]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
cstyle: Resolve C style issues
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39
40 /*
41 * ==========================================================================
42 * I/O type descriptions
43 * ==========================================================================
44 */
45 const char *zio_type_name[ZIO_TYPES] = {
46 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
47 };
48
49 /*
50 * ==========================================================================
51 * I/O kmem caches
52 * ==========================================================================
53 */
54 kmem_cache_t *zio_cache;
55 kmem_cache_t *zio_link_cache;
56 kmem_cache_t *zio_vdev_cache;
57 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
58 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
59 int zio_bulk_flags = 0;
60 int zio_delay_max = ZIO_DELAY_MAX;
61
62 extern int zfs_mg_alloc_failures;
63
64 /*
65 * The following actions directly effect the spa's sync-to-convergence logic.
66 * The values below define the sync pass when we start performing the action.
67 * Care should be taken when changing these values as they directly impact
68 * spa_sync() performance. Tuning these values may introduce subtle performance
69 * pathologies and should only be done in the context of performance analysis.
70 * These tunables will eventually be removed and replaced with #defines once
71 * enough analysis has been done to determine optimal values.
72 *
73 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
74 * regular blocks are not deferred.
75 */
76 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
77 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
78 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
79
80 /*
81 * An allocating zio is one that either currently has the DVA allocate
82 * stage set or will have it later in its lifetime.
83 */
84 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
85
86 int zio_requeue_io_start_cut_in_line = 1;
87
88 #ifdef ZFS_DEBUG
89 int zio_buf_debug_limit = 16384;
90 #else
91 int zio_buf_debug_limit = 0;
92 #endif
93
94 static inline void __zio_execute(zio_t *zio);
95
96 static int
97 zio_cons(void *arg, void *unused, int kmflag)
98 {
99 zio_t *zio = arg;
100
101 bzero(zio, sizeof (zio_t));
102
103 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
104 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
105
106 list_create(&zio->io_parent_list, sizeof (zio_link_t),
107 offsetof(zio_link_t, zl_parent_node));
108 list_create(&zio->io_child_list, sizeof (zio_link_t),
109 offsetof(zio_link_t, zl_child_node));
110
111 return (0);
112 }
113
114 static void
115 zio_dest(void *arg, void *unused)
116 {
117 zio_t *zio = arg;
118
119 mutex_destroy(&zio->io_lock);
120 cv_destroy(&zio->io_cv);
121 list_destroy(&zio->io_parent_list);
122 list_destroy(&zio->io_child_list);
123 }
124
125 void
126 zio_init(void)
127 {
128 size_t c;
129 vmem_t *data_alloc_arena = NULL;
130
131 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0,
132 zio_cons, zio_dest, NULL, NULL, NULL, KMC_KMEM);
133 zio_link_cache = kmem_cache_create("zio_link_cache",
134 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, KMC_KMEM);
135 zio_vdev_cache = kmem_cache_create("zio_vdev_cache", sizeof (vdev_io_t),
136 PAGESIZE, NULL, NULL, NULL, NULL, NULL, KMC_VMEM);
137
138 /*
139 * For small buffers, we want a cache for each multiple of
140 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache
141 * for each quarter-power of 2. For large buffers, we want
142 * a cache for each multiple of PAGESIZE.
143 */
144 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
145 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
146 size_t p2 = size;
147 size_t align = 0;
148
149 while (p2 & (p2 - 1))
150 p2 &= p2 - 1;
151
152 #ifndef _KERNEL
153 /*
154 * If we are using watchpoints, put each buffer on its own page,
155 * to eliminate the performance overhead of trapping to the
156 * kernel when modifying a non-watched buffer that shares the
157 * page with a watched buffer.
158 */
159 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
160 continue;
161 #endif
162 if (size <= 4 * SPA_MINBLOCKSIZE) {
163 align = SPA_MINBLOCKSIZE;
164 } else if (IS_P2ALIGNED(size, PAGESIZE)) {
165 align = PAGESIZE;
166 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
167 align = p2 >> 2;
168 }
169
170 if (align != 0) {
171 char name[36];
172 int flags = zio_bulk_flags;
173
174 /*
175 * The smallest buffers (512b) are heavily used and
176 * experience a lot of churn. The slabs allocated
177 * for them are also relatively small (32K). Thus
178 * in over to avoid expensive calls to vmalloc() we
179 * make an exception to the usual slab allocation
180 * policy and force these buffers to be kmem backed.
181 */
182 if (size == (1 << SPA_MINBLOCKSHIFT))
183 flags |= KMC_KMEM;
184
185 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
186 zio_buf_cache[c] = kmem_cache_create(name, size,
187 align, NULL, NULL, NULL, NULL, NULL, flags);
188
189 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
190 zio_data_buf_cache[c] = kmem_cache_create(name, size,
191 align, NULL, NULL, NULL, NULL,
192 data_alloc_arena, flags);
193 }
194 }
195
196 while (--c != 0) {
197 ASSERT(zio_buf_cache[c] != NULL);
198 if (zio_buf_cache[c - 1] == NULL)
199 zio_buf_cache[c - 1] = zio_buf_cache[c];
200
201 ASSERT(zio_data_buf_cache[c] != NULL);
202 if (zio_data_buf_cache[c - 1] == NULL)
203 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
204 }
205
206 /*
207 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
208 * to fail 3 times per txg or 8 failures, whichever is greater.
209 */
210 if (zfs_mg_alloc_failures == 0)
211 zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
212
213 zio_inject_init();
214
215 lz4_init();
216 }
217
218 void
219 zio_fini(void)
220 {
221 size_t c;
222 kmem_cache_t *last_cache = NULL;
223 kmem_cache_t *last_data_cache = NULL;
224
225 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
226 if (zio_buf_cache[c] != last_cache) {
227 last_cache = zio_buf_cache[c];
228 kmem_cache_destroy(zio_buf_cache[c]);
229 }
230 zio_buf_cache[c] = NULL;
231
232 if (zio_data_buf_cache[c] != last_data_cache) {
233 last_data_cache = zio_data_buf_cache[c];
234 kmem_cache_destroy(zio_data_buf_cache[c]);
235 }
236 zio_data_buf_cache[c] = NULL;
237 }
238
239 kmem_cache_destroy(zio_vdev_cache);
240 kmem_cache_destroy(zio_link_cache);
241 kmem_cache_destroy(zio_cache);
242
243 zio_inject_fini();
244
245 lz4_fini();
246 }
247
248 /*
249 * ==========================================================================
250 * Allocate and free I/O buffers
251 * ==========================================================================
252 */
253
254 /*
255 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
256 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
257 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
258 * excess / transient data in-core during a crashdump.
259 */
260 void *
261 zio_buf_alloc(size_t size)
262 {
263 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
264
265 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
266
267 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE | KM_NODEBUG));
268 }
269
270 /*
271 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
272 * crashdump if the kernel panics. This exists so that we will limit the amount
273 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
274 * of kernel heap dumped to disk when the kernel panics)
275 */
276 void *
277 zio_data_buf_alloc(size_t size)
278 {
279 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
280
281 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
282
283 return (kmem_cache_alloc(zio_data_buf_cache[c],
284 KM_PUSHPAGE | KM_NODEBUG));
285 }
286
287 void
288 zio_buf_free(void *buf, size_t size)
289 {
290 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
291
292 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
293
294 kmem_cache_free(zio_buf_cache[c], buf);
295 }
296
297 void
298 zio_data_buf_free(void *buf, size_t size)
299 {
300 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
301
302 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
303
304 kmem_cache_free(zio_data_buf_cache[c], buf);
305 }
306
307 /*
308 * Dedicated I/O buffers to ensure that memory fragmentation never prevents
309 * or significantly delays the issuing of a zio. These buffers are used
310 * to aggregate I/O and could be used for raidz stripes.
311 */
312 void *
313 zio_vdev_alloc(void)
314 {
315 return (kmem_cache_alloc(zio_vdev_cache, KM_PUSHPAGE));
316 }
317
318 void
319 zio_vdev_free(void *buf)
320 {
321 kmem_cache_free(zio_vdev_cache, buf);
322
323 }
324
325 /*
326 * ==========================================================================
327 * Push and pop I/O transform buffers
328 * ==========================================================================
329 */
330 static void
331 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
332 zio_transform_func_t *transform)
333 {
334 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_PUSHPAGE);
335
336 zt->zt_orig_data = zio->io_data;
337 zt->zt_orig_size = zio->io_size;
338 zt->zt_bufsize = bufsize;
339 zt->zt_transform = transform;
340
341 zt->zt_next = zio->io_transform_stack;
342 zio->io_transform_stack = zt;
343
344 zio->io_data = data;
345 zio->io_size = size;
346 }
347
348 static void
349 zio_pop_transforms(zio_t *zio)
350 {
351 zio_transform_t *zt;
352
353 while ((zt = zio->io_transform_stack) != NULL) {
354 if (zt->zt_transform != NULL)
355 zt->zt_transform(zio,
356 zt->zt_orig_data, zt->zt_orig_size);
357
358 if (zt->zt_bufsize != 0)
359 zio_buf_free(zio->io_data, zt->zt_bufsize);
360
361 zio->io_data = zt->zt_orig_data;
362 zio->io_size = zt->zt_orig_size;
363 zio->io_transform_stack = zt->zt_next;
364
365 kmem_free(zt, sizeof (zio_transform_t));
366 }
367 }
368
369 /*
370 * ==========================================================================
371 * I/O transform callbacks for subblocks and decompression
372 * ==========================================================================
373 */
374 static void
375 zio_subblock(zio_t *zio, void *data, uint64_t size)
376 {
377 ASSERT(zio->io_size > size);
378
379 if (zio->io_type == ZIO_TYPE_READ)
380 bcopy(zio->io_data, data, size);
381 }
382
383 static void
384 zio_decompress(zio_t *zio, void *data, uint64_t size)
385 {
386 if (zio->io_error == 0 &&
387 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
388 zio->io_data, data, zio->io_size, size) != 0)
389 zio->io_error = SET_ERROR(EIO);
390 }
391
392 /*
393 * ==========================================================================
394 * I/O parent/child relationships and pipeline interlocks
395 * ==========================================================================
396 */
397 /*
398 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
399 * continue calling these functions until they return NULL.
400 * Otherwise, the next caller will pick up the list walk in
401 * some indeterminate state. (Otherwise every caller would
402 * have to pass in a cookie to keep the state represented by
403 * io_walk_link, which gets annoying.)
404 */
405 zio_t *
406 zio_walk_parents(zio_t *cio)
407 {
408 zio_link_t *zl = cio->io_walk_link;
409 list_t *pl = &cio->io_parent_list;
410
411 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
412 cio->io_walk_link = zl;
413
414 if (zl == NULL)
415 return (NULL);
416
417 ASSERT(zl->zl_child == cio);
418 return (zl->zl_parent);
419 }
420
421 zio_t *
422 zio_walk_children(zio_t *pio)
423 {
424 zio_link_t *zl = pio->io_walk_link;
425 list_t *cl = &pio->io_child_list;
426
427 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
428 pio->io_walk_link = zl;
429
430 if (zl == NULL)
431 return (NULL);
432
433 ASSERT(zl->zl_parent == pio);
434 return (zl->zl_child);
435 }
436
437 zio_t *
438 zio_unique_parent(zio_t *cio)
439 {
440 zio_t *pio = zio_walk_parents(cio);
441
442 VERIFY(zio_walk_parents(cio) == NULL);
443 return (pio);
444 }
445
446 void
447 zio_add_child(zio_t *pio, zio_t *cio)
448 {
449 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_PUSHPAGE);
450 int w;
451
452 /*
453 * Logical I/Os can have logical, gang, or vdev children.
454 * Gang I/Os can have gang or vdev children.
455 * Vdev I/Os can only have vdev children.
456 * The following ASSERT captures all of these constraints.
457 */
458 ASSERT(cio->io_child_type <= pio->io_child_type);
459
460 zl->zl_parent = pio;
461 zl->zl_child = cio;
462
463 mutex_enter(&cio->io_lock);
464 mutex_enter(&pio->io_lock);
465
466 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
467
468 for (w = 0; w < ZIO_WAIT_TYPES; w++)
469 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
470
471 list_insert_head(&pio->io_child_list, zl);
472 list_insert_head(&cio->io_parent_list, zl);
473
474 pio->io_child_count++;
475 cio->io_parent_count++;
476
477 mutex_exit(&pio->io_lock);
478 mutex_exit(&cio->io_lock);
479 }
480
481 static void
482 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
483 {
484 ASSERT(zl->zl_parent == pio);
485 ASSERT(zl->zl_child == cio);
486
487 mutex_enter(&cio->io_lock);
488 mutex_enter(&pio->io_lock);
489
490 list_remove(&pio->io_child_list, zl);
491 list_remove(&cio->io_parent_list, zl);
492
493 pio->io_child_count--;
494 cio->io_parent_count--;
495
496 mutex_exit(&pio->io_lock);
497 mutex_exit(&cio->io_lock);
498
499 kmem_cache_free(zio_link_cache, zl);
500 }
501
502 static boolean_t
503 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
504 {
505 uint64_t *countp = &zio->io_children[child][wait];
506 boolean_t waiting = B_FALSE;
507
508 mutex_enter(&zio->io_lock);
509 ASSERT(zio->io_stall == NULL);
510 if (*countp != 0) {
511 zio->io_stage >>= 1;
512 zio->io_stall = countp;
513 waiting = B_TRUE;
514 }
515 mutex_exit(&zio->io_lock);
516
517 return (waiting);
518 }
519
520 __attribute__((always_inline))
521 static inline void
522 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
523 {
524 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
525 int *errorp = &pio->io_child_error[zio->io_child_type];
526
527 mutex_enter(&pio->io_lock);
528 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
529 *errorp = zio_worst_error(*errorp, zio->io_error);
530 pio->io_reexecute |= zio->io_reexecute;
531 ASSERT3U(*countp, >, 0);
532
533 (*countp)--;
534
535 if (*countp == 0 && pio->io_stall == countp) {
536 pio->io_stall = NULL;
537 mutex_exit(&pio->io_lock);
538 __zio_execute(pio);
539 } else {
540 mutex_exit(&pio->io_lock);
541 }
542 }
543
544 static void
545 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
546 {
547 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
548 zio->io_error = zio->io_child_error[c];
549 }
550
551 /*
552 * ==========================================================================
553 * Create the various types of I/O (read, write, free, etc)
554 * ==========================================================================
555 */
556 static zio_t *
557 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
558 void *data, uint64_t size, zio_done_func_t *done, void *private,
559 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
560 vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
561 enum zio_stage stage, enum zio_stage pipeline)
562 {
563 zio_t *zio;
564
565 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
566 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
567 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
568
569 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
570 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
571 ASSERT(vd || stage == ZIO_STAGE_OPEN);
572
573 zio = kmem_cache_alloc(zio_cache, KM_PUSHPAGE);
574
575 if (vd != NULL)
576 zio->io_child_type = ZIO_CHILD_VDEV;
577 else if (flags & ZIO_FLAG_GANG_CHILD)
578 zio->io_child_type = ZIO_CHILD_GANG;
579 else if (flags & ZIO_FLAG_DDT_CHILD)
580 zio->io_child_type = ZIO_CHILD_DDT;
581 else
582 zio->io_child_type = ZIO_CHILD_LOGICAL;
583
584 if (bp != NULL) {
585 zio->io_logical = NULL;
586 zio->io_bp = (blkptr_t *)bp;
587 zio->io_bp_copy = *bp;
588 zio->io_bp_orig = *bp;
589 if (type != ZIO_TYPE_WRITE ||
590 zio->io_child_type == ZIO_CHILD_DDT)
591 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
592 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
593 zio->io_logical = zio;
594 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
595 pipeline |= ZIO_GANG_STAGES;
596 } else {
597 zio->io_logical = NULL;
598 zio->io_bp = NULL;
599 bzero(&zio->io_bp_copy, sizeof (blkptr_t));
600 bzero(&zio->io_bp_orig, sizeof (blkptr_t));
601 }
602
603 zio->io_spa = spa;
604 zio->io_txg = txg;
605 zio->io_ready = NULL;
606 zio->io_physdone = NULL;
607 zio->io_done = done;
608 zio->io_private = private;
609 zio->io_prev_space_delta = 0;
610 zio->io_type = type;
611 zio->io_priority = priority;
612 zio->io_vd = vd;
613 zio->io_vsd = NULL;
614 zio->io_vsd_ops = NULL;
615 zio->io_offset = offset;
616 zio->io_timestamp = 0;
617 zio->io_delta = 0;
618 zio->io_delay = 0;
619 zio->io_orig_data = zio->io_data = data;
620 zio->io_orig_size = zio->io_size = size;
621 zio->io_orig_flags = zio->io_flags = flags;
622 zio->io_orig_stage = zio->io_stage = stage;
623 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
624 bzero(&zio->io_prop, sizeof (zio_prop_t));
625 zio->io_cmd = 0;
626 zio->io_reexecute = 0;
627 zio->io_bp_override = NULL;
628 zio->io_walk_link = NULL;
629 zio->io_transform_stack = NULL;
630 zio->io_error = 0;
631 zio->io_child_count = 0;
632 zio->io_phys_children = 0;
633 zio->io_parent_count = 0;
634 zio->io_stall = NULL;
635 zio->io_gang_leader = NULL;
636 zio->io_gang_tree = NULL;
637 zio->io_executor = NULL;
638 zio->io_waiter = NULL;
639 zio->io_cksum_report = NULL;
640 zio->io_ena = 0;
641 bzero(zio->io_child_error, sizeof (int) * ZIO_CHILD_TYPES);
642 bzero(zio->io_children,
643 sizeof (uint64_t) * ZIO_CHILD_TYPES * ZIO_WAIT_TYPES);
644 bzero(&zio->io_bookmark, sizeof (zbookmark_t));
645
646 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
647 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
648
649 if (zb != NULL)
650 zio->io_bookmark = *zb;
651
652 if (pio != NULL) {
653 if (zio->io_logical == NULL)
654 zio->io_logical = pio->io_logical;
655 if (zio->io_child_type == ZIO_CHILD_GANG)
656 zio->io_gang_leader = pio->io_gang_leader;
657 zio_add_child(pio, zio);
658 }
659
660 taskq_init_ent(&zio->io_tqent);
661
662 return (zio);
663 }
664
665 static void
666 zio_destroy(zio_t *zio)
667 {
668 kmem_cache_free(zio_cache, zio);
669 }
670
671 zio_t *
672 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
673 void *private, enum zio_flag flags)
674 {
675 zio_t *zio;
676
677 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
678 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
679 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
680
681 return (zio);
682 }
683
684 zio_t *
685 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
686 {
687 return (zio_null(NULL, spa, NULL, done, private, flags));
688 }
689
690 zio_t *
691 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
692 void *data, uint64_t size, zio_done_func_t *done, void *private,
693 zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb)
694 {
695 zio_t *zio;
696
697 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
698 data, size, done, private,
699 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
700 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
701 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
702
703 return (zio);
704 }
705
706 zio_t *
707 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
708 void *data, uint64_t size, const zio_prop_t *zp,
709 zio_done_func_t *ready, zio_done_func_t *physdone, zio_done_func_t *done,
710 void *private,
711 zio_priority_t priority, enum zio_flag flags, const zbookmark_t *zb)
712 {
713 zio_t *zio;
714
715 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
716 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
717 zp->zp_compress >= ZIO_COMPRESS_OFF &&
718 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
719 DMU_OT_IS_VALID(zp->zp_type) &&
720 zp->zp_level < 32 &&
721 zp->zp_copies > 0 &&
722 zp->zp_copies <= spa_max_replication(spa));
723
724 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
725 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
726 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
727 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
728
729 zio->io_ready = ready;
730 zio->io_physdone = physdone;
731 zio->io_prop = *zp;
732
733 return (zio);
734 }
735
736 zio_t *
737 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
738 uint64_t size, zio_done_func_t *done, void *private,
739 zio_priority_t priority, enum zio_flag flags, zbookmark_t *zb)
740 {
741 zio_t *zio;
742
743 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
744 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
745 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
746
747 return (zio);
748 }
749
750 void
751 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
752 {
753 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
754 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
755 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
756 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
757
758 /*
759 * We must reset the io_prop to match the values that existed
760 * when the bp was first written by dmu_sync() keeping in mind
761 * that nopwrite and dedup are mutually exclusive.
762 */
763 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
764 zio->io_prop.zp_nopwrite = nopwrite;
765 zio->io_prop.zp_copies = copies;
766 zio->io_bp_override = bp;
767 }
768
769 void
770 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
771 {
772 metaslab_check_free(spa, bp);
773
774 /*
775 * Frees that are for the currently-syncing txg, are not going to be
776 * deferred, and which will not need to do a read (i.e. not GANG or
777 * DEDUP), can be processed immediately. Otherwise, put them on the
778 * in-memory list for later processing.
779 */
780 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
781 txg != spa->spa_syncing_txg ||
782 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
783 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
784 } else {
785 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
786 }
787 }
788
789 zio_t *
790 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
791 enum zio_flag flags)
792 {
793 zio_t *zio;
794 enum zio_stage stage = ZIO_FREE_PIPELINE;
795
796 dprintf_bp(bp, "freeing in txg %llu, pass %u",
797 (longlong_t)txg, spa->spa_sync_pass);
798
799 ASSERT(!BP_IS_HOLE(bp));
800 ASSERT(spa_syncing_txg(spa) == txg);
801 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
802
803 metaslab_check_free(spa, bp);
804 arc_freed(spa, bp);
805
806 /*
807 * GANG and DEDUP blocks can induce a read (for the gang block header,
808 * or the DDT), so issue them asynchronously so that this thread is
809 * not tied up.
810 */
811 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
812 stage |= ZIO_STAGE_ISSUE_ASYNC;
813
814 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
815 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW, flags,
816 NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
817
818 return (zio);
819 }
820
821 zio_t *
822 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
823 zio_done_func_t *done, void *private, enum zio_flag flags)
824 {
825 zio_t *zio;
826
827 /*
828 * A claim is an allocation of a specific block. Claims are needed
829 * to support immediate writes in the intent log. The issue is that
830 * immediate writes contain committed data, but in a txg that was
831 * *not* committed. Upon opening the pool after an unclean shutdown,
832 * the intent log claims all blocks that contain immediate write data
833 * so that the SPA knows they're in use.
834 *
835 * All claims *must* be resolved in the first txg -- before the SPA
836 * starts allocating blocks -- so that nothing is allocated twice.
837 * If txg == 0 we just verify that the block is claimable.
838 */
839 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
840 ASSERT(txg == spa_first_txg(spa) || txg == 0);
841 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
842
843 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
844 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
845 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
846
847 return (zio);
848 }
849
850 zio_t *
851 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
852 zio_done_func_t *done, void *private, enum zio_flag flags)
853 {
854 zio_t *zio;
855 int c;
856
857 if (vd->vdev_children == 0) {
858 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
859 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
860 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
861
862 zio->io_cmd = cmd;
863 } else {
864 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
865
866 for (c = 0; c < vd->vdev_children; c++)
867 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
868 done, private, flags));
869 }
870
871 return (zio);
872 }
873
874 zio_t *
875 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
876 void *data, int checksum, zio_done_func_t *done, void *private,
877 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
878 {
879 zio_t *zio;
880
881 ASSERT(vd->vdev_children == 0);
882 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
883 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
884 ASSERT3U(offset + size, <=, vd->vdev_psize);
885
886 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
887 ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
888 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
889
890 zio->io_prop.zp_checksum = checksum;
891
892 return (zio);
893 }
894
895 zio_t *
896 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
897 void *data, int checksum, zio_done_func_t *done, void *private,
898 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
899 {
900 zio_t *zio;
901
902 ASSERT(vd->vdev_children == 0);
903 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
904 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
905 ASSERT3U(offset + size, <=, vd->vdev_psize);
906
907 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
908 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
909 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
910
911 zio->io_prop.zp_checksum = checksum;
912
913 if (zio_checksum_table[checksum].ci_eck) {
914 /*
915 * zec checksums are necessarily destructive -- they modify
916 * the end of the write buffer to hold the verifier/checksum.
917 * Therefore, we must make a local copy in case the data is
918 * being written to multiple places in parallel.
919 */
920 void *wbuf = zio_buf_alloc(size);
921 bcopy(data, wbuf, size);
922 zio_push_transform(zio, wbuf, size, size, NULL);
923 }
924
925 return (zio);
926 }
927
928 /*
929 * Create a child I/O to do some work for us.
930 */
931 zio_t *
932 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
933 void *data, uint64_t size, int type, zio_priority_t priority,
934 enum zio_flag flags, zio_done_func_t *done, void *private)
935 {
936 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
937 zio_t *zio;
938
939 ASSERT(vd->vdev_parent ==
940 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
941
942 if (type == ZIO_TYPE_READ && bp != NULL) {
943 /*
944 * If we have the bp, then the child should perform the
945 * checksum and the parent need not. This pushes error
946 * detection as close to the leaves as possible and
947 * eliminates redundant checksums in the interior nodes.
948 */
949 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
950 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
951 }
952
953 if (vd->vdev_children == 0)
954 offset += VDEV_LABEL_START_SIZE;
955
956 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
957
958 /*
959 * If we've decided to do a repair, the write is not speculative --
960 * even if the original read was.
961 */
962 if (flags & ZIO_FLAG_IO_REPAIR)
963 flags &= ~ZIO_FLAG_SPECULATIVE;
964
965 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
966 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
967 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
968
969 zio->io_physdone = pio->io_physdone;
970 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
971 zio->io_logical->io_phys_children++;
972
973 return (zio);
974 }
975
976 zio_t *
977 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
978 int type, zio_priority_t priority, enum zio_flag flags,
979 zio_done_func_t *done, void *private)
980 {
981 zio_t *zio;
982
983 ASSERT(vd->vdev_ops->vdev_op_leaf);
984
985 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
986 data, size, done, private, type, priority,
987 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
988 vd, offset, NULL,
989 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
990
991 return (zio);
992 }
993
994 void
995 zio_flush(zio_t *zio, vdev_t *vd)
996 {
997 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
998 NULL, NULL,
999 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1000 }
1001
1002 void
1003 zio_shrink(zio_t *zio, uint64_t size)
1004 {
1005 ASSERT(zio->io_executor == NULL);
1006 ASSERT(zio->io_orig_size == zio->io_size);
1007 ASSERT(size <= zio->io_size);
1008
1009 /*
1010 * We don't shrink for raidz because of problems with the
1011 * reconstruction when reading back less than the block size.
1012 * Note, BP_IS_RAIDZ() assumes no compression.
1013 */
1014 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1015 if (!BP_IS_RAIDZ(zio->io_bp))
1016 zio->io_orig_size = zio->io_size = size;
1017 }
1018
1019 /*
1020 * ==========================================================================
1021 * Prepare to read and write logical blocks
1022 * ==========================================================================
1023 */
1024
1025 static int
1026 zio_read_bp_init(zio_t *zio)
1027 {
1028 blkptr_t *bp = zio->io_bp;
1029
1030 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1031 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1032 !(zio->io_flags & ZIO_FLAG_RAW)) {
1033 uint64_t psize = BP_GET_PSIZE(bp);
1034 void *cbuf = zio_buf_alloc(psize);
1035
1036 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1037 }
1038
1039 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1040 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1041
1042 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1043 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1044
1045 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1046 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1047
1048 return (ZIO_PIPELINE_CONTINUE);
1049 }
1050
1051 static int
1052 zio_write_bp_init(zio_t *zio)
1053 {
1054 spa_t *spa = zio->io_spa;
1055 zio_prop_t *zp = &zio->io_prop;
1056 enum zio_compress compress = zp->zp_compress;
1057 blkptr_t *bp = zio->io_bp;
1058 uint64_t lsize = zio->io_size;
1059 uint64_t psize = lsize;
1060 int pass = 1;
1061
1062 /*
1063 * If our children haven't all reached the ready stage,
1064 * wait for them and then repeat this pipeline stage.
1065 */
1066 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1067 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1068 return (ZIO_PIPELINE_STOP);
1069
1070 if (!IO_IS_ALLOCATING(zio))
1071 return (ZIO_PIPELINE_CONTINUE);
1072
1073 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1074
1075 if (zio->io_bp_override) {
1076 ASSERT(bp->blk_birth != zio->io_txg);
1077 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1078
1079 *bp = *zio->io_bp_override;
1080 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1081
1082 /*
1083 * If we've been overridden and nopwrite is set then
1084 * set the flag accordingly to indicate that a nopwrite
1085 * has already occurred.
1086 */
1087 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1088 ASSERT(!zp->zp_dedup);
1089 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1090 return (ZIO_PIPELINE_CONTINUE);
1091 }
1092
1093 ASSERT(!zp->zp_nopwrite);
1094
1095 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1096 return (ZIO_PIPELINE_CONTINUE);
1097
1098 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1099 zp->zp_dedup_verify);
1100
1101 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1102 BP_SET_DEDUP(bp, 1);
1103 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1104 return (ZIO_PIPELINE_CONTINUE);
1105 }
1106 zio->io_bp_override = NULL;
1107 BP_ZERO(bp);
1108 }
1109
1110 if (bp->blk_birth == zio->io_txg) {
1111 /*
1112 * We're rewriting an existing block, which means we're
1113 * working on behalf of spa_sync(). For spa_sync() to
1114 * converge, it must eventually be the case that we don't
1115 * have to allocate new blocks. But compression changes
1116 * the blocksize, which forces a reallocate, and makes
1117 * convergence take longer. Therefore, after the first
1118 * few passes, stop compressing to ensure convergence.
1119 */
1120 pass = spa_sync_pass(spa);
1121
1122 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1123 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1124 ASSERT(!BP_GET_DEDUP(bp));
1125
1126 if (pass >= zfs_sync_pass_dont_compress)
1127 compress = ZIO_COMPRESS_OFF;
1128
1129 /* Make sure someone doesn't change their mind on overwrites */
1130 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1131 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1132 }
1133
1134 if (compress != ZIO_COMPRESS_OFF) {
1135 void *cbuf = zio_buf_alloc(lsize);
1136 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1137 if (psize == 0 || psize == lsize) {
1138 compress = ZIO_COMPRESS_OFF;
1139 zio_buf_free(cbuf, lsize);
1140 } else {
1141 ASSERT(psize < lsize);
1142 zio_push_transform(zio, cbuf, psize, lsize, NULL);
1143 }
1144 }
1145
1146 /*
1147 * The final pass of spa_sync() must be all rewrites, but the first
1148 * few passes offer a trade-off: allocating blocks defers convergence,
1149 * but newly allocated blocks are sequential, so they can be written
1150 * to disk faster. Therefore, we allow the first few passes of
1151 * spa_sync() to allocate new blocks, but force rewrites after that.
1152 * There should only be a handful of blocks after pass 1 in any case.
1153 */
1154 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1155 pass >= zfs_sync_pass_rewrite) {
1156 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1157 ASSERT(psize != 0);
1158 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1159 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1160 } else {
1161 BP_ZERO(bp);
1162 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1163 }
1164
1165 if (psize == 0) {
1166 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1167 } else {
1168 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1169 BP_SET_LSIZE(bp, lsize);
1170 BP_SET_PSIZE(bp, psize);
1171 BP_SET_COMPRESS(bp, compress);
1172 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1173 BP_SET_TYPE(bp, zp->zp_type);
1174 BP_SET_LEVEL(bp, zp->zp_level);
1175 BP_SET_DEDUP(bp, zp->zp_dedup);
1176 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1177 if (zp->zp_dedup) {
1178 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1179 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1180 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1181 }
1182 if (zp->zp_nopwrite) {
1183 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1184 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1185 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1186 }
1187 }
1188
1189 return (ZIO_PIPELINE_CONTINUE);
1190 }
1191
1192 static int
1193 zio_free_bp_init(zio_t *zio)
1194 {
1195 blkptr_t *bp = zio->io_bp;
1196
1197 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1198 if (BP_GET_DEDUP(bp))
1199 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1200 }
1201
1202 return (ZIO_PIPELINE_CONTINUE);
1203 }
1204
1205 /*
1206 * ==========================================================================
1207 * Execute the I/O pipeline
1208 * ==========================================================================
1209 */
1210
1211 static void
1212 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1213 {
1214 spa_t *spa = zio->io_spa;
1215 zio_type_t t = zio->io_type;
1216 int flags = (cutinline ? TQ_FRONT : 0);
1217
1218 /*
1219 * If we're a config writer or a probe, the normal issue and
1220 * interrupt threads may all be blocked waiting for the config lock.
1221 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1222 */
1223 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1224 t = ZIO_TYPE_NULL;
1225
1226 /*
1227 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1228 */
1229 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1230 t = ZIO_TYPE_NULL;
1231
1232 /*
1233 * If this is a high priority I/O, then use the high priority taskq if
1234 * available.
1235 */
1236 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1237 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1238 q++;
1239
1240 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1241
1242 /*
1243 * NB: We are assuming that the zio can only be dispatched
1244 * to a single taskq at a time. It would be a grievous error
1245 * to dispatch the zio to another taskq at the same time.
1246 */
1247 ASSERT(taskq_empty_ent(&zio->io_tqent));
1248 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1249 flags, &zio->io_tqent);
1250 }
1251
1252 static boolean_t
1253 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1254 {
1255 kthread_t *executor = zio->io_executor;
1256 spa_t *spa = zio->io_spa;
1257 zio_type_t t;
1258
1259 for (t = 0; t < ZIO_TYPES; t++) {
1260 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1261 uint_t i;
1262 for (i = 0; i < tqs->stqs_count; i++) {
1263 if (taskq_member(tqs->stqs_taskq[i], executor))
1264 return (B_TRUE);
1265 }
1266 }
1267
1268 return (B_FALSE);
1269 }
1270
1271 static int
1272 zio_issue_async(zio_t *zio)
1273 {
1274 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1275
1276 return (ZIO_PIPELINE_STOP);
1277 }
1278
1279 void
1280 zio_interrupt(zio_t *zio)
1281 {
1282 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1283 }
1284
1285 /*
1286 * Execute the I/O pipeline until one of the following occurs:
1287 * (1) the I/O completes; (2) the pipeline stalls waiting for
1288 * dependent child I/Os; (3) the I/O issues, so we're waiting
1289 * for an I/O completion interrupt; (4) the I/O is delegated by
1290 * vdev-level caching or aggregation; (5) the I/O is deferred
1291 * due to vdev-level queueing; (6) the I/O is handed off to
1292 * another thread. In all cases, the pipeline stops whenever
1293 * there's no CPU work; it never burns a thread in cv_wait_io().
1294 *
1295 * There's no locking on io_stage because there's no legitimate way
1296 * for multiple threads to be attempting to process the same I/O.
1297 */
1298 static zio_pipe_stage_t *zio_pipeline[];
1299
1300 /*
1301 * zio_execute() is a wrapper around the static function
1302 * __zio_execute() so that we can force __zio_execute() to be
1303 * inlined. This reduces stack overhead which is important
1304 * because __zio_execute() is called recursively in several zio
1305 * code paths. zio_execute() itself cannot be inlined because
1306 * it is externally visible.
1307 */
1308 void
1309 zio_execute(zio_t *zio)
1310 {
1311 __zio_execute(zio);
1312 }
1313
1314 __attribute__((always_inline))
1315 static inline void
1316 __zio_execute(zio_t *zio)
1317 {
1318 zio->io_executor = curthread;
1319
1320 while (zio->io_stage < ZIO_STAGE_DONE) {
1321 enum zio_stage pipeline = zio->io_pipeline;
1322 enum zio_stage stage = zio->io_stage;
1323 dsl_pool_t *dp;
1324 boolean_t cut;
1325 int rv;
1326
1327 ASSERT(!MUTEX_HELD(&zio->io_lock));
1328 ASSERT(ISP2(stage));
1329 ASSERT(zio->io_stall == NULL);
1330
1331 do {
1332 stage <<= 1;
1333 } while ((stage & pipeline) == 0);
1334
1335 ASSERT(stage <= ZIO_STAGE_DONE);
1336
1337 dp = spa_get_dsl(zio->io_spa);
1338 cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1339 zio_requeue_io_start_cut_in_line : B_FALSE;
1340
1341 /*
1342 * If we are in interrupt context and this pipeline stage
1343 * will grab a config lock that is held across I/O,
1344 * or may wait for an I/O that needs an interrupt thread
1345 * to complete, issue async to avoid deadlock.
1346 *
1347 * For VDEV_IO_START, we cut in line so that the io will
1348 * be sent to disk promptly.
1349 */
1350 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1351 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1352 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1353 return;
1354 }
1355
1356 #ifdef _KERNEL
1357 /*
1358 * If we executing in the context of the tx_sync_thread,
1359 * or we are performing pool initialization outside of a
1360 * zio_taskq[ZIO_TASKQ_ISSUE|ZIO_TASKQ_ISSUE_HIGH] context.
1361 * Then issue the zio asynchronously to minimize stack usage
1362 * for these deep call paths.
1363 */
1364 if ((dp && curthread == dp->dp_tx.tx_sync_thread) ||
1365 (dp && spa_is_initializing(dp->dp_spa) &&
1366 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
1367 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))) {
1368 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1369 return;
1370 }
1371 #endif
1372
1373 zio->io_stage = stage;
1374 rv = zio_pipeline[highbit(stage) - 1](zio);
1375
1376 if (rv == ZIO_PIPELINE_STOP)
1377 return;
1378
1379 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1380 }
1381 }
1382
1383
1384 /*
1385 * ==========================================================================
1386 * Initiate I/O, either sync or async
1387 * ==========================================================================
1388 */
1389 int
1390 zio_wait(zio_t *zio)
1391 {
1392 int error;
1393
1394 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1395 ASSERT(zio->io_executor == NULL);
1396
1397 zio->io_waiter = curthread;
1398
1399 __zio_execute(zio);
1400
1401 mutex_enter(&zio->io_lock);
1402 while (zio->io_executor != NULL)
1403 cv_wait_io(&zio->io_cv, &zio->io_lock);
1404 mutex_exit(&zio->io_lock);
1405
1406 error = zio->io_error;
1407 zio_destroy(zio);
1408
1409 return (error);
1410 }
1411
1412 void
1413 zio_nowait(zio_t *zio)
1414 {
1415 ASSERT(zio->io_executor == NULL);
1416
1417 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1418 zio_unique_parent(zio) == NULL) {
1419 /*
1420 * This is a logical async I/O with no parent to wait for it.
1421 * We add it to the spa_async_root_zio "Godfather" I/O which
1422 * will ensure they complete prior to unloading the pool.
1423 */
1424 spa_t *spa = zio->io_spa;
1425
1426 zio_add_child(spa->spa_async_zio_root, zio);
1427 }
1428
1429 __zio_execute(zio);
1430 }
1431
1432 /*
1433 * ==========================================================================
1434 * Reexecute or suspend/resume failed I/O
1435 * ==========================================================================
1436 */
1437
1438 static void
1439 zio_reexecute(zio_t *pio)
1440 {
1441 zio_t *cio, *cio_next;
1442 int c, w;
1443
1444 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1445 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1446 ASSERT(pio->io_gang_leader == NULL);
1447 ASSERT(pio->io_gang_tree == NULL);
1448
1449 pio->io_flags = pio->io_orig_flags;
1450 pio->io_stage = pio->io_orig_stage;
1451 pio->io_pipeline = pio->io_orig_pipeline;
1452 pio->io_reexecute = 0;
1453 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1454 pio->io_error = 0;
1455 for (w = 0; w < ZIO_WAIT_TYPES; w++)
1456 pio->io_state[w] = 0;
1457 for (c = 0; c < ZIO_CHILD_TYPES; c++)
1458 pio->io_child_error[c] = 0;
1459
1460 if (IO_IS_ALLOCATING(pio))
1461 BP_ZERO(pio->io_bp);
1462
1463 /*
1464 * As we reexecute pio's children, new children could be created.
1465 * New children go to the head of pio's io_child_list, however,
1466 * so we will (correctly) not reexecute them. The key is that
1467 * the remainder of pio's io_child_list, from 'cio_next' onward,
1468 * cannot be affected by any side effects of reexecuting 'cio'.
1469 */
1470 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1471 cio_next = zio_walk_children(pio);
1472 mutex_enter(&pio->io_lock);
1473 for (w = 0; w < ZIO_WAIT_TYPES; w++)
1474 pio->io_children[cio->io_child_type][w]++;
1475 mutex_exit(&pio->io_lock);
1476 zio_reexecute(cio);
1477 }
1478
1479 /*
1480 * Now that all children have been reexecuted, execute the parent.
1481 * We don't reexecute "The Godfather" I/O here as it's the
1482 * responsibility of the caller to wait on him.
1483 */
1484 if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1485 __zio_execute(pio);
1486 }
1487
1488 void
1489 zio_suspend(spa_t *spa, zio_t *zio)
1490 {
1491 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1492 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1493 "failure and the failure mode property for this pool "
1494 "is set to panic.", spa_name(spa));
1495
1496 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
1497 "failure and has been suspended.\n", spa_name(spa));
1498
1499 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1500
1501 mutex_enter(&spa->spa_suspend_lock);
1502
1503 if (spa->spa_suspend_zio_root == NULL)
1504 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1505 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1506 ZIO_FLAG_GODFATHER);
1507
1508 spa->spa_suspended = B_TRUE;
1509
1510 if (zio != NULL) {
1511 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1512 ASSERT(zio != spa->spa_suspend_zio_root);
1513 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1514 ASSERT(zio_unique_parent(zio) == NULL);
1515 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1516 zio_add_child(spa->spa_suspend_zio_root, zio);
1517 }
1518
1519 mutex_exit(&spa->spa_suspend_lock);
1520 }
1521
1522 int
1523 zio_resume(spa_t *spa)
1524 {
1525 zio_t *pio;
1526
1527 /*
1528 * Reexecute all previously suspended i/o.
1529 */
1530 mutex_enter(&spa->spa_suspend_lock);
1531 spa->spa_suspended = B_FALSE;
1532 cv_broadcast(&spa->spa_suspend_cv);
1533 pio = spa->spa_suspend_zio_root;
1534 spa->spa_suspend_zio_root = NULL;
1535 mutex_exit(&spa->spa_suspend_lock);
1536
1537 if (pio == NULL)
1538 return (0);
1539
1540 zio_reexecute(pio);
1541 return (zio_wait(pio));
1542 }
1543
1544 void
1545 zio_resume_wait(spa_t *spa)
1546 {
1547 mutex_enter(&spa->spa_suspend_lock);
1548 while (spa_suspended(spa))
1549 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1550 mutex_exit(&spa->spa_suspend_lock);
1551 }
1552
1553 /*
1554 * ==========================================================================
1555 * Gang blocks.
1556 *
1557 * A gang block is a collection of small blocks that looks to the DMU
1558 * like one large block. When zio_dva_allocate() cannot find a block
1559 * of the requested size, due to either severe fragmentation or the pool
1560 * being nearly full, it calls zio_write_gang_block() to construct the
1561 * block from smaller fragments.
1562 *
1563 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1564 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1565 * an indirect block: it's an array of block pointers. It consumes
1566 * only one sector and hence is allocatable regardless of fragmentation.
1567 * The gang header's bps point to its gang members, which hold the data.
1568 *
1569 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1570 * as the verifier to ensure uniqueness of the SHA256 checksum.
1571 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1572 * not the gang header. This ensures that data block signatures (needed for
1573 * deduplication) are independent of how the block is physically stored.
1574 *
1575 * Gang blocks can be nested: a gang member may itself be a gang block.
1576 * Thus every gang block is a tree in which root and all interior nodes are
1577 * gang headers, and the leaves are normal blocks that contain user data.
1578 * The root of the gang tree is called the gang leader.
1579 *
1580 * To perform any operation (read, rewrite, free, claim) on a gang block,
1581 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1582 * in the io_gang_tree field of the original logical i/o by recursively
1583 * reading the gang leader and all gang headers below it. This yields
1584 * an in-core tree containing the contents of every gang header and the
1585 * bps for every constituent of the gang block.
1586 *
1587 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1588 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1589 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1590 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1591 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1592 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1593 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1594 * of the gang header plus zio_checksum_compute() of the data to update the
1595 * gang header's blk_cksum as described above.
1596 *
1597 * The two-phase assemble/issue model solves the problem of partial failure --
1598 * what if you'd freed part of a gang block but then couldn't read the
1599 * gang header for another part? Assembling the entire gang tree first
1600 * ensures that all the necessary gang header I/O has succeeded before
1601 * starting the actual work of free, claim, or write. Once the gang tree
1602 * is assembled, free and claim are in-memory operations that cannot fail.
1603 *
1604 * In the event that a gang write fails, zio_dva_unallocate() walks the
1605 * gang tree to immediately free (i.e. insert back into the space map)
1606 * everything we've allocated. This ensures that we don't get ENOSPC
1607 * errors during repeated suspend/resume cycles due to a flaky device.
1608 *
1609 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1610 * the gang tree, we won't modify the block, so we can safely defer the free
1611 * (knowing that the block is still intact). If we *can* assemble the gang
1612 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1613 * each constituent bp and we can allocate a new block on the next sync pass.
1614 *
1615 * In all cases, the gang tree allows complete recovery from partial failure.
1616 * ==========================================================================
1617 */
1618
1619 static zio_t *
1620 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1621 {
1622 if (gn != NULL)
1623 return (pio);
1624
1625 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1626 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1627 &pio->io_bookmark));
1628 }
1629
1630 zio_t *
1631 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1632 {
1633 zio_t *zio;
1634
1635 if (gn != NULL) {
1636 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1637 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1638 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1639 /*
1640 * As we rewrite each gang header, the pipeline will compute
1641 * a new gang block header checksum for it; but no one will
1642 * compute a new data checksum, so we do that here. The one
1643 * exception is the gang leader: the pipeline already computed
1644 * its data checksum because that stage precedes gang assembly.
1645 * (Presently, nothing actually uses interior data checksums;
1646 * this is just good hygiene.)
1647 */
1648 if (gn != pio->io_gang_leader->io_gang_tree) {
1649 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1650 data, BP_GET_PSIZE(bp));
1651 }
1652 /*
1653 * If we are here to damage data for testing purposes,
1654 * leave the GBH alone so that we can detect the damage.
1655 */
1656 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1657 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1658 } else {
1659 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1660 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1661 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1662 }
1663
1664 return (zio);
1665 }
1666
1667 /* ARGSUSED */
1668 zio_t *
1669 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1670 {
1671 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1672 ZIO_GANG_CHILD_FLAGS(pio)));
1673 }
1674
1675 /* ARGSUSED */
1676 zio_t *
1677 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1678 {
1679 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1680 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1681 }
1682
1683 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1684 NULL,
1685 zio_read_gang,
1686 zio_rewrite_gang,
1687 zio_free_gang,
1688 zio_claim_gang,
1689 NULL
1690 };
1691
1692 static void zio_gang_tree_assemble_done(zio_t *zio);
1693
1694 static zio_gang_node_t *
1695 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1696 {
1697 zio_gang_node_t *gn;
1698
1699 ASSERT(*gnpp == NULL);
1700
1701 gn = kmem_zalloc(sizeof (*gn), KM_PUSHPAGE);
1702 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1703 *gnpp = gn;
1704
1705 return (gn);
1706 }
1707
1708 static void
1709 zio_gang_node_free(zio_gang_node_t **gnpp)
1710 {
1711 zio_gang_node_t *gn = *gnpp;
1712 int g;
1713
1714 for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
1715 ASSERT(gn->gn_child[g] == NULL);
1716
1717 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1718 kmem_free(gn, sizeof (*gn));
1719 *gnpp = NULL;
1720 }
1721
1722 static void
1723 zio_gang_tree_free(zio_gang_node_t **gnpp)
1724 {
1725 zio_gang_node_t *gn = *gnpp;
1726 int g;
1727
1728 if (gn == NULL)
1729 return;
1730
1731 for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
1732 zio_gang_tree_free(&gn->gn_child[g]);
1733
1734 zio_gang_node_free(gnpp);
1735 }
1736
1737 static void
1738 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1739 {
1740 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1741
1742 ASSERT(gio->io_gang_leader == gio);
1743 ASSERT(BP_IS_GANG(bp));
1744
1745 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1746 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1747 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1748 }
1749
1750 static void
1751 zio_gang_tree_assemble_done(zio_t *zio)
1752 {
1753 zio_t *gio = zio->io_gang_leader;
1754 zio_gang_node_t *gn = zio->io_private;
1755 blkptr_t *bp = zio->io_bp;
1756 int g;
1757
1758 ASSERT(gio == zio_unique_parent(zio));
1759 ASSERT(zio->io_child_count == 0);
1760
1761 if (zio->io_error)
1762 return;
1763
1764 if (BP_SHOULD_BYTESWAP(bp))
1765 byteswap_uint64_array(zio->io_data, zio->io_size);
1766
1767 ASSERT(zio->io_data == gn->gn_gbh);
1768 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1769 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1770
1771 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1772 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1773 if (!BP_IS_GANG(gbp))
1774 continue;
1775 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1776 }
1777 }
1778
1779 static void
1780 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1781 {
1782 zio_t *gio = pio->io_gang_leader;
1783 zio_t *zio;
1784 int g;
1785
1786 ASSERT(BP_IS_GANG(bp) == !!gn);
1787 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1788 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1789
1790 /*
1791 * If you're a gang header, your data is in gn->gn_gbh.
1792 * If you're a gang member, your data is in 'data' and gn == NULL.
1793 */
1794 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1795
1796 if (gn != NULL) {
1797 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1798
1799 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1800 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1801 if (BP_IS_HOLE(gbp))
1802 continue;
1803 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1804 data = (char *)data + BP_GET_PSIZE(gbp);
1805 }
1806 }
1807
1808 if (gn == gio->io_gang_tree)
1809 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1810
1811 if (zio != pio)
1812 zio_nowait(zio);
1813 }
1814
1815 static int
1816 zio_gang_assemble(zio_t *zio)
1817 {
1818 blkptr_t *bp = zio->io_bp;
1819
1820 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1821 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1822
1823 zio->io_gang_leader = zio;
1824
1825 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1826
1827 return (ZIO_PIPELINE_CONTINUE);
1828 }
1829
1830 static int
1831 zio_gang_issue(zio_t *zio)
1832 {
1833 blkptr_t *bp = zio->io_bp;
1834
1835 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1836 return (ZIO_PIPELINE_STOP);
1837
1838 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1839 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1840
1841 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1842 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1843 else
1844 zio_gang_tree_free(&zio->io_gang_tree);
1845
1846 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1847
1848 return (ZIO_PIPELINE_CONTINUE);
1849 }
1850
1851 static void
1852 zio_write_gang_member_ready(zio_t *zio)
1853 {
1854 zio_t *pio = zio_unique_parent(zio);
1855 dva_t *cdva = zio->io_bp->blk_dva;
1856 dva_t *pdva = pio->io_bp->blk_dva;
1857 uint64_t asize;
1858 int d;
1859 ASSERTV(zio_t *gio = zio->io_gang_leader);
1860
1861 if (BP_IS_HOLE(zio->io_bp))
1862 return;
1863
1864 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1865
1866 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1867 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1868 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1869 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1870 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1871
1872 mutex_enter(&pio->io_lock);
1873 for (d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1874 ASSERT(DVA_GET_GANG(&pdva[d]));
1875 asize = DVA_GET_ASIZE(&pdva[d]);
1876 asize += DVA_GET_ASIZE(&cdva[d]);
1877 DVA_SET_ASIZE(&pdva[d], asize);
1878 }
1879 mutex_exit(&pio->io_lock);
1880 }
1881
1882 static int
1883 zio_write_gang_block(zio_t *pio)
1884 {
1885 spa_t *spa = pio->io_spa;
1886 blkptr_t *bp = pio->io_bp;
1887 zio_t *gio = pio->io_gang_leader;
1888 zio_t *zio;
1889 zio_gang_node_t *gn, **gnpp;
1890 zio_gbh_phys_t *gbh;
1891 uint64_t txg = pio->io_txg;
1892 uint64_t resid = pio->io_size;
1893 uint64_t lsize;
1894 int copies = gio->io_prop.zp_copies;
1895 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1896 zio_prop_t zp;
1897 int g, error;
1898
1899 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1900 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1901 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1902 if (error) {
1903 pio->io_error = error;
1904 return (ZIO_PIPELINE_CONTINUE);
1905 }
1906
1907 if (pio == gio) {
1908 gnpp = &gio->io_gang_tree;
1909 } else {
1910 gnpp = pio->io_private;
1911 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1912 }
1913
1914 gn = zio_gang_node_alloc(gnpp);
1915 gbh = gn->gn_gbh;
1916 bzero(gbh, SPA_GANGBLOCKSIZE);
1917
1918 /*
1919 * Create the gang header.
1920 */
1921 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1922 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1923
1924 /*
1925 * Create and nowait the gang children.
1926 */
1927 for (g = 0; resid != 0; resid -= lsize, g++) {
1928 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1929 SPA_MINBLOCKSIZE);
1930 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1931
1932 zp.zp_checksum = gio->io_prop.zp_checksum;
1933 zp.zp_compress = ZIO_COMPRESS_OFF;
1934 zp.zp_type = DMU_OT_NONE;
1935 zp.zp_level = 0;
1936 zp.zp_copies = gio->io_prop.zp_copies;
1937 zp.zp_dedup = B_FALSE;
1938 zp.zp_dedup_verify = B_FALSE;
1939 zp.zp_nopwrite = B_FALSE;
1940
1941 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1942 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1943 zio_write_gang_member_ready, NULL, NULL, &gn->gn_child[g],
1944 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1945 &pio->io_bookmark));
1946 }
1947
1948 /*
1949 * Set pio's pipeline to just wait for zio to finish.
1950 */
1951 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1952
1953 /*
1954 * We didn't allocate this bp, so make sure it doesn't get unmarked.
1955 */
1956 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
1957
1958 zio_nowait(zio);
1959
1960 return (ZIO_PIPELINE_CONTINUE);
1961 }
1962
1963 /*
1964 * The zio_nop_write stage in the pipeline determines if allocating
1965 * a new bp is necessary. By leveraging a cryptographically secure checksum,
1966 * such as SHA256, we can compare the checksums of the new data and the old
1967 * to determine if allocating a new block is required. The nopwrite
1968 * feature can handle writes in either syncing or open context (i.e. zil
1969 * writes) and as a result is mutually exclusive with dedup.
1970 */
1971 static int
1972 zio_nop_write(zio_t *zio)
1973 {
1974 blkptr_t *bp = zio->io_bp;
1975 blkptr_t *bp_orig = &zio->io_bp_orig;
1976 zio_prop_t *zp = &zio->io_prop;
1977
1978 ASSERT(BP_GET_LEVEL(bp) == 0);
1979 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1980 ASSERT(zp->zp_nopwrite);
1981 ASSERT(!zp->zp_dedup);
1982 ASSERT(zio->io_bp_override == NULL);
1983 ASSERT(IO_IS_ALLOCATING(zio));
1984
1985 /*
1986 * Check to see if the original bp and the new bp have matching
1987 * characteristics (i.e. same checksum, compression algorithms, etc).
1988 * If they don't then just continue with the pipeline which will
1989 * allocate a new bp.
1990 */
1991 if (BP_IS_HOLE(bp_orig) ||
1992 !zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_dedup ||
1993 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
1994 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
1995 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
1996 zp->zp_copies != BP_GET_NDVAS(bp_orig))
1997 return (ZIO_PIPELINE_CONTINUE);
1998
1999 /*
2000 * If the checksums match then reset the pipeline so that we
2001 * avoid allocating a new bp and issuing any I/O.
2002 */
2003 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2004 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup);
2005 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2006 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2007 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2008 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2009 sizeof (uint64_t)) == 0);
2010
2011 *bp = *bp_orig;
2012 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2013 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2014 }
2015
2016 return (ZIO_PIPELINE_CONTINUE);
2017 }
2018
2019 /*
2020 * ==========================================================================
2021 * Dedup
2022 * ==========================================================================
2023 */
2024 static void
2025 zio_ddt_child_read_done(zio_t *zio)
2026 {
2027 blkptr_t *bp = zio->io_bp;
2028 ddt_entry_t *dde = zio->io_private;
2029 ddt_phys_t *ddp;
2030 zio_t *pio = zio_unique_parent(zio);
2031
2032 mutex_enter(&pio->io_lock);
2033 ddp = ddt_phys_select(dde, bp);
2034 if (zio->io_error == 0)
2035 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2036 if (zio->io_error == 0 && dde->dde_repair_data == NULL)
2037 dde->dde_repair_data = zio->io_data;
2038 else
2039 zio_buf_free(zio->io_data, zio->io_size);
2040 mutex_exit(&pio->io_lock);
2041 }
2042
2043 static int
2044 zio_ddt_read_start(zio_t *zio)
2045 {
2046 blkptr_t *bp = zio->io_bp;
2047 int p;
2048
2049 ASSERT(BP_GET_DEDUP(bp));
2050 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2051 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2052
2053 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2054 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2055 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2056 ddt_phys_t *ddp = dde->dde_phys;
2057 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2058 blkptr_t blk;
2059
2060 ASSERT(zio->io_vsd == NULL);
2061 zio->io_vsd = dde;
2062
2063 if (ddp_self == NULL)
2064 return (ZIO_PIPELINE_CONTINUE);
2065
2066 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2067 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2068 continue;
2069 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2070 &blk);
2071 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2072 zio_buf_alloc(zio->io_size), zio->io_size,
2073 zio_ddt_child_read_done, dde, zio->io_priority,
2074 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
2075 &zio->io_bookmark));
2076 }
2077 return (ZIO_PIPELINE_CONTINUE);
2078 }
2079
2080 zio_nowait(zio_read(zio, zio->io_spa, bp,
2081 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
2082 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2083
2084 return (ZIO_PIPELINE_CONTINUE);
2085 }
2086
2087 static int
2088 zio_ddt_read_done(zio_t *zio)
2089 {
2090 blkptr_t *bp = zio->io_bp;
2091
2092 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2093 return (ZIO_PIPELINE_STOP);
2094
2095 ASSERT(BP_GET_DEDUP(bp));
2096 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2097 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2098
2099 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2100 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2101 ddt_entry_t *dde = zio->io_vsd;
2102 if (ddt == NULL) {
2103 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2104 return (ZIO_PIPELINE_CONTINUE);
2105 }
2106 if (dde == NULL) {
2107 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2108 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2109 return (ZIO_PIPELINE_STOP);
2110 }
2111 if (dde->dde_repair_data != NULL) {
2112 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2113 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2114 }
2115 ddt_repair_done(ddt, dde);
2116 zio->io_vsd = NULL;
2117 }
2118
2119 ASSERT(zio->io_vsd == NULL);
2120
2121 return (ZIO_PIPELINE_CONTINUE);
2122 }
2123
2124 static boolean_t
2125 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2126 {
2127 spa_t *spa = zio->io_spa;
2128 int p;
2129
2130 /*
2131 * Note: we compare the original data, not the transformed data,
2132 * because when zio->io_bp is an override bp, we will not have
2133 * pushed the I/O transforms. That's an important optimization
2134 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2135 */
2136 for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2137 zio_t *lio = dde->dde_lead_zio[p];
2138
2139 if (lio != NULL) {
2140 return (lio->io_orig_size != zio->io_orig_size ||
2141 bcmp(zio->io_orig_data, lio->io_orig_data,
2142 zio->io_orig_size) != 0);
2143 }
2144 }
2145
2146 for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2147 ddt_phys_t *ddp = &dde->dde_phys[p];
2148
2149 if (ddp->ddp_phys_birth != 0) {
2150 arc_buf_t *abuf = NULL;
2151 uint32_t aflags = ARC_WAIT;
2152 blkptr_t blk = *zio->io_bp;
2153 int error;
2154
2155 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2156
2157 ddt_exit(ddt);
2158
2159 error = arc_read(NULL, spa, &blk,
2160 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2161 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2162 &aflags, &zio->io_bookmark);
2163
2164 if (error == 0) {
2165 if (arc_buf_size(abuf) != zio->io_orig_size ||
2166 bcmp(abuf->b_data, zio->io_orig_data,
2167 zio->io_orig_size) != 0)
2168 error = SET_ERROR(EEXIST);
2169 VERIFY(arc_buf_remove_ref(abuf, &abuf));
2170 }
2171
2172 ddt_enter(ddt);
2173 return (error != 0);
2174 }
2175 }
2176
2177 return (B_FALSE);
2178 }
2179
2180 static void
2181 zio_ddt_child_write_ready(zio_t *zio)
2182 {
2183 int p = zio->io_prop.zp_copies;
2184 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2185 ddt_entry_t *dde = zio->io_private;
2186 ddt_phys_t *ddp = &dde->dde_phys[p];
2187 zio_t *pio;
2188
2189 if (zio->io_error)
2190 return;
2191
2192 ddt_enter(ddt);
2193
2194 ASSERT(dde->dde_lead_zio[p] == zio);
2195
2196 ddt_phys_fill(ddp, zio->io_bp);
2197
2198 while ((pio = zio_walk_parents(zio)) != NULL)
2199 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2200
2201 ddt_exit(ddt);
2202 }
2203
2204 static void
2205 zio_ddt_child_write_done(zio_t *zio)
2206 {
2207 int p = zio->io_prop.zp_copies;
2208 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2209 ddt_entry_t *dde = zio->io_private;
2210 ddt_phys_t *ddp = &dde->dde_phys[p];
2211
2212 ddt_enter(ddt);
2213
2214 ASSERT(ddp->ddp_refcnt == 0);
2215 ASSERT(dde->dde_lead_zio[p] == zio);
2216 dde->dde_lead_zio[p] = NULL;
2217
2218 if (zio->io_error == 0) {
2219 while (zio_walk_parents(zio) != NULL)
2220 ddt_phys_addref(ddp);
2221 } else {
2222 ddt_phys_clear(ddp);
2223 }
2224
2225 ddt_exit(ddt);
2226 }
2227
2228 static void
2229 zio_ddt_ditto_write_done(zio_t *zio)
2230 {
2231 int p = DDT_PHYS_DITTO;
2232 blkptr_t *bp = zio->io_bp;
2233 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2234 ddt_entry_t *dde = zio->io_private;
2235 ddt_phys_t *ddp = &dde->dde_phys[p];
2236 ddt_key_t *ddk = &dde->dde_key;
2237 ASSERTV(zio_prop_t *zp = &zio->io_prop);
2238
2239 ddt_enter(ddt);
2240
2241 ASSERT(ddp->ddp_refcnt == 0);
2242 ASSERT(dde->dde_lead_zio[p] == zio);
2243 dde->dde_lead_zio[p] = NULL;
2244
2245 if (zio->io_error == 0) {
2246 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2247 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2248 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2249 if (ddp->ddp_phys_birth != 0)
2250 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2251 ddt_phys_fill(ddp, bp);
2252 }
2253
2254 ddt_exit(ddt);
2255 }
2256
2257 static int
2258 zio_ddt_write(zio_t *zio)
2259 {
2260 spa_t *spa = zio->io_spa;
2261 blkptr_t *bp = zio->io_bp;
2262 uint64_t txg = zio->io_txg;
2263 zio_prop_t *zp = &zio->io_prop;
2264 int p = zp->zp_copies;
2265 int ditto_copies;
2266 zio_t *cio = NULL;
2267 zio_t *dio = NULL;
2268 ddt_t *ddt = ddt_select(spa, bp);
2269 ddt_entry_t *dde;
2270 ddt_phys_t *ddp;
2271
2272 ASSERT(BP_GET_DEDUP(bp));
2273 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2274 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2275
2276 ddt_enter(ddt);
2277 dde = ddt_lookup(ddt, bp, B_TRUE);
2278 ddp = &dde->dde_phys[p];
2279
2280 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2281 /*
2282 * If we're using a weak checksum, upgrade to a strong checksum
2283 * and try again. If we're already using a strong checksum,
2284 * we can't resolve it, so just convert to an ordinary write.
2285 * (And automatically e-mail a paper to Nature?)
2286 */
2287 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2288 zp->zp_checksum = spa_dedup_checksum(spa);
2289 zio_pop_transforms(zio);
2290 zio->io_stage = ZIO_STAGE_OPEN;
2291 BP_ZERO(bp);
2292 } else {
2293 zp->zp_dedup = B_FALSE;
2294 }
2295 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2296 ddt_exit(ddt);
2297 return (ZIO_PIPELINE_CONTINUE);
2298 }
2299
2300 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2301 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2302
2303 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2304 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2305 zio_prop_t czp = *zp;
2306
2307 czp.zp_copies = ditto_copies;
2308
2309 /*
2310 * If we arrived here with an override bp, we won't have run
2311 * the transform stack, so we won't have the data we need to
2312 * generate a child i/o. So, toss the override bp and restart.
2313 * This is safe, because using the override bp is just an
2314 * optimization; and it's rare, so the cost doesn't matter.
2315 */
2316 if (zio->io_bp_override) {
2317 zio_pop_transforms(zio);
2318 zio->io_stage = ZIO_STAGE_OPEN;
2319 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2320 zio->io_bp_override = NULL;
2321 BP_ZERO(bp);
2322 ddt_exit(ddt);
2323 return (ZIO_PIPELINE_CONTINUE);
2324 }
2325
2326 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2327 zio->io_orig_size, &czp, NULL, NULL,
2328 zio_ddt_ditto_write_done, dde, zio->io_priority,
2329 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2330
2331 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2332 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2333 }
2334
2335 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2336 if (ddp->ddp_phys_birth != 0)
2337 ddt_bp_fill(ddp, bp, txg);
2338 if (dde->dde_lead_zio[p] != NULL)
2339 zio_add_child(zio, dde->dde_lead_zio[p]);
2340 else
2341 ddt_phys_addref(ddp);
2342 } else if (zio->io_bp_override) {
2343 ASSERT(bp->blk_birth == txg);
2344 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2345 ddt_phys_fill(ddp, bp);
2346 ddt_phys_addref(ddp);
2347 } else {
2348 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2349 zio->io_orig_size, zp, zio_ddt_child_write_ready, NULL,
2350 zio_ddt_child_write_done, dde, zio->io_priority,
2351 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2352
2353 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2354 dde->dde_lead_zio[p] = cio;
2355 }
2356
2357 ddt_exit(ddt);
2358
2359 if (cio)
2360 zio_nowait(cio);
2361 if (dio)
2362 zio_nowait(dio);
2363
2364 return (ZIO_PIPELINE_CONTINUE);
2365 }
2366
2367 ddt_entry_t *freedde; /* for debugging */
2368
2369 static int
2370 zio_ddt_free(zio_t *zio)
2371 {
2372 spa_t *spa = zio->io_spa;
2373 blkptr_t *bp = zio->io_bp;
2374 ddt_t *ddt = ddt_select(spa, bp);
2375 ddt_entry_t *dde;
2376 ddt_phys_t *ddp;
2377
2378 ASSERT(BP_GET_DEDUP(bp));
2379 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2380
2381 ddt_enter(ddt);
2382 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2383 if (dde) {
2384 ddp = ddt_phys_select(dde, bp);
2385 if (ddp)
2386 ddt_phys_decref(ddp);
2387 }
2388 ddt_exit(ddt);
2389
2390 return (ZIO_PIPELINE_CONTINUE);
2391 }
2392
2393 /*
2394 * ==========================================================================
2395 * Allocate and free blocks
2396 * ==========================================================================
2397 */
2398 static int
2399 zio_dva_allocate(zio_t *zio)
2400 {
2401 spa_t *spa = zio->io_spa;
2402 metaslab_class_t *mc = spa_normal_class(spa);
2403 blkptr_t *bp = zio->io_bp;
2404 int error;
2405 int flags = 0;
2406
2407 if (zio->io_gang_leader == NULL) {
2408 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2409 zio->io_gang_leader = zio;
2410 }
2411
2412 ASSERT(BP_IS_HOLE(bp));
2413 ASSERT0(BP_GET_NDVAS(bp));
2414 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2415 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2416 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2417
2418 /*
2419 * The dump device does not support gang blocks so allocation on
2420 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2421 * the "fast" gang feature.
2422 */
2423 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2424 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2425 METASLAB_GANG_CHILD : 0;
2426 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
2427 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2428 zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2429
2430 if (error) {
2431 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2432 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2433 error);
2434 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2435 return (zio_write_gang_block(zio));
2436 zio->io_error = error;
2437 }
2438
2439 return (ZIO_PIPELINE_CONTINUE);
2440 }
2441
2442 static int
2443 zio_dva_free(zio_t *zio)
2444 {
2445 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2446
2447 return (ZIO_PIPELINE_CONTINUE);
2448 }
2449
2450 static int
2451 zio_dva_claim(zio_t *zio)
2452 {
2453 int error;
2454
2455 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2456 if (error)
2457 zio->io_error = error;
2458
2459 return (ZIO_PIPELINE_CONTINUE);
2460 }
2461
2462 /*
2463 * Undo an allocation. This is used by zio_done() when an I/O fails
2464 * and we want to give back the block we just allocated.
2465 * This handles both normal blocks and gang blocks.
2466 */
2467 static void
2468 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2469 {
2470 int g;
2471
2472 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2473 ASSERT(zio->io_bp_override == NULL);
2474
2475 if (!BP_IS_HOLE(bp))
2476 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2477
2478 if (gn != NULL) {
2479 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2480 zio_dva_unallocate(zio, gn->gn_child[g],
2481 &gn->gn_gbh->zg_blkptr[g]);
2482 }
2483 }
2484 }
2485
2486 /*
2487 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2488 */
2489 int
2490 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, uint64_t size,
2491 boolean_t use_slog)
2492 {
2493 int error = 1;
2494
2495 ASSERT(txg > spa_syncing_txg(spa));
2496
2497 /*
2498 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2499 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2500 * when allocating them.
2501 */
2502 if (use_slog) {
2503 error = metaslab_alloc(spa, spa_log_class(spa), size,
2504 new_bp, 1, txg, NULL,
2505 METASLAB_FASTWRITE | METASLAB_GANG_AVOID);
2506 }
2507
2508 if (error) {
2509 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2510 new_bp, 1, txg, NULL,
2511 METASLAB_FASTWRITE);
2512 }
2513
2514 if (error == 0) {
2515 BP_SET_LSIZE(new_bp, size);
2516 BP_SET_PSIZE(new_bp, size);
2517 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2518 BP_SET_CHECKSUM(new_bp,
2519 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2520 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2521 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2522 BP_SET_LEVEL(new_bp, 0);
2523 BP_SET_DEDUP(new_bp, 0);
2524 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2525 }
2526
2527 return (error);
2528 }
2529
2530 /*
2531 * Free an intent log block.
2532 */
2533 void
2534 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2535 {
2536 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2537 ASSERT(!BP_IS_GANG(bp));
2538
2539 zio_free(spa, txg, bp);
2540 }
2541
2542 /*
2543 * ==========================================================================
2544 * Read and write to physical devices
2545 * ==========================================================================
2546 */
2547 static int
2548 zio_vdev_io_start(zio_t *zio)
2549 {
2550 vdev_t *vd = zio->io_vd;
2551 uint64_t align;
2552 spa_t *spa = zio->io_spa;
2553
2554 ASSERT(zio->io_error == 0);
2555 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2556
2557 if (vd == NULL) {
2558 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2559 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2560
2561 /*
2562 * The mirror_ops handle multiple DVAs in a single BP.
2563 */
2564 return (vdev_mirror_ops.vdev_op_io_start(zio));
2565 }
2566
2567 /*
2568 * We keep track of time-sensitive I/Os so that the scan thread
2569 * can quickly react to certain workloads. In particular, we care
2570 * about non-scrubbing, top-level reads and writes with the following
2571 * characteristics:
2572 * - synchronous writes of user data to non-slog devices
2573 * - any reads of user data
2574 * When these conditions are met, adjust the timestamp of spa_last_io
2575 * which allows the scan thread to adjust its workload accordingly.
2576 */
2577 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2578 vd == vd->vdev_top && !vd->vdev_islog &&
2579 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2580 zio->io_txg != spa_syncing_txg(spa)) {
2581 uint64_t old = spa->spa_last_io;
2582 uint64_t new = ddi_get_lbolt64();
2583 if (old != new)
2584 (void) atomic_cas_64(&spa->spa_last_io, old, new);
2585 }
2586
2587 align = 1ULL << vd->vdev_top->vdev_ashift;
2588
2589 if (P2PHASE(zio->io_size, align) != 0) {
2590 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2591 char *abuf = zio_buf_alloc(asize);
2592 ASSERT(vd == vd->vdev_top);
2593 if (zio->io_type == ZIO_TYPE_WRITE) {
2594 bcopy(zio->io_data, abuf, zio->io_size);
2595 bzero(abuf + zio->io_size, asize - zio->io_size);
2596 }
2597 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2598 }
2599
2600 ASSERT(P2PHASE(zio->io_offset, align) == 0);
2601 ASSERT(P2PHASE(zio->io_size, align) == 0);
2602 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2603
2604 /*
2605 * If this is a repair I/O, and there's no self-healing involved --
2606 * that is, we're just resilvering what we expect to resilver --
2607 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2608 * This prevents spurious resilvering with nested replication.
2609 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2610 * A is out of date, we'll read from C+D, then use the data to
2611 * resilver A+B -- but we don't actually want to resilver B, just A.
2612 * The top-level mirror has no way to know this, so instead we just
2613 * discard unnecessary repairs as we work our way down the vdev tree.
2614 * The same logic applies to any form of nested replication:
2615 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
2616 */
2617 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2618 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2619 zio->io_txg != 0 && /* not a delegated i/o */
2620 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2621 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2622 zio_vdev_io_bypass(zio);
2623 return (ZIO_PIPELINE_CONTINUE);
2624 }
2625
2626 if (vd->vdev_ops->vdev_op_leaf &&
2627 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2628
2629 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2630 return (ZIO_PIPELINE_CONTINUE);
2631
2632 if ((zio = vdev_queue_io(zio)) == NULL)
2633 return (ZIO_PIPELINE_STOP);
2634
2635 if (!vdev_accessible(vd, zio)) {
2636 zio->io_error = SET_ERROR(ENXIO);
2637 zio_interrupt(zio);
2638 return (ZIO_PIPELINE_STOP);
2639 }
2640 }
2641
2642 return (vd->vdev_ops->vdev_op_io_start(zio));
2643 }
2644
2645 static int
2646 zio_vdev_io_done(zio_t *zio)
2647 {
2648 vdev_t *vd = zio->io_vd;
2649 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2650 boolean_t unexpected_error = B_FALSE;
2651
2652 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2653 return (ZIO_PIPELINE_STOP);
2654
2655 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2656
2657 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2658
2659 vdev_queue_io_done(zio);
2660
2661 if (zio->io_type == ZIO_TYPE_WRITE)
2662 vdev_cache_write(zio);
2663
2664 if (zio_injection_enabled && zio->io_error == 0)
2665 zio->io_error = zio_handle_device_injection(vd,
2666 zio, EIO);
2667
2668 if (zio_injection_enabled && zio->io_error == 0)
2669 zio->io_error = zio_handle_label_injection(zio, EIO);
2670
2671 if (zio->io_error) {
2672 if (!vdev_accessible(vd, zio)) {
2673 zio->io_error = SET_ERROR(ENXIO);
2674 } else {
2675 unexpected_error = B_TRUE;
2676 }
2677 }
2678 }
2679
2680 ops->vdev_op_io_done(zio);
2681
2682 if (unexpected_error)
2683 VERIFY(vdev_probe(vd, zio) == NULL);
2684
2685 return (ZIO_PIPELINE_CONTINUE);
2686 }
2687
2688 /*
2689 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2690 * disk, and use that to finish the checksum ereport later.
2691 */
2692 static void
2693 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2694 const void *good_buf)
2695 {
2696 /* no processing needed */
2697 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2698 }
2699
2700 /*ARGSUSED*/
2701 void
2702 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2703 {
2704 void *buf = zio_buf_alloc(zio->io_size);
2705
2706 bcopy(zio->io_data, buf, zio->io_size);
2707
2708 zcr->zcr_cbinfo = zio->io_size;
2709 zcr->zcr_cbdata = buf;
2710 zcr->zcr_finish = zio_vsd_default_cksum_finish;
2711 zcr->zcr_free = zio_buf_free;
2712 }
2713
2714 static int
2715 zio_vdev_io_assess(zio_t *zio)
2716 {
2717 vdev_t *vd = zio->io_vd;
2718
2719 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2720 return (ZIO_PIPELINE_STOP);
2721
2722 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2723 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2724
2725 if (zio->io_vsd != NULL) {
2726 zio->io_vsd_ops->vsd_free(zio);
2727 zio->io_vsd = NULL;
2728 }
2729
2730 if (zio_injection_enabled && zio->io_error == 0)
2731 zio->io_error = zio_handle_fault_injection(zio, EIO);
2732
2733 /*
2734 * If the I/O failed, determine whether we should attempt to retry it.
2735 *
2736 * On retry, we cut in line in the issue queue, since we don't want
2737 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2738 */
2739 if (zio->io_error && vd == NULL &&
2740 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2741 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
2742 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
2743 zio->io_error = 0;
2744 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2745 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2746 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2747 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2748 zio_requeue_io_start_cut_in_line);
2749 return (ZIO_PIPELINE_STOP);
2750 }
2751
2752 /*
2753 * If we got an error on a leaf device, convert it to ENXIO
2754 * if the device is not accessible at all.
2755 */
2756 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2757 !vdev_accessible(vd, zio))
2758 zio->io_error = SET_ERROR(ENXIO);
2759
2760 /*
2761 * If we can't write to an interior vdev (mirror or RAID-Z),
2762 * set vdev_cant_write so that we stop trying to allocate from it.
2763 */
2764 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2765 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
2766 vd->vdev_cant_write = B_TRUE;
2767 }
2768
2769 if (zio->io_error)
2770 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2771
2772 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2773 zio->io_physdone != NULL) {
2774 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
2775 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
2776 zio->io_physdone(zio->io_logical);
2777 }
2778
2779 return (ZIO_PIPELINE_CONTINUE);
2780 }
2781
2782 void
2783 zio_vdev_io_reissue(zio_t *zio)
2784 {
2785 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2786 ASSERT(zio->io_error == 0);
2787
2788 zio->io_stage >>= 1;
2789 }
2790
2791 void
2792 zio_vdev_io_redone(zio_t *zio)
2793 {
2794 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2795
2796 zio->io_stage >>= 1;
2797 }
2798
2799 void
2800 zio_vdev_io_bypass(zio_t *zio)
2801 {
2802 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2803 ASSERT(zio->io_error == 0);
2804
2805 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2806 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2807 }
2808
2809 /*
2810 * ==========================================================================
2811 * Generate and verify checksums
2812 * ==========================================================================
2813 */
2814 static int
2815 zio_checksum_generate(zio_t *zio)
2816 {
2817 blkptr_t *bp = zio->io_bp;
2818 enum zio_checksum checksum;
2819
2820 if (bp == NULL) {
2821 /*
2822 * This is zio_write_phys().
2823 * We're either generating a label checksum, or none at all.
2824 */
2825 checksum = zio->io_prop.zp_checksum;
2826
2827 if (checksum == ZIO_CHECKSUM_OFF)
2828 return (ZIO_PIPELINE_CONTINUE);
2829
2830 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2831 } else {
2832 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2833 ASSERT(!IO_IS_ALLOCATING(zio));
2834 checksum = ZIO_CHECKSUM_GANG_HEADER;
2835 } else {
2836 checksum = BP_GET_CHECKSUM(bp);
2837 }
2838 }
2839
2840 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2841
2842 return (ZIO_PIPELINE_CONTINUE);
2843 }
2844
2845 static int
2846 zio_checksum_verify(zio_t *zio)
2847 {
2848 zio_bad_cksum_t info;
2849 blkptr_t *bp = zio->io_bp;
2850 int error;
2851
2852 ASSERT(zio->io_vd != NULL);
2853
2854 if (bp == NULL) {
2855 /*
2856 * This is zio_read_phys().
2857 * We're either verifying a label checksum, or nothing at all.
2858 */
2859 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2860 return (ZIO_PIPELINE_CONTINUE);
2861
2862 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2863 }
2864
2865 if ((error = zio_checksum_error(zio, &info)) != 0) {
2866 zio->io_error = error;
2867 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2868 zfs_ereport_start_checksum(zio->io_spa,
2869 zio->io_vd, zio, zio->io_offset,
2870 zio->io_size, NULL, &info);
2871 }
2872 }
2873
2874 return (ZIO_PIPELINE_CONTINUE);
2875 }
2876
2877 /*
2878 * Called by RAID-Z to ensure we don't compute the checksum twice.
2879 */
2880 void
2881 zio_checksum_verified(zio_t *zio)
2882 {
2883 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2884 }
2885
2886 /*
2887 * ==========================================================================
2888 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2889 * An error of 0 indictes success. ENXIO indicates whole-device failure,
2890 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
2891 * indicate errors that are specific to one I/O, and most likely permanent.
2892 * Any other error is presumed to be worse because we weren't expecting it.
2893 * ==========================================================================
2894 */
2895 int
2896 zio_worst_error(int e1, int e2)
2897 {
2898 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2899 int r1, r2;
2900
2901 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2902 if (e1 == zio_error_rank[r1])
2903 break;
2904
2905 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2906 if (e2 == zio_error_rank[r2])
2907 break;
2908
2909 return (r1 > r2 ? e1 : e2);
2910 }
2911
2912 /*
2913 * ==========================================================================
2914 * I/O completion
2915 * ==========================================================================
2916 */
2917 static int
2918 zio_ready(zio_t *zio)
2919 {
2920 blkptr_t *bp = zio->io_bp;
2921 zio_t *pio, *pio_next;
2922
2923 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2924 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2925 return (ZIO_PIPELINE_STOP);
2926
2927 if (zio->io_ready) {
2928 ASSERT(IO_IS_ALLOCATING(zio));
2929 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
2930 (zio->io_flags & ZIO_FLAG_NOPWRITE));
2931 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2932
2933 zio->io_ready(zio);
2934 }
2935
2936 if (bp != NULL && bp != &zio->io_bp_copy)
2937 zio->io_bp_copy = *bp;
2938
2939 if (zio->io_error)
2940 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2941
2942 mutex_enter(&zio->io_lock);
2943 zio->io_state[ZIO_WAIT_READY] = 1;
2944 pio = zio_walk_parents(zio);
2945 mutex_exit(&zio->io_lock);
2946
2947 /*
2948 * As we notify zio's parents, new parents could be added.
2949 * New parents go to the head of zio's io_parent_list, however,
2950 * so we will (correctly) not notify them. The remainder of zio's
2951 * io_parent_list, from 'pio_next' onward, cannot change because
2952 * all parents must wait for us to be done before they can be done.
2953 */
2954 for (; pio != NULL; pio = pio_next) {
2955 pio_next = zio_walk_parents(zio);
2956 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2957 }
2958
2959 if (zio->io_flags & ZIO_FLAG_NODATA) {
2960 if (BP_IS_GANG(bp)) {
2961 zio->io_flags &= ~ZIO_FLAG_NODATA;
2962 } else {
2963 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2964 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2965 }
2966 }
2967
2968 if (zio_injection_enabled &&
2969 zio->io_spa->spa_syncing_txg == zio->io_txg)
2970 zio_handle_ignored_writes(zio);
2971
2972 return (ZIO_PIPELINE_CONTINUE);
2973 }
2974
2975 static int
2976 zio_done(zio_t *zio)
2977 {
2978 zio_t *pio, *pio_next;
2979 int c, w;
2980
2981 /*
2982 * If our children haven't all completed,
2983 * wait for them and then repeat this pipeline stage.
2984 */
2985 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2986 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2987 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2988 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2989 return (ZIO_PIPELINE_STOP);
2990
2991 for (c = 0; c < ZIO_CHILD_TYPES; c++)
2992 for (w = 0; w < ZIO_WAIT_TYPES; w++)
2993 ASSERT(zio->io_children[c][w] == 0);
2994
2995 if (zio->io_bp != NULL) {
2996 ASSERT(zio->io_bp->blk_pad[0] == 0);
2997 ASSERT(zio->io_bp->blk_pad[1] == 0);
2998 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
2999 sizeof (blkptr_t)) == 0 ||
3000 (zio->io_bp == zio_unique_parent(zio)->io_bp));
3001 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
3002 zio->io_bp_override == NULL &&
3003 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
3004 ASSERT(!BP_SHOULD_BYTESWAP(zio->io_bp));
3005 ASSERT3U(zio->io_prop.zp_copies, <=,
3006 BP_GET_NDVAS(zio->io_bp));
3007 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
3008 (BP_COUNT_GANG(zio->io_bp) ==
3009 BP_GET_NDVAS(zio->io_bp)));
3010 }
3011 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
3012 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
3013 }
3014
3015 /*
3016 * If there were child vdev/gang/ddt errors, they apply to us now.
3017 */
3018 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
3019 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
3020 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
3021
3022 /*
3023 * If the I/O on the transformed data was successful, generate any
3024 * checksum reports now while we still have the transformed data.
3025 */
3026 if (zio->io_error == 0) {
3027 while (zio->io_cksum_report != NULL) {
3028 zio_cksum_report_t *zcr = zio->io_cksum_report;
3029 uint64_t align = zcr->zcr_align;
3030 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3031 char *abuf = zio->io_data;
3032
3033 if (asize != zio->io_size) {
3034 abuf = zio_buf_alloc(asize);
3035 bcopy(zio->io_data, abuf, zio->io_size);
3036 bzero(abuf+zio->io_size, asize-zio->io_size);
3037 }
3038
3039 zio->io_cksum_report = zcr->zcr_next;
3040 zcr->zcr_next = NULL;
3041 zcr->zcr_finish(zcr, abuf);
3042 zfs_ereport_free_checksum(zcr);
3043
3044 if (asize != zio->io_size)
3045 zio_buf_free(abuf, asize);
3046 }
3047 }
3048
3049 zio_pop_transforms(zio); /* note: may set zio->io_error */
3050
3051 vdev_stat_update(zio, zio->io_size);
3052
3053 /*
3054 * If this I/O is attached to a particular vdev is slow, exceeding
3055 * 30 seconds to complete, post an error described the I/O delay.
3056 * We ignore these errors if the device is currently unavailable.
3057 */
3058 if (zio->io_delay >= MSEC_TO_TICK(zio_delay_max)) {
3059 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
3060 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
3061 zio->io_vd, zio, 0, 0);
3062 }
3063
3064 if (zio->io_error) {
3065 /*
3066 * If this I/O is attached to a particular vdev,
3067 * generate an error message describing the I/O failure
3068 * at the block level. We ignore these errors if the
3069 * device is currently unavailable.
3070 */
3071 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
3072 !vdev_is_dead(zio->io_vd))
3073 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
3074 zio->io_vd, zio, 0, 0);
3075
3076 if ((zio->io_error == EIO || !(zio->io_flags &
3077 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
3078 zio == zio->io_logical) {
3079 /*
3080 * For logical I/O requests, tell the SPA to log the
3081 * error and generate a logical data ereport.
3082 */
3083 spa_log_error(zio->io_spa, zio);
3084 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa,
3085 NULL, zio, 0, 0);
3086 }
3087 }
3088
3089 if (zio->io_error && zio == zio->io_logical) {
3090 /*
3091 * Determine whether zio should be reexecuted. This will
3092 * propagate all the way to the root via zio_notify_parent().
3093 */
3094 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
3095 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3096
3097 if (IO_IS_ALLOCATING(zio) &&
3098 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
3099 if (zio->io_error != ENOSPC)
3100 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
3101 else
3102 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3103 }
3104
3105 if ((zio->io_type == ZIO_TYPE_READ ||
3106 zio->io_type == ZIO_TYPE_FREE) &&
3107 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
3108 zio->io_error == ENXIO &&
3109 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
3110 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
3111 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3112
3113 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
3114 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
3115
3116 /*
3117 * Here is a possibly good place to attempt to do
3118 * either combinatorial reconstruction or error correction
3119 * based on checksums. It also might be a good place
3120 * to send out preliminary ereports before we suspend
3121 * processing.
3122 */
3123 }
3124
3125 /*
3126 * If there were logical child errors, they apply to us now.
3127 * We defer this until now to avoid conflating logical child
3128 * errors with errors that happened to the zio itself when
3129 * updating vdev stats and reporting FMA events above.
3130 */
3131 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3132
3133 if ((zio->io_error || zio->io_reexecute) &&
3134 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3135 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
3136 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
3137
3138 zio_gang_tree_free(&zio->io_gang_tree);
3139
3140 /*
3141 * Godfather I/Os should never suspend.
3142 */
3143 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3144 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3145 zio->io_reexecute = 0;
3146
3147 if (zio->io_reexecute) {
3148 /*
3149 * This is a logical I/O that wants to reexecute.
3150 *
3151 * Reexecute is top-down. When an i/o fails, if it's not
3152 * the root, it simply notifies its parent and sticks around.
3153 * The parent, seeing that it still has children in zio_done(),
3154 * does the same. This percolates all the way up to the root.
3155 * The root i/o will reexecute or suspend the entire tree.
3156 *
3157 * This approach ensures that zio_reexecute() honors
3158 * all the original i/o dependency relationships, e.g.
3159 * parents not executing until children are ready.
3160 */
3161 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3162
3163 zio->io_gang_leader = NULL;
3164
3165 mutex_enter(&zio->io_lock);
3166 zio->io_state[ZIO_WAIT_DONE] = 1;
3167 mutex_exit(&zio->io_lock);
3168
3169 /*
3170 * "The Godfather" I/O monitors its children but is
3171 * not a true parent to them. It will track them through
3172 * the pipeline but severs its ties whenever they get into
3173 * trouble (e.g. suspended). This allows "The Godfather"
3174 * I/O to return status without blocking.
3175 */
3176 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3177 zio_link_t *zl = zio->io_walk_link;
3178 pio_next = zio_walk_parents(zio);
3179
3180 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3181 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3182 zio_remove_child(pio, zio, zl);
3183 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3184 }
3185 }
3186
3187 if ((pio = zio_unique_parent(zio)) != NULL) {
3188 /*
3189 * We're not a root i/o, so there's nothing to do
3190 * but notify our parent. Don't propagate errors
3191 * upward since we haven't permanently failed yet.
3192 */
3193 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3194 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3195 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3196 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3197 /*
3198 * We'd fail again if we reexecuted now, so suspend
3199 * until conditions improve (e.g. device comes online).
3200 */
3201 zio_suspend(zio->io_spa, zio);
3202 } else {
3203 /*
3204 * Reexecution is potentially a huge amount of work.
3205 * Hand it off to the otherwise-unused claim taskq.
3206 */
3207 ASSERT(taskq_empty_ent(&zio->io_tqent));
3208 spa_taskq_dispatch_ent(zio->io_spa,
3209 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
3210 (task_func_t *)zio_reexecute, zio, 0,
3211 &zio->io_tqent);
3212 }
3213 return (ZIO_PIPELINE_STOP);
3214 }
3215
3216 ASSERT(zio->io_child_count == 0);
3217 ASSERT(zio->io_reexecute == 0);
3218 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3219
3220 /*
3221 * Report any checksum errors, since the I/O is complete.
3222 */
3223 while (zio->io_cksum_report != NULL) {
3224 zio_cksum_report_t *zcr = zio->io_cksum_report;
3225 zio->io_cksum_report = zcr->zcr_next;
3226 zcr->zcr_next = NULL;
3227 zcr->zcr_finish(zcr, NULL);
3228 zfs_ereport_free_checksum(zcr);
3229 }
3230
3231 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
3232 !BP_IS_HOLE(zio->io_bp) && !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
3233 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
3234 }
3235
3236 /*
3237 * It is the responsibility of the done callback to ensure that this
3238 * particular zio is no longer discoverable for adoption, and as
3239 * such, cannot acquire any new parents.
3240 */
3241 if (zio->io_done)
3242 zio->io_done(zio);
3243
3244 mutex_enter(&zio->io_lock);
3245 zio->io_state[ZIO_WAIT_DONE] = 1;
3246 mutex_exit(&zio->io_lock);
3247
3248 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3249 zio_link_t *zl = zio->io_walk_link;
3250 pio_next = zio_walk_parents(zio);
3251 zio_remove_child(pio, zio, zl);
3252 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3253 }
3254
3255 if (zio->io_waiter != NULL) {
3256 mutex_enter(&zio->io_lock);
3257 zio->io_executor = NULL;
3258 cv_broadcast(&zio->io_cv);
3259 mutex_exit(&zio->io_lock);
3260 } else {
3261 zio_destroy(zio);
3262 }
3263
3264 return (ZIO_PIPELINE_STOP);
3265 }
3266
3267 /*
3268 * ==========================================================================
3269 * I/O pipeline definition
3270 * ==========================================================================
3271 */
3272 static zio_pipe_stage_t *zio_pipeline[] = {
3273 NULL,
3274 zio_read_bp_init,
3275 zio_free_bp_init,
3276 zio_issue_async,
3277 zio_write_bp_init,
3278 zio_checksum_generate,
3279 zio_nop_write,
3280 zio_ddt_read_start,
3281 zio_ddt_read_done,
3282 zio_ddt_write,
3283 zio_ddt_free,
3284 zio_gang_assemble,
3285 zio_gang_issue,
3286 zio_dva_allocate,
3287 zio_dva_free,
3288 zio_dva_claim,
3289 zio_ready,
3290 zio_vdev_io_start,
3291 zio_vdev_io_done,
3292 zio_vdev_io_assess,
3293 zio_checksum_verify,
3294 zio_done
3295 };
3296
3297 /* dnp is the dnode for zb1->zb_object */
3298 boolean_t
3299 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3300 const zbookmark_t *zb2)
3301 {
3302 uint64_t zb1nextL0, zb2thisobj;
3303
3304 ASSERT(zb1->zb_objset == zb2->zb_objset);
3305 ASSERT(zb2->zb_level == 0);
3306
3307 /*
3308 * A bookmark in the deadlist is considered to be after
3309 * everything else.
3310 */
3311 if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3312 return (B_TRUE);
3313
3314 /* The objset_phys_t isn't before anything. */
3315 if (dnp == NULL)
3316 return (B_FALSE);
3317
3318 zb1nextL0 = (zb1->zb_blkid + 1) <<
3319 ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3320
3321 zb2thisobj = zb2->zb_object ? zb2->zb_object :
3322 zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3323
3324 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3325 uint64_t nextobj = zb1nextL0 *
3326 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3327 return (nextobj <= zb2thisobj);
3328 }
3329
3330 if (zb1->zb_object < zb2thisobj)
3331 return (B_TRUE);
3332 if (zb1->zb_object > zb2thisobj)
3333 return (B_FALSE);
3334 if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3335 return (B_FALSE);
3336 return (zb1nextL0 <= zb2->zb_blkid);
3337 }
3338
3339 #if defined(_KERNEL) && defined(HAVE_SPL)
3340 /* Fault injection */
3341 EXPORT_SYMBOL(zio_injection_enabled);
3342 EXPORT_SYMBOL(zio_inject_fault);
3343 EXPORT_SYMBOL(zio_inject_list_next);
3344 EXPORT_SYMBOL(zio_clear_fault);
3345 EXPORT_SYMBOL(zio_handle_fault_injection);
3346 EXPORT_SYMBOL(zio_handle_device_injection);
3347 EXPORT_SYMBOL(zio_handle_label_injection);
3348 EXPORT_SYMBOL(zio_type_name);
3349
3350 module_param(zio_bulk_flags, int, 0644);
3351 MODULE_PARM_DESC(zio_bulk_flags, "Additional flags to pass to bulk buffers");
3352
3353 module_param(zio_delay_max, int, 0644);
3354 MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
3355
3356 module_param(zio_requeue_io_start_cut_in_line, int, 0644);
3357 MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
3358
3359 module_param(zfs_sync_pass_deferred_free, int, 0644);
3360 MODULE_PARM_DESC(zfs_sync_pass_deferred_free,
3361 "Defer frees starting in this pass");
3362
3363 module_param(zfs_sync_pass_dont_compress, int, 0644);
3364 MODULE_PARM_DESC(zfs_sync_pass_dont_compress,
3365 "Don't compress starting in this pass");
3366
3367 module_param(zfs_sync_pass_rewrite, int, 0644);
3368 MODULE_PARM_DESC(zfs_sync_pass_rewrite,
3369 "Rewrite new bps starting in this pass");
3370 #endif