)
2928 zio->io_done(zio);
2929
2930 mutex_enter(&zio->io_lock);
2931 zio->io_state[ZIO_WAIT_DONE] = 1;
2932 mutex_exit(&zio->io_lock);
2933
2934 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
2935 zio_link_t *zl = zio->io_walk_link;
2936 pio_next = zio_walk_parents(zio);
2937 zio_remove_child(pio, zio, zl);
2938 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
2939 }
2940
2941 if (zio->io_waiter != NULL) {
2942 mutex_enter(&zio->io_lock);
2943 zio->io_executor = NULL;
2944 cv_broadcast(&zio->io_cv);
2945 mutex_exit(&zio->io_lock);
2946 } else {
2947 zio_destroy(zio);
2948 }
2949
2950 return (ZIO_PIPELINE_STOP);
2951 }
2952
2953 /*
2954 * ==========================================================================
2955 * I/O pipeline definition
2956 * ==========================================================================
2957 */
2958 static zio_pipe_stage_t *zio_pipeline[] = {
2959 NULL,
2960 zio_read_bp_init,
2961 zio_free_bp_init,
2962 zio_issue_async,
2963 zio_write_bp_init,
2964 zio_checksum_generate,
2965 zio_ddt_read_start,
2966 zio_ddt_read_done,
2967 zio_ddt_write,
2968 zio_ddt_free,
2969 zio_gang_assemble,
2970 zio_gang_issue,
2971 zio_dva_allocate,
2972 zio_dva_free,
2973 zio_dva_claim,
2974 zio_ready,
2975 zio_vdev_io_start,
2976 zio_vdev_io_done,
2977 zio_vdev_io_assess,
2978 zio_checksum_verify,
2979 zio_done
2980 };
2981
2982 #if defined(_KERNEL) && defined(HAVE_SPL)
2983 /* Fault injection */
2984 EXPORT_SYMBOL(zio_injection_enabled);
2985 EXPORT_SYMBOL(zio_inject_fault);
2986 EXPORT_SYMBOL(zio_inject_list_next);
2987 EXPORT_SYMBOL(zio_clear_fault);
2988 EXPORT_SYMBOL(zio_handle_fault_injection);
2989 EXPORT_SYMBOL(zio_handle_device_injection);
2990 EXPORT_SYMBOL(zio_handle_label_injection);
2991 EXPORT_SYMBOL(zio_priority_table);
2992 EXPORT_SYMBOL(zio_type_name);
2993
2994 module_param(zio_bulk_flags, int, 0644);
2995 MODULE_PARM_DESC(zio_bulk_flags, "Additional flags to pass to bulk buffers");
2996 #endif