]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Update build system and packaging
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/sysmacros.h>
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/txg.h>
32 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio_impl.h>
35 #include <sys/zio_compress.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/ddt.h>
40 #include <sys/blkptr.h>
41 #include <sys/zfeature.h>
42 #include <sys/dsl_scan.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/time.h>
45 #include <sys/trace_zio.h>
46 #include <sys/abd.h>
47 #include <sys/dsl_crypt.h>
48
49 /*
50 * ==========================================================================
51 * I/O type descriptions
52 * ==========================================================================
53 */
54 const char *zio_type_name[ZIO_TYPES] = {
55 /*
56 * Note: Linux kernel thread name length is limited
57 * so these names will differ from upstream open zfs.
58 */
59 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
60 };
61
62 int zio_dva_throttle_enabled = B_TRUE;
63
64 /*
65 * ==========================================================================
66 * I/O kmem caches
67 * ==========================================================================
68 */
69 kmem_cache_t *zio_cache;
70 kmem_cache_t *zio_link_cache;
71 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
72 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
73 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
74 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
75 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
76 #endif
77
78 int zio_delay_max = ZIO_DELAY_MAX;
79
80 #define ZIO_PIPELINE_CONTINUE 0x100
81 #define ZIO_PIPELINE_STOP 0x101
82
83 #define BP_SPANB(indblkshift, level) \
84 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
85 #define COMPARE_META_LEVEL 0x80000000ul
86 /*
87 * The following actions directly effect the spa's sync-to-convergence logic.
88 * The values below define the sync pass when we start performing the action.
89 * Care should be taken when changing these values as they directly impact
90 * spa_sync() performance. Tuning these values may introduce subtle performance
91 * pathologies and should only be done in the context of performance analysis.
92 * These tunables will eventually be removed and replaced with #defines once
93 * enough analysis has been done to determine optimal values.
94 *
95 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
96 * regular blocks are not deferred.
97 */
98 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
99 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
100 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
101
102 /*
103 * An allocating zio is one that either currently has the DVA allocate
104 * stage set or will have it later in its lifetime.
105 */
106 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
107
108 int zio_requeue_io_start_cut_in_line = 1;
109
110 #ifdef ZFS_DEBUG
111 int zio_buf_debug_limit = 16384;
112 #else
113 int zio_buf_debug_limit = 0;
114 #endif
115
116 static inline void __zio_execute(zio_t *zio);
117
118 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
119
120 void
121 zio_init(void)
122 {
123 size_t c;
124 vmem_t *data_alloc_arena = NULL;
125
126 zio_cache = kmem_cache_create("zio_cache",
127 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 zio_link_cache = kmem_cache_create("zio_link_cache",
129 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
130
131 /*
132 * For small buffers, we want a cache for each multiple of
133 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
134 * for each quarter-power of 2.
135 */
136 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
137 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
138 size_t p2 = size;
139 size_t align = 0;
140 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
141
142 #if defined(_ILP32) && defined(_KERNEL)
143 /*
144 * Cache size limited to 1M on 32-bit platforms until ARC
145 * buffers no longer require virtual address space.
146 */
147 if (size > zfs_max_recordsize)
148 break;
149 #endif
150
151 while (!ISP2(p2))
152 p2 &= p2 - 1;
153
154 #ifndef _KERNEL
155 /*
156 * If we are using watchpoints, put each buffer on its own page,
157 * to eliminate the performance overhead of trapping to the
158 * kernel when modifying a non-watched buffer that shares the
159 * page with a watched buffer.
160 */
161 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
162 continue;
163 /*
164 * Here's the problem - on 4K native devices in userland on
165 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
166 * will fail with EINVAL, causing zdb (and others) to coredump.
167 * Since userland probably doesn't need optimized buffer caches,
168 * we just force 4K alignment on everything.
169 */
170 align = 8 * SPA_MINBLOCKSIZE;
171 #else
172 if (size < PAGESIZE) {
173 align = SPA_MINBLOCKSIZE;
174 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
175 align = PAGESIZE;
176 }
177 #endif
178
179 if (align != 0) {
180 char name[36];
181 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
182 zio_buf_cache[c] = kmem_cache_create(name, size,
183 align, NULL, NULL, NULL, NULL, NULL, cflags);
184
185 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
186 zio_data_buf_cache[c] = kmem_cache_create(name, size,
187 align, NULL, NULL, NULL, NULL,
188 data_alloc_arena, cflags);
189 }
190 }
191
192 while (--c != 0) {
193 ASSERT(zio_buf_cache[c] != NULL);
194 if (zio_buf_cache[c - 1] == NULL)
195 zio_buf_cache[c - 1] = zio_buf_cache[c];
196
197 ASSERT(zio_data_buf_cache[c] != NULL);
198 if (zio_data_buf_cache[c - 1] == NULL)
199 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
200 }
201
202 zio_inject_init();
203
204 lz4_init();
205 }
206
207 void
208 zio_fini(void)
209 {
210 size_t c;
211 kmem_cache_t *last_cache = NULL;
212 kmem_cache_t *last_data_cache = NULL;
213
214 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
215 #ifdef _ILP32
216 /*
217 * Cache size limited to 1M on 32-bit platforms until ARC
218 * buffers no longer require virtual address space.
219 */
220 if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize)
221 break;
222 #endif
223 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
224 if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c])
225 (void) printf("zio_fini: [%d] %llu != %llu\n",
226 (int)((c + 1) << SPA_MINBLOCKSHIFT),
227 (long long unsigned)zio_buf_cache_allocs[c],
228 (long long unsigned)zio_buf_cache_frees[c]);
229 #endif
230 if (zio_buf_cache[c] != last_cache) {
231 last_cache = zio_buf_cache[c];
232 kmem_cache_destroy(zio_buf_cache[c]);
233 }
234 zio_buf_cache[c] = NULL;
235
236 if (zio_data_buf_cache[c] != last_data_cache) {
237 last_data_cache = zio_data_buf_cache[c];
238 kmem_cache_destroy(zio_data_buf_cache[c]);
239 }
240 zio_data_buf_cache[c] = NULL;
241 }
242
243 kmem_cache_destroy(zio_link_cache);
244 kmem_cache_destroy(zio_cache);
245
246 zio_inject_fini();
247
248 lz4_fini();
249 }
250
251 /*
252 * ==========================================================================
253 * Allocate and free I/O buffers
254 * ==========================================================================
255 */
256
257 /*
258 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
259 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
260 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
261 * excess / transient data in-core during a crashdump.
262 */
263 void *
264 zio_buf_alloc(size_t size)
265 {
266 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
267
268 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
269 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
270 atomic_add_64(&zio_buf_cache_allocs[c], 1);
271 #endif
272
273 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
274 }
275
276 /*
277 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
278 * crashdump if the kernel panics. This exists so that we will limit the amount
279 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
280 * of kernel heap dumped to disk when the kernel panics)
281 */
282 void *
283 zio_data_buf_alloc(size_t size)
284 {
285 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
286
287 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
288
289 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
290 }
291
292 void
293 zio_buf_free(void *buf, size_t size)
294 {
295 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
296
297 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
298 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
299 atomic_add_64(&zio_buf_cache_frees[c], 1);
300 #endif
301
302 kmem_cache_free(zio_buf_cache[c], buf);
303 }
304
305 void
306 zio_data_buf_free(void *buf, size_t size)
307 {
308 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
309
310 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
311
312 kmem_cache_free(zio_data_buf_cache[c], buf);
313 }
314
315 static void
316 zio_abd_free(void *abd, size_t size)
317 {
318 abd_free((abd_t *)abd);
319 }
320
321 /*
322 * ==========================================================================
323 * Push and pop I/O transform buffers
324 * ==========================================================================
325 */
326 void
327 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
328 zio_transform_func_t *transform)
329 {
330 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
331
332 /*
333 * Ensure that anyone expecting this zio to contain a linear ABD isn't
334 * going to get a nasty surprise when they try to access the data.
335 */
336 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
337
338 zt->zt_orig_abd = zio->io_abd;
339 zt->zt_orig_size = zio->io_size;
340 zt->zt_bufsize = bufsize;
341 zt->zt_transform = transform;
342
343 zt->zt_next = zio->io_transform_stack;
344 zio->io_transform_stack = zt;
345
346 zio->io_abd = data;
347 zio->io_size = size;
348 }
349
350 void
351 zio_pop_transforms(zio_t *zio)
352 {
353 zio_transform_t *zt;
354
355 while ((zt = zio->io_transform_stack) != NULL) {
356 if (zt->zt_transform != NULL)
357 zt->zt_transform(zio,
358 zt->zt_orig_abd, zt->zt_orig_size);
359
360 if (zt->zt_bufsize != 0)
361 abd_free(zio->io_abd);
362
363 zio->io_abd = zt->zt_orig_abd;
364 zio->io_size = zt->zt_orig_size;
365 zio->io_transform_stack = zt->zt_next;
366
367 kmem_free(zt, sizeof (zio_transform_t));
368 }
369 }
370
371 /*
372 * ==========================================================================
373 * I/O transform callbacks for subblocks, decompression, and decryption
374 * ==========================================================================
375 */
376 static void
377 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
378 {
379 ASSERT(zio->io_size > size);
380
381 if (zio->io_type == ZIO_TYPE_READ)
382 abd_copy(data, zio->io_abd, size);
383 }
384
385 static void
386 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
387 {
388 if (zio->io_error == 0) {
389 void *tmp = abd_borrow_buf(data, size);
390 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
391 zio->io_abd, tmp, zio->io_size, size);
392 abd_return_buf_copy(data, tmp, size);
393
394 if (ret != 0)
395 zio->io_error = SET_ERROR(EIO);
396 }
397 }
398
399 static void
400 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
401 {
402 int ret;
403 void *tmp;
404 blkptr_t *bp = zio->io_bp;
405 spa_t *spa = zio->io_spa;
406 uint64_t dsobj = zio->io_bookmark.zb_objset;
407 uint64_t lsize = BP_GET_LSIZE(bp);
408 dmu_object_type_t ot = BP_GET_TYPE(bp);
409 uint8_t salt[ZIO_DATA_SALT_LEN];
410 uint8_t iv[ZIO_DATA_IV_LEN];
411 uint8_t mac[ZIO_DATA_MAC_LEN];
412 boolean_t no_crypt = B_FALSE;
413
414 ASSERT(BP_USES_CRYPT(bp));
415 ASSERT3U(size, !=, 0);
416
417 if (zio->io_error != 0)
418 return;
419
420 /*
421 * Verify the cksum of MACs stored in an indirect bp. It will always
422 * be possible to verify this since it does not require an encryption
423 * key.
424 */
425 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
426 zio_crypt_decode_mac_bp(bp, mac);
427
428 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
429 /*
430 * We haven't decompressed the data yet, but
431 * zio_crypt_do_indirect_mac_checksum() requires
432 * decompressed data to be able to parse out the MACs
433 * from the indirect block. We decompress it now and
434 * throw away the result after we are finished.
435 */
436 tmp = zio_buf_alloc(lsize);
437 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
438 zio->io_abd, tmp, zio->io_size, lsize);
439 if (ret != 0) {
440 ret = SET_ERROR(EIO);
441 goto error;
442 }
443 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
444 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
445 zio_buf_free(tmp, lsize);
446 } else {
447 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
448 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
449 }
450 abd_copy(data, zio->io_abd, size);
451
452 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
453 ret = zio_handle_decrypt_injection(spa,
454 &zio->io_bookmark, ot, ECKSUM);
455 }
456 if (ret != 0)
457 goto error;
458
459 return;
460 }
461
462 /*
463 * If this is an authenticated block, just check the MAC. It would be
464 * nice to separate this out into its own flag, but for the moment
465 * enum zio_flag is out of bits.
466 */
467 if (BP_IS_AUTHENTICATED(bp)) {
468 if (ot == DMU_OT_OBJSET) {
469 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
470 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
471 } else {
472 zio_crypt_decode_mac_bp(bp, mac);
473 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
474 zio->io_abd, size, mac);
475 if (zio_injection_enabled && ret == 0) {
476 ret = zio_handle_decrypt_injection(spa,
477 &zio->io_bookmark, ot, ECKSUM);
478 }
479 }
480 abd_copy(data, zio->io_abd, size);
481
482 if (ret != 0)
483 goto error;
484
485 return;
486 }
487
488 zio_crypt_decode_params_bp(bp, salt, iv);
489
490 if (ot == DMU_OT_INTENT_LOG) {
491 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
492 zio_crypt_decode_mac_zil(tmp, mac);
493 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
494 } else {
495 zio_crypt_decode_mac_bp(bp, mac);
496 }
497
498 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
499 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
500 zio->io_abd, &no_crypt);
501 if (no_crypt)
502 abd_copy(data, zio->io_abd, size);
503
504 if (ret != 0)
505 goto error;
506
507 return;
508
509 error:
510 /* assert that the key was found unless this was speculative */
511 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
512
513 /*
514 * If there was a decryption / authentication error return EIO as
515 * the io_error. If this was not a speculative zio, create an ereport.
516 */
517 if (ret == ECKSUM) {
518 zio->io_error = SET_ERROR(EIO);
519 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
520 spa_log_error(spa, &zio->io_bookmark);
521 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
522 spa, NULL, &zio->io_bookmark, zio, 0, 0);
523 }
524 } else {
525 zio->io_error = ret;
526 }
527 }
528
529 /*
530 * ==========================================================================
531 * I/O parent/child relationships and pipeline interlocks
532 * ==========================================================================
533 */
534 zio_t *
535 zio_walk_parents(zio_t *cio, zio_link_t **zl)
536 {
537 list_t *pl = &cio->io_parent_list;
538
539 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
540 if (*zl == NULL)
541 return (NULL);
542
543 ASSERT((*zl)->zl_child == cio);
544 return ((*zl)->zl_parent);
545 }
546
547 zio_t *
548 zio_walk_children(zio_t *pio, zio_link_t **zl)
549 {
550 list_t *cl = &pio->io_child_list;
551
552 ASSERT(MUTEX_HELD(&pio->io_lock));
553
554 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
555 if (*zl == NULL)
556 return (NULL);
557
558 ASSERT((*zl)->zl_parent == pio);
559 return ((*zl)->zl_child);
560 }
561
562 zio_t *
563 zio_unique_parent(zio_t *cio)
564 {
565 zio_link_t *zl = NULL;
566 zio_t *pio = zio_walk_parents(cio, &zl);
567
568 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
569 return (pio);
570 }
571
572 void
573 zio_add_child(zio_t *pio, zio_t *cio)
574 {
575 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
576
577 /*
578 * Logical I/Os can have logical, gang, or vdev children.
579 * Gang I/Os can have gang or vdev children.
580 * Vdev I/Os can only have vdev children.
581 * The following ASSERT captures all of these constraints.
582 */
583 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
584
585 zl->zl_parent = pio;
586 zl->zl_child = cio;
587
588 mutex_enter(&pio->io_lock);
589 mutex_enter(&cio->io_lock);
590
591 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
592
593 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
594 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
595
596 list_insert_head(&pio->io_child_list, zl);
597 list_insert_head(&cio->io_parent_list, zl);
598
599 pio->io_child_count++;
600 cio->io_parent_count++;
601
602 mutex_exit(&cio->io_lock);
603 mutex_exit(&pio->io_lock);
604 }
605
606 static void
607 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
608 {
609 ASSERT(zl->zl_parent == pio);
610 ASSERT(zl->zl_child == cio);
611
612 mutex_enter(&pio->io_lock);
613 mutex_enter(&cio->io_lock);
614
615 list_remove(&pio->io_child_list, zl);
616 list_remove(&cio->io_parent_list, zl);
617
618 pio->io_child_count--;
619 cio->io_parent_count--;
620
621 mutex_exit(&cio->io_lock);
622 mutex_exit(&pio->io_lock);
623 kmem_cache_free(zio_link_cache, zl);
624 }
625
626 static boolean_t
627 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
628 {
629 boolean_t waiting = B_FALSE;
630
631 mutex_enter(&zio->io_lock);
632 ASSERT(zio->io_stall == NULL);
633 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
634 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
635 continue;
636
637 uint64_t *countp = &zio->io_children[c][wait];
638 if (*countp != 0) {
639 zio->io_stage >>= 1;
640 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
641 zio->io_stall = countp;
642 waiting = B_TRUE;
643 break;
644 }
645 }
646 mutex_exit(&zio->io_lock);
647 return (waiting);
648 }
649
650 __attribute__((always_inline))
651 static inline void
652 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
653 {
654 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
655 int *errorp = &pio->io_child_error[zio->io_child_type];
656
657 mutex_enter(&pio->io_lock);
658 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
659 *errorp = zio_worst_error(*errorp, zio->io_error);
660 pio->io_reexecute |= zio->io_reexecute;
661 ASSERT3U(*countp, >, 0);
662
663 (*countp)--;
664
665 if (*countp == 0 && pio->io_stall == countp) {
666 zio_taskq_type_t type =
667 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
668 ZIO_TASKQ_INTERRUPT;
669 pio->io_stall = NULL;
670 mutex_exit(&pio->io_lock);
671 /*
672 * Dispatch the parent zio in its own taskq so that
673 * the child can continue to make progress. This also
674 * prevents overflowing the stack when we have deeply nested
675 * parent-child relationships.
676 */
677 zio_taskq_dispatch(pio, type, B_FALSE);
678 } else {
679 mutex_exit(&pio->io_lock);
680 }
681 }
682
683 static void
684 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
685 {
686 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
687 zio->io_error = zio->io_child_error[c];
688 }
689
690 int
691 zio_bookmark_compare(const void *x1, const void *x2)
692 {
693 const zio_t *z1 = x1;
694 const zio_t *z2 = x2;
695
696 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
697 return (-1);
698 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
699 return (1);
700
701 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
702 return (-1);
703 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
704 return (1);
705
706 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
707 return (-1);
708 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
709 return (1);
710
711 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
712 return (-1);
713 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
714 return (1);
715
716 if (z1 < z2)
717 return (-1);
718 if (z1 > z2)
719 return (1);
720
721 return (0);
722 }
723
724 /*
725 * ==========================================================================
726 * Create the various types of I/O (read, write, free, etc)
727 * ==========================================================================
728 */
729 static zio_t *
730 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
731 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
732 void *private, zio_type_t type, zio_priority_t priority,
733 enum zio_flag flags, vdev_t *vd, uint64_t offset,
734 const zbookmark_phys_t *zb, enum zio_stage stage,
735 enum zio_stage pipeline)
736 {
737 zio_t *zio;
738
739 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
740 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
741 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
742
743 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
744 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
745 ASSERT(vd || stage == ZIO_STAGE_OPEN);
746
747 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
748
749 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
750 bzero(zio, sizeof (zio_t));
751
752 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
753 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
754
755 list_create(&zio->io_parent_list, sizeof (zio_link_t),
756 offsetof(zio_link_t, zl_parent_node));
757 list_create(&zio->io_child_list, sizeof (zio_link_t),
758 offsetof(zio_link_t, zl_child_node));
759 metaslab_trace_init(&zio->io_alloc_list);
760
761 if (vd != NULL)
762 zio->io_child_type = ZIO_CHILD_VDEV;
763 else if (flags & ZIO_FLAG_GANG_CHILD)
764 zio->io_child_type = ZIO_CHILD_GANG;
765 else if (flags & ZIO_FLAG_DDT_CHILD)
766 zio->io_child_type = ZIO_CHILD_DDT;
767 else
768 zio->io_child_type = ZIO_CHILD_LOGICAL;
769
770 if (bp != NULL) {
771 zio->io_bp = (blkptr_t *)bp;
772 zio->io_bp_copy = *bp;
773 zio->io_bp_orig = *bp;
774 if (type != ZIO_TYPE_WRITE ||
775 zio->io_child_type == ZIO_CHILD_DDT)
776 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
777 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
778 zio->io_logical = zio;
779 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
780 pipeline |= ZIO_GANG_STAGES;
781 }
782
783 zio->io_spa = spa;
784 zio->io_txg = txg;
785 zio->io_done = done;
786 zio->io_private = private;
787 zio->io_type = type;
788 zio->io_priority = priority;
789 zio->io_vd = vd;
790 zio->io_offset = offset;
791 zio->io_orig_abd = zio->io_abd = data;
792 zio->io_orig_size = zio->io_size = psize;
793 zio->io_lsize = lsize;
794 zio->io_orig_flags = zio->io_flags = flags;
795 zio->io_orig_stage = zio->io_stage = stage;
796 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
797 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
798
799 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
800 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
801
802 if (zb != NULL)
803 zio->io_bookmark = *zb;
804
805 if (pio != NULL) {
806 if (zio->io_logical == NULL)
807 zio->io_logical = pio->io_logical;
808 if (zio->io_child_type == ZIO_CHILD_GANG)
809 zio->io_gang_leader = pio->io_gang_leader;
810 zio_add_child(pio, zio);
811 }
812
813 taskq_init_ent(&zio->io_tqent);
814
815 return (zio);
816 }
817
818 static void
819 zio_destroy(zio_t *zio)
820 {
821 metaslab_trace_fini(&zio->io_alloc_list);
822 list_destroy(&zio->io_parent_list);
823 list_destroy(&zio->io_child_list);
824 mutex_destroy(&zio->io_lock);
825 cv_destroy(&zio->io_cv);
826 kmem_cache_free(zio_cache, zio);
827 }
828
829 zio_t *
830 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
831 void *private, enum zio_flag flags)
832 {
833 zio_t *zio;
834
835 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
836 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
837 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
838
839 return (zio);
840 }
841
842 zio_t *
843 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
844 {
845 return (zio_null(NULL, spa, NULL, done, private, flags));
846 }
847
848 void
849 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
850 {
851 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
852 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
853 bp, (longlong_t)BP_GET_TYPE(bp));
854 }
855 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
856 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
857 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
858 bp, (longlong_t)BP_GET_CHECKSUM(bp));
859 }
860 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
861 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
862 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
863 bp, (longlong_t)BP_GET_COMPRESS(bp));
864 }
865 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
866 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
867 bp, (longlong_t)BP_GET_LSIZE(bp));
868 }
869 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
870 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
871 bp, (longlong_t)BP_GET_PSIZE(bp));
872 }
873
874 if (BP_IS_EMBEDDED(bp)) {
875 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
876 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
877 bp, (longlong_t)BPE_GET_ETYPE(bp));
878 }
879 }
880
881 /*
882 * Do not verify individual DVAs if the config is not trusted. This
883 * will be done once the zio is executed in vdev_mirror_map_alloc.
884 */
885 if (!spa->spa_trust_config)
886 return;
887
888 /*
889 * Pool-specific checks.
890 *
891 * Note: it would be nice to verify that the blk_birth and
892 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
893 * allows the birth time of log blocks (and dmu_sync()-ed blocks
894 * that are in the log) to be arbitrarily large.
895 */
896 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
897 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
898
899 if (vdevid >= spa->spa_root_vdev->vdev_children) {
900 zfs_panic_recover("blkptr at %p DVA %u has invalid "
901 "VDEV %llu",
902 bp, i, (longlong_t)vdevid);
903 continue;
904 }
905 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
906 if (vd == NULL) {
907 zfs_panic_recover("blkptr at %p DVA %u has invalid "
908 "VDEV %llu",
909 bp, i, (longlong_t)vdevid);
910 continue;
911 }
912 if (vd->vdev_ops == &vdev_hole_ops) {
913 zfs_panic_recover("blkptr at %p DVA %u has hole "
914 "VDEV %llu",
915 bp, i, (longlong_t)vdevid);
916 continue;
917 }
918 if (vd->vdev_ops == &vdev_missing_ops) {
919 /*
920 * "missing" vdevs are valid during import, but we
921 * don't have their detailed info (e.g. asize), so
922 * we can't perform any more checks on them.
923 */
924 continue;
925 }
926 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
927 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
928 if (BP_IS_GANG(bp))
929 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
930 if (offset + asize > vd->vdev_asize) {
931 zfs_panic_recover("blkptr at %p DVA %u has invalid "
932 "OFFSET %llu",
933 bp, i, (longlong_t)offset);
934 }
935 }
936 }
937
938 boolean_t
939 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
940 {
941 uint64_t vdevid = DVA_GET_VDEV(dva);
942
943 if (vdevid >= spa->spa_root_vdev->vdev_children)
944 return (B_FALSE);
945
946 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
947 if (vd == NULL)
948 return (B_FALSE);
949
950 if (vd->vdev_ops == &vdev_hole_ops)
951 return (B_FALSE);
952
953 if (vd->vdev_ops == &vdev_missing_ops) {
954 return (B_FALSE);
955 }
956
957 uint64_t offset = DVA_GET_OFFSET(dva);
958 uint64_t asize = DVA_GET_ASIZE(dva);
959
960 if (BP_IS_GANG(bp))
961 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
962 if (offset + asize > vd->vdev_asize)
963 return (B_FALSE);
964
965 return (B_TRUE);
966 }
967
968 zio_t *
969 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
970 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
971 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
972 {
973 zio_t *zio;
974
975 zfs_blkptr_verify(spa, bp);
976
977 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
978 data, size, size, done, private,
979 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
980 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
981 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
982
983 return (zio);
984 }
985
986 zio_t *
987 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
988 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
989 zio_done_func_t *ready, zio_done_func_t *children_ready,
990 zio_done_func_t *physdone, zio_done_func_t *done,
991 void *private, zio_priority_t priority, enum zio_flag flags,
992 const zbookmark_phys_t *zb)
993 {
994 zio_t *zio;
995
996 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
997 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
998 zp->zp_compress >= ZIO_COMPRESS_OFF &&
999 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1000 DMU_OT_IS_VALID(zp->zp_type) &&
1001 zp->zp_level < 32 &&
1002 zp->zp_copies > 0 &&
1003 zp->zp_copies <= spa_max_replication(spa));
1004
1005 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1006 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1007 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1008 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1009
1010 zio->io_ready = ready;
1011 zio->io_children_ready = children_ready;
1012 zio->io_physdone = physdone;
1013 zio->io_prop = *zp;
1014
1015 /*
1016 * Data can be NULL if we are going to call zio_write_override() to
1017 * provide the already-allocated BP. But we may need the data to
1018 * verify a dedup hit (if requested). In this case, don't try to
1019 * dedup (just take the already-allocated BP verbatim). Encrypted
1020 * dedup blocks need data as well so we also disable dedup in this
1021 * case.
1022 */
1023 if (data == NULL &&
1024 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1025 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1026 }
1027
1028 return (zio);
1029 }
1030
1031 zio_t *
1032 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1033 uint64_t size, zio_done_func_t *done, void *private,
1034 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1035 {
1036 zio_t *zio;
1037
1038 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1039 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1040 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1041
1042 return (zio);
1043 }
1044
1045 void
1046 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1047 {
1048 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1049 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1050 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1051 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1052
1053 /*
1054 * We must reset the io_prop to match the values that existed
1055 * when the bp was first written by dmu_sync() keeping in mind
1056 * that nopwrite and dedup are mutually exclusive.
1057 */
1058 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1059 zio->io_prop.zp_nopwrite = nopwrite;
1060 zio->io_prop.zp_copies = copies;
1061 zio->io_bp_override = bp;
1062 }
1063
1064 void
1065 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1066 {
1067
1068 zfs_blkptr_verify(spa, bp);
1069
1070 /*
1071 * The check for EMBEDDED is a performance optimization. We
1072 * process the free here (by ignoring it) rather than
1073 * putting it on the list and then processing it in zio_free_sync().
1074 */
1075 if (BP_IS_EMBEDDED(bp))
1076 return;
1077 metaslab_check_free(spa, bp);
1078
1079 /*
1080 * Frees that are for the currently-syncing txg, are not going to be
1081 * deferred, and which will not need to do a read (i.e. not GANG or
1082 * DEDUP), can be processed immediately. Otherwise, put them on the
1083 * in-memory list for later processing.
1084 */
1085 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
1086 txg != spa->spa_syncing_txg ||
1087 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
1088 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1089 } else {
1090 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1091 }
1092 }
1093
1094 zio_t *
1095 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1096 enum zio_flag flags)
1097 {
1098 zio_t *zio;
1099 enum zio_stage stage = ZIO_FREE_PIPELINE;
1100
1101 ASSERT(!BP_IS_HOLE(bp));
1102 ASSERT(spa_syncing_txg(spa) == txg);
1103 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
1104
1105 if (BP_IS_EMBEDDED(bp))
1106 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1107
1108 metaslab_check_free(spa, bp);
1109 arc_freed(spa, bp);
1110 dsl_scan_freed(spa, bp);
1111
1112 /*
1113 * GANG and DEDUP blocks can induce a read (for the gang block header,
1114 * or the DDT), so issue them asynchronously so that this thread is
1115 * not tied up.
1116 */
1117 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1118 stage |= ZIO_STAGE_ISSUE_ASYNC;
1119
1120 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1121 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1122 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1123
1124 return (zio);
1125 }
1126
1127 zio_t *
1128 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1129 zio_done_func_t *done, void *private, enum zio_flag flags)
1130 {
1131 zio_t *zio;
1132
1133 zfs_blkptr_verify(spa, bp);
1134
1135 if (BP_IS_EMBEDDED(bp))
1136 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1137
1138 /*
1139 * A claim is an allocation of a specific block. Claims are needed
1140 * to support immediate writes in the intent log. The issue is that
1141 * immediate writes contain committed data, but in a txg that was
1142 * *not* committed. Upon opening the pool after an unclean shutdown,
1143 * the intent log claims all blocks that contain immediate write data
1144 * so that the SPA knows they're in use.
1145 *
1146 * All claims *must* be resolved in the first txg -- before the SPA
1147 * starts allocating blocks -- so that nothing is allocated twice.
1148 * If txg == 0 we just verify that the block is claimable.
1149 */
1150 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
1151 ASSERT(txg == spa_first_txg(spa) || txg == 0);
1152 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
1153
1154 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1155 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1156 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1157 ASSERT0(zio->io_queued_timestamp);
1158
1159 return (zio);
1160 }
1161
1162 zio_t *
1163 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1164 zio_done_func_t *done, void *private, enum zio_flag flags)
1165 {
1166 zio_t *zio;
1167 int c;
1168
1169 if (vd->vdev_children == 0) {
1170 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1171 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1172 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1173
1174 zio->io_cmd = cmd;
1175 } else {
1176 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1177
1178 for (c = 0; c < vd->vdev_children; c++)
1179 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1180 done, private, flags));
1181 }
1182
1183 return (zio);
1184 }
1185
1186 zio_t *
1187 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1188 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1189 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1190 {
1191 zio_t *zio;
1192
1193 ASSERT(vd->vdev_children == 0);
1194 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1195 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1196 ASSERT3U(offset + size, <=, vd->vdev_psize);
1197
1198 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1199 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1200 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1201
1202 zio->io_prop.zp_checksum = checksum;
1203
1204 return (zio);
1205 }
1206
1207 zio_t *
1208 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1209 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1210 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1211 {
1212 zio_t *zio;
1213
1214 ASSERT(vd->vdev_children == 0);
1215 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1216 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1217 ASSERT3U(offset + size, <=, vd->vdev_psize);
1218
1219 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1220 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1221 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1222
1223 zio->io_prop.zp_checksum = checksum;
1224
1225 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1226 /*
1227 * zec checksums are necessarily destructive -- they modify
1228 * the end of the write buffer to hold the verifier/checksum.
1229 * Therefore, we must make a local copy in case the data is
1230 * being written to multiple places in parallel.
1231 */
1232 abd_t *wbuf = abd_alloc_sametype(data, size);
1233 abd_copy(wbuf, data, size);
1234
1235 zio_push_transform(zio, wbuf, size, size, NULL);
1236 }
1237
1238 return (zio);
1239 }
1240
1241 /*
1242 * Create a child I/O to do some work for us.
1243 */
1244 zio_t *
1245 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1246 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1247 enum zio_flag flags, zio_done_func_t *done, void *private)
1248 {
1249 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1250 zio_t *zio;
1251
1252 /*
1253 * vdev child I/Os do not propagate their error to the parent.
1254 * Therefore, for correct operation the caller *must* check for
1255 * and handle the error in the child i/o's done callback.
1256 * The only exceptions are i/os that we don't care about
1257 * (OPTIONAL or REPAIR).
1258 */
1259 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1260 done != NULL);
1261
1262 if (type == ZIO_TYPE_READ && bp != NULL) {
1263 /*
1264 * If we have the bp, then the child should perform the
1265 * checksum and the parent need not. This pushes error
1266 * detection as close to the leaves as possible and
1267 * eliminates redundant checksums in the interior nodes.
1268 */
1269 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1270 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1271 }
1272
1273 if (vd->vdev_ops->vdev_op_leaf) {
1274 ASSERT0(vd->vdev_children);
1275 offset += VDEV_LABEL_START_SIZE;
1276 }
1277
1278 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1279
1280 /*
1281 * If we've decided to do a repair, the write is not speculative --
1282 * even if the original read was.
1283 */
1284 if (flags & ZIO_FLAG_IO_REPAIR)
1285 flags &= ~ZIO_FLAG_SPECULATIVE;
1286
1287 /*
1288 * If we're creating a child I/O that is not associated with a
1289 * top-level vdev, then the child zio is not an allocating I/O.
1290 * If this is a retried I/O then we ignore it since we will
1291 * have already processed the original allocating I/O.
1292 */
1293 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1294 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1295 ASSERTV(metaslab_class_t *mc = spa_normal_class(pio->io_spa));
1296
1297 ASSERT(mc->mc_alloc_throttle_enabled);
1298 ASSERT(type == ZIO_TYPE_WRITE);
1299 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1300 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1301 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1302 pio->io_child_type == ZIO_CHILD_GANG);
1303
1304 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1305 }
1306
1307
1308 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1309 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1310 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1311 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1312
1313 zio->io_physdone = pio->io_physdone;
1314 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1315 zio->io_logical->io_phys_children++;
1316
1317 return (zio);
1318 }
1319
1320 zio_t *
1321 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1322 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1323 zio_done_func_t *done, void *private)
1324 {
1325 zio_t *zio;
1326
1327 ASSERT(vd->vdev_ops->vdev_op_leaf);
1328
1329 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1330 data, size, size, done, private, type, priority,
1331 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1332 vd, offset, NULL,
1333 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1334
1335 return (zio);
1336 }
1337
1338 void
1339 zio_flush(zio_t *zio, vdev_t *vd)
1340 {
1341 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1342 NULL, NULL,
1343 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1344 }
1345
1346 void
1347 zio_shrink(zio_t *zio, uint64_t size)
1348 {
1349 ASSERT3P(zio->io_executor, ==, NULL);
1350 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1351 ASSERT3U(size, <=, zio->io_size);
1352
1353 /*
1354 * We don't shrink for raidz because of problems with the
1355 * reconstruction when reading back less than the block size.
1356 * Note, BP_IS_RAIDZ() assumes no compression.
1357 */
1358 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1359 if (!BP_IS_RAIDZ(zio->io_bp)) {
1360 /* we are not doing a raw write */
1361 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1362 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1363 }
1364 }
1365
1366 /*
1367 * ==========================================================================
1368 * Prepare to read and write logical blocks
1369 * ==========================================================================
1370 */
1371
1372 static int
1373 zio_read_bp_init(zio_t *zio)
1374 {
1375 blkptr_t *bp = zio->io_bp;
1376 uint64_t psize =
1377 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1378
1379 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1380
1381 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1382 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1383 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1384 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1385 psize, psize, zio_decompress);
1386 }
1387
1388 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1389 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1390 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1391 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1392 psize, psize, zio_decrypt);
1393 }
1394
1395 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1396 int psize = BPE_GET_PSIZE(bp);
1397 void *data = abd_borrow_buf(zio->io_abd, psize);
1398
1399 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1400 decode_embedded_bp_compressed(bp, data);
1401 abd_return_buf_copy(zio->io_abd, data, psize);
1402 } else {
1403 ASSERT(!BP_IS_EMBEDDED(bp));
1404 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1405 }
1406
1407 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1408 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1409
1410 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1411 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1412
1413 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1414 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1415
1416 return (ZIO_PIPELINE_CONTINUE);
1417 }
1418
1419 static int
1420 zio_write_bp_init(zio_t *zio)
1421 {
1422 if (!IO_IS_ALLOCATING(zio))
1423 return (ZIO_PIPELINE_CONTINUE);
1424
1425 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1426
1427 if (zio->io_bp_override) {
1428 blkptr_t *bp = zio->io_bp;
1429 zio_prop_t *zp = &zio->io_prop;
1430
1431 ASSERT(bp->blk_birth != zio->io_txg);
1432 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1433
1434 *bp = *zio->io_bp_override;
1435 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1436
1437 if (BP_IS_EMBEDDED(bp))
1438 return (ZIO_PIPELINE_CONTINUE);
1439
1440 /*
1441 * If we've been overridden and nopwrite is set then
1442 * set the flag accordingly to indicate that a nopwrite
1443 * has already occurred.
1444 */
1445 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1446 ASSERT(!zp->zp_dedup);
1447 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1448 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1449 return (ZIO_PIPELINE_CONTINUE);
1450 }
1451
1452 ASSERT(!zp->zp_nopwrite);
1453
1454 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1455 return (ZIO_PIPELINE_CONTINUE);
1456
1457 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1458 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1459
1460 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1461 !zp->zp_encrypt) {
1462 BP_SET_DEDUP(bp, 1);
1463 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1464 return (ZIO_PIPELINE_CONTINUE);
1465 }
1466
1467 /*
1468 * We were unable to handle this as an override bp, treat
1469 * it as a regular write I/O.
1470 */
1471 zio->io_bp_override = NULL;
1472 *bp = zio->io_bp_orig;
1473 zio->io_pipeline = zio->io_orig_pipeline;
1474 }
1475
1476 return (ZIO_PIPELINE_CONTINUE);
1477 }
1478
1479 static int
1480 zio_write_compress(zio_t *zio)
1481 {
1482 spa_t *spa = zio->io_spa;
1483 zio_prop_t *zp = &zio->io_prop;
1484 enum zio_compress compress = zp->zp_compress;
1485 blkptr_t *bp = zio->io_bp;
1486 uint64_t lsize = zio->io_lsize;
1487 uint64_t psize = zio->io_size;
1488 int pass = 1;
1489
1490 /*
1491 * If our children haven't all reached the ready stage,
1492 * wait for them and then repeat this pipeline stage.
1493 */
1494 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1495 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1496 return (ZIO_PIPELINE_STOP);
1497 }
1498
1499 if (!IO_IS_ALLOCATING(zio))
1500 return (ZIO_PIPELINE_CONTINUE);
1501
1502 if (zio->io_children_ready != NULL) {
1503 /*
1504 * Now that all our children are ready, run the callback
1505 * associated with this zio in case it wants to modify the
1506 * data to be written.
1507 */
1508 ASSERT3U(zp->zp_level, >, 0);
1509 zio->io_children_ready(zio);
1510 }
1511
1512 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1513 ASSERT(zio->io_bp_override == NULL);
1514
1515 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1516 /*
1517 * We're rewriting an existing block, which means we're
1518 * working on behalf of spa_sync(). For spa_sync() to
1519 * converge, it must eventually be the case that we don't
1520 * have to allocate new blocks. But compression changes
1521 * the blocksize, which forces a reallocate, and makes
1522 * convergence take longer. Therefore, after the first
1523 * few passes, stop compressing to ensure convergence.
1524 */
1525 pass = spa_sync_pass(spa);
1526
1527 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1528 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1529 ASSERT(!BP_GET_DEDUP(bp));
1530
1531 if (pass >= zfs_sync_pass_dont_compress)
1532 compress = ZIO_COMPRESS_OFF;
1533
1534 /* Make sure someone doesn't change their mind on overwrites */
1535 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1536 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1537 }
1538
1539 /* If it's a compressed write that is not raw, compress the buffer. */
1540 if (compress != ZIO_COMPRESS_OFF &&
1541 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1542 void *cbuf = zio_buf_alloc(lsize);
1543 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1544 if (psize == 0 || psize == lsize) {
1545 compress = ZIO_COMPRESS_OFF;
1546 zio_buf_free(cbuf, lsize);
1547 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1548 psize <= BPE_PAYLOAD_SIZE &&
1549 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1550 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1551 encode_embedded_bp_compressed(bp,
1552 cbuf, compress, lsize, psize);
1553 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1554 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1555 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1556 zio_buf_free(cbuf, lsize);
1557 bp->blk_birth = zio->io_txg;
1558 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1559 ASSERT(spa_feature_is_active(spa,
1560 SPA_FEATURE_EMBEDDED_DATA));
1561 return (ZIO_PIPELINE_CONTINUE);
1562 } else {
1563 /*
1564 * Round up compressed size up to the ashift
1565 * of the smallest-ashift device, and zero the tail.
1566 * This ensures that the compressed size of the BP
1567 * (and thus compressratio property) are correct,
1568 * in that we charge for the padding used to fill out
1569 * the last sector.
1570 */
1571 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1572 size_t rounded = (size_t)P2ROUNDUP(psize,
1573 1ULL << spa->spa_min_ashift);
1574 if (rounded >= lsize) {
1575 compress = ZIO_COMPRESS_OFF;
1576 zio_buf_free(cbuf, lsize);
1577 psize = lsize;
1578 } else {
1579 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1580 abd_take_ownership_of_buf(cdata, B_TRUE);
1581 abd_zero_off(cdata, psize, rounded - psize);
1582 psize = rounded;
1583 zio_push_transform(zio, cdata,
1584 psize, lsize, NULL);
1585 }
1586 }
1587
1588 /*
1589 * We were unable to handle this as an override bp, treat
1590 * it as a regular write I/O.
1591 */
1592 zio->io_bp_override = NULL;
1593 *bp = zio->io_bp_orig;
1594 zio->io_pipeline = zio->io_orig_pipeline;
1595
1596 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1597 zp->zp_type == DMU_OT_DNODE) {
1598 /*
1599 * The DMU actually relies on the zio layer's compression
1600 * to free metadnode blocks that have had all contained
1601 * dnodes freed. As a result, even when doing a raw
1602 * receive, we must check whether the block can be compressed
1603 * to a hole.
1604 */
1605 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1606 zio->io_abd, NULL, lsize);
1607 if (psize == 0)
1608 compress = ZIO_COMPRESS_OFF;
1609 } else {
1610 ASSERT3U(psize, !=, 0);
1611 }
1612
1613 /*
1614 * The final pass of spa_sync() must be all rewrites, but the first
1615 * few passes offer a trade-off: allocating blocks defers convergence,
1616 * but newly allocated blocks are sequential, so they can be written
1617 * to disk faster. Therefore, we allow the first few passes of
1618 * spa_sync() to allocate new blocks, but force rewrites after that.
1619 * There should only be a handful of blocks after pass 1 in any case.
1620 */
1621 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1622 BP_GET_PSIZE(bp) == psize &&
1623 pass >= zfs_sync_pass_rewrite) {
1624 ASSERT(psize != 0);
1625 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1626 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1627 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1628 } else {
1629 BP_ZERO(bp);
1630 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1631 }
1632
1633 if (psize == 0) {
1634 if (zio->io_bp_orig.blk_birth != 0 &&
1635 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1636 BP_SET_LSIZE(bp, lsize);
1637 BP_SET_TYPE(bp, zp->zp_type);
1638 BP_SET_LEVEL(bp, zp->zp_level);
1639 BP_SET_BIRTH(bp, zio->io_txg, 0);
1640 }
1641 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1642 } else {
1643 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1644 BP_SET_LSIZE(bp, lsize);
1645 BP_SET_TYPE(bp, zp->zp_type);
1646 BP_SET_LEVEL(bp, zp->zp_level);
1647 BP_SET_PSIZE(bp, psize);
1648 BP_SET_COMPRESS(bp, compress);
1649 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1650 BP_SET_DEDUP(bp, zp->zp_dedup);
1651 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1652 if (zp->zp_dedup) {
1653 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1654 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1655 ASSERT(!zp->zp_encrypt ||
1656 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1657 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1658 }
1659 if (zp->zp_nopwrite) {
1660 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1661 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1662 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1663 }
1664 }
1665 return (ZIO_PIPELINE_CONTINUE);
1666 }
1667
1668 static int
1669 zio_free_bp_init(zio_t *zio)
1670 {
1671 blkptr_t *bp = zio->io_bp;
1672
1673 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1674 if (BP_GET_DEDUP(bp))
1675 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1676 }
1677
1678 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1679
1680 return (ZIO_PIPELINE_CONTINUE);
1681 }
1682
1683 /*
1684 * ==========================================================================
1685 * Execute the I/O pipeline
1686 * ==========================================================================
1687 */
1688
1689 static void
1690 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1691 {
1692 spa_t *spa = zio->io_spa;
1693 zio_type_t t = zio->io_type;
1694 int flags = (cutinline ? TQ_FRONT : 0);
1695
1696 /*
1697 * If we're a config writer or a probe, the normal issue and
1698 * interrupt threads may all be blocked waiting for the config lock.
1699 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1700 */
1701 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1702 t = ZIO_TYPE_NULL;
1703
1704 /*
1705 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1706 */
1707 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1708 t = ZIO_TYPE_NULL;
1709
1710 /*
1711 * If this is a high priority I/O, then use the high priority taskq if
1712 * available.
1713 */
1714 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1715 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1716 q++;
1717
1718 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1719
1720 /*
1721 * NB: We are assuming that the zio can only be dispatched
1722 * to a single taskq at a time. It would be a grievous error
1723 * to dispatch the zio to another taskq at the same time.
1724 */
1725 ASSERT(taskq_empty_ent(&zio->io_tqent));
1726 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1727 flags, &zio->io_tqent);
1728 }
1729
1730 static boolean_t
1731 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1732 {
1733 kthread_t *executor = zio->io_executor;
1734 spa_t *spa = zio->io_spa;
1735
1736 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1737 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1738 uint_t i;
1739 for (i = 0; i < tqs->stqs_count; i++) {
1740 if (taskq_member(tqs->stqs_taskq[i], executor))
1741 return (B_TRUE);
1742 }
1743 }
1744
1745 return (B_FALSE);
1746 }
1747
1748 static int
1749 zio_issue_async(zio_t *zio)
1750 {
1751 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1752
1753 return (ZIO_PIPELINE_STOP);
1754 }
1755
1756 void
1757 zio_interrupt(zio_t *zio)
1758 {
1759 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1760 }
1761
1762 void
1763 zio_delay_interrupt(zio_t *zio)
1764 {
1765 /*
1766 * The timeout_generic() function isn't defined in userspace, so
1767 * rather than trying to implement the function, the zio delay
1768 * functionality has been disabled for userspace builds.
1769 */
1770
1771 #ifdef _KERNEL
1772 /*
1773 * If io_target_timestamp is zero, then no delay has been registered
1774 * for this IO, thus jump to the end of this function and "skip" the
1775 * delay; issuing it directly to the zio layer.
1776 */
1777 if (zio->io_target_timestamp != 0) {
1778 hrtime_t now = gethrtime();
1779
1780 if (now >= zio->io_target_timestamp) {
1781 /*
1782 * This IO has already taken longer than the target
1783 * delay to complete, so we don't want to delay it
1784 * any longer; we "miss" the delay and issue it
1785 * directly to the zio layer. This is likely due to
1786 * the target latency being set to a value less than
1787 * the underlying hardware can satisfy (e.g. delay
1788 * set to 1ms, but the disks take 10ms to complete an
1789 * IO request).
1790 */
1791
1792 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1793 hrtime_t, now);
1794
1795 zio_interrupt(zio);
1796 } else {
1797 taskqid_t tid;
1798 hrtime_t diff = zio->io_target_timestamp - now;
1799 clock_t expire_at_tick = ddi_get_lbolt() +
1800 NSEC_TO_TICK(diff);
1801
1802 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1803 hrtime_t, now, hrtime_t, diff);
1804
1805 if (NSEC_TO_TICK(diff) == 0) {
1806 /* Our delay is less than a jiffy - just spin */
1807 zfs_sleep_until(zio->io_target_timestamp);
1808 } else {
1809 /*
1810 * Use taskq_dispatch_delay() in the place of
1811 * OpenZFS's timeout_generic().
1812 */
1813 tid = taskq_dispatch_delay(system_taskq,
1814 (task_func_t *)zio_interrupt,
1815 zio, TQ_NOSLEEP, expire_at_tick);
1816 if (tid == TASKQID_INVALID) {
1817 /*
1818 * Couldn't allocate a task. Just
1819 * finish the zio without a delay.
1820 */
1821 zio_interrupt(zio);
1822 }
1823 }
1824 }
1825 return;
1826 }
1827 #endif
1828 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1829 zio_interrupt(zio);
1830 }
1831
1832 static void
1833 zio_deadman_impl(zio_t *pio)
1834 {
1835 zio_t *cio, *cio_next;
1836 zio_link_t *zl = NULL;
1837 vdev_t *vd = pio->io_vd;
1838
1839 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
1840 vdev_queue_t *vq = &vd->vdev_queue;
1841 zbookmark_phys_t *zb = &pio->io_bookmark;
1842 uint64_t delta = gethrtime() - pio->io_timestamp;
1843 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
1844
1845 zfs_dbgmsg("slow zio: zio=%p timestamp=%llu "
1846 "delta=%llu queued=%llu io=%llu "
1847 "path=%s last=%llu "
1848 "type=%d priority=%d flags=0x%x "
1849 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
1850 "objset=%llu object=%llu level=%llu blkid=%llu "
1851 "offset=%llu size=%llu error=%d",
1852 pio, pio->io_timestamp,
1853 delta, pio->io_delta, pio->io_delay,
1854 vd->vdev_path, vq->vq_io_complete_ts,
1855 pio->io_type, pio->io_priority, pio->io_flags,
1856 pio->io_state, pio->io_pipeline, pio->io_pipeline_trace,
1857 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1858 pio->io_offset, pio->io_size, pio->io_error);
1859 zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
1860 pio->io_spa, vd, zb, pio, 0, 0);
1861
1862 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
1863 taskq_empty_ent(&pio->io_tqent)) {
1864 zio_interrupt(pio);
1865 }
1866 }
1867
1868 mutex_enter(&pio->io_lock);
1869 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1870 cio_next = zio_walk_children(pio, &zl);
1871 zio_deadman_impl(cio);
1872 }
1873 mutex_exit(&pio->io_lock);
1874 }
1875
1876 /*
1877 * Log the critical information describing this zio and all of its children
1878 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
1879 */
1880 void
1881 zio_deadman(zio_t *pio, char *tag)
1882 {
1883 spa_t *spa = pio->io_spa;
1884 char *name = spa_name(spa);
1885
1886 if (!zfs_deadman_enabled || spa_suspended(spa))
1887 return;
1888
1889 zio_deadman_impl(pio);
1890
1891 switch (spa_get_deadman_failmode(spa)) {
1892 case ZIO_FAILURE_MODE_WAIT:
1893 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
1894 break;
1895
1896 case ZIO_FAILURE_MODE_CONTINUE:
1897 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
1898 break;
1899
1900 case ZIO_FAILURE_MODE_PANIC:
1901 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
1902 break;
1903 }
1904 }
1905
1906 /*
1907 * Execute the I/O pipeline until one of the following occurs:
1908 * (1) the I/O completes; (2) the pipeline stalls waiting for
1909 * dependent child I/Os; (3) the I/O issues, so we're waiting
1910 * for an I/O completion interrupt; (4) the I/O is delegated by
1911 * vdev-level caching or aggregation; (5) the I/O is deferred
1912 * due to vdev-level queueing; (6) the I/O is handed off to
1913 * another thread. In all cases, the pipeline stops whenever
1914 * there's no CPU work; it never burns a thread in cv_wait_io().
1915 *
1916 * There's no locking on io_stage because there's no legitimate way
1917 * for multiple threads to be attempting to process the same I/O.
1918 */
1919 static zio_pipe_stage_t *zio_pipeline[];
1920
1921 /*
1922 * zio_execute() is a wrapper around the static function
1923 * __zio_execute() so that we can force __zio_execute() to be
1924 * inlined. This reduces stack overhead which is important
1925 * because __zio_execute() is called recursively in several zio
1926 * code paths. zio_execute() itself cannot be inlined because
1927 * it is externally visible.
1928 */
1929 void
1930 zio_execute(zio_t *zio)
1931 {
1932 fstrans_cookie_t cookie;
1933
1934 cookie = spl_fstrans_mark();
1935 __zio_execute(zio);
1936 spl_fstrans_unmark(cookie);
1937 }
1938
1939 /*
1940 * Used to determine if in the current context the stack is sized large
1941 * enough to allow zio_execute() to be called recursively. A minimum
1942 * stack size of 16K is required to avoid needing to re-dispatch the zio.
1943 */
1944 boolean_t
1945 zio_execute_stack_check(zio_t *zio)
1946 {
1947 #if !defined(HAVE_LARGE_STACKS)
1948 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
1949
1950 /* Executing in txg_sync_thread() context. */
1951 if (dp && curthread == dp->dp_tx.tx_sync_thread)
1952 return (B_TRUE);
1953
1954 /* Pool initialization outside of zio_taskq context. */
1955 if (dp && spa_is_initializing(dp->dp_spa) &&
1956 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
1957 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
1958 return (B_TRUE);
1959 #endif /* HAVE_LARGE_STACKS */
1960
1961 return (B_FALSE);
1962 }
1963
1964 __attribute__((always_inline))
1965 static inline void
1966 __zio_execute(zio_t *zio)
1967 {
1968 zio->io_executor = curthread;
1969
1970 ASSERT3U(zio->io_queued_timestamp, >, 0);
1971
1972 while (zio->io_stage < ZIO_STAGE_DONE) {
1973 enum zio_stage pipeline = zio->io_pipeline;
1974 enum zio_stage stage = zio->io_stage;
1975 int rv;
1976
1977 ASSERT(!MUTEX_HELD(&zio->io_lock));
1978 ASSERT(ISP2(stage));
1979 ASSERT(zio->io_stall == NULL);
1980
1981 do {
1982 stage <<= 1;
1983 } while ((stage & pipeline) == 0);
1984
1985 ASSERT(stage <= ZIO_STAGE_DONE);
1986
1987 /*
1988 * If we are in interrupt context and this pipeline stage
1989 * will grab a config lock that is held across I/O,
1990 * or may wait for an I/O that needs an interrupt thread
1991 * to complete, issue async to avoid deadlock.
1992 *
1993 * For VDEV_IO_START, we cut in line so that the io will
1994 * be sent to disk promptly.
1995 */
1996 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1997 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1998 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1999 zio_requeue_io_start_cut_in_line : B_FALSE;
2000 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2001 return;
2002 }
2003
2004 /*
2005 * If the current context doesn't have large enough stacks
2006 * the zio must be issued asynchronously to prevent overflow.
2007 */
2008 if (zio_execute_stack_check(zio)) {
2009 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2010 zio_requeue_io_start_cut_in_line : B_FALSE;
2011 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2012 return;
2013 }
2014
2015 zio->io_stage = stage;
2016 zio->io_pipeline_trace |= zio->io_stage;
2017 rv = zio_pipeline[highbit64(stage) - 1](zio);
2018
2019 if (rv == ZIO_PIPELINE_STOP)
2020 return;
2021
2022 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
2023 }
2024 }
2025
2026
2027 /*
2028 * ==========================================================================
2029 * Initiate I/O, either sync or async
2030 * ==========================================================================
2031 */
2032 int
2033 zio_wait(zio_t *zio)
2034 {
2035 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2036 int error;
2037
2038 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2039 ASSERT3P(zio->io_executor, ==, NULL);
2040
2041 zio->io_waiter = curthread;
2042 ASSERT0(zio->io_queued_timestamp);
2043 zio->io_queued_timestamp = gethrtime();
2044
2045 __zio_execute(zio);
2046
2047 mutex_enter(&zio->io_lock);
2048 while (zio->io_executor != NULL) {
2049 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2050 ddi_get_lbolt() + timeout);
2051
2052 if (zfs_deadman_enabled && error == -1 &&
2053 gethrtime() - zio->io_queued_timestamp >
2054 spa_deadman_ziotime(zio->io_spa)) {
2055 mutex_exit(&zio->io_lock);
2056 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2057 zio_deadman(zio, FTAG);
2058 mutex_enter(&zio->io_lock);
2059 }
2060 }
2061 mutex_exit(&zio->io_lock);
2062
2063 error = zio->io_error;
2064 zio_destroy(zio);
2065
2066 return (error);
2067 }
2068
2069 void
2070 zio_nowait(zio_t *zio)
2071 {
2072 ASSERT3P(zio->io_executor, ==, NULL);
2073
2074 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2075 zio_unique_parent(zio) == NULL) {
2076 zio_t *pio;
2077
2078 /*
2079 * This is a logical async I/O with no parent to wait for it.
2080 * We add it to the spa_async_root_zio "Godfather" I/O which
2081 * will ensure they complete prior to unloading the pool.
2082 */
2083 spa_t *spa = zio->io_spa;
2084 kpreempt_disable();
2085 pio = spa->spa_async_zio_root[CPU_SEQID];
2086 kpreempt_enable();
2087
2088 zio_add_child(pio, zio);
2089 }
2090
2091 ASSERT0(zio->io_queued_timestamp);
2092 zio->io_queued_timestamp = gethrtime();
2093 __zio_execute(zio);
2094 }
2095
2096 /*
2097 * ==========================================================================
2098 * Reexecute, cancel, or suspend/resume failed I/O
2099 * ==========================================================================
2100 */
2101
2102 static void
2103 zio_reexecute(zio_t *pio)
2104 {
2105 zio_t *cio, *cio_next;
2106
2107 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2108 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2109 ASSERT(pio->io_gang_leader == NULL);
2110 ASSERT(pio->io_gang_tree == NULL);
2111
2112 pio->io_flags = pio->io_orig_flags;
2113 pio->io_stage = pio->io_orig_stage;
2114 pio->io_pipeline = pio->io_orig_pipeline;
2115 pio->io_reexecute = 0;
2116 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2117 pio->io_pipeline_trace = 0;
2118 pio->io_error = 0;
2119 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2120 pio->io_state[w] = 0;
2121 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2122 pio->io_child_error[c] = 0;
2123
2124 if (IO_IS_ALLOCATING(pio))
2125 BP_ZERO(pio->io_bp);
2126
2127 /*
2128 * As we reexecute pio's children, new children could be created.
2129 * New children go to the head of pio's io_child_list, however,
2130 * so we will (correctly) not reexecute them. The key is that
2131 * the remainder of pio's io_child_list, from 'cio_next' onward,
2132 * cannot be affected by any side effects of reexecuting 'cio'.
2133 */
2134 zio_link_t *zl = NULL;
2135 mutex_enter(&pio->io_lock);
2136 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2137 cio_next = zio_walk_children(pio, &zl);
2138 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2139 pio->io_children[cio->io_child_type][w]++;
2140 mutex_exit(&pio->io_lock);
2141 zio_reexecute(cio);
2142 mutex_enter(&pio->io_lock);
2143 }
2144 mutex_exit(&pio->io_lock);
2145
2146 /*
2147 * Now that all children have been reexecuted, execute the parent.
2148 * We don't reexecute "The Godfather" I/O here as it's the
2149 * responsibility of the caller to wait on it.
2150 */
2151 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2152 pio->io_queued_timestamp = gethrtime();
2153 __zio_execute(pio);
2154 }
2155 }
2156
2157 void
2158 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2159 {
2160 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2161 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2162 "failure and the failure mode property for this pool "
2163 "is set to panic.", spa_name(spa));
2164
2165 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2166 "failure and has been suspended.\n", spa_name(spa));
2167
2168 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2169 NULL, NULL, 0, 0);
2170
2171 mutex_enter(&spa->spa_suspend_lock);
2172
2173 if (spa->spa_suspend_zio_root == NULL)
2174 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2175 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2176 ZIO_FLAG_GODFATHER);
2177
2178 spa->spa_suspended = reason;
2179
2180 if (zio != NULL) {
2181 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2182 ASSERT(zio != spa->spa_suspend_zio_root);
2183 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2184 ASSERT(zio_unique_parent(zio) == NULL);
2185 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2186 zio_add_child(spa->spa_suspend_zio_root, zio);
2187 }
2188
2189 mutex_exit(&spa->spa_suspend_lock);
2190 }
2191
2192 int
2193 zio_resume(spa_t *spa)
2194 {
2195 zio_t *pio;
2196
2197 /*
2198 * Reexecute all previously suspended i/o.
2199 */
2200 mutex_enter(&spa->spa_suspend_lock);
2201 spa->spa_suspended = ZIO_SUSPEND_NONE;
2202 cv_broadcast(&spa->spa_suspend_cv);
2203 pio = spa->spa_suspend_zio_root;
2204 spa->spa_suspend_zio_root = NULL;
2205 mutex_exit(&spa->spa_suspend_lock);
2206
2207 if (pio == NULL)
2208 return (0);
2209
2210 zio_reexecute(pio);
2211 return (zio_wait(pio));
2212 }
2213
2214 void
2215 zio_resume_wait(spa_t *spa)
2216 {
2217 mutex_enter(&spa->spa_suspend_lock);
2218 while (spa_suspended(spa))
2219 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2220 mutex_exit(&spa->spa_suspend_lock);
2221 }
2222
2223 /*
2224 * ==========================================================================
2225 * Gang blocks.
2226 *
2227 * A gang block is a collection of small blocks that looks to the DMU
2228 * like one large block. When zio_dva_allocate() cannot find a block
2229 * of the requested size, due to either severe fragmentation or the pool
2230 * being nearly full, it calls zio_write_gang_block() to construct the
2231 * block from smaller fragments.
2232 *
2233 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2234 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2235 * an indirect block: it's an array of block pointers. It consumes
2236 * only one sector and hence is allocatable regardless of fragmentation.
2237 * The gang header's bps point to its gang members, which hold the data.
2238 *
2239 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2240 * as the verifier to ensure uniqueness of the SHA256 checksum.
2241 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2242 * not the gang header. This ensures that data block signatures (needed for
2243 * deduplication) are independent of how the block is physically stored.
2244 *
2245 * Gang blocks can be nested: a gang member may itself be a gang block.
2246 * Thus every gang block is a tree in which root and all interior nodes are
2247 * gang headers, and the leaves are normal blocks that contain user data.
2248 * The root of the gang tree is called the gang leader.
2249 *
2250 * To perform any operation (read, rewrite, free, claim) on a gang block,
2251 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2252 * in the io_gang_tree field of the original logical i/o by recursively
2253 * reading the gang leader and all gang headers below it. This yields
2254 * an in-core tree containing the contents of every gang header and the
2255 * bps for every constituent of the gang block.
2256 *
2257 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2258 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2259 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2260 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2261 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2262 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2263 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2264 * of the gang header plus zio_checksum_compute() of the data to update the
2265 * gang header's blk_cksum as described above.
2266 *
2267 * The two-phase assemble/issue model solves the problem of partial failure --
2268 * what if you'd freed part of a gang block but then couldn't read the
2269 * gang header for another part? Assembling the entire gang tree first
2270 * ensures that all the necessary gang header I/O has succeeded before
2271 * starting the actual work of free, claim, or write. Once the gang tree
2272 * is assembled, free and claim are in-memory operations that cannot fail.
2273 *
2274 * In the event that a gang write fails, zio_dva_unallocate() walks the
2275 * gang tree to immediately free (i.e. insert back into the space map)
2276 * everything we've allocated. This ensures that we don't get ENOSPC
2277 * errors during repeated suspend/resume cycles due to a flaky device.
2278 *
2279 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2280 * the gang tree, we won't modify the block, so we can safely defer the free
2281 * (knowing that the block is still intact). If we *can* assemble the gang
2282 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2283 * each constituent bp and we can allocate a new block on the next sync pass.
2284 *
2285 * In all cases, the gang tree allows complete recovery from partial failure.
2286 * ==========================================================================
2287 */
2288
2289 static void
2290 zio_gang_issue_func_done(zio_t *zio)
2291 {
2292 abd_put(zio->io_abd);
2293 }
2294
2295 static zio_t *
2296 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2297 uint64_t offset)
2298 {
2299 if (gn != NULL)
2300 return (pio);
2301
2302 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2303 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2304 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2305 &pio->io_bookmark));
2306 }
2307
2308 static zio_t *
2309 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2310 uint64_t offset)
2311 {
2312 zio_t *zio;
2313
2314 if (gn != NULL) {
2315 abd_t *gbh_abd =
2316 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2317 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2318 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2319 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2320 &pio->io_bookmark);
2321 /*
2322 * As we rewrite each gang header, the pipeline will compute
2323 * a new gang block header checksum for it; but no one will
2324 * compute a new data checksum, so we do that here. The one
2325 * exception is the gang leader: the pipeline already computed
2326 * its data checksum because that stage precedes gang assembly.
2327 * (Presently, nothing actually uses interior data checksums;
2328 * this is just good hygiene.)
2329 */
2330 if (gn != pio->io_gang_leader->io_gang_tree) {
2331 abd_t *buf = abd_get_offset(data, offset);
2332
2333 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2334 buf, BP_GET_PSIZE(bp));
2335
2336 abd_put(buf);
2337 }
2338 /*
2339 * If we are here to damage data for testing purposes,
2340 * leave the GBH alone so that we can detect the damage.
2341 */
2342 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2343 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2344 } else {
2345 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2346 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2347 zio_gang_issue_func_done, NULL, pio->io_priority,
2348 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2349 }
2350
2351 return (zio);
2352 }
2353
2354 /* ARGSUSED */
2355 static zio_t *
2356 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2357 uint64_t offset)
2358 {
2359 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2360 ZIO_GANG_CHILD_FLAGS(pio)));
2361 }
2362
2363 /* ARGSUSED */
2364 static zio_t *
2365 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2366 uint64_t offset)
2367 {
2368 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2369 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2370 }
2371
2372 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2373 NULL,
2374 zio_read_gang,
2375 zio_rewrite_gang,
2376 zio_free_gang,
2377 zio_claim_gang,
2378 NULL
2379 };
2380
2381 static void zio_gang_tree_assemble_done(zio_t *zio);
2382
2383 static zio_gang_node_t *
2384 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2385 {
2386 zio_gang_node_t *gn;
2387
2388 ASSERT(*gnpp == NULL);
2389
2390 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2391 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2392 *gnpp = gn;
2393
2394 return (gn);
2395 }
2396
2397 static void
2398 zio_gang_node_free(zio_gang_node_t **gnpp)
2399 {
2400 zio_gang_node_t *gn = *gnpp;
2401
2402 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2403 ASSERT(gn->gn_child[g] == NULL);
2404
2405 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2406 kmem_free(gn, sizeof (*gn));
2407 *gnpp = NULL;
2408 }
2409
2410 static void
2411 zio_gang_tree_free(zio_gang_node_t **gnpp)
2412 {
2413 zio_gang_node_t *gn = *gnpp;
2414
2415 if (gn == NULL)
2416 return;
2417
2418 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2419 zio_gang_tree_free(&gn->gn_child[g]);
2420
2421 zio_gang_node_free(gnpp);
2422 }
2423
2424 static void
2425 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2426 {
2427 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2428 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2429
2430 ASSERT(gio->io_gang_leader == gio);
2431 ASSERT(BP_IS_GANG(bp));
2432
2433 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2434 zio_gang_tree_assemble_done, gn, gio->io_priority,
2435 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2436 }
2437
2438 static void
2439 zio_gang_tree_assemble_done(zio_t *zio)
2440 {
2441 zio_t *gio = zio->io_gang_leader;
2442 zio_gang_node_t *gn = zio->io_private;
2443 blkptr_t *bp = zio->io_bp;
2444
2445 ASSERT(gio == zio_unique_parent(zio));
2446 ASSERT(zio->io_child_count == 0);
2447
2448 if (zio->io_error)
2449 return;
2450
2451 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2452 if (BP_SHOULD_BYTESWAP(bp))
2453 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2454
2455 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2456 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2457 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2458
2459 abd_put(zio->io_abd);
2460
2461 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2462 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2463 if (!BP_IS_GANG(gbp))
2464 continue;
2465 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2466 }
2467 }
2468
2469 static void
2470 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2471 uint64_t offset)
2472 {
2473 zio_t *gio = pio->io_gang_leader;
2474 zio_t *zio;
2475
2476 ASSERT(BP_IS_GANG(bp) == !!gn);
2477 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2478 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2479
2480 /*
2481 * If you're a gang header, your data is in gn->gn_gbh.
2482 * If you're a gang member, your data is in 'data' and gn == NULL.
2483 */
2484 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2485
2486 if (gn != NULL) {
2487 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2488
2489 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2490 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2491 if (BP_IS_HOLE(gbp))
2492 continue;
2493 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2494 offset);
2495 offset += BP_GET_PSIZE(gbp);
2496 }
2497 }
2498
2499 if (gn == gio->io_gang_tree)
2500 ASSERT3U(gio->io_size, ==, offset);
2501
2502 if (zio != pio)
2503 zio_nowait(zio);
2504 }
2505
2506 static int
2507 zio_gang_assemble(zio_t *zio)
2508 {
2509 blkptr_t *bp = zio->io_bp;
2510
2511 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2512 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2513
2514 zio->io_gang_leader = zio;
2515
2516 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2517
2518 return (ZIO_PIPELINE_CONTINUE);
2519 }
2520
2521 static int
2522 zio_gang_issue(zio_t *zio)
2523 {
2524 blkptr_t *bp = zio->io_bp;
2525
2526 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2527 return (ZIO_PIPELINE_STOP);
2528 }
2529
2530 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2531 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2532
2533 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2534 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2535 0);
2536 else
2537 zio_gang_tree_free(&zio->io_gang_tree);
2538
2539 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2540
2541 return (ZIO_PIPELINE_CONTINUE);
2542 }
2543
2544 static void
2545 zio_write_gang_member_ready(zio_t *zio)
2546 {
2547 zio_t *pio = zio_unique_parent(zio);
2548 dva_t *cdva = zio->io_bp->blk_dva;
2549 dva_t *pdva = pio->io_bp->blk_dva;
2550 uint64_t asize;
2551 ASSERTV(zio_t *gio = zio->io_gang_leader);
2552
2553 if (BP_IS_HOLE(zio->io_bp))
2554 return;
2555
2556 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2557
2558 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2559 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2560 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2561 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2562 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2563
2564 mutex_enter(&pio->io_lock);
2565 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2566 ASSERT(DVA_GET_GANG(&pdva[d]));
2567 asize = DVA_GET_ASIZE(&pdva[d]);
2568 asize += DVA_GET_ASIZE(&cdva[d]);
2569 DVA_SET_ASIZE(&pdva[d], asize);
2570 }
2571 mutex_exit(&pio->io_lock);
2572 }
2573
2574 static void
2575 zio_write_gang_done(zio_t *zio)
2576 {
2577 abd_put(zio->io_abd);
2578 }
2579
2580 static int
2581 zio_write_gang_block(zio_t *pio)
2582 {
2583 spa_t *spa = pio->io_spa;
2584 metaslab_class_t *mc = spa_normal_class(spa);
2585 blkptr_t *bp = pio->io_bp;
2586 zio_t *gio = pio->io_gang_leader;
2587 zio_t *zio;
2588 zio_gang_node_t *gn, **gnpp;
2589 zio_gbh_phys_t *gbh;
2590 abd_t *gbh_abd;
2591 uint64_t txg = pio->io_txg;
2592 uint64_t resid = pio->io_size;
2593 uint64_t lsize;
2594 int copies = gio->io_prop.zp_copies;
2595 int gbh_copies;
2596 zio_prop_t zp;
2597 int error;
2598
2599 /*
2600 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2601 * have a third copy.
2602 */
2603 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2604 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2605 gbh_copies = SPA_DVAS_PER_BP - 1;
2606
2607 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2608 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2609 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2610 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2611
2612 flags |= METASLAB_ASYNC_ALLOC;
2613 VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2614
2615 /*
2616 * The logical zio has already placed a reservation for
2617 * 'copies' allocation slots but gang blocks may require
2618 * additional copies. These additional copies
2619 * (i.e. gbh_copies - copies) are guaranteed to succeed
2620 * since metaslab_class_throttle_reserve() always allows
2621 * additional reservations for gang blocks.
2622 */
2623 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2624 pio, flags));
2625 }
2626
2627 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2628 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2629 &pio->io_alloc_list, pio);
2630 if (error) {
2631 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2632 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2633 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2634
2635 /*
2636 * If we failed to allocate the gang block header then
2637 * we remove any additional allocation reservations that
2638 * we placed here. The original reservation will
2639 * be removed when the logical I/O goes to the ready
2640 * stage.
2641 */
2642 metaslab_class_throttle_unreserve(mc,
2643 gbh_copies - copies, pio);
2644 }
2645
2646 pio->io_error = error;
2647 return (ZIO_PIPELINE_CONTINUE);
2648 }
2649
2650 if (pio == gio) {
2651 gnpp = &gio->io_gang_tree;
2652 } else {
2653 gnpp = pio->io_private;
2654 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2655 }
2656
2657 gn = zio_gang_node_alloc(gnpp);
2658 gbh = gn->gn_gbh;
2659 bzero(gbh, SPA_GANGBLOCKSIZE);
2660 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2661
2662 /*
2663 * Create the gang header.
2664 */
2665 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2666 zio_write_gang_done, NULL, pio->io_priority,
2667 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2668
2669 /*
2670 * Create and nowait the gang children.
2671 */
2672 for (int g = 0; resid != 0; resid -= lsize, g++) {
2673 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2674 SPA_MINBLOCKSIZE);
2675 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2676
2677 zp.zp_checksum = gio->io_prop.zp_checksum;
2678 zp.zp_compress = ZIO_COMPRESS_OFF;
2679 zp.zp_type = DMU_OT_NONE;
2680 zp.zp_level = 0;
2681 zp.zp_copies = gio->io_prop.zp_copies;
2682 zp.zp_dedup = B_FALSE;
2683 zp.zp_dedup_verify = B_FALSE;
2684 zp.zp_nopwrite = B_FALSE;
2685 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2686 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2687 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2688 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2689 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2690
2691 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2692 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2693 lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2694 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2695 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2696
2697 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2698 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2699 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2700
2701 /*
2702 * Gang children won't throttle but we should
2703 * account for their work, so reserve an allocation
2704 * slot for them here.
2705 */
2706 VERIFY(metaslab_class_throttle_reserve(mc,
2707 zp.zp_copies, cio, flags));
2708 }
2709 zio_nowait(cio);
2710 }
2711
2712 /*
2713 * Set pio's pipeline to just wait for zio to finish.
2714 */
2715 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2716
2717 /*
2718 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2719 */
2720 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2721
2722 zio_nowait(zio);
2723
2724 return (ZIO_PIPELINE_CONTINUE);
2725 }
2726
2727 /*
2728 * The zio_nop_write stage in the pipeline determines if allocating a
2729 * new bp is necessary. The nopwrite feature can handle writes in
2730 * either syncing or open context (i.e. zil writes) and as a result is
2731 * mutually exclusive with dedup.
2732 *
2733 * By leveraging a cryptographically secure checksum, such as SHA256, we
2734 * can compare the checksums of the new data and the old to determine if
2735 * allocating a new block is required. Note that our requirements for
2736 * cryptographic strength are fairly weak: there can't be any accidental
2737 * hash collisions, but we don't need to be secure against intentional
2738 * (malicious) collisions. To trigger a nopwrite, you have to be able
2739 * to write the file to begin with, and triggering an incorrect (hash
2740 * collision) nopwrite is no worse than simply writing to the file.
2741 * That said, there are no known attacks against the checksum algorithms
2742 * used for nopwrite, assuming that the salt and the checksums
2743 * themselves remain secret.
2744 */
2745 static int
2746 zio_nop_write(zio_t *zio)
2747 {
2748 blkptr_t *bp = zio->io_bp;
2749 blkptr_t *bp_orig = &zio->io_bp_orig;
2750 zio_prop_t *zp = &zio->io_prop;
2751
2752 ASSERT(BP_GET_LEVEL(bp) == 0);
2753 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2754 ASSERT(zp->zp_nopwrite);
2755 ASSERT(!zp->zp_dedup);
2756 ASSERT(zio->io_bp_override == NULL);
2757 ASSERT(IO_IS_ALLOCATING(zio));
2758
2759 /*
2760 * Check to see if the original bp and the new bp have matching
2761 * characteristics (i.e. same checksum, compression algorithms, etc).
2762 * If they don't then just continue with the pipeline which will
2763 * allocate a new bp.
2764 */
2765 if (BP_IS_HOLE(bp_orig) ||
2766 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2767 ZCHECKSUM_FLAG_NOPWRITE) ||
2768 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2769 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2770 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2771 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2772 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2773 return (ZIO_PIPELINE_CONTINUE);
2774
2775 /*
2776 * If the checksums match then reset the pipeline so that we
2777 * avoid allocating a new bp and issuing any I/O.
2778 */
2779 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2780 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2781 ZCHECKSUM_FLAG_NOPWRITE);
2782 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2783 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2784 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2785 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2786 sizeof (uint64_t)) == 0);
2787
2788 *bp = *bp_orig;
2789 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2790 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2791 }
2792
2793 return (ZIO_PIPELINE_CONTINUE);
2794 }
2795
2796 /*
2797 * ==========================================================================
2798 * Dedup
2799 * ==========================================================================
2800 */
2801 static void
2802 zio_ddt_child_read_done(zio_t *zio)
2803 {
2804 blkptr_t *bp = zio->io_bp;
2805 ddt_entry_t *dde = zio->io_private;
2806 ddt_phys_t *ddp;
2807 zio_t *pio = zio_unique_parent(zio);
2808
2809 mutex_enter(&pio->io_lock);
2810 ddp = ddt_phys_select(dde, bp);
2811 if (zio->io_error == 0)
2812 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2813
2814 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2815 dde->dde_repair_abd = zio->io_abd;
2816 else
2817 abd_free(zio->io_abd);
2818 mutex_exit(&pio->io_lock);
2819 }
2820
2821 static int
2822 zio_ddt_read_start(zio_t *zio)
2823 {
2824 blkptr_t *bp = zio->io_bp;
2825
2826 ASSERT(BP_GET_DEDUP(bp));
2827 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2828 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2829
2830 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2831 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2832 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2833 ddt_phys_t *ddp = dde->dde_phys;
2834 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2835 blkptr_t blk;
2836
2837 ASSERT(zio->io_vsd == NULL);
2838 zio->io_vsd = dde;
2839
2840 if (ddp_self == NULL)
2841 return (ZIO_PIPELINE_CONTINUE);
2842
2843 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2844 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2845 continue;
2846 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2847 &blk);
2848 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2849 abd_alloc_for_io(zio->io_size, B_TRUE),
2850 zio->io_size, zio_ddt_child_read_done, dde,
2851 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2852 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2853 }
2854 return (ZIO_PIPELINE_CONTINUE);
2855 }
2856
2857 zio_nowait(zio_read(zio, zio->io_spa, bp,
2858 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2859 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2860
2861 return (ZIO_PIPELINE_CONTINUE);
2862 }
2863
2864 static int
2865 zio_ddt_read_done(zio_t *zio)
2866 {
2867 blkptr_t *bp = zio->io_bp;
2868
2869 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2870 return (ZIO_PIPELINE_STOP);
2871 }
2872
2873 ASSERT(BP_GET_DEDUP(bp));
2874 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2875 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2876
2877 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2878 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2879 ddt_entry_t *dde = zio->io_vsd;
2880 if (ddt == NULL) {
2881 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2882 return (ZIO_PIPELINE_CONTINUE);
2883 }
2884 if (dde == NULL) {
2885 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2886 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2887 return (ZIO_PIPELINE_STOP);
2888 }
2889 if (dde->dde_repair_abd != NULL) {
2890 abd_copy(zio->io_abd, dde->dde_repair_abd,
2891 zio->io_size);
2892 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2893 }
2894 ddt_repair_done(ddt, dde);
2895 zio->io_vsd = NULL;
2896 }
2897
2898 ASSERT(zio->io_vsd == NULL);
2899
2900 return (ZIO_PIPELINE_CONTINUE);
2901 }
2902
2903 static boolean_t
2904 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2905 {
2906 spa_t *spa = zio->io_spa;
2907 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2908
2909 ASSERT(!(zio->io_bp_override && do_raw));
2910
2911 /*
2912 * Note: we compare the original data, not the transformed data,
2913 * because when zio->io_bp is an override bp, we will not have
2914 * pushed the I/O transforms. That's an important optimization
2915 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2916 * However, we should never get a raw, override zio so in these
2917 * cases we can compare the io_abd directly. This is useful because
2918 * it allows us to do dedup verification even if we don't have access
2919 * to the original data (for instance, if the encryption keys aren't
2920 * loaded).
2921 */
2922
2923 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2924 zio_t *lio = dde->dde_lead_zio[p];
2925
2926 if (lio != NULL && do_raw) {
2927 return (lio->io_size != zio->io_size ||
2928 abd_cmp(zio->io_abd, lio->io_abd) != 0);
2929 } else if (lio != NULL) {
2930 return (lio->io_orig_size != zio->io_orig_size ||
2931 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
2932 }
2933 }
2934
2935 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2936 ddt_phys_t *ddp = &dde->dde_phys[p];
2937
2938 if (ddp->ddp_phys_birth != 0 && do_raw) {
2939 blkptr_t blk = *zio->io_bp;
2940 uint64_t psize;
2941 abd_t *tmpabd;
2942 int error;
2943
2944 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2945 psize = BP_GET_PSIZE(&blk);
2946
2947 if (psize != zio->io_size)
2948 return (B_TRUE);
2949
2950 ddt_exit(ddt);
2951
2952 tmpabd = abd_alloc_for_io(psize, B_TRUE);
2953
2954 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2955 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2956 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2957 ZIO_FLAG_RAW, &zio->io_bookmark));
2958
2959 if (error == 0) {
2960 if (abd_cmp(tmpabd, zio->io_abd) != 0)
2961 error = SET_ERROR(ENOENT);
2962 }
2963
2964 abd_free(tmpabd);
2965 ddt_enter(ddt);
2966 return (error != 0);
2967 } else if (ddp->ddp_phys_birth != 0) {
2968 arc_buf_t *abuf = NULL;
2969 arc_flags_t aflags = ARC_FLAG_WAIT;
2970 blkptr_t blk = *zio->io_bp;
2971 int error;
2972
2973 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2974
2975 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
2976 return (B_TRUE);
2977
2978 ddt_exit(ddt);
2979
2980 error = arc_read(NULL, spa, &blk,
2981 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2982 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2983 &aflags, &zio->io_bookmark);
2984
2985 if (error == 0) {
2986 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2987 zio->io_orig_size) != 0)
2988 error = SET_ERROR(ENOENT);
2989 arc_buf_destroy(abuf, &abuf);
2990 }
2991
2992 ddt_enter(ddt);
2993 return (error != 0);
2994 }
2995 }
2996
2997 return (B_FALSE);
2998 }
2999
3000 static void
3001 zio_ddt_child_write_ready(zio_t *zio)
3002 {
3003 int p = zio->io_prop.zp_copies;
3004 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3005 ddt_entry_t *dde = zio->io_private;
3006 ddt_phys_t *ddp = &dde->dde_phys[p];
3007 zio_t *pio;
3008
3009 if (zio->io_error)
3010 return;
3011
3012 ddt_enter(ddt);
3013
3014 ASSERT(dde->dde_lead_zio[p] == zio);
3015
3016 ddt_phys_fill(ddp, zio->io_bp);
3017
3018 zio_link_t *zl = NULL;
3019 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3020 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3021
3022 ddt_exit(ddt);
3023 }
3024
3025 static void
3026 zio_ddt_child_write_done(zio_t *zio)
3027 {
3028 int p = zio->io_prop.zp_copies;
3029 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3030 ddt_entry_t *dde = zio->io_private;
3031 ddt_phys_t *ddp = &dde->dde_phys[p];
3032
3033 ddt_enter(ddt);
3034
3035 ASSERT(ddp->ddp_refcnt == 0);
3036 ASSERT(dde->dde_lead_zio[p] == zio);
3037 dde->dde_lead_zio[p] = NULL;
3038
3039 if (zio->io_error == 0) {
3040 zio_link_t *zl = NULL;
3041 while (zio_walk_parents(zio, &zl) != NULL)
3042 ddt_phys_addref(ddp);
3043 } else {
3044 ddt_phys_clear(ddp);
3045 }
3046
3047 ddt_exit(ddt);
3048 }
3049
3050 static void
3051 zio_ddt_ditto_write_done(zio_t *zio)
3052 {
3053 int p = DDT_PHYS_DITTO;
3054 ASSERTV(zio_prop_t *zp = &zio->io_prop);
3055 blkptr_t *bp = zio->io_bp;
3056 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3057 ddt_entry_t *dde = zio->io_private;
3058 ddt_phys_t *ddp = &dde->dde_phys[p];
3059 ddt_key_t *ddk = &dde->dde_key;
3060
3061 ddt_enter(ddt);
3062
3063 ASSERT(ddp->ddp_refcnt == 0);
3064 ASSERT(dde->dde_lead_zio[p] == zio);
3065 dde->dde_lead_zio[p] = NULL;
3066
3067 if (zio->io_error == 0) {
3068 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
3069 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
3070 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
3071 if (ddp->ddp_phys_birth != 0)
3072 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
3073 ddt_phys_fill(ddp, bp);
3074 }
3075
3076 ddt_exit(ddt);
3077 }
3078
3079 static int
3080 zio_ddt_write(zio_t *zio)
3081 {
3082 spa_t *spa = zio->io_spa;
3083 blkptr_t *bp = zio->io_bp;
3084 uint64_t txg = zio->io_txg;
3085 zio_prop_t *zp = &zio->io_prop;
3086 int p = zp->zp_copies;
3087 int ditto_copies;
3088 zio_t *cio = NULL;
3089 zio_t *dio = NULL;
3090 ddt_t *ddt = ddt_select(spa, bp);
3091 ddt_entry_t *dde;
3092 ddt_phys_t *ddp;
3093
3094 ASSERT(BP_GET_DEDUP(bp));
3095 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3096 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3097 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3098
3099 ddt_enter(ddt);
3100 dde = ddt_lookup(ddt, bp, B_TRUE);
3101 ddp = &dde->dde_phys[p];
3102
3103 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3104 /*
3105 * If we're using a weak checksum, upgrade to a strong checksum
3106 * and try again. If we're already using a strong checksum,
3107 * we can't resolve it, so just convert to an ordinary write.
3108 * (And automatically e-mail a paper to Nature?)
3109 */
3110 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3111 ZCHECKSUM_FLAG_DEDUP)) {
3112 zp->zp_checksum = spa_dedup_checksum(spa);
3113 zio_pop_transforms(zio);
3114 zio->io_stage = ZIO_STAGE_OPEN;
3115 BP_ZERO(bp);
3116 } else {
3117 zp->zp_dedup = B_FALSE;
3118 }
3119 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3120 ddt_exit(ddt);
3121 return (ZIO_PIPELINE_CONTINUE);
3122 }
3123
3124 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
3125 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
3126
3127 if (ditto_copies > ddt_ditto_copies_present(dde) &&
3128 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
3129 zio_prop_t czp = *zp;
3130
3131 czp.zp_copies = ditto_copies;
3132
3133 /*
3134 * If we arrived here with an override bp, we won't have run
3135 * the transform stack, so we won't have the data we need to
3136 * generate a child i/o. So, toss the override bp and restart.
3137 * This is safe, because using the override bp is just an
3138 * optimization; and it's rare, so the cost doesn't matter.
3139 */
3140 if (zio->io_bp_override) {
3141 zio_pop_transforms(zio);
3142 zio->io_stage = ZIO_STAGE_OPEN;
3143 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3144 zio->io_bp_override = NULL;
3145 BP_ZERO(bp);
3146 ddt_exit(ddt);
3147 return (ZIO_PIPELINE_CONTINUE);
3148 }
3149
3150 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3151 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
3152 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
3153 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3154
3155 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
3156 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
3157 }
3158
3159 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3160 if (ddp->ddp_phys_birth != 0)
3161 ddt_bp_fill(ddp, bp, txg);
3162 if (dde->dde_lead_zio[p] != NULL)
3163 zio_add_child(zio, dde->dde_lead_zio[p]);
3164 else
3165 ddt_phys_addref(ddp);
3166 } else if (zio->io_bp_override) {
3167 ASSERT(bp->blk_birth == txg);
3168 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3169 ddt_phys_fill(ddp, bp);
3170 ddt_phys_addref(ddp);
3171 } else {
3172 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3173 zio->io_orig_size, zio->io_orig_size, zp,
3174 zio_ddt_child_write_ready, NULL, NULL,
3175 zio_ddt_child_write_done, dde, zio->io_priority,
3176 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3177
3178 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3179 dde->dde_lead_zio[p] = cio;
3180 }
3181
3182 ddt_exit(ddt);
3183
3184 if (cio)
3185 zio_nowait(cio);
3186 if (dio)
3187 zio_nowait(dio);
3188
3189 return (ZIO_PIPELINE_CONTINUE);
3190 }
3191
3192 ddt_entry_t *freedde; /* for debugging */
3193
3194 static int
3195 zio_ddt_free(zio_t *zio)
3196 {
3197 spa_t *spa = zio->io_spa;
3198 blkptr_t *bp = zio->io_bp;
3199 ddt_t *ddt = ddt_select(spa, bp);
3200 ddt_entry_t *dde;
3201 ddt_phys_t *ddp;
3202
3203 ASSERT(BP_GET_DEDUP(bp));
3204 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3205
3206 ddt_enter(ddt);
3207 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3208 if (dde) {
3209 ddp = ddt_phys_select(dde, bp);
3210 if (ddp)
3211 ddt_phys_decref(ddp);
3212 }
3213 ddt_exit(ddt);
3214
3215 return (ZIO_PIPELINE_CONTINUE);
3216 }
3217
3218 /*
3219 * ==========================================================================
3220 * Allocate and free blocks
3221 * ==========================================================================
3222 */
3223
3224 static zio_t *
3225 zio_io_to_allocate(spa_t *spa)
3226 {
3227 zio_t *zio;
3228
3229 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
3230
3231 zio = avl_first(&spa->spa_alloc_tree);
3232 if (zio == NULL)
3233 return (NULL);
3234
3235 ASSERT(IO_IS_ALLOCATING(zio));
3236
3237 /*
3238 * Try to place a reservation for this zio. If we're unable to
3239 * reserve then we throttle.
3240 */
3241 if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
3242 zio->io_prop.zp_copies, zio, 0)) {
3243 return (NULL);
3244 }
3245
3246 avl_remove(&spa->spa_alloc_tree, zio);
3247 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3248
3249 return (zio);
3250 }
3251
3252 static int
3253 zio_dva_throttle(zio_t *zio)
3254 {
3255 spa_t *spa = zio->io_spa;
3256 zio_t *nio;
3257
3258 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3259 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
3260 zio->io_child_type == ZIO_CHILD_GANG ||
3261 zio->io_flags & ZIO_FLAG_NODATA) {
3262 return (ZIO_PIPELINE_CONTINUE);
3263 }
3264
3265 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3266
3267 ASSERT3U(zio->io_queued_timestamp, >, 0);
3268 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3269
3270 mutex_enter(&spa->spa_alloc_lock);
3271
3272 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3273 avl_add(&spa->spa_alloc_tree, zio);
3274
3275 nio = zio_io_to_allocate(zio->io_spa);
3276 mutex_exit(&spa->spa_alloc_lock);
3277
3278 if (nio == zio)
3279 return (ZIO_PIPELINE_CONTINUE);
3280
3281 if (nio != NULL) {
3282 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3283 /*
3284 * We are passing control to a new zio so make sure that
3285 * it is processed by a different thread. We do this to
3286 * avoid stack overflows that can occur when parents are
3287 * throttled and children are making progress. We allow
3288 * it to go to the head of the taskq since it's already
3289 * been waiting.
3290 */
3291 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
3292 }
3293 return (ZIO_PIPELINE_STOP);
3294 }
3295
3296 void
3297 zio_allocate_dispatch(spa_t *spa)
3298 {
3299 zio_t *zio;
3300
3301 mutex_enter(&spa->spa_alloc_lock);
3302 zio = zio_io_to_allocate(spa);
3303 mutex_exit(&spa->spa_alloc_lock);
3304 if (zio == NULL)
3305 return;
3306
3307 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3308 ASSERT0(zio->io_error);
3309 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3310 }
3311
3312 static int
3313 zio_dva_allocate(zio_t *zio)
3314 {
3315 spa_t *spa = zio->io_spa;
3316 metaslab_class_t *mc = spa_normal_class(spa);
3317 blkptr_t *bp = zio->io_bp;
3318 int error;
3319 int flags = 0;
3320
3321 if (zio->io_gang_leader == NULL) {
3322 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3323 zio->io_gang_leader = zio;
3324 }
3325
3326 ASSERT(BP_IS_HOLE(bp));
3327 ASSERT0(BP_GET_NDVAS(bp));
3328 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3329 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3330 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3331
3332 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3333 if (zio->io_flags & ZIO_FLAG_NODATA)
3334 flags |= METASLAB_DONT_THROTTLE;
3335 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3336 flags |= METASLAB_GANG_CHILD;
3337 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3338 flags |= METASLAB_ASYNC_ALLOC;
3339
3340 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3341 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3342 &zio->io_alloc_list, zio);
3343
3344 if (error != 0) {
3345 zfs_dbgmsg("%s: metaslab allocation failure: zio %p, "
3346 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3347 error);
3348 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3349 return (zio_write_gang_block(zio));
3350 zio->io_error = error;
3351 }
3352
3353 return (ZIO_PIPELINE_CONTINUE);
3354 }
3355
3356 static int
3357 zio_dva_free(zio_t *zio)
3358 {
3359 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3360
3361 return (ZIO_PIPELINE_CONTINUE);
3362 }
3363
3364 static int
3365 zio_dva_claim(zio_t *zio)
3366 {
3367 int error;
3368
3369 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3370 if (error)
3371 zio->io_error = error;
3372
3373 return (ZIO_PIPELINE_CONTINUE);
3374 }
3375
3376 /*
3377 * Undo an allocation. This is used by zio_done() when an I/O fails
3378 * and we want to give back the block we just allocated.
3379 * This handles both normal blocks and gang blocks.
3380 */
3381 static void
3382 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3383 {
3384 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3385 ASSERT(zio->io_bp_override == NULL);
3386
3387 if (!BP_IS_HOLE(bp))
3388 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3389
3390 if (gn != NULL) {
3391 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3392 zio_dva_unallocate(zio, gn->gn_child[g],
3393 &gn->gn_gbh->zg_blkptr[g]);
3394 }
3395 }
3396 }
3397
3398 /*
3399 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3400 */
3401 int
3402 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3403 uint64_t size, boolean_t *slog)
3404 {
3405 int error = 1;
3406 zio_alloc_list_t io_alloc_list;
3407
3408 ASSERT(txg > spa_syncing_txg(spa));
3409
3410 metaslab_trace_init(&io_alloc_list);
3411 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3412 txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL);
3413 if (error == 0) {
3414 *slog = TRUE;
3415 } else {
3416 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3417 new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
3418 &io_alloc_list, NULL);
3419 if (error == 0)
3420 *slog = FALSE;
3421 }
3422 metaslab_trace_fini(&io_alloc_list);
3423
3424 if (error == 0) {
3425 BP_SET_LSIZE(new_bp, size);
3426 BP_SET_PSIZE(new_bp, size);
3427 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3428 BP_SET_CHECKSUM(new_bp,
3429 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3430 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3431 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3432 BP_SET_LEVEL(new_bp, 0);
3433 BP_SET_DEDUP(new_bp, 0);
3434 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3435
3436 /*
3437 * encrypted blocks will require an IV and salt. We generate
3438 * these now since we will not be rewriting the bp at
3439 * rewrite time.
3440 */
3441 if (os->os_encrypted) {
3442 uint8_t iv[ZIO_DATA_IV_LEN];
3443 uint8_t salt[ZIO_DATA_SALT_LEN];
3444
3445 BP_SET_CRYPT(new_bp, B_TRUE);
3446 VERIFY0(spa_crypt_get_salt(spa,
3447 dmu_objset_id(os), salt));
3448 VERIFY0(zio_crypt_generate_iv(iv));
3449
3450 zio_crypt_encode_params_bp(new_bp, salt, iv);
3451 }
3452 } else {
3453 zfs_dbgmsg("%s: zil block allocation failure: "
3454 "size %llu, error %d", spa_name(spa), size, error);
3455 }
3456
3457 return (error);
3458 }
3459
3460 /*
3461 * Free an intent log block.
3462 */
3463 void
3464 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
3465 {
3466 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
3467 ASSERT(!BP_IS_GANG(bp));
3468
3469 zio_free(spa, txg, bp);
3470 }
3471
3472 /*
3473 * ==========================================================================
3474 * Read and write to physical devices
3475 * ==========================================================================
3476 */
3477
3478
3479 /*
3480 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3481 * stops after this stage and will resume upon I/O completion.
3482 * However, there are instances where the vdev layer may need to
3483 * continue the pipeline when an I/O was not issued. Since the I/O
3484 * that was sent to the vdev layer might be different than the one
3485 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3486 * force the underlying vdev layers to call either zio_execute() or
3487 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3488 */
3489 static int
3490 zio_vdev_io_start(zio_t *zio)
3491 {
3492 vdev_t *vd = zio->io_vd;
3493 uint64_t align;
3494 spa_t *spa = zio->io_spa;
3495
3496 zio->io_delay = 0;
3497
3498 ASSERT(zio->io_error == 0);
3499 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3500
3501 if (vd == NULL) {
3502 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3503 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3504
3505 /*
3506 * The mirror_ops handle multiple DVAs in a single BP.
3507 */
3508 vdev_mirror_ops.vdev_op_io_start(zio);
3509 return (ZIO_PIPELINE_STOP);
3510 }
3511
3512 ASSERT3P(zio->io_logical, !=, zio);
3513 if (zio->io_type == ZIO_TYPE_WRITE) {
3514 ASSERT(spa->spa_trust_config);
3515
3516 /*
3517 * Note: the code can handle other kinds of writes,
3518 * but we don't expect them.
3519 */
3520 if (zio->io_vd->vdev_removing) {
3521 ASSERT(zio->io_flags &
3522 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3523 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3524 }
3525 }
3526
3527 align = 1ULL << vd->vdev_top->vdev_ashift;
3528
3529 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3530 P2PHASE(zio->io_size, align) != 0) {
3531 /* Transform logical writes to be a full physical block size. */
3532 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3533 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3534 ASSERT(vd == vd->vdev_top);
3535 if (zio->io_type == ZIO_TYPE_WRITE) {
3536 abd_copy(abuf, zio->io_abd, zio->io_size);
3537 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3538 }
3539 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3540 }
3541
3542 /*
3543 * If this is not a physical io, make sure that it is properly aligned
3544 * before proceeding.
3545 */
3546 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3547 ASSERT0(P2PHASE(zio->io_offset, align));
3548 ASSERT0(P2PHASE(zio->io_size, align));
3549 } else {
3550 /*
3551 * For physical writes, we allow 512b aligned writes and assume
3552 * the device will perform a read-modify-write as necessary.
3553 */
3554 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3555 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3556 }
3557
3558 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3559
3560 /*
3561 * If this is a repair I/O, and there's no self-healing involved --
3562 * that is, we're just resilvering what we expect to resilver --
3563 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3564 * This prevents spurious resilvering.
3565 *
3566 * There are a few ways that we can end up creating these spurious
3567 * resilver i/os:
3568 *
3569 * 1. A resilver i/o will be issued if any DVA in the BP has a
3570 * dirty DTL. The mirror code will issue resilver writes to
3571 * each DVA, including the one(s) that are not on vdevs with dirty
3572 * DTLs.
3573 *
3574 * 2. With nested replication, which happens when we have a
3575 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3576 * For example, given mirror(replacing(A+B), C), it's likely that
3577 * only A is out of date (it's the new device). In this case, we'll
3578 * read from C, then use the data to resilver A+B -- but we don't
3579 * actually want to resilver B, just A. The top-level mirror has no
3580 * way to know this, so instead we just discard unnecessary repairs
3581 * as we work our way down the vdev tree.
3582 *
3583 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3584 * The same logic applies to any form of nested replication: ditto
3585 * + mirror, RAID-Z + replacing, etc.
3586 *
3587 * However, indirect vdevs point off to other vdevs which may have
3588 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3589 * will be properly bypassed instead.
3590 */
3591 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3592 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3593 zio->io_txg != 0 && /* not a delegated i/o */
3594 vd->vdev_ops != &vdev_indirect_ops &&
3595 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3596 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3597 zio_vdev_io_bypass(zio);
3598 return (ZIO_PIPELINE_CONTINUE);
3599 }
3600
3601 if (vd->vdev_ops->vdev_op_leaf &&
3602 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3603
3604 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3605 return (ZIO_PIPELINE_CONTINUE);
3606
3607 if ((zio = vdev_queue_io(zio)) == NULL)
3608 return (ZIO_PIPELINE_STOP);
3609
3610 if (!vdev_accessible(vd, zio)) {
3611 zio->io_error = SET_ERROR(ENXIO);
3612 zio_interrupt(zio);
3613 return (ZIO_PIPELINE_STOP);
3614 }
3615 zio->io_delay = gethrtime();
3616 }
3617
3618 vd->vdev_ops->vdev_op_io_start(zio);
3619 return (ZIO_PIPELINE_STOP);
3620 }
3621
3622 static int
3623 zio_vdev_io_done(zio_t *zio)
3624 {
3625 vdev_t *vd = zio->io_vd;
3626 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3627 boolean_t unexpected_error = B_FALSE;
3628
3629 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3630 return (ZIO_PIPELINE_STOP);
3631 }
3632
3633 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3634
3635 if (zio->io_delay)
3636 zio->io_delay = gethrtime() - zio->io_delay;
3637
3638 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3639
3640 vdev_queue_io_done(zio);
3641
3642 if (zio->io_type == ZIO_TYPE_WRITE)
3643 vdev_cache_write(zio);
3644
3645 if (zio_injection_enabled && zio->io_error == 0)
3646 zio->io_error = zio_handle_device_injections(vd, zio,
3647 EIO, EILSEQ);
3648
3649 if (zio_injection_enabled && zio->io_error == 0)
3650 zio->io_error = zio_handle_label_injection(zio, EIO);
3651
3652 if (zio->io_error) {
3653 if (!vdev_accessible(vd, zio)) {
3654 zio->io_error = SET_ERROR(ENXIO);
3655 } else {
3656 unexpected_error = B_TRUE;
3657 }
3658 }
3659 }
3660
3661 ops->vdev_op_io_done(zio);
3662
3663 if (unexpected_error)
3664 VERIFY(vdev_probe(vd, zio) == NULL);
3665
3666 return (ZIO_PIPELINE_CONTINUE);
3667 }
3668
3669 /*
3670 * This function is used to change the priority of an existing zio that is
3671 * currently in-flight. This is used by the arc to upgrade priority in the
3672 * event that a demand read is made for a block that is currently queued
3673 * as a scrub or async read IO. Otherwise, the high priority read request
3674 * would end up having to wait for the lower priority IO.
3675 */
3676 void
3677 zio_change_priority(zio_t *pio, zio_priority_t priority)
3678 {
3679 zio_t *cio, *cio_next;
3680 zio_link_t *zl = NULL;
3681
3682 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3683
3684 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3685 vdev_queue_change_io_priority(pio, priority);
3686 } else {
3687 pio->io_priority = priority;
3688 }
3689
3690 mutex_enter(&pio->io_lock);
3691 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3692 cio_next = zio_walk_children(pio, &zl);
3693 zio_change_priority(cio, priority);
3694 }
3695 mutex_exit(&pio->io_lock);
3696 }
3697
3698 /*
3699 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3700 * disk, and use that to finish the checksum ereport later.
3701 */
3702 static void
3703 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3704 const abd_t *good_buf)
3705 {
3706 /* no processing needed */
3707 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3708 }
3709
3710 /*ARGSUSED*/
3711 void
3712 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3713 {
3714 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3715
3716 abd_copy(abd, zio->io_abd, zio->io_size);
3717
3718 zcr->zcr_cbinfo = zio->io_size;
3719 zcr->zcr_cbdata = abd;
3720 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3721 zcr->zcr_free = zio_abd_free;
3722 }
3723
3724 static int
3725 zio_vdev_io_assess(zio_t *zio)
3726 {
3727 vdev_t *vd = zio->io_vd;
3728
3729 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3730 return (ZIO_PIPELINE_STOP);
3731 }
3732
3733 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3734 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3735
3736 if (zio->io_vsd != NULL) {
3737 zio->io_vsd_ops->vsd_free(zio);
3738 zio->io_vsd = NULL;
3739 }
3740
3741 if (zio_injection_enabled && zio->io_error == 0)
3742 zio->io_error = zio_handle_fault_injection(zio, EIO);
3743
3744 /*
3745 * If the I/O failed, determine whether we should attempt to retry it.
3746 *
3747 * On retry, we cut in line in the issue queue, since we don't want
3748 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3749 */
3750 if (zio->io_error && vd == NULL &&
3751 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3752 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3753 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3754 zio->io_error = 0;
3755 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3756 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3757 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3758 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3759 zio_requeue_io_start_cut_in_line);
3760 return (ZIO_PIPELINE_STOP);
3761 }
3762
3763 /*
3764 * If we got an error on a leaf device, convert it to ENXIO
3765 * if the device is not accessible at all.
3766 */
3767 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3768 !vdev_accessible(vd, zio))
3769 zio->io_error = SET_ERROR(ENXIO);
3770
3771 /*
3772 * If we can't write to an interior vdev (mirror or RAID-Z),
3773 * set vdev_cant_write so that we stop trying to allocate from it.
3774 */
3775 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3776 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3777 vd->vdev_cant_write = B_TRUE;
3778 }
3779
3780 /*
3781 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3782 * attempts will ever succeed. In this case we set a persistent bit so
3783 * that we don't bother with it in the future.
3784 */
3785 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3786 zio->io_type == ZIO_TYPE_IOCTL &&
3787 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3788 vd->vdev_nowritecache = B_TRUE;
3789
3790 if (zio->io_error)
3791 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3792
3793 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3794 zio->io_physdone != NULL) {
3795 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3796 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3797 zio->io_physdone(zio->io_logical);
3798 }
3799
3800 return (ZIO_PIPELINE_CONTINUE);
3801 }
3802
3803 void
3804 zio_vdev_io_reissue(zio_t *zio)
3805 {
3806 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3807 ASSERT(zio->io_error == 0);
3808
3809 zio->io_stage >>= 1;
3810 }
3811
3812 void
3813 zio_vdev_io_redone(zio_t *zio)
3814 {
3815 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3816
3817 zio->io_stage >>= 1;
3818 }
3819
3820 void
3821 zio_vdev_io_bypass(zio_t *zio)
3822 {
3823 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3824 ASSERT(zio->io_error == 0);
3825
3826 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3827 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3828 }
3829
3830 /*
3831 * ==========================================================================
3832 * Encrypt and store encryption parameters
3833 * ==========================================================================
3834 */
3835
3836
3837 /*
3838 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3839 * managing the storage of encryption parameters and passing them to the
3840 * lower-level encryption functions.
3841 */
3842 static int
3843 zio_encrypt(zio_t *zio)
3844 {
3845 zio_prop_t *zp = &zio->io_prop;
3846 spa_t *spa = zio->io_spa;
3847 blkptr_t *bp = zio->io_bp;
3848 uint64_t psize = BP_GET_PSIZE(bp);
3849 uint64_t dsobj = zio->io_bookmark.zb_objset;
3850 dmu_object_type_t ot = BP_GET_TYPE(bp);
3851 void *enc_buf = NULL;
3852 abd_t *eabd = NULL;
3853 uint8_t salt[ZIO_DATA_SALT_LEN];
3854 uint8_t iv[ZIO_DATA_IV_LEN];
3855 uint8_t mac[ZIO_DATA_MAC_LEN];
3856 boolean_t no_crypt = B_FALSE;
3857
3858 /* the root zio already encrypted the data */
3859 if (zio->io_child_type == ZIO_CHILD_GANG)
3860 return (ZIO_PIPELINE_CONTINUE);
3861
3862 /* only ZIL blocks are re-encrypted on rewrite */
3863 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3864 return (ZIO_PIPELINE_CONTINUE);
3865
3866 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3867 BP_SET_CRYPT(bp, B_FALSE);
3868 return (ZIO_PIPELINE_CONTINUE);
3869 }
3870
3871 /* if we are doing raw encryption set the provided encryption params */
3872 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3873 ASSERT0(BP_GET_LEVEL(bp));
3874 BP_SET_CRYPT(bp, B_TRUE);
3875 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3876 if (ot != DMU_OT_OBJSET)
3877 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3878
3879 /* dnode blocks must be written out in the provided byteorder */
3880 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
3881 ot == DMU_OT_DNODE) {
3882 void *bswap_buf = zio_buf_alloc(psize);
3883 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
3884
3885 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3886 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
3887 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
3888 psize);
3889
3890 abd_take_ownership_of_buf(babd, B_TRUE);
3891 zio_push_transform(zio, babd, psize, psize, NULL);
3892 }
3893
3894 if (DMU_OT_IS_ENCRYPTED(ot))
3895 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3896 return (ZIO_PIPELINE_CONTINUE);
3897 }
3898
3899 /* indirect blocks only maintain a cksum of the lower level MACs */
3900 if (BP_GET_LEVEL(bp) > 0) {
3901 BP_SET_CRYPT(bp, B_TRUE);
3902 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3903 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3904 mac));
3905 zio_crypt_encode_mac_bp(bp, mac);
3906 return (ZIO_PIPELINE_CONTINUE);
3907 }
3908
3909 /*
3910 * Objset blocks are a special case since they have 2 256-bit MACs
3911 * embedded within them.
3912 */
3913 if (ot == DMU_OT_OBJSET) {
3914 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3915 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3916 BP_SET_CRYPT(bp, B_TRUE);
3917 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
3918 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
3919 return (ZIO_PIPELINE_CONTINUE);
3920 }
3921
3922 /* unencrypted object types are only authenticated with a MAC */
3923 if (!DMU_OT_IS_ENCRYPTED(ot)) {
3924 BP_SET_CRYPT(bp, B_TRUE);
3925 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
3926 zio->io_abd, psize, mac));
3927 zio_crypt_encode_mac_bp(bp, mac);
3928 return (ZIO_PIPELINE_CONTINUE);
3929 }
3930
3931 /*
3932 * Later passes of sync-to-convergence may decide to rewrite data
3933 * in place to avoid more disk reallocations. This presents a problem
3934 * for encryption because this consitutes rewriting the new data with
3935 * the same encryption key and IV. However, this only applies to blocks
3936 * in the MOS (particularly the spacemaps) and we do not encrypt the
3937 * MOS. We assert that the zio is allocating or an intent log write
3938 * to enforce this.
3939 */
3940 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3941 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3942 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3943 ASSERT3U(psize, !=, 0);
3944
3945 enc_buf = zio_buf_alloc(psize);
3946 eabd = abd_get_from_buf(enc_buf, psize);
3947 abd_take_ownership_of_buf(eabd, B_TRUE);
3948
3949 /*
3950 * For an explanation of what encryption parameters are stored
3951 * where, see the block comment in zio_crypt.c.
3952 */
3953 if (ot == DMU_OT_INTENT_LOG) {
3954 zio_crypt_decode_params_bp(bp, salt, iv);
3955 } else {
3956 BP_SET_CRYPT(bp, B_TRUE);
3957 }
3958
3959 /* Perform the encryption. This should not fail */
3960 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
3961 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
3962 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
3963
3964 /* encode encryption metadata into the bp */
3965 if (ot == DMU_OT_INTENT_LOG) {
3966 /*
3967 * ZIL blocks store the MAC in the embedded checksum, so the
3968 * transform must always be applied.
3969 */
3970 zio_crypt_encode_mac_zil(enc_buf, mac);
3971 zio_push_transform(zio, eabd, psize, psize, NULL);
3972 } else {
3973 BP_SET_CRYPT(bp, B_TRUE);
3974 zio_crypt_encode_params_bp(bp, salt, iv);
3975 zio_crypt_encode_mac_bp(bp, mac);
3976
3977 if (no_crypt) {
3978 ASSERT3U(ot, ==, DMU_OT_DNODE);
3979 abd_free(eabd);
3980 } else {
3981 zio_push_transform(zio, eabd, psize, psize, NULL);
3982 }
3983 }
3984
3985 return (ZIO_PIPELINE_CONTINUE);
3986 }
3987
3988 /*
3989 * ==========================================================================
3990 * Generate and verify checksums
3991 * ==========================================================================
3992 */
3993 static int
3994 zio_checksum_generate(zio_t *zio)
3995 {
3996 blkptr_t *bp = zio->io_bp;
3997 enum zio_checksum checksum;
3998
3999 if (bp == NULL) {
4000 /*
4001 * This is zio_write_phys().
4002 * We're either generating a label checksum, or none at all.
4003 */
4004 checksum = zio->io_prop.zp_checksum;
4005
4006 if (checksum == ZIO_CHECKSUM_OFF)
4007 return (ZIO_PIPELINE_CONTINUE);
4008
4009 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4010 } else {
4011 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4012 ASSERT(!IO_IS_ALLOCATING(zio));
4013 checksum = ZIO_CHECKSUM_GANG_HEADER;
4014 } else {
4015 checksum = BP_GET_CHECKSUM(bp);
4016 }
4017 }
4018
4019 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4020
4021 return (ZIO_PIPELINE_CONTINUE);
4022 }
4023
4024 static int
4025 zio_checksum_verify(zio_t *zio)
4026 {
4027 zio_bad_cksum_t info;
4028 blkptr_t *bp = zio->io_bp;
4029 int error;
4030
4031 ASSERT(zio->io_vd != NULL);
4032
4033 if (bp == NULL) {
4034 /*
4035 * This is zio_read_phys().
4036 * We're either verifying a label checksum, or nothing at all.
4037 */
4038 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4039 return (ZIO_PIPELINE_CONTINUE);
4040
4041 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
4042 }
4043
4044 if ((error = zio_checksum_error(zio, &info)) != 0) {
4045 zio->io_error = error;
4046 if (error == ECKSUM &&
4047 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4048 zfs_ereport_start_checksum(zio->io_spa,
4049 zio->io_vd, &zio->io_bookmark, zio,
4050 zio->io_offset, zio->io_size, NULL, &info);
4051 }
4052 }
4053
4054 return (ZIO_PIPELINE_CONTINUE);
4055 }
4056
4057 /*
4058 * Called by RAID-Z to ensure we don't compute the checksum twice.
4059 */
4060 void
4061 zio_checksum_verified(zio_t *zio)
4062 {
4063 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4064 }
4065
4066 /*
4067 * ==========================================================================
4068 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4069 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4070 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
4071 * indicate errors that are specific to one I/O, and most likely permanent.
4072 * Any other error is presumed to be worse because we weren't expecting it.
4073 * ==========================================================================
4074 */
4075 int
4076 zio_worst_error(int e1, int e2)
4077 {
4078 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4079 int r1, r2;
4080
4081 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4082 if (e1 == zio_error_rank[r1])
4083 break;
4084
4085 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4086 if (e2 == zio_error_rank[r2])
4087 break;
4088
4089 return (r1 > r2 ? e1 : e2);
4090 }
4091
4092 /*
4093 * ==========================================================================
4094 * I/O completion
4095 * ==========================================================================
4096 */
4097 static int
4098 zio_ready(zio_t *zio)
4099 {
4100 blkptr_t *bp = zio->io_bp;
4101 zio_t *pio, *pio_next;
4102 zio_link_t *zl = NULL;
4103
4104 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4105 ZIO_WAIT_READY)) {
4106 return (ZIO_PIPELINE_STOP);
4107 }
4108
4109 if (zio->io_ready) {
4110 ASSERT(IO_IS_ALLOCATING(zio));
4111 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4112 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4113 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4114
4115 zio->io_ready(zio);
4116 }
4117
4118 if (bp != NULL && bp != &zio->io_bp_copy)
4119 zio->io_bp_copy = *bp;
4120
4121 if (zio->io_error != 0) {
4122 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4123
4124 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4125 ASSERT(IO_IS_ALLOCATING(zio));
4126 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4127 /*
4128 * We were unable to allocate anything, unreserve and
4129 * issue the next I/O to allocate.
4130 */
4131 metaslab_class_throttle_unreserve(
4132 spa_normal_class(zio->io_spa),
4133 zio->io_prop.zp_copies, zio);
4134 zio_allocate_dispatch(zio->io_spa);
4135 }
4136 }
4137
4138 mutex_enter(&zio->io_lock);
4139 zio->io_state[ZIO_WAIT_READY] = 1;
4140 pio = zio_walk_parents(zio, &zl);
4141 mutex_exit(&zio->io_lock);
4142
4143 /*
4144 * As we notify zio's parents, new parents could be added.
4145 * New parents go to the head of zio's io_parent_list, however,
4146 * so we will (correctly) not notify them. The remainder of zio's
4147 * io_parent_list, from 'pio_next' onward, cannot change because
4148 * all parents must wait for us to be done before they can be done.
4149 */
4150 for (; pio != NULL; pio = pio_next) {
4151 pio_next = zio_walk_parents(zio, &zl);
4152 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
4153 }
4154
4155 if (zio->io_flags & ZIO_FLAG_NODATA) {
4156 if (BP_IS_GANG(bp)) {
4157 zio->io_flags &= ~ZIO_FLAG_NODATA;
4158 } else {
4159 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4160 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4161 }
4162 }
4163
4164 if (zio_injection_enabled &&
4165 zio->io_spa->spa_syncing_txg == zio->io_txg)
4166 zio_handle_ignored_writes(zio);
4167
4168 return (ZIO_PIPELINE_CONTINUE);
4169 }
4170
4171 /*
4172 * Update the allocation throttle accounting.
4173 */
4174 static void
4175 zio_dva_throttle_done(zio_t *zio)
4176 {
4177 ASSERTV(zio_t *lio = zio->io_logical);
4178 zio_t *pio = zio_unique_parent(zio);
4179 vdev_t *vd = zio->io_vd;
4180 int flags = METASLAB_ASYNC_ALLOC;
4181
4182 ASSERT3P(zio->io_bp, !=, NULL);
4183 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4184 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4185 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4186 ASSERT(vd != NULL);
4187 ASSERT3P(vd, ==, vd->vdev_top);
4188 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4189 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4190 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4191 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4192 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4193
4194 /*
4195 * Parents of gang children can have two flavors -- ones that
4196 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4197 * and ones that allocated the constituent blocks. The allocation
4198 * throttle needs to know the allocating parent zio so we must find
4199 * it here.
4200 */
4201 if (pio->io_child_type == ZIO_CHILD_GANG) {
4202 /*
4203 * If our parent is a rewrite gang child then our grandparent
4204 * would have been the one that performed the allocation.
4205 */
4206 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4207 pio = zio_unique_parent(pio);
4208 flags |= METASLAB_GANG_CHILD;
4209 }
4210
4211 ASSERT(IO_IS_ALLOCATING(pio));
4212 ASSERT3P(zio, !=, zio->io_logical);
4213 ASSERT(zio->io_logical != NULL);
4214 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4215 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4216
4217 mutex_enter(&pio->io_lock);
4218 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
4219 mutex_exit(&pio->io_lock);
4220
4221 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
4222 1, pio);
4223
4224 /*
4225 * Call into the pipeline to see if there is more work that
4226 * needs to be done. If there is work to be done it will be
4227 * dispatched to another taskq thread.
4228 */
4229 zio_allocate_dispatch(zio->io_spa);
4230 }
4231
4232 static int
4233 zio_done(zio_t *zio)
4234 {
4235 /*
4236 * Always attempt to keep stack usage minimal here since
4237 * we can be called recurisvely up to 19 levels deep.
4238 */
4239 const uint64_t psize = zio->io_size;
4240 zio_t *pio, *pio_next;
4241 zio_link_t *zl = NULL;
4242
4243 /*
4244 * If our children haven't all completed,
4245 * wait for them and then repeat this pipeline stage.
4246 */
4247 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4248 return (ZIO_PIPELINE_STOP);
4249 }
4250
4251 /*
4252 * If the allocation throttle is enabled, then update the accounting.
4253 * We only track child I/Os that are part of an allocating async
4254 * write. We must do this since the allocation is performed
4255 * by the logical I/O but the actual write is done by child I/Os.
4256 */
4257 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4258 zio->io_child_type == ZIO_CHILD_VDEV) {
4259 ASSERT(spa_normal_class(
4260 zio->io_spa)->mc_alloc_throttle_enabled);
4261 zio_dva_throttle_done(zio);
4262 }
4263
4264 /*
4265 * If the allocation throttle is enabled, verify that
4266 * we have decremented the refcounts for every I/O that was throttled.
4267 */
4268 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4269 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4270 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4271 ASSERT(zio->io_bp != NULL);
4272 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio);
4273 VERIFY(refcount_not_held(
4274 &(spa_normal_class(zio->io_spa)->mc_alloc_slots), zio));
4275 }
4276
4277
4278 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4279 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4280 ASSERT(zio->io_children[c][w] == 0);
4281
4282 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4283 ASSERT(zio->io_bp->blk_pad[0] == 0);
4284 ASSERT(zio->io_bp->blk_pad[1] == 0);
4285 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4286 sizeof (blkptr_t)) == 0 ||
4287 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4288 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4289 zio->io_bp_override == NULL &&
4290 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4291 ASSERT3U(zio->io_prop.zp_copies, <=,
4292 BP_GET_NDVAS(zio->io_bp));
4293 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4294 (BP_COUNT_GANG(zio->io_bp) ==
4295 BP_GET_NDVAS(zio->io_bp)));
4296 }
4297 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4298 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4299 }
4300
4301 /*
4302 * If there were child vdev/gang/ddt errors, they apply to us now.
4303 */
4304 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4305 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4306 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4307
4308 /*
4309 * If the I/O on the transformed data was successful, generate any
4310 * checksum reports now while we still have the transformed data.
4311 */
4312 if (zio->io_error == 0) {
4313 while (zio->io_cksum_report != NULL) {
4314 zio_cksum_report_t *zcr = zio->io_cksum_report;
4315 uint64_t align = zcr->zcr_align;
4316 uint64_t asize = P2ROUNDUP(psize, align);
4317 abd_t *adata = zio->io_abd;
4318
4319 if (asize != psize) {
4320 adata = abd_alloc(asize, B_TRUE);
4321 abd_copy(adata, zio->io_abd, psize);
4322 abd_zero_off(adata, psize, asize - psize);
4323 }
4324
4325 zio->io_cksum_report = zcr->zcr_next;
4326 zcr->zcr_next = NULL;
4327 zcr->zcr_finish(zcr, adata);
4328 zfs_ereport_free_checksum(zcr);
4329
4330 if (asize != psize)
4331 abd_free(adata);
4332 }
4333 }
4334
4335 zio_pop_transforms(zio); /* note: may set zio->io_error */
4336
4337 vdev_stat_update(zio, psize);
4338
4339 /*
4340 * If this I/O is attached to a particular vdev is slow, exceeding
4341 * 30 seconds to complete, post an error described the I/O delay.
4342 * We ignore these errors if the device is currently unavailable.
4343 */
4344 if (zio->io_delay >= MSEC2NSEC(zio_delay_max)) {
4345 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
4346 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
4347 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4348 }
4349
4350 if (zio->io_error) {
4351 /*
4352 * If this I/O is attached to a particular vdev,
4353 * generate an error message describing the I/O failure
4354 * at the block level. We ignore these errors if the
4355 * device is currently unavailable.
4356 */
4357 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4358 !vdev_is_dead(zio->io_vd))
4359 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
4360 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4361
4362 if ((zio->io_error == EIO || !(zio->io_flags &
4363 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4364 zio == zio->io_logical) {
4365 /*
4366 * For logical I/O requests, tell the SPA to log the
4367 * error and generate a logical data ereport.
4368 */
4369 spa_log_error(zio->io_spa, &zio->io_bookmark);
4370 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa,
4371 NULL, &zio->io_bookmark, zio, 0, 0);
4372 }
4373 }
4374
4375 if (zio->io_error && zio == zio->io_logical) {
4376 /*
4377 * Determine whether zio should be reexecuted. This will
4378 * propagate all the way to the root via zio_notify_parent().
4379 */
4380 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4381 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4382
4383 if (IO_IS_ALLOCATING(zio) &&
4384 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4385 if (zio->io_error != ENOSPC)
4386 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4387 else
4388 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4389 }
4390
4391 if ((zio->io_type == ZIO_TYPE_READ ||
4392 zio->io_type == ZIO_TYPE_FREE) &&
4393 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4394 zio->io_error == ENXIO &&
4395 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4396 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4397 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4398
4399 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4400 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4401
4402 /*
4403 * Here is a possibly good place to attempt to do
4404 * either combinatorial reconstruction or error correction
4405 * based on checksums. It also might be a good place
4406 * to send out preliminary ereports before we suspend
4407 * processing.
4408 */
4409 }
4410
4411 /*
4412 * If there were logical child errors, they apply to us now.
4413 * We defer this until now to avoid conflating logical child
4414 * errors with errors that happened to the zio itself when
4415 * updating vdev stats and reporting FMA events above.
4416 */
4417 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4418
4419 if ((zio->io_error || zio->io_reexecute) &&
4420 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4421 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4422 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4423
4424 zio_gang_tree_free(&zio->io_gang_tree);
4425
4426 /*
4427 * Godfather I/Os should never suspend.
4428 */
4429 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4430 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4431 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4432
4433 if (zio->io_reexecute) {
4434 /*
4435 * This is a logical I/O that wants to reexecute.
4436 *
4437 * Reexecute is top-down. When an i/o fails, if it's not
4438 * the root, it simply notifies its parent and sticks around.
4439 * The parent, seeing that it still has children in zio_done(),
4440 * does the same. This percolates all the way up to the root.
4441 * The root i/o will reexecute or suspend the entire tree.
4442 *
4443 * This approach ensures that zio_reexecute() honors
4444 * all the original i/o dependency relationships, e.g.
4445 * parents not executing until children are ready.
4446 */
4447 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4448
4449 zio->io_gang_leader = NULL;
4450
4451 mutex_enter(&zio->io_lock);
4452 zio->io_state[ZIO_WAIT_DONE] = 1;
4453 mutex_exit(&zio->io_lock);
4454
4455 /*
4456 * "The Godfather" I/O monitors its children but is
4457 * not a true parent to them. It will track them through
4458 * the pipeline but severs its ties whenever they get into
4459 * trouble (e.g. suspended). This allows "The Godfather"
4460 * I/O to return status without blocking.
4461 */
4462 zl = NULL;
4463 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4464 pio = pio_next) {
4465 zio_link_t *remove_zl = zl;
4466 pio_next = zio_walk_parents(zio, &zl);
4467
4468 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4469 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4470 zio_remove_child(pio, zio, remove_zl);
4471 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4472 }
4473 }
4474
4475 if ((pio = zio_unique_parent(zio)) != NULL) {
4476 /*
4477 * We're not a root i/o, so there's nothing to do
4478 * but notify our parent. Don't propagate errors
4479 * upward since we haven't permanently failed yet.
4480 */
4481 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4482 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4483 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4484 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4485 /*
4486 * We'd fail again if we reexecuted now, so suspend
4487 * until conditions improve (e.g. device comes online).
4488 */
4489 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4490 } else {
4491 /*
4492 * Reexecution is potentially a huge amount of work.
4493 * Hand it off to the otherwise-unused claim taskq.
4494 */
4495 ASSERT(taskq_empty_ent(&zio->io_tqent));
4496 spa_taskq_dispatch_ent(zio->io_spa,
4497 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4498 (task_func_t *)zio_reexecute, zio, 0,
4499 &zio->io_tqent);
4500 }
4501 return (ZIO_PIPELINE_STOP);
4502 }
4503
4504 ASSERT(zio->io_child_count == 0);
4505 ASSERT(zio->io_reexecute == 0);
4506 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4507
4508 /*
4509 * Report any checksum errors, since the I/O is complete.
4510 */
4511 while (zio->io_cksum_report != NULL) {
4512 zio_cksum_report_t *zcr = zio->io_cksum_report;
4513 zio->io_cksum_report = zcr->zcr_next;
4514 zcr->zcr_next = NULL;
4515 zcr->zcr_finish(zcr, NULL);
4516 zfs_ereport_free_checksum(zcr);
4517 }
4518
4519 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4520 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4521 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4522 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4523 }
4524
4525 /*
4526 * It is the responsibility of the done callback to ensure that this
4527 * particular zio is no longer discoverable for adoption, and as
4528 * such, cannot acquire any new parents.
4529 */
4530 if (zio->io_done)
4531 zio->io_done(zio);
4532
4533 mutex_enter(&zio->io_lock);
4534 zio->io_state[ZIO_WAIT_DONE] = 1;
4535 mutex_exit(&zio->io_lock);
4536
4537 zl = NULL;
4538 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4539 zio_link_t *remove_zl = zl;
4540 pio_next = zio_walk_parents(zio, &zl);
4541 zio_remove_child(pio, zio, remove_zl);
4542 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4543 }
4544
4545 if (zio->io_waiter != NULL) {
4546 mutex_enter(&zio->io_lock);
4547 zio->io_executor = NULL;
4548 cv_broadcast(&zio->io_cv);
4549 mutex_exit(&zio->io_lock);
4550 } else {
4551 zio_destroy(zio);
4552 }
4553
4554 return (ZIO_PIPELINE_STOP);
4555 }
4556
4557 /*
4558 * ==========================================================================
4559 * I/O pipeline definition
4560 * ==========================================================================
4561 */
4562 static zio_pipe_stage_t *zio_pipeline[] = {
4563 NULL,
4564 zio_read_bp_init,
4565 zio_write_bp_init,
4566 zio_free_bp_init,
4567 zio_issue_async,
4568 zio_write_compress,
4569 zio_encrypt,
4570 zio_checksum_generate,
4571 zio_nop_write,
4572 zio_ddt_read_start,
4573 zio_ddt_read_done,
4574 zio_ddt_write,
4575 zio_ddt_free,
4576 zio_gang_assemble,
4577 zio_gang_issue,
4578 zio_dva_throttle,
4579 zio_dva_allocate,
4580 zio_dva_free,
4581 zio_dva_claim,
4582 zio_ready,
4583 zio_vdev_io_start,
4584 zio_vdev_io_done,
4585 zio_vdev_io_assess,
4586 zio_checksum_verify,
4587 zio_done
4588 };
4589
4590
4591
4592
4593 /*
4594 * Compare two zbookmark_phys_t's to see which we would reach first in a
4595 * pre-order traversal of the object tree.
4596 *
4597 * This is simple in every case aside from the meta-dnode object. For all other
4598 * objects, we traverse them in order (object 1 before object 2, and so on).
4599 * However, all of these objects are traversed while traversing object 0, since
4600 * the data it points to is the list of objects. Thus, we need to convert to a
4601 * canonical representation so we can compare meta-dnode bookmarks to
4602 * non-meta-dnode bookmarks.
4603 *
4604 * We do this by calculating "equivalents" for each field of the zbookmark.
4605 * zbookmarks outside of the meta-dnode use their own object and level, and
4606 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4607 * blocks this bookmark refers to) by multiplying their blkid by their span
4608 * (the number of L0 blocks contained within one block at their level).
4609 * zbookmarks inside the meta-dnode calculate their object equivalent
4610 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4611 * level + 1<<31 (any value larger than a level could ever be) for their level.
4612 * This causes them to always compare before a bookmark in their object
4613 * equivalent, compare appropriately to bookmarks in other objects, and to
4614 * compare appropriately to other bookmarks in the meta-dnode.
4615 */
4616 int
4617 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4618 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4619 {
4620 /*
4621 * These variables represent the "equivalent" values for the zbookmark,
4622 * after converting zbookmarks inside the meta dnode to their
4623 * normal-object equivalents.
4624 */
4625 uint64_t zb1obj, zb2obj;
4626 uint64_t zb1L0, zb2L0;
4627 uint64_t zb1level, zb2level;
4628
4629 if (zb1->zb_object == zb2->zb_object &&
4630 zb1->zb_level == zb2->zb_level &&
4631 zb1->zb_blkid == zb2->zb_blkid)
4632 return (0);
4633
4634 /*
4635 * BP_SPANB calculates the span in blocks.
4636 */
4637 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4638 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4639
4640 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4641 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4642 zb1L0 = 0;
4643 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4644 } else {
4645 zb1obj = zb1->zb_object;
4646 zb1level = zb1->zb_level;
4647 }
4648
4649 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4650 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4651 zb2L0 = 0;
4652 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4653 } else {
4654 zb2obj = zb2->zb_object;
4655 zb2level = zb2->zb_level;
4656 }
4657
4658 /* Now that we have a canonical representation, do the comparison. */
4659 if (zb1obj != zb2obj)
4660 return (zb1obj < zb2obj ? -1 : 1);
4661 else if (zb1L0 != zb2L0)
4662 return (zb1L0 < zb2L0 ? -1 : 1);
4663 else if (zb1level != zb2level)
4664 return (zb1level > zb2level ? -1 : 1);
4665 /*
4666 * This can (theoretically) happen if the bookmarks have the same object
4667 * and level, but different blkids, if the block sizes are not the same.
4668 * There is presently no way to change the indirect block sizes
4669 */
4670 return (0);
4671 }
4672
4673 /*
4674 * This function checks the following: given that last_block is the place that
4675 * our traversal stopped last time, does that guarantee that we've visited
4676 * every node under subtree_root? Therefore, we can't just use the raw output
4677 * of zbookmark_compare. We have to pass in a modified version of
4678 * subtree_root; by incrementing the block id, and then checking whether
4679 * last_block is before or equal to that, we can tell whether or not having
4680 * visited last_block implies that all of subtree_root's children have been
4681 * visited.
4682 */
4683 boolean_t
4684 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4685 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4686 {
4687 zbookmark_phys_t mod_zb = *subtree_root;
4688 mod_zb.zb_blkid++;
4689 ASSERT(last_block->zb_level == 0);
4690
4691 /* The objset_phys_t isn't before anything. */
4692 if (dnp == NULL)
4693 return (B_FALSE);
4694
4695 /*
4696 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4697 * data block size in sectors, because that variable is only used if
4698 * the bookmark refers to a block in the meta-dnode. Since we don't
4699 * know without examining it what object it refers to, and there's no
4700 * harm in passing in this value in other cases, we always pass it in.
4701 *
4702 * We pass in 0 for the indirect block size shift because zb2 must be
4703 * level 0. The indirect block size is only used to calculate the span
4704 * of the bookmark, but since the bookmark must be level 0, the span is
4705 * always 1, so the math works out.
4706 *
4707 * If you make changes to how the zbookmark_compare code works, be sure
4708 * to make sure that this code still works afterwards.
4709 */
4710 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4711 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4712 last_block) <= 0);
4713 }
4714
4715 #if defined(_KERNEL)
4716 EXPORT_SYMBOL(zio_type_name);
4717 EXPORT_SYMBOL(zio_buf_alloc);
4718 EXPORT_SYMBOL(zio_data_buf_alloc);
4719 EXPORT_SYMBOL(zio_buf_free);
4720 EXPORT_SYMBOL(zio_data_buf_free);
4721
4722 module_param(zio_delay_max, int, 0644);
4723 MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
4724
4725 module_param(zio_requeue_io_start_cut_in_line, int, 0644);
4726 MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
4727
4728 module_param(zfs_sync_pass_deferred_free, int, 0644);
4729 MODULE_PARM_DESC(zfs_sync_pass_deferred_free,
4730 "Defer frees starting in this pass");
4731
4732 module_param(zfs_sync_pass_dont_compress, int, 0644);
4733 MODULE_PARM_DESC(zfs_sync_pass_dont_compress,
4734 "Don't compress starting in this pass");
4735
4736 module_param(zfs_sync_pass_rewrite, int, 0644);
4737 MODULE_PARM_DESC(zfs_sync_pass_rewrite,
4738 "Rewrite new bps starting in this pass");
4739
4740 module_param(zio_dva_throttle_enabled, int, 0644);
4741 MODULE_PARM_DESC(zio_dva_throttle_enabled,
4742 "Throttle block allocations in the ZIO pipeline");
4743 #endif