]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Add zstd support to zfs
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 */
29
30 #include <sys/sysmacros.h>
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/txg.h>
35 #include <sys/spa_impl.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_trim.h>
38 #include <sys/zio_impl.h>
39 #include <sys/zio_compress.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu_objset.h>
42 #include <sys/arc.h>
43 #include <sys/ddt.h>
44 #include <sys/blkptr.h>
45 #include <sys/zfeature.h>
46 #include <sys/dsl_scan.h>
47 #include <sys/metaslab_impl.h>
48 #include <sys/time.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/abd.h>
51 #include <sys/dsl_crypt.h>
52 #include <cityhash.h>
53
54 /*
55 * ==========================================================================
56 * I/O type descriptions
57 * ==========================================================================
58 */
59 const char *zio_type_name[ZIO_TYPES] = {
60 /*
61 * Note: Linux kernel thread name length is limited
62 * so these names will differ from upstream open zfs.
63 */
64 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
65 };
66
67 int zio_dva_throttle_enabled = B_TRUE;
68 int zio_deadman_log_all = B_FALSE;
69
70 /*
71 * ==========================================================================
72 * I/O kmem caches
73 * ==========================================================================
74 */
75 kmem_cache_t *zio_cache;
76 kmem_cache_t *zio_link_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
80 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 #endif
83
84 /* Mark IOs as "slow" if they take longer than 30 seconds */
85 int zio_slow_io_ms = (30 * MILLISEC);
86
87 #define BP_SPANB(indblkshift, level) \
88 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
89 #define COMPARE_META_LEVEL 0x80000000ul
90 /*
91 * The following actions directly effect the spa's sync-to-convergence logic.
92 * The values below define the sync pass when we start performing the action.
93 * Care should be taken when changing these values as they directly impact
94 * spa_sync() performance. Tuning these values may introduce subtle performance
95 * pathologies and should only be done in the context of performance analysis.
96 * These tunables will eventually be removed and replaced with #defines once
97 * enough analysis has been done to determine optimal values.
98 *
99 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
100 * regular blocks are not deferred.
101 *
102 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
103 * compression (including of metadata). In practice, we don't have this
104 * many sync passes, so this has no effect.
105 *
106 * The original intent was that disabling compression would help the sync
107 * passes to converge. However, in practice disabling compression increases
108 * the average number of sync passes, because when we turn compression off, a
109 * lot of block's size will change and thus we have to re-allocate (not
110 * overwrite) them. It also increases the number of 128KB allocations (e.g.
111 * for indirect blocks and spacemaps) because these will not be compressed.
112 * The 128K allocations are especially detrimental to performance on highly
113 * fragmented systems, which may have very few free segments of this size,
114 * and may need to load new metaslabs to satisfy 128K allocations.
115 */
116 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
117 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
118 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
119
120 /*
121 * An allocating zio is one that either currently has the DVA allocate
122 * stage set or will have it later in its lifetime.
123 */
124 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
125
126 /*
127 * Enable smaller cores by excluding metadata
128 * allocations as well.
129 */
130 int zio_exclude_metadata = 0;
131 int zio_requeue_io_start_cut_in_line = 1;
132
133 #ifdef ZFS_DEBUG
134 int zio_buf_debug_limit = 16384;
135 #else
136 int zio_buf_debug_limit = 0;
137 #endif
138
139 static inline void __zio_execute(zio_t *zio);
140
141 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
142
143 void
144 zio_init(void)
145 {
146 size_t c;
147 vmem_t *data_alloc_arena = NULL;
148
149 zio_cache = kmem_cache_create("zio_cache",
150 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
151 zio_link_cache = kmem_cache_create("zio_link_cache",
152 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
153
154 /*
155 * For small buffers, we want a cache for each multiple of
156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
157 * for each quarter-power of 2.
158 */
159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
160 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
161 size_t p2 = size;
162 size_t align = 0;
163 size_t data_cflags, cflags;
164
165 data_cflags = KMC_NODEBUG;
166 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
167 KMC_NODEBUG : 0;
168
169 #if defined(_ILP32) && defined(_KERNEL)
170 /*
171 * Cache size limited to 1M on 32-bit platforms until ARC
172 * buffers no longer require virtual address space.
173 */
174 if (size > zfs_max_recordsize)
175 break;
176 #endif
177
178 while (!ISP2(p2))
179 p2 &= p2 - 1;
180
181 #ifndef _KERNEL
182 /*
183 * If we are using watchpoints, put each buffer on its own page,
184 * to eliminate the performance overhead of trapping to the
185 * kernel when modifying a non-watched buffer that shares the
186 * page with a watched buffer.
187 */
188 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
189 continue;
190 /*
191 * Here's the problem - on 4K native devices in userland on
192 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
193 * will fail with EINVAL, causing zdb (and others) to coredump.
194 * Since userland probably doesn't need optimized buffer caches,
195 * we just force 4K alignment on everything.
196 */
197 align = 8 * SPA_MINBLOCKSIZE;
198 #else
199 if (size < PAGESIZE) {
200 align = SPA_MINBLOCKSIZE;
201 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
202 align = PAGESIZE;
203 }
204 #endif
205
206 if (align != 0) {
207 char name[36];
208 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
209 (ulong_t)size);
210 zio_buf_cache[c] = kmem_cache_create(name, size,
211 align, NULL, NULL, NULL, NULL, NULL, cflags);
212
213 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
214 (ulong_t)size);
215 zio_data_buf_cache[c] = kmem_cache_create(name, size,
216 align, NULL, NULL, NULL, NULL,
217 data_alloc_arena, data_cflags);
218 }
219 }
220
221 while (--c != 0) {
222 ASSERT(zio_buf_cache[c] != NULL);
223 if (zio_buf_cache[c - 1] == NULL)
224 zio_buf_cache[c - 1] = zio_buf_cache[c];
225
226 ASSERT(zio_data_buf_cache[c] != NULL);
227 if (zio_data_buf_cache[c - 1] == NULL)
228 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
229 }
230
231 zio_inject_init();
232
233 lz4_init();
234 }
235
236 void
237 zio_fini(void)
238 {
239 size_t c;
240 kmem_cache_t *last_cache = NULL;
241 kmem_cache_t *last_data_cache = NULL;
242
243 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
244 #ifdef _ILP32
245 /*
246 * Cache size limited to 1M on 32-bit platforms until ARC
247 * buffers no longer require virtual address space.
248 */
249 if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize)
250 break;
251 #endif
252 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
253 if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c])
254 (void) printf("zio_fini: [%d] %llu != %llu\n",
255 (int)((c + 1) << SPA_MINBLOCKSHIFT),
256 (long long unsigned)zio_buf_cache_allocs[c],
257 (long long unsigned)zio_buf_cache_frees[c]);
258 #endif
259 if (zio_buf_cache[c] != last_cache) {
260 last_cache = zio_buf_cache[c];
261 kmem_cache_destroy(zio_buf_cache[c]);
262 }
263 zio_buf_cache[c] = NULL;
264
265 if (zio_data_buf_cache[c] != last_data_cache) {
266 last_data_cache = zio_data_buf_cache[c];
267 kmem_cache_destroy(zio_data_buf_cache[c]);
268 }
269 zio_data_buf_cache[c] = NULL;
270 }
271
272 kmem_cache_destroy(zio_link_cache);
273 kmem_cache_destroy(zio_cache);
274
275 zio_inject_fini();
276
277 lz4_fini();
278 }
279
280 /*
281 * ==========================================================================
282 * Allocate and free I/O buffers
283 * ==========================================================================
284 */
285
286 /*
287 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
288 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
289 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
290 * excess / transient data in-core during a crashdump.
291 */
292 void *
293 zio_buf_alloc(size_t size)
294 {
295 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
296
297 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
298 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
299 atomic_add_64(&zio_buf_cache_allocs[c], 1);
300 #endif
301
302 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
303 }
304
305 /*
306 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
307 * crashdump if the kernel panics. This exists so that we will limit the amount
308 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
309 * of kernel heap dumped to disk when the kernel panics)
310 */
311 void *
312 zio_data_buf_alloc(size_t size)
313 {
314 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
315
316 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
317
318 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
319 }
320
321 void
322 zio_buf_free(void *buf, size_t size)
323 {
324 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
325
326 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
327 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
328 atomic_add_64(&zio_buf_cache_frees[c], 1);
329 #endif
330
331 kmem_cache_free(zio_buf_cache[c], buf);
332 }
333
334 void
335 zio_data_buf_free(void *buf, size_t size)
336 {
337 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
338
339 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
340
341 kmem_cache_free(zio_data_buf_cache[c], buf);
342 }
343
344 static void
345 zio_abd_free(void *abd, size_t size)
346 {
347 abd_free((abd_t *)abd);
348 }
349
350 /*
351 * ==========================================================================
352 * Push and pop I/O transform buffers
353 * ==========================================================================
354 */
355 void
356 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
357 zio_transform_func_t *transform)
358 {
359 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
360
361 zt->zt_orig_abd = zio->io_abd;
362 zt->zt_orig_size = zio->io_size;
363 zt->zt_bufsize = bufsize;
364 zt->zt_transform = transform;
365
366 zt->zt_next = zio->io_transform_stack;
367 zio->io_transform_stack = zt;
368
369 zio->io_abd = data;
370 zio->io_size = size;
371 }
372
373 void
374 zio_pop_transforms(zio_t *zio)
375 {
376 zio_transform_t *zt;
377
378 while ((zt = zio->io_transform_stack) != NULL) {
379 if (zt->zt_transform != NULL)
380 zt->zt_transform(zio,
381 zt->zt_orig_abd, zt->zt_orig_size);
382
383 if (zt->zt_bufsize != 0)
384 abd_free(zio->io_abd);
385
386 zio->io_abd = zt->zt_orig_abd;
387 zio->io_size = zt->zt_orig_size;
388 zio->io_transform_stack = zt->zt_next;
389
390 kmem_free(zt, sizeof (zio_transform_t));
391 }
392 }
393
394 /*
395 * ==========================================================================
396 * I/O transform callbacks for subblocks, decompression, and decryption
397 * ==========================================================================
398 */
399 static void
400 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
401 {
402 ASSERT(zio->io_size > size);
403
404 if (zio->io_type == ZIO_TYPE_READ)
405 abd_copy(data, zio->io_abd, size);
406 }
407
408 static void
409 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
410 {
411 if (zio->io_error == 0) {
412 void *tmp = abd_borrow_buf(data, size);
413 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
414 zio->io_abd, tmp, zio->io_size, size,
415 &zio->io_prop.zp_complevel);
416 abd_return_buf_copy(data, tmp, size);
417
418 if (zio_injection_enabled && ret == 0)
419 ret = zio_handle_fault_injection(zio, EINVAL);
420
421 if (ret != 0)
422 zio->io_error = SET_ERROR(EIO);
423 }
424 }
425
426 static void
427 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
428 {
429 int ret;
430 void *tmp;
431 blkptr_t *bp = zio->io_bp;
432 spa_t *spa = zio->io_spa;
433 uint64_t dsobj = zio->io_bookmark.zb_objset;
434 uint64_t lsize = BP_GET_LSIZE(bp);
435 dmu_object_type_t ot = BP_GET_TYPE(bp);
436 uint8_t salt[ZIO_DATA_SALT_LEN];
437 uint8_t iv[ZIO_DATA_IV_LEN];
438 uint8_t mac[ZIO_DATA_MAC_LEN];
439 boolean_t no_crypt = B_FALSE;
440
441 ASSERT(BP_USES_CRYPT(bp));
442 ASSERT3U(size, !=, 0);
443
444 if (zio->io_error != 0)
445 return;
446
447 /*
448 * Verify the cksum of MACs stored in an indirect bp. It will always
449 * be possible to verify this since it does not require an encryption
450 * key.
451 */
452 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
453 zio_crypt_decode_mac_bp(bp, mac);
454
455 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
456 /*
457 * We haven't decompressed the data yet, but
458 * zio_crypt_do_indirect_mac_checksum() requires
459 * decompressed data to be able to parse out the MACs
460 * from the indirect block. We decompress it now and
461 * throw away the result after we are finished.
462 */
463 tmp = zio_buf_alloc(lsize);
464 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
465 zio->io_abd, tmp, zio->io_size, lsize,
466 &zio->io_prop.zp_complevel);
467 if (ret != 0) {
468 ret = SET_ERROR(EIO);
469 goto error;
470 }
471 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
472 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
473 zio_buf_free(tmp, lsize);
474 } else {
475 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
476 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
477 }
478 abd_copy(data, zio->io_abd, size);
479
480 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
481 ret = zio_handle_decrypt_injection(spa,
482 &zio->io_bookmark, ot, ECKSUM);
483 }
484 if (ret != 0)
485 goto error;
486
487 return;
488 }
489
490 /*
491 * If this is an authenticated block, just check the MAC. It would be
492 * nice to separate this out into its own flag, but for the moment
493 * enum zio_flag is out of bits.
494 */
495 if (BP_IS_AUTHENTICATED(bp)) {
496 if (ot == DMU_OT_OBJSET) {
497 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
498 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
499 } else {
500 zio_crypt_decode_mac_bp(bp, mac);
501 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
502 zio->io_abd, size, mac);
503 if (zio_injection_enabled && ret == 0) {
504 ret = zio_handle_decrypt_injection(spa,
505 &zio->io_bookmark, ot, ECKSUM);
506 }
507 }
508 abd_copy(data, zio->io_abd, size);
509
510 if (ret != 0)
511 goto error;
512
513 return;
514 }
515
516 zio_crypt_decode_params_bp(bp, salt, iv);
517
518 if (ot == DMU_OT_INTENT_LOG) {
519 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
520 zio_crypt_decode_mac_zil(tmp, mac);
521 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
522 } else {
523 zio_crypt_decode_mac_bp(bp, mac);
524 }
525
526 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
527 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
528 zio->io_abd, &no_crypt);
529 if (no_crypt)
530 abd_copy(data, zio->io_abd, size);
531
532 if (ret != 0)
533 goto error;
534
535 return;
536
537 error:
538 /* assert that the key was found unless this was speculative */
539 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
540
541 /*
542 * If there was a decryption / authentication error return EIO as
543 * the io_error. If this was not a speculative zio, create an ereport.
544 */
545 if (ret == ECKSUM) {
546 zio->io_error = SET_ERROR(EIO);
547 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
548 spa_log_error(spa, &zio->io_bookmark);
549 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
550 spa, NULL, &zio->io_bookmark, zio, 0, 0);
551 }
552 } else {
553 zio->io_error = ret;
554 }
555 }
556
557 /*
558 * ==========================================================================
559 * I/O parent/child relationships and pipeline interlocks
560 * ==========================================================================
561 */
562 zio_t *
563 zio_walk_parents(zio_t *cio, zio_link_t **zl)
564 {
565 list_t *pl = &cio->io_parent_list;
566
567 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
568 if (*zl == NULL)
569 return (NULL);
570
571 ASSERT((*zl)->zl_child == cio);
572 return ((*zl)->zl_parent);
573 }
574
575 zio_t *
576 zio_walk_children(zio_t *pio, zio_link_t **zl)
577 {
578 list_t *cl = &pio->io_child_list;
579
580 ASSERT(MUTEX_HELD(&pio->io_lock));
581
582 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
583 if (*zl == NULL)
584 return (NULL);
585
586 ASSERT((*zl)->zl_parent == pio);
587 return ((*zl)->zl_child);
588 }
589
590 zio_t *
591 zio_unique_parent(zio_t *cio)
592 {
593 zio_link_t *zl = NULL;
594 zio_t *pio = zio_walk_parents(cio, &zl);
595
596 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
597 return (pio);
598 }
599
600 void
601 zio_add_child(zio_t *pio, zio_t *cio)
602 {
603 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
604
605 /*
606 * Logical I/Os can have logical, gang, or vdev children.
607 * Gang I/Os can have gang or vdev children.
608 * Vdev I/Os can only have vdev children.
609 * The following ASSERT captures all of these constraints.
610 */
611 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
612
613 zl->zl_parent = pio;
614 zl->zl_child = cio;
615
616 mutex_enter(&pio->io_lock);
617 mutex_enter(&cio->io_lock);
618
619 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
620
621 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
622 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
623
624 list_insert_head(&pio->io_child_list, zl);
625 list_insert_head(&cio->io_parent_list, zl);
626
627 pio->io_child_count++;
628 cio->io_parent_count++;
629
630 mutex_exit(&cio->io_lock);
631 mutex_exit(&pio->io_lock);
632 }
633
634 static void
635 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
636 {
637 ASSERT(zl->zl_parent == pio);
638 ASSERT(zl->zl_child == cio);
639
640 mutex_enter(&pio->io_lock);
641 mutex_enter(&cio->io_lock);
642
643 list_remove(&pio->io_child_list, zl);
644 list_remove(&cio->io_parent_list, zl);
645
646 pio->io_child_count--;
647 cio->io_parent_count--;
648
649 mutex_exit(&cio->io_lock);
650 mutex_exit(&pio->io_lock);
651 kmem_cache_free(zio_link_cache, zl);
652 }
653
654 static boolean_t
655 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
656 {
657 boolean_t waiting = B_FALSE;
658
659 mutex_enter(&zio->io_lock);
660 ASSERT(zio->io_stall == NULL);
661 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
662 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
663 continue;
664
665 uint64_t *countp = &zio->io_children[c][wait];
666 if (*countp != 0) {
667 zio->io_stage >>= 1;
668 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
669 zio->io_stall = countp;
670 waiting = B_TRUE;
671 break;
672 }
673 }
674 mutex_exit(&zio->io_lock);
675 return (waiting);
676 }
677
678 __attribute__((always_inline))
679 static inline void
680 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
681 zio_t **next_to_executep)
682 {
683 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
684 int *errorp = &pio->io_child_error[zio->io_child_type];
685
686 mutex_enter(&pio->io_lock);
687 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
688 *errorp = zio_worst_error(*errorp, zio->io_error);
689 pio->io_reexecute |= zio->io_reexecute;
690 ASSERT3U(*countp, >, 0);
691
692 (*countp)--;
693
694 if (*countp == 0 && pio->io_stall == countp) {
695 zio_taskq_type_t type =
696 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
697 ZIO_TASKQ_INTERRUPT;
698 pio->io_stall = NULL;
699 mutex_exit(&pio->io_lock);
700
701 /*
702 * If we can tell the caller to execute this parent next, do
703 * so. Otherwise dispatch the parent zio as its own task.
704 *
705 * Having the caller execute the parent when possible reduces
706 * locking on the zio taskq's, reduces context switch
707 * overhead, and has no recursion penalty. Note that one
708 * read from disk typically causes at least 3 zio's: a
709 * zio_null(), the logical zio_read(), and then a physical
710 * zio. When the physical ZIO completes, we are able to call
711 * zio_done() on all 3 of these zio's from one invocation of
712 * zio_execute() by returning the parent back to
713 * zio_execute(). Since the parent isn't executed until this
714 * thread returns back to zio_execute(), the caller should do
715 * so promptly.
716 *
717 * In other cases, dispatching the parent prevents
718 * overflowing the stack when we have deeply nested
719 * parent-child relationships, as we do with the "mega zio"
720 * of writes for spa_sync(), and the chain of ZIL blocks.
721 */
722 if (next_to_executep != NULL && *next_to_executep == NULL) {
723 *next_to_executep = pio;
724 } else {
725 zio_taskq_dispatch(pio, type, B_FALSE);
726 }
727 } else {
728 mutex_exit(&pio->io_lock);
729 }
730 }
731
732 static void
733 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
734 {
735 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
736 zio->io_error = zio->io_child_error[c];
737 }
738
739 int
740 zio_bookmark_compare(const void *x1, const void *x2)
741 {
742 const zio_t *z1 = x1;
743 const zio_t *z2 = x2;
744
745 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
746 return (-1);
747 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
748 return (1);
749
750 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
751 return (-1);
752 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
753 return (1);
754
755 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
756 return (-1);
757 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
758 return (1);
759
760 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
761 return (-1);
762 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
763 return (1);
764
765 if (z1 < z2)
766 return (-1);
767 if (z1 > z2)
768 return (1);
769
770 return (0);
771 }
772
773 /*
774 * ==========================================================================
775 * Create the various types of I/O (read, write, free, etc)
776 * ==========================================================================
777 */
778 static zio_t *
779 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
780 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
781 void *private, zio_type_t type, zio_priority_t priority,
782 enum zio_flag flags, vdev_t *vd, uint64_t offset,
783 const zbookmark_phys_t *zb, enum zio_stage stage,
784 enum zio_stage pipeline)
785 {
786 zio_t *zio;
787
788 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
789 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
790 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
791
792 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
793 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
794 ASSERT(vd || stage == ZIO_STAGE_OPEN);
795
796 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
797
798 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
799 bzero(zio, sizeof (zio_t));
800
801 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
802 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
803
804 list_create(&zio->io_parent_list, sizeof (zio_link_t),
805 offsetof(zio_link_t, zl_parent_node));
806 list_create(&zio->io_child_list, sizeof (zio_link_t),
807 offsetof(zio_link_t, zl_child_node));
808 metaslab_trace_init(&zio->io_alloc_list);
809
810 if (vd != NULL)
811 zio->io_child_type = ZIO_CHILD_VDEV;
812 else if (flags & ZIO_FLAG_GANG_CHILD)
813 zio->io_child_type = ZIO_CHILD_GANG;
814 else if (flags & ZIO_FLAG_DDT_CHILD)
815 zio->io_child_type = ZIO_CHILD_DDT;
816 else
817 zio->io_child_type = ZIO_CHILD_LOGICAL;
818
819 if (bp != NULL) {
820 zio->io_bp = (blkptr_t *)bp;
821 zio->io_bp_copy = *bp;
822 zio->io_bp_orig = *bp;
823 if (type != ZIO_TYPE_WRITE ||
824 zio->io_child_type == ZIO_CHILD_DDT)
825 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
826 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
827 zio->io_logical = zio;
828 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
829 pipeline |= ZIO_GANG_STAGES;
830 }
831
832 zio->io_spa = spa;
833 zio->io_txg = txg;
834 zio->io_done = done;
835 zio->io_private = private;
836 zio->io_type = type;
837 zio->io_priority = priority;
838 zio->io_vd = vd;
839 zio->io_offset = offset;
840 zio->io_orig_abd = zio->io_abd = data;
841 zio->io_orig_size = zio->io_size = psize;
842 zio->io_lsize = lsize;
843 zio->io_orig_flags = zio->io_flags = flags;
844 zio->io_orig_stage = zio->io_stage = stage;
845 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
846 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
847
848 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
849 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
850
851 if (zb != NULL)
852 zio->io_bookmark = *zb;
853
854 if (pio != NULL) {
855 if (zio->io_metaslab_class == NULL)
856 zio->io_metaslab_class = pio->io_metaslab_class;
857 if (zio->io_logical == NULL)
858 zio->io_logical = pio->io_logical;
859 if (zio->io_child_type == ZIO_CHILD_GANG)
860 zio->io_gang_leader = pio->io_gang_leader;
861 zio_add_child(pio, zio);
862 }
863
864 taskq_init_ent(&zio->io_tqent);
865
866 return (zio);
867 }
868
869 static void
870 zio_destroy(zio_t *zio)
871 {
872 metaslab_trace_fini(&zio->io_alloc_list);
873 list_destroy(&zio->io_parent_list);
874 list_destroy(&zio->io_child_list);
875 mutex_destroy(&zio->io_lock);
876 cv_destroy(&zio->io_cv);
877 kmem_cache_free(zio_cache, zio);
878 }
879
880 zio_t *
881 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
882 void *private, enum zio_flag flags)
883 {
884 zio_t *zio;
885
886 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
887 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
888 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
889
890 return (zio);
891 }
892
893 zio_t *
894 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
895 {
896 return (zio_null(NULL, spa, NULL, done, private, flags));
897 }
898
899 static int
900 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
901 enum blk_verify_flag blk_verify, const char *fmt, ...)
902 {
903 va_list adx;
904 char buf[256];
905
906 va_start(adx, fmt);
907 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
908 va_end(adx);
909
910 switch (blk_verify) {
911 case BLK_VERIFY_HALT:
912 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
913 zfs_panic_recover("%s: %s", spa_name(spa), buf);
914 break;
915 case BLK_VERIFY_LOG:
916 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
917 break;
918 case BLK_VERIFY_ONLY:
919 break;
920 }
921
922 return (1);
923 }
924
925 /*
926 * Verify the block pointer fields contain reasonable values. This means
927 * it only contains known object types, checksum/compression identifiers,
928 * block sizes within the maximum allowed limits, valid DVAs, etc.
929 *
930 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
931 * argument controls the behavior when an invalid field is detected.
932 *
933 * Modes for zfs_blkptr_verify:
934 * 1) BLK_VERIFY_ONLY (evaluate the block)
935 * 2) BLK_VERIFY_LOG (evaluate the block and log problems)
936 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
937 */
938 boolean_t
939 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
940 enum blk_verify_flag blk_verify)
941 {
942 int errors = 0;
943
944 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
945 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
946 "blkptr at %p has invalid TYPE %llu",
947 bp, (longlong_t)BP_GET_TYPE(bp));
948 }
949 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
950 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
951 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
952 "blkptr at %p has invalid CHECKSUM %llu",
953 bp, (longlong_t)BP_GET_CHECKSUM(bp));
954 }
955 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
956 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
957 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
958 "blkptr at %p has invalid COMPRESS %llu",
959 bp, (longlong_t)BP_GET_COMPRESS(bp));
960 }
961 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
962 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
963 "blkptr at %p has invalid LSIZE %llu",
964 bp, (longlong_t)BP_GET_LSIZE(bp));
965 }
966 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
967 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
968 "blkptr at %p has invalid PSIZE %llu",
969 bp, (longlong_t)BP_GET_PSIZE(bp));
970 }
971
972 if (BP_IS_EMBEDDED(bp)) {
973 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
974 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
975 "blkptr at %p has invalid ETYPE %llu",
976 bp, (longlong_t)BPE_GET_ETYPE(bp));
977 }
978 }
979
980 /*
981 * Do not verify individual DVAs if the config is not trusted. This
982 * will be done once the zio is executed in vdev_mirror_map_alloc.
983 */
984 if (!spa->spa_trust_config)
985 return (B_TRUE);
986
987 if (!config_held)
988 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
989 else
990 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
991 /*
992 * Pool-specific checks.
993 *
994 * Note: it would be nice to verify that the blk_birth and
995 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
996 * allows the birth time of log blocks (and dmu_sync()-ed blocks
997 * that are in the log) to be arbitrarily large.
998 */
999 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1000 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
1001
1002 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1003 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1004 "blkptr at %p DVA %u has invalid VDEV %llu",
1005 bp, i, (longlong_t)vdevid);
1006 continue;
1007 }
1008 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1009 if (vd == NULL) {
1010 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1011 "blkptr at %p DVA %u has invalid VDEV %llu",
1012 bp, i, (longlong_t)vdevid);
1013 continue;
1014 }
1015 if (vd->vdev_ops == &vdev_hole_ops) {
1016 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1017 "blkptr at %p DVA %u has hole VDEV %llu",
1018 bp, i, (longlong_t)vdevid);
1019 continue;
1020 }
1021 if (vd->vdev_ops == &vdev_missing_ops) {
1022 /*
1023 * "missing" vdevs are valid during import, but we
1024 * don't have their detailed info (e.g. asize), so
1025 * we can't perform any more checks on them.
1026 */
1027 continue;
1028 }
1029 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
1030 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
1031 if (BP_IS_GANG(bp))
1032 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1033 if (offset + asize > vd->vdev_asize) {
1034 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1035 "blkptr at %p DVA %u has invalid OFFSET %llu",
1036 bp, i, (longlong_t)offset);
1037 }
1038 }
1039 if (errors > 0)
1040 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1041 if (!config_held)
1042 spa_config_exit(spa, SCL_VDEV, bp);
1043
1044 return (errors == 0);
1045 }
1046
1047 boolean_t
1048 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1049 {
1050 uint64_t vdevid = DVA_GET_VDEV(dva);
1051
1052 if (vdevid >= spa->spa_root_vdev->vdev_children)
1053 return (B_FALSE);
1054
1055 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1056 if (vd == NULL)
1057 return (B_FALSE);
1058
1059 if (vd->vdev_ops == &vdev_hole_ops)
1060 return (B_FALSE);
1061
1062 if (vd->vdev_ops == &vdev_missing_ops) {
1063 return (B_FALSE);
1064 }
1065
1066 uint64_t offset = DVA_GET_OFFSET(dva);
1067 uint64_t asize = DVA_GET_ASIZE(dva);
1068
1069 if (BP_IS_GANG(bp))
1070 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1071 if (offset + asize > vd->vdev_asize)
1072 return (B_FALSE);
1073
1074 return (B_TRUE);
1075 }
1076
1077 zio_t *
1078 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1079 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1080 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1081 {
1082 zio_t *zio;
1083
1084 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1085 BLK_VERIFY_HALT);
1086
1087 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1088 data, size, size, done, private,
1089 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1090 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1091 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1092
1093 return (zio);
1094 }
1095
1096 zio_t *
1097 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1098 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1099 zio_done_func_t *ready, zio_done_func_t *children_ready,
1100 zio_done_func_t *physdone, zio_done_func_t *done,
1101 void *private, zio_priority_t priority, enum zio_flag flags,
1102 const zbookmark_phys_t *zb)
1103 {
1104 zio_t *zio;
1105
1106 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1107 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1108 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1109 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1110 DMU_OT_IS_VALID(zp->zp_type) &&
1111 zp->zp_level < 32 &&
1112 zp->zp_copies > 0 &&
1113 zp->zp_copies <= spa_max_replication(spa));
1114
1115 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1116 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1117 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1118 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1119
1120 zio->io_ready = ready;
1121 zio->io_children_ready = children_ready;
1122 zio->io_physdone = physdone;
1123 zio->io_prop = *zp;
1124
1125 /*
1126 * Data can be NULL if we are going to call zio_write_override() to
1127 * provide the already-allocated BP. But we may need the data to
1128 * verify a dedup hit (if requested). In this case, don't try to
1129 * dedup (just take the already-allocated BP verbatim). Encrypted
1130 * dedup blocks need data as well so we also disable dedup in this
1131 * case.
1132 */
1133 if (data == NULL &&
1134 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1135 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1136 }
1137
1138 return (zio);
1139 }
1140
1141 zio_t *
1142 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1143 uint64_t size, zio_done_func_t *done, void *private,
1144 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1145 {
1146 zio_t *zio;
1147
1148 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1149 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1150 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1151
1152 return (zio);
1153 }
1154
1155 void
1156 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1157 {
1158 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1159 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1160 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1161 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1162
1163 /*
1164 * We must reset the io_prop to match the values that existed
1165 * when the bp was first written by dmu_sync() keeping in mind
1166 * that nopwrite and dedup are mutually exclusive.
1167 */
1168 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1169 zio->io_prop.zp_nopwrite = nopwrite;
1170 zio->io_prop.zp_copies = copies;
1171 zio->io_bp_override = bp;
1172 }
1173
1174 void
1175 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1176 {
1177
1178 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1179
1180 /*
1181 * The check for EMBEDDED is a performance optimization. We
1182 * process the free here (by ignoring it) rather than
1183 * putting it on the list and then processing it in zio_free_sync().
1184 */
1185 if (BP_IS_EMBEDDED(bp))
1186 return;
1187 metaslab_check_free(spa, bp);
1188
1189 /*
1190 * Frees that are for the currently-syncing txg, are not going to be
1191 * deferred, and which will not need to do a read (i.e. not GANG or
1192 * DEDUP), can be processed immediately. Otherwise, put them on the
1193 * in-memory list for later processing.
1194 *
1195 * Note that we only defer frees after zfs_sync_pass_deferred_free
1196 * when the log space map feature is disabled. [see relevant comment
1197 * in spa_sync_iterate_to_convergence()]
1198 */
1199 if (BP_IS_GANG(bp) ||
1200 BP_GET_DEDUP(bp) ||
1201 txg != spa->spa_syncing_txg ||
1202 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1203 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1204 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1205 } else {
1206 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1207 }
1208 }
1209
1210 /*
1211 * To improve performance, this function may return NULL if we were able
1212 * to do the free immediately. This avoids the cost of creating a zio
1213 * (and linking it to the parent, etc).
1214 */
1215 zio_t *
1216 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1217 enum zio_flag flags)
1218 {
1219 ASSERT(!BP_IS_HOLE(bp));
1220 ASSERT(spa_syncing_txg(spa) == txg);
1221
1222 if (BP_IS_EMBEDDED(bp))
1223 return (NULL);
1224
1225 metaslab_check_free(spa, bp);
1226 arc_freed(spa, bp);
1227 dsl_scan_freed(spa, bp);
1228
1229 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1230 /*
1231 * GANG and DEDUP blocks can induce a read (for the gang block
1232 * header, or the DDT), so issue them asynchronously so that
1233 * this thread is not tied up.
1234 */
1235 enum zio_stage stage =
1236 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1237
1238 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1239 BP_GET_PSIZE(bp), NULL, NULL,
1240 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1241 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1242 } else {
1243 metaslab_free(spa, bp, txg, B_FALSE);
1244 return (NULL);
1245 }
1246 }
1247
1248 zio_t *
1249 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1250 zio_done_func_t *done, void *private, enum zio_flag flags)
1251 {
1252 zio_t *zio;
1253
1254 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1255 BLK_VERIFY_HALT);
1256
1257 if (BP_IS_EMBEDDED(bp))
1258 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1259
1260 /*
1261 * A claim is an allocation of a specific block. Claims are needed
1262 * to support immediate writes in the intent log. The issue is that
1263 * immediate writes contain committed data, but in a txg that was
1264 * *not* committed. Upon opening the pool after an unclean shutdown,
1265 * the intent log claims all blocks that contain immediate write data
1266 * so that the SPA knows they're in use.
1267 *
1268 * All claims *must* be resolved in the first txg -- before the SPA
1269 * starts allocating blocks -- so that nothing is allocated twice.
1270 * If txg == 0 we just verify that the block is claimable.
1271 */
1272 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1273 spa_min_claim_txg(spa));
1274 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1275 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
1276
1277 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1278 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1279 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1280 ASSERT0(zio->io_queued_timestamp);
1281
1282 return (zio);
1283 }
1284
1285 zio_t *
1286 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1287 zio_done_func_t *done, void *private, enum zio_flag flags)
1288 {
1289 zio_t *zio;
1290 int c;
1291
1292 if (vd->vdev_children == 0) {
1293 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1294 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1295 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1296
1297 zio->io_cmd = cmd;
1298 } else {
1299 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1300
1301 for (c = 0; c < vd->vdev_children; c++)
1302 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1303 done, private, flags));
1304 }
1305
1306 return (zio);
1307 }
1308
1309 zio_t *
1310 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1311 zio_done_func_t *done, void *private, zio_priority_t priority,
1312 enum zio_flag flags, enum trim_flag trim_flags)
1313 {
1314 zio_t *zio;
1315
1316 ASSERT0(vd->vdev_children);
1317 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1318 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1319 ASSERT3U(size, !=, 0);
1320
1321 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1322 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1323 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1324 zio->io_trim_flags = trim_flags;
1325
1326 return (zio);
1327 }
1328
1329 zio_t *
1330 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1331 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1332 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1333 {
1334 zio_t *zio;
1335
1336 ASSERT(vd->vdev_children == 0);
1337 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1338 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1339 ASSERT3U(offset + size, <=, vd->vdev_psize);
1340
1341 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1342 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1343 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1344
1345 zio->io_prop.zp_checksum = checksum;
1346
1347 return (zio);
1348 }
1349
1350 zio_t *
1351 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1352 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1353 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1354 {
1355 zio_t *zio;
1356
1357 ASSERT(vd->vdev_children == 0);
1358 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1359 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1360 ASSERT3U(offset + size, <=, vd->vdev_psize);
1361
1362 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1363 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1364 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1365
1366 zio->io_prop.zp_checksum = checksum;
1367
1368 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1369 /*
1370 * zec checksums are necessarily destructive -- they modify
1371 * the end of the write buffer to hold the verifier/checksum.
1372 * Therefore, we must make a local copy in case the data is
1373 * being written to multiple places in parallel.
1374 */
1375 abd_t *wbuf = abd_alloc_sametype(data, size);
1376 abd_copy(wbuf, data, size);
1377
1378 zio_push_transform(zio, wbuf, size, size, NULL);
1379 }
1380
1381 return (zio);
1382 }
1383
1384 /*
1385 * Create a child I/O to do some work for us.
1386 */
1387 zio_t *
1388 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1389 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1390 enum zio_flag flags, zio_done_func_t *done, void *private)
1391 {
1392 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1393 zio_t *zio;
1394
1395 /*
1396 * vdev child I/Os do not propagate their error to the parent.
1397 * Therefore, for correct operation the caller *must* check for
1398 * and handle the error in the child i/o's done callback.
1399 * The only exceptions are i/os that we don't care about
1400 * (OPTIONAL or REPAIR).
1401 */
1402 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1403 done != NULL);
1404
1405 if (type == ZIO_TYPE_READ && bp != NULL) {
1406 /*
1407 * If we have the bp, then the child should perform the
1408 * checksum and the parent need not. This pushes error
1409 * detection as close to the leaves as possible and
1410 * eliminates redundant checksums in the interior nodes.
1411 */
1412 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1413 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1414 }
1415
1416 if (vd->vdev_ops->vdev_op_leaf) {
1417 ASSERT0(vd->vdev_children);
1418 offset += VDEV_LABEL_START_SIZE;
1419 }
1420
1421 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1422
1423 /*
1424 * If we've decided to do a repair, the write is not speculative --
1425 * even if the original read was.
1426 */
1427 if (flags & ZIO_FLAG_IO_REPAIR)
1428 flags &= ~ZIO_FLAG_SPECULATIVE;
1429
1430 /*
1431 * If we're creating a child I/O that is not associated with a
1432 * top-level vdev, then the child zio is not an allocating I/O.
1433 * If this is a retried I/O then we ignore it since we will
1434 * have already processed the original allocating I/O.
1435 */
1436 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1437 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1438 ASSERT(pio->io_metaslab_class != NULL);
1439 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1440 ASSERT(type == ZIO_TYPE_WRITE);
1441 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1442 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1443 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1444 pio->io_child_type == ZIO_CHILD_GANG);
1445
1446 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1447 }
1448
1449
1450 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1451 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1452 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1453 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1454
1455 zio->io_physdone = pio->io_physdone;
1456 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1457 zio->io_logical->io_phys_children++;
1458
1459 return (zio);
1460 }
1461
1462 zio_t *
1463 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1464 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1465 zio_done_func_t *done, void *private)
1466 {
1467 zio_t *zio;
1468
1469 ASSERT(vd->vdev_ops->vdev_op_leaf);
1470
1471 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1472 data, size, size, done, private, type, priority,
1473 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1474 vd, offset, NULL,
1475 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1476
1477 return (zio);
1478 }
1479
1480 void
1481 zio_flush(zio_t *zio, vdev_t *vd)
1482 {
1483 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1484 NULL, NULL,
1485 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1486 }
1487
1488 void
1489 zio_shrink(zio_t *zio, uint64_t size)
1490 {
1491 ASSERT3P(zio->io_executor, ==, NULL);
1492 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1493 ASSERT3U(size, <=, zio->io_size);
1494
1495 /*
1496 * We don't shrink for raidz because of problems with the
1497 * reconstruction when reading back less than the block size.
1498 * Note, BP_IS_RAIDZ() assumes no compression.
1499 */
1500 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1501 if (!BP_IS_RAIDZ(zio->io_bp)) {
1502 /* we are not doing a raw write */
1503 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1504 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1505 }
1506 }
1507
1508 /*
1509 * ==========================================================================
1510 * Prepare to read and write logical blocks
1511 * ==========================================================================
1512 */
1513
1514 static zio_t *
1515 zio_read_bp_init(zio_t *zio)
1516 {
1517 blkptr_t *bp = zio->io_bp;
1518 uint64_t psize =
1519 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1520
1521 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1522
1523 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1524 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1525 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1526 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1527 psize, psize, zio_decompress);
1528 }
1529
1530 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1531 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1532 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1533 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1534 psize, psize, zio_decrypt);
1535 }
1536
1537 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1538 int psize = BPE_GET_PSIZE(bp);
1539 void *data = abd_borrow_buf(zio->io_abd, psize);
1540
1541 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1542 decode_embedded_bp_compressed(bp, data);
1543 abd_return_buf_copy(zio->io_abd, data, psize);
1544 } else {
1545 ASSERT(!BP_IS_EMBEDDED(bp));
1546 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1547 }
1548
1549 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1550 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1551
1552 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1553 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1554
1555 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1556 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1557
1558 return (zio);
1559 }
1560
1561 static zio_t *
1562 zio_write_bp_init(zio_t *zio)
1563 {
1564 if (!IO_IS_ALLOCATING(zio))
1565 return (zio);
1566
1567 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1568
1569 if (zio->io_bp_override) {
1570 blkptr_t *bp = zio->io_bp;
1571 zio_prop_t *zp = &zio->io_prop;
1572
1573 ASSERT(bp->blk_birth != zio->io_txg);
1574 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1575
1576 *bp = *zio->io_bp_override;
1577 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1578
1579 if (BP_IS_EMBEDDED(bp))
1580 return (zio);
1581
1582 /*
1583 * If we've been overridden and nopwrite is set then
1584 * set the flag accordingly to indicate that a nopwrite
1585 * has already occurred.
1586 */
1587 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1588 ASSERT(!zp->zp_dedup);
1589 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1590 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1591 return (zio);
1592 }
1593
1594 ASSERT(!zp->zp_nopwrite);
1595
1596 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1597 return (zio);
1598
1599 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1600 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1601
1602 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1603 !zp->zp_encrypt) {
1604 BP_SET_DEDUP(bp, 1);
1605 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1606 return (zio);
1607 }
1608
1609 /*
1610 * We were unable to handle this as an override bp, treat
1611 * it as a regular write I/O.
1612 */
1613 zio->io_bp_override = NULL;
1614 *bp = zio->io_bp_orig;
1615 zio->io_pipeline = zio->io_orig_pipeline;
1616 }
1617
1618 return (zio);
1619 }
1620
1621 static zio_t *
1622 zio_write_compress(zio_t *zio)
1623 {
1624 spa_t *spa = zio->io_spa;
1625 zio_prop_t *zp = &zio->io_prop;
1626 enum zio_compress compress = zp->zp_compress;
1627 blkptr_t *bp = zio->io_bp;
1628 uint64_t lsize = zio->io_lsize;
1629 uint64_t psize = zio->io_size;
1630 int pass = 1;
1631
1632 /*
1633 * If our children haven't all reached the ready stage,
1634 * wait for them and then repeat this pipeline stage.
1635 */
1636 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1637 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1638 return (NULL);
1639 }
1640
1641 if (!IO_IS_ALLOCATING(zio))
1642 return (zio);
1643
1644 if (zio->io_children_ready != NULL) {
1645 /*
1646 * Now that all our children are ready, run the callback
1647 * associated with this zio in case it wants to modify the
1648 * data to be written.
1649 */
1650 ASSERT3U(zp->zp_level, >, 0);
1651 zio->io_children_ready(zio);
1652 }
1653
1654 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1655 ASSERT(zio->io_bp_override == NULL);
1656
1657 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1658 /*
1659 * We're rewriting an existing block, which means we're
1660 * working on behalf of spa_sync(). For spa_sync() to
1661 * converge, it must eventually be the case that we don't
1662 * have to allocate new blocks. But compression changes
1663 * the blocksize, which forces a reallocate, and makes
1664 * convergence take longer. Therefore, after the first
1665 * few passes, stop compressing to ensure convergence.
1666 */
1667 pass = spa_sync_pass(spa);
1668
1669 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1670 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1671 ASSERT(!BP_GET_DEDUP(bp));
1672
1673 if (pass >= zfs_sync_pass_dont_compress)
1674 compress = ZIO_COMPRESS_OFF;
1675
1676 /* Make sure someone doesn't change their mind on overwrites */
1677 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1678 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1679 }
1680
1681 /* If it's a compressed write that is not raw, compress the buffer. */
1682 if (compress != ZIO_COMPRESS_OFF &&
1683 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1684 void *cbuf = zio_buf_alloc(lsize);
1685 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1686 zp->zp_complevel);
1687 if (psize == 0 || psize >= lsize) {
1688 compress = ZIO_COMPRESS_OFF;
1689 zio_buf_free(cbuf, lsize);
1690 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1691 psize <= BPE_PAYLOAD_SIZE &&
1692 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1693 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1694 encode_embedded_bp_compressed(bp,
1695 cbuf, compress, lsize, psize);
1696 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1697 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1698 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1699 zio_buf_free(cbuf, lsize);
1700 bp->blk_birth = zio->io_txg;
1701 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1702 ASSERT(spa_feature_is_active(spa,
1703 SPA_FEATURE_EMBEDDED_DATA));
1704 return (zio);
1705 } else {
1706 /*
1707 * Round up compressed size up to the ashift
1708 * of the smallest-ashift device, and zero the tail.
1709 * This ensures that the compressed size of the BP
1710 * (and thus compressratio property) are correct,
1711 * in that we charge for the padding used to fill out
1712 * the last sector.
1713 */
1714 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1715 size_t rounded = (size_t)P2ROUNDUP(psize,
1716 1ULL << spa->spa_min_ashift);
1717 if (rounded >= lsize) {
1718 compress = ZIO_COMPRESS_OFF;
1719 zio_buf_free(cbuf, lsize);
1720 psize = lsize;
1721 } else {
1722 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1723 abd_take_ownership_of_buf(cdata, B_TRUE);
1724 abd_zero_off(cdata, psize, rounded - psize);
1725 psize = rounded;
1726 zio_push_transform(zio, cdata,
1727 psize, lsize, NULL);
1728 }
1729 }
1730
1731 /*
1732 * We were unable to handle this as an override bp, treat
1733 * it as a regular write I/O.
1734 */
1735 zio->io_bp_override = NULL;
1736 *bp = zio->io_bp_orig;
1737 zio->io_pipeline = zio->io_orig_pipeline;
1738
1739 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1740 zp->zp_type == DMU_OT_DNODE) {
1741 /*
1742 * The DMU actually relies on the zio layer's compression
1743 * to free metadnode blocks that have had all contained
1744 * dnodes freed. As a result, even when doing a raw
1745 * receive, we must check whether the block can be compressed
1746 * to a hole.
1747 */
1748 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1749 zio->io_abd, NULL, lsize, zp->zp_complevel);
1750 if (psize == 0 || psize >= lsize)
1751 compress = ZIO_COMPRESS_OFF;
1752 } else {
1753 ASSERT3U(psize, !=, 0);
1754 }
1755
1756 /*
1757 * The final pass of spa_sync() must be all rewrites, but the first
1758 * few passes offer a trade-off: allocating blocks defers convergence,
1759 * but newly allocated blocks are sequential, so they can be written
1760 * to disk faster. Therefore, we allow the first few passes of
1761 * spa_sync() to allocate new blocks, but force rewrites after that.
1762 * There should only be a handful of blocks after pass 1 in any case.
1763 */
1764 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1765 BP_GET_PSIZE(bp) == psize &&
1766 pass >= zfs_sync_pass_rewrite) {
1767 VERIFY3U(psize, !=, 0);
1768 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1769
1770 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1771 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1772 } else {
1773 BP_ZERO(bp);
1774 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1775 }
1776
1777 if (psize == 0) {
1778 if (zio->io_bp_orig.blk_birth != 0 &&
1779 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1780 BP_SET_LSIZE(bp, lsize);
1781 BP_SET_TYPE(bp, zp->zp_type);
1782 BP_SET_LEVEL(bp, zp->zp_level);
1783 BP_SET_BIRTH(bp, zio->io_txg, 0);
1784 }
1785 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1786 } else {
1787 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1788 BP_SET_LSIZE(bp, lsize);
1789 BP_SET_TYPE(bp, zp->zp_type);
1790 BP_SET_LEVEL(bp, zp->zp_level);
1791 BP_SET_PSIZE(bp, psize);
1792 BP_SET_COMPRESS(bp, compress);
1793 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1794 BP_SET_DEDUP(bp, zp->zp_dedup);
1795 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1796 if (zp->zp_dedup) {
1797 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1798 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1799 ASSERT(!zp->zp_encrypt ||
1800 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1801 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1802 }
1803 if (zp->zp_nopwrite) {
1804 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1805 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1806 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1807 }
1808 }
1809 return (zio);
1810 }
1811
1812 static zio_t *
1813 zio_free_bp_init(zio_t *zio)
1814 {
1815 blkptr_t *bp = zio->io_bp;
1816
1817 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1818 if (BP_GET_DEDUP(bp))
1819 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1820 }
1821
1822 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1823
1824 return (zio);
1825 }
1826
1827 /*
1828 * ==========================================================================
1829 * Execute the I/O pipeline
1830 * ==========================================================================
1831 */
1832
1833 static void
1834 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1835 {
1836 spa_t *spa = zio->io_spa;
1837 zio_type_t t = zio->io_type;
1838 int flags = (cutinline ? TQ_FRONT : 0);
1839
1840 /*
1841 * If we're a config writer or a probe, the normal issue and
1842 * interrupt threads may all be blocked waiting for the config lock.
1843 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1844 */
1845 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1846 t = ZIO_TYPE_NULL;
1847
1848 /*
1849 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1850 */
1851 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1852 t = ZIO_TYPE_NULL;
1853
1854 /*
1855 * If this is a high priority I/O, then use the high priority taskq if
1856 * available.
1857 */
1858 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1859 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1860 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1861 q++;
1862
1863 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1864
1865 /*
1866 * NB: We are assuming that the zio can only be dispatched
1867 * to a single taskq at a time. It would be a grievous error
1868 * to dispatch the zio to another taskq at the same time.
1869 */
1870 ASSERT(taskq_empty_ent(&zio->io_tqent));
1871 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1872 flags, &zio->io_tqent);
1873 }
1874
1875 static boolean_t
1876 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1877 {
1878 spa_t *spa = zio->io_spa;
1879
1880 taskq_t *tq = taskq_of_curthread();
1881
1882 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1883 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1884 uint_t i;
1885 for (i = 0; i < tqs->stqs_count; i++) {
1886 if (tqs->stqs_taskq[i] == tq)
1887 return (B_TRUE);
1888 }
1889 }
1890
1891 return (B_FALSE);
1892 }
1893
1894 static zio_t *
1895 zio_issue_async(zio_t *zio)
1896 {
1897 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1898
1899 return (NULL);
1900 }
1901
1902 void
1903 zio_interrupt(zio_t *zio)
1904 {
1905 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1906 }
1907
1908 void
1909 zio_delay_interrupt(zio_t *zio)
1910 {
1911 /*
1912 * The timeout_generic() function isn't defined in userspace, so
1913 * rather than trying to implement the function, the zio delay
1914 * functionality has been disabled for userspace builds.
1915 */
1916
1917 #ifdef _KERNEL
1918 /*
1919 * If io_target_timestamp is zero, then no delay has been registered
1920 * for this IO, thus jump to the end of this function and "skip" the
1921 * delay; issuing it directly to the zio layer.
1922 */
1923 if (zio->io_target_timestamp != 0) {
1924 hrtime_t now = gethrtime();
1925
1926 if (now >= zio->io_target_timestamp) {
1927 /*
1928 * This IO has already taken longer than the target
1929 * delay to complete, so we don't want to delay it
1930 * any longer; we "miss" the delay and issue it
1931 * directly to the zio layer. This is likely due to
1932 * the target latency being set to a value less than
1933 * the underlying hardware can satisfy (e.g. delay
1934 * set to 1ms, but the disks take 10ms to complete an
1935 * IO request).
1936 */
1937
1938 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1939 hrtime_t, now);
1940
1941 zio_interrupt(zio);
1942 } else {
1943 taskqid_t tid;
1944 hrtime_t diff = zio->io_target_timestamp - now;
1945 clock_t expire_at_tick = ddi_get_lbolt() +
1946 NSEC_TO_TICK(diff);
1947
1948 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1949 hrtime_t, now, hrtime_t, diff);
1950
1951 if (NSEC_TO_TICK(diff) == 0) {
1952 /* Our delay is less than a jiffy - just spin */
1953 zfs_sleep_until(zio->io_target_timestamp);
1954 zio_interrupt(zio);
1955 } else {
1956 /*
1957 * Use taskq_dispatch_delay() in the place of
1958 * OpenZFS's timeout_generic().
1959 */
1960 tid = taskq_dispatch_delay(system_taskq,
1961 (task_func_t *)zio_interrupt,
1962 zio, TQ_NOSLEEP, expire_at_tick);
1963 if (tid == TASKQID_INVALID) {
1964 /*
1965 * Couldn't allocate a task. Just
1966 * finish the zio without a delay.
1967 */
1968 zio_interrupt(zio);
1969 }
1970 }
1971 }
1972 return;
1973 }
1974 #endif
1975 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1976 zio_interrupt(zio);
1977 }
1978
1979 static void
1980 zio_deadman_impl(zio_t *pio, int ziodepth)
1981 {
1982 zio_t *cio, *cio_next;
1983 zio_link_t *zl = NULL;
1984 vdev_t *vd = pio->io_vd;
1985
1986 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
1987 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
1988 zbookmark_phys_t *zb = &pio->io_bookmark;
1989 uint64_t delta = gethrtime() - pio->io_timestamp;
1990 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
1991
1992 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
1993 "delta=%llu queued=%llu io=%llu "
1994 "path=%s last=%llu "
1995 "type=%d priority=%d flags=0x%x "
1996 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
1997 "objset=%llu object=%llu level=%llu blkid=%llu "
1998 "offset=%llu size=%llu error=%d",
1999 ziodepth, pio, pio->io_timestamp,
2000 delta, pio->io_delta, pio->io_delay,
2001 vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0,
2002 pio->io_type, pio->io_priority, pio->io_flags,
2003 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2004 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
2005 pio->io_offset, pio->io_size, pio->io_error);
2006 zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2007 pio->io_spa, vd, zb, pio, 0, 0);
2008
2009 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2010 taskq_empty_ent(&pio->io_tqent)) {
2011 zio_interrupt(pio);
2012 }
2013 }
2014
2015 mutex_enter(&pio->io_lock);
2016 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2017 cio_next = zio_walk_children(pio, &zl);
2018 zio_deadman_impl(cio, ziodepth + 1);
2019 }
2020 mutex_exit(&pio->io_lock);
2021 }
2022
2023 /*
2024 * Log the critical information describing this zio and all of its children
2025 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2026 */
2027 void
2028 zio_deadman(zio_t *pio, char *tag)
2029 {
2030 spa_t *spa = pio->io_spa;
2031 char *name = spa_name(spa);
2032
2033 if (!zfs_deadman_enabled || spa_suspended(spa))
2034 return;
2035
2036 zio_deadman_impl(pio, 0);
2037
2038 switch (spa_get_deadman_failmode(spa)) {
2039 case ZIO_FAILURE_MODE_WAIT:
2040 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2041 break;
2042
2043 case ZIO_FAILURE_MODE_CONTINUE:
2044 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2045 break;
2046
2047 case ZIO_FAILURE_MODE_PANIC:
2048 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2049 break;
2050 }
2051 }
2052
2053 /*
2054 * Execute the I/O pipeline until one of the following occurs:
2055 * (1) the I/O completes; (2) the pipeline stalls waiting for
2056 * dependent child I/Os; (3) the I/O issues, so we're waiting
2057 * for an I/O completion interrupt; (4) the I/O is delegated by
2058 * vdev-level caching or aggregation; (5) the I/O is deferred
2059 * due to vdev-level queueing; (6) the I/O is handed off to
2060 * another thread. In all cases, the pipeline stops whenever
2061 * there's no CPU work; it never burns a thread in cv_wait_io().
2062 *
2063 * There's no locking on io_stage because there's no legitimate way
2064 * for multiple threads to be attempting to process the same I/O.
2065 */
2066 static zio_pipe_stage_t *zio_pipeline[];
2067
2068 /*
2069 * zio_execute() is a wrapper around the static function
2070 * __zio_execute() so that we can force __zio_execute() to be
2071 * inlined. This reduces stack overhead which is important
2072 * because __zio_execute() is called recursively in several zio
2073 * code paths. zio_execute() itself cannot be inlined because
2074 * it is externally visible.
2075 */
2076 void
2077 zio_execute(zio_t *zio)
2078 {
2079 fstrans_cookie_t cookie;
2080
2081 cookie = spl_fstrans_mark();
2082 __zio_execute(zio);
2083 spl_fstrans_unmark(cookie);
2084 }
2085
2086 /*
2087 * Used to determine if in the current context the stack is sized large
2088 * enough to allow zio_execute() to be called recursively. A minimum
2089 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2090 */
2091 static boolean_t
2092 zio_execute_stack_check(zio_t *zio)
2093 {
2094 #if !defined(HAVE_LARGE_STACKS)
2095 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2096
2097 /* Executing in txg_sync_thread() context. */
2098 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2099 return (B_TRUE);
2100
2101 /* Pool initialization outside of zio_taskq context. */
2102 if (dp && spa_is_initializing(dp->dp_spa) &&
2103 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2104 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2105 return (B_TRUE);
2106 #endif /* HAVE_LARGE_STACKS */
2107
2108 return (B_FALSE);
2109 }
2110
2111 __attribute__((always_inline))
2112 static inline void
2113 __zio_execute(zio_t *zio)
2114 {
2115 ASSERT3U(zio->io_queued_timestamp, >, 0);
2116
2117 while (zio->io_stage < ZIO_STAGE_DONE) {
2118 enum zio_stage pipeline = zio->io_pipeline;
2119 enum zio_stage stage = zio->io_stage;
2120
2121 zio->io_executor = curthread;
2122
2123 ASSERT(!MUTEX_HELD(&zio->io_lock));
2124 ASSERT(ISP2(stage));
2125 ASSERT(zio->io_stall == NULL);
2126
2127 do {
2128 stage <<= 1;
2129 } while ((stage & pipeline) == 0);
2130
2131 ASSERT(stage <= ZIO_STAGE_DONE);
2132
2133 /*
2134 * If we are in interrupt context and this pipeline stage
2135 * will grab a config lock that is held across I/O,
2136 * or may wait for an I/O that needs an interrupt thread
2137 * to complete, issue async to avoid deadlock.
2138 *
2139 * For VDEV_IO_START, we cut in line so that the io will
2140 * be sent to disk promptly.
2141 */
2142 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2143 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2144 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2145 zio_requeue_io_start_cut_in_line : B_FALSE;
2146 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2147 return;
2148 }
2149
2150 /*
2151 * If the current context doesn't have large enough stacks
2152 * the zio must be issued asynchronously to prevent overflow.
2153 */
2154 if (zio_execute_stack_check(zio)) {
2155 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2156 zio_requeue_io_start_cut_in_line : B_FALSE;
2157 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2158 return;
2159 }
2160
2161 zio->io_stage = stage;
2162 zio->io_pipeline_trace |= zio->io_stage;
2163
2164 /*
2165 * The zio pipeline stage returns the next zio to execute
2166 * (typically the same as this one), or NULL if we should
2167 * stop.
2168 */
2169 zio = zio_pipeline[highbit64(stage) - 1](zio);
2170
2171 if (zio == NULL)
2172 return;
2173 }
2174 }
2175
2176
2177 /*
2178 * ==========================================================================
2179 * Initiate I/O, either sync or async
2180 * ==========================================================================
2181 */
2182 int
2183 zio_wait(zio_t *zio)
2184 {
2185 /*
2186 * Some routines, like zio_free_sync(), may return a NULL zio
2187 * to avoid the performance overhead of creating and then destroying
2188 * an unneeded zio. For the callers' simplicity, we accept a NULL
2189 * zio and ignore it.
2190 */
2191 if (zio == NULL)
2192 return (0);
2193
2194 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2195 int error;
2196
2197 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2198 ASSERT3P(zio->io_executor, ==, NULL);
2199
2200 zio->io_waiter = curthread;
2201 ASSERT0(zio->io_queued_timestamp);
2202 zio->io_queued_timestamp = gethrtime();
2203
2204 __zio_execute(zio);
2205
2206 mutex_enter(&zio->io_lock);
2207 while (zio->io_executor != NULL) {
2208 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2209 ddi_get_lbolt() + timeout);
2210
2211 if (zfs_deadman_enabled && error == -1 &&
2212 gethrtime() - zio->io_queued_timestamp >
2213 spa_deadman_ziotime(zio->io_spa)) {
2214 mutex_exit(&zio->io_lock);
2215 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2216 zio_deadman(zio, FTAG);
2217 mutex_enter(&zio->io_lock);
2218 }
2219 }
2220 mutex_exit(&zio->io_lock);
2221
2222 error = zio->io_error;
2223 zio_destroy(zio);
2224
2225 return (error);
2226 }
2227
2228 void
2229 zio_nowait(zio_t *zio)
2230 {
2231 /*
2232 * See comment in zio_wait().
2233 */
2234 if (zio == NULL)
2235 return;
2236
2237 ASSERT3P(zio->io_executor, ==, NULL);
2238
2239 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2240 zio_unique_parent(zio) == NULL) {
2241 zio_t *pio;
2242
2243 /*
2244 * This is a logical async I/O with no parent to wait for it.
2245 * We add it to the spa_async_root_zio "Godfather" I/O which
2246 * will ensure they complete prior to unloading the pool.
2247 */
2248 spa_t *spa = zio->io_spa;
2249 kpreempt_disable();
2250 pio = spa->spa_async_zio_root[CPU_SEQID];
2251 kpreempt_enable();
2252
2253 zio_add_child(pio, zio);
2254 }
2255
2256 ASSERT0(zio->io_queued_timestamp);
2257 zio->io_queued_timestamp = gethrtime();
2258 __zio_execute(zio);
2259 }
2260
2261 /*
2262 * ==========================================================================
2263 * Reexecute, cancel, or suspend/resume failed I/O
2264 * ==========================================================================
2265 */
2266
2267 static void
2268 zio_reexecute(zio_t *pio)
2269 {
2270 zio_t *cio, *cio_next;
2271
2272 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2273 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2274 ASSERT(pio->io_gang_leader == NULL);
2275 ASSERT(pio->io_gang_tree == NULL);
2276
2277 pio->io_flags = pio->io_orig_flags;
2278 pio->io_stage = pio->io_orig_stage;
2279 pio->io_pipeline = pio->io_orig_pipeline;
2280 pio->io_reexecute = 0;
2281 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2282 pio->io_pipeline_trace = 0;
2283 pio->io_error = 0;
2284 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2285 pio->io_state[w] = 0;
2286 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2287 pio->io_child_error[c] = 0;
2288
2289 if (IO_IS_ALLOCATING(pio))
2290 BP_ZERO(pio->io_bp);
2291
2292 /*
2293 * As we reexecute pio's children, new children could be created.
2294 * New children go to the head of pio's io_child_list, however,
2295 * so we will (correctly) not reexecute them. The key is that
2296 * the remainder of pio's io_child_list, from 'cio_next' onward,
2297 * cannot be affected by any side effects of reexecuting 'cio'.
2298 */
2299 zio_link_t *zl = NULL;
2300 mutex_enter(&pio->io_lock);
2301 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2302 cio_next = zio_walk_children(pio, &zl);
2303 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2304 pio->io_children[cio->io_child_type][w]++;
2305 mutex_exit(&pio->io_lock);
2306 zio_reexecute(cio);
2307 mutex_enter(&pio->io_lock);
2308 }
2309 mutex_exit(&pio->io_lock);
2310
2311 /*
2312 * Now that all children have been reexecuted, execute the parent.
2313 * We don't reexecute "The Godfather" I/O here as it's the
2314 * responsibility of the caller to wait on it.
2315 */
2316 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2317 pio->io_queued_timestamp = gethrtime();
2318 __zio_execute(pio);
2319 }
2320 }
2321
2322 void
2323 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2324 {
2325 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2326 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2327 "failure and the failure mode property for this pool "
2328 "is set to panic.", spa_name(spa));
2329
2330 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2331 "failure and has been suspended.\n", spa_name(spa));
2332
2333 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2334 NULL, NULL, 0, 0);
2335
2336 mutex_enter(&spa->spa_suspend_lock);
2337
2338 if (spa->spa_suspend_zio_root == NULL)
2339 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2340 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2341 ZIO_FLAG_GODFATHER);
2342
2343 spa->spa_suspended = reason;
2344
2345 if (zio != NULL) {
2346 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2347 ASSERT(zio != spa->spa_suspend_zio_root);
2348 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2349 ASSERT(zio_unique_parent(zio) == NULL);
2350 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2351 zio_add_child(spa->spa_suspend_zio_root, zio);
2352 }
2353
2354 mutex_exit(&spa->spa_suspend_lock);
2355 }
2356
2357 int
2358 zio_resume(spa_t *spa)
2359 {
2360 zio_t *pio;
2361
2362 /*
2363 * Reexecute all previously suspended i/o.
2364 */
2365 mutex_enter(&spa->spa_suspend_lock);
2366 spa->spa_suspended = ZIO_SUSPEND_NONE;
2367 cv_broadcast(&spa->spa_suspend_cv);
2368 pio = spa->spa_suspend_zio_root;
2369 spa->spa_suspend_zio_root = NULL;
2370 mutex_exit(&spa->spa_suspend_lock);
2371
2372 if (pio == NULL)
2373 return (0);
2374
2375 zio_reexecute(pio);
2376 return (zio_wait(pio));
2377 }
2378
2379 void
2380 zio_resume_wait(spa_t *spa)
2381 {
2382 mutex_enter(&spa->spa_suspend_lock);
2383 while (spa_suspended(spa))
2384 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2385 mutex_exit(&spa->spa_suspend_lock);
2386 }
2387
2388 /*
2389 * ==========================================================================
2390 * Gang blocks.
2391 *
2392 * A gang block is a collection of small blocks that looks to the DMU
2393 * like one large block. When zio_dva_allocate() cannot find a block
2394 * of the requested size, due to either severe fragmentation or the pool
2395 * being nearly full, it calls zio_write_gang_block() to construct the
2396 * block from smaller fragments.
2397 *
2398 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2399 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2400 * an indirect block: it's an array of block pointers. It consumes
2401 * only one sector and hence is allocatable regardless of fragmentation.
2402 * The gang header's bps point to its gang members, which hold the data.
2403 *
2404 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2405 * as the verifier to ensure uniqueness of the SHA256 checksum.
2406 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2407 * not the gang header. This ensures that data block signatures (needed for
2408 * deduplication) are independent of how the block is physically stored.
2409 *
2410 * Gang blocks can be nested: a gang member may itself be a gang block.
2411 * Thus every gang block is a tree in which root and all interior nodes are
2412 * gang headers, and the leaves are normal blocks that contain user data.
2413 * The root of the gang tree is called the gang leader.
2414 *
2415 * To perform any operation (read, rewrite, free, claim) on a gang block,
2416 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2417 * in the io_gang_tree field of the original logical i/o by recursively
2418 * reading the gang leader and all gang headers below it. This yields
2419 * an in-core tree containing the contents of every gang header and the
2420 * bps for every constituent of the gang block.
2421 *
2422 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2423 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2424 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2425 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2426 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2427 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2428 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2429 * of the gang header plus zio_checksum_compute() of the data to update the
2430 * gang header's blk_cksum as described above.
2431 *
2432 * The two-phase assemble/issue model solves the problem of partial failure --
2433 * what if you'd freed part of a gang block but then couldn't read the
2434 * gang header for another part? Assembling the entire gang tree first
2435 * ensures that all the necessary gang header I/O has succeeded before
2436 * starting the actual work of free, claim, or write. Once the gang tree
2437 * is assembled, free and claim are in-memory operations that cannot fail.
2438 *
2439 * In the event that a gang write fails, zio_dva_unallocate() walks the
2440 * gang tree to immediately free (i.e. insert back into the space map)
2441 * everything we've allocated. This ensures that we don't get ENOSPC
2442 * errors during repeated suspend/resume cycles due to a flaky device.
2443 *
2444 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2445 * the gang tree, we won't modify the block, so we can safely defer the free
2446 * (knowing that the block is still intact). If we *can* assemble the gang
2447 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2448 * each constituent bp and we can allocate a new block on the next sync pass.
2449 *
2450 * In all cases, the gang tree allows complete recovery from partial failure.
2451 * ==========================================================================
2452 */
2453
2454 static void
2455 zio_gang_issue_func_done(zio_t *zio)
2456 {
2457 abd_put(zio->io_abd);
2458 }
2459
2460 static zio_t *
2461 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2462 uint64_t offset)
2463 {
2464 if (gn != NULL)
2465 return (pio);
2466
2467 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2468 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2469 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2470 &pio->io_bookmark));
2471 }
2472
2473 static zio_t *
2474 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2475 uint64_t offset)
2476 {
2477 zio_t *zio;
2478
2479 if (gn != NULL) {
2480 abd_t *gbh_abd =
2481 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2482 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2483 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2484 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2485 &pio->io_bookmark);
2486 /*
2487 * As we rewrite each gang header, the pipeline will compute
2488 * a new gang block header checksum for it; but no one will
2489 * compute a new data checksum, so we do that here. The one
2490 * exception is the gang leader: the pipeline already computed
2491 * its data checksum because that stage precedes gang assembly.
2492 * (Presently, nothing actually uses interior data checksums;
2493 * this is just good hygiene.)
2494 */
2495 if (gn != pio->io_gang_leader->io_gang_tree) {
2496 abd_t *buf = abd_get_offset(data, offset);
2497
2498 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2499 buf, BP_GET_PSIZE(bp));
2500
2501 abd_put(buf);
2502 }
2503 /*
2504 * If we are here to damage data for testing purposes,
2505 * leave the GBH alone so that we can detect the damage.
2506 */
2507 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2508 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2509 } else {
2510 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2511 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2512 zio_gang_issue_func_done, NULL, pio->io_priority,
2513 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2514 }
2515
2516 return (zio);
2517 }
2518
2519 /* ARGSUSED */
2520 static zio_t *
2521 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2522 uint64_t offset)
2523 {
2524 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2525 ZIO_GANG_CHILD_FLAGS(pio));
2526 if (zio == NULL) {
2527 zio = zio_null(pio, pio->io_spa,
2528 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2529 }
2530 return (zio);
2531 }
2532
2533 /* ARGSUSED */
2534 static zio_t *
2535 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2536 uint64_t offset)
2537 {
2538 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2539 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2540 }
2541
2542 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2543 NULL,
2544 zio_read_gang,
2545 zio_rewrite_gang,
2546 zio_free_gang,
2547 zio_claim_gang,
2548 NULL
2549 };
2550
2551 static void zio_gang_tree_assemble_done(zio_t *zio);
2552
2553 static zio_gang_node_t *
2554 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2555 {
2556 zio_gang_node_t *gn;
2557
2558 ASSERT(*gnpp == NULL);
2559
2560 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2561 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2562 *gnpp = gn;
2563
2564 return (gn);
2565 }
2566
2567 static void
2568 zio_gang_node_free(zio_gang_node_t **gnpp)
2569 {
2570 zio_gang_node_t *gn = *gnpp;
2571
2572 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2573 ASSERT(gn->gn_child[g] == NULL);
2574
2575 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2576 kmem_free(gn, sizeof (*gn));
2577 *gnpp = NULL;
2578 }
2579
2580 static void
2581 zio_gang_tree_free(zio_gang_node_t **gnpp)
2582 {
2583 zio_gang_node_t *gn = *gnpp;
2584
2585 if (gn == NULL)
2586 return;
2587
2588 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2589 zio_gang_tree_free(&gn->gn_child[g]);
2590
2591 zio_gang_node_free(gnpp);
2592 }
2593
2594 static void
2595 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2596 {
2597 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2598 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2599
2600 ASSERT(gio->io_gang_leader == gio);
2601 ASSERT(BP_IS_GANG(bp));
2602
2603 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2604 zio_gang_tree_assemble_done, gn, gio->io_priority,
2605 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2606 }
2607
2608 static void
2609 zio_gang_tree_assemble_done(zio_t *zio)
2610 {
2611 zio_t *gio = zio->io_gang_leader;
2612 zio_gang_node_t *gn = zio->io_private;
2613 blkptr_t *bp = zio->io_bp;
2614
2615 ASSERT(gio == zio_unique_parent(zio));
2616 ASSERT(zio->io_child_count == 0);
2617
2618 if (zio->io_error)
2619 return;
2620
2621 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2622 if (BP_SHOULD_BYTESWAP(bp))
2623 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2624
2625 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2626 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2627 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2628
2629 abd_put(zio->io_abd);
2630
2631 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2632 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2633 if (!BP_IS_GANG(gbp))
2634 continue;
2635 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2636 }
2637 }
2638
2639 static void
2640 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2641 uint64_t offset)
2642 {
2643 zio_t *gio = pio->io_gang_leader;
2644 zio_t *zio;
2645
2646 ASSERT(BP_IS_GANG(bp) == !!gn);
2647 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2648 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2649
2650 /*
2651 * If you're a gang header, your data is in gn->gn_gbh.
2652 * If you're a gang member, your data is in 'data' and gn == NULL.
2653 */
2654 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2655
2656 if (gn != NULL) {
2657 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2658
2659 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2660 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2661 if (BP_IS_HOLE(gbp))
2662 continue;
2663 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2664 offset);
2665 offset += BP_GET_PSIZE(gbp);
2666 }
2667 }
2668
2669 if (gn == gio->io_gang_tree)
2670 ASSERT3U(gio->io_size, ==, offset);
2671
2672 if (zio != pio)
2673 zio_nowait(zio);
2674 }
2675
2676 static zio_t *
2677 zio_gang_assemble(zio_t *zio)
2678 {
2679 blkptr_t *bp = zio->io_bp;
2680
2681 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2682 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2683
2684 zio->io_gang_leader = zio;
2685
2686 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2687
2688 return (zio);
2689 }
2690
2691 static zio_t *
2692 zio_gang_issue(zio_t *zio)
2693 {
2694 blkptr_t *bp = zio->io_bp;
2695
2696 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2697 return (NULL);
2698 }
2699
2700 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2701 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2702
2703 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2704 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2705 0);
2706 else
2707 zio_gang_tree_free(&zio->io_gang_tree);
2708
2709 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2710
2711 return (zio);
2712 }
2713
2714 static void
2715 zio_write_gang_member_ready(zio_t *zio)
2716 {
2717 zio_t *pio = zio_unique_parent(zio);
2718 dva_t *cdva = zio->io_bp->blk_dva;
2719 dva_t *pdva = pio->io_bp->blk_dva;
2720 uint64_t asize;
2721 zio_t *gio __maybe_unused = zio->io_gang_leader;
2722
2723 if (BP_IS_HOLE(zio->io_bp))
2724 return;
2725
2726 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2727
2728 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2729 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2730 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2731 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2732 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2733
2734 mutex_enter(&pio->io_lock);
2735 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2736 ASSERT(DVA_GET_GANG(&pdva[d]));
2737 asize = DVA_GET_ASIZE(&pdva[d]);
2738 asize += DVA_GET_ASIZE(&cdva[d]);
2739 DVA_SET_ASIZE(&pdva[d], asize);
2740 }
2741 mutex_exit(&pio->io_lock);
2742 }
2743
2744 static void
2745 zio_write_gang_done(zio_t *zio)
2746 {
2747 /*
2748 * The io_abd field will be NULL for a zio with no data. The io_flags
2749 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2750 * check for it here as it is cleared in zio_ready.
2751 */
2752 if (zio->io_abd != NULL)
2753 abd_put(zio->io_abd);
2754 }
2755
2756 static zio_t *
2757 zio_write_gang_block(zio_t *pio)
2758 {
2759 spa_t *spa = pio->io_spa;
2760 metaslab_class_t *mc = spa_normal_class(spa);
2761 blkptr_t *bp = pio->io_bp;
2762 zio_t *gio = pio->io_gang_leader;
2763 zio_t *zio;
2764 zio_gang_node_t *gn, **gnpp;
2765 zio_gbh_phys_t *gbh;
2766 abd_t *gbh_abd;
2767 uint64_t txg = pio->io_txg;
2768 uint64_t resid = pio->io_size;
2769 uint64_t lsize;
2770 int copies = gio->io_prop.zp_copies;
2771 int gbh_copies;
2772 zio_prop_t zp;
2773 int error;
2774 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2775
2776 /*
2777 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2778 * have a third copy.
2779 */
2780 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2781 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2782 gbh_copies = SPA_DVAS_PER_BP - 1;
2783
2784 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2785 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2786 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2787 ASSERT(has_data);
2788
2789 flags |= METASLAB_ASYNC_ALLOC;
2790 VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2791 pio));
2792
2793 /*
2794 * The logical zio has already placed a reservation for
2795 * 'copies' allocation slots but gang blocks may require
2796 * additional copies. These additional copies
2797 * (i.e. gbh_copies - copies) are guaranteed to succeed
2798 * since metaslab_class_throttle_reserve() always allows
2799 * additional reservations for gang blocks.
2800 */
2801 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2802 pio->io_allocator, pio, flags));
2803 }
2804
2805 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2806 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2807 &pio->io_alloc_list, pio, pio->io_allocator);
2808 if (error) {
2809 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2810 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2811 ASSERT(has_data);
2812
2813 /*
2814 * If we failed to allocate the gang block header then
2815 * we remove any additional allocation reservations that
2816 * we placed here. The original reservation will
2817 * be removed when the logical I/O goes to the ready
2818 * stage.
2819 */
2820 metaslab_class_throttle_unreserve(mc,
2821 gbh_copies - copies, pio->io_allocator, pio);
2822 }
2823
2824 pio->io_error = error;
2825 return (pio);
2826 }
2827
2828 if (pio == gio) {
2829 gnpp = &gio->io_gang_tree;
2830 } else {
2831 gnpp = pio->io_private;
2832 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2833 }
2834
2835 gn = zio_gang_node_alloc(gnpp);
2836 gbh = gn->gn_gbh;
2837 bzero(gbh, SPA_GANGBLOCKSIZE);
2838 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2839
2840 /*
2841 * Create the gang header.
2842 */
2843 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2844 zio_write_gang_done, NULL, pio->io_priority,
2845 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2846
2847 /*
2848 * Create and nowait the gang children.
2849 */
2850 for (int g = 0; resid != 0; resid -= lsize, g++) {
2851 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2852 SPA_MINBLOCKSIZE);
2853 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2854
2855 zp.zp_checksum = gio->io_prop.zp_checksum;
2856 zp.zp_compress = ZIO_COMPRESS_OFF;
2857 zp.zp_complevel = gio->io_prop.zp_complevel;
2858 zp.zp_type = DMU_OT_NONE;
2859 zp.zp_level = 0;
2860 zp.zp_copies = gio->io_prop.zp_copies;
2861 zp.zp_dedup = B_FALSE;
2862 zp.zp_dedup_verify = B_FALSE;
2863 zp.zp_nopwrite = B_FALSE;
2864 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2865 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2866 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2867 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2868 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2869
2870 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2871 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2872 resid) : NULL, lsize, lsize, &zp,
2873 zio_write_gang_member_ready, NULL, NULL,
2874 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2875 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2876
2877 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2878 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2879 ASSERT(has_data);
2880
2881 /*
2882 * Gang children won't throttle but we should
2883 * account for their work, so reserve an allocation
2884 * slot for them here.
2885 */
2886 VERIFY(metaslab_class_throttle_reserve(mc,
2887 zp.zp_copies, cio->io_allocator, cio, flags));
2888 }
2889 zio_nowait(cio);
2890 }
2891
2892 /*
2893 * Set pio's pipeline to just wait for zio to finish.
2894 */
2895 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2896
2897 /*
2898 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2899 */
2900 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2901
2902 zio_nowait(zio);
2903
2904 return (pio);
2905 }
2906
2907 /*
2908 * The zio_nop_write stage in the pipeline determines if allocating a
2909 * new bp is necessary. The nopwrite feature can handle writes in
2910 * either syncing or open context (i.e. zil writes) and as a result is
2911 * mutually exclusive with dedup.
2912 *
2913 * By leveraging a cryptographically secure checksum, such as SHA256, we
2914 * can compare the checksums of the new data and the old to determine if
2915 * allocating a new block is required. Note that our requirements for
2916 * cryptographic strength are fairly weak: there can't be any accidental
2917 * hash collisions, but we don't need to be secure against intentional
2918 * (malicious) collisions. To trigger a nopwrite, you have to be able
2919 * to write the file to begin with, and triggering an incorrect (hash
2920 * collision) nopwrite is no worse than simply writing to the file.
2921 * That said, there are no known attacks against the checksum algorithms
2922 * used for nopwrite, assuming that the salt and the checksums
2923 * themselves remain secret.
2924 */
2925 static zio_t *
2926 zio_nop_write(zio_t *zio)
2927 {
2928 blkptr_t *bp = zio->io_bp;
2929 blkptr_t *bp_orig = &zio->io_bp_orig;
2930 zio_prop_t *zp = &zio->io_prop;
2931
2932 ASSERT(BP_GET_LEVEL(bp) == 0);
2933 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2934 ASSERT(zp->zp_nopwrite);
2935 ASSERT(!zp->zp_dedup);
2936 ASSERT(zio->io_bp_override == NULL);
2937 ASSERT(IO_IS_ALLOCATING(zio));
2938
2939 /*
2940 * Check to see if the original bp and the new bp have matching
2941 * characteristics (i.e. same checksum, compression algorithms, etc).
2942 * If they don't then just continue with the pipeline which will
2943 * allocate a new bp.
2944 */
2945 if (BP_IS_HOLE(bp_orig) ||
2946 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2947 ZCHECKSUM_FLAG_NOPWRITE) ||
2948 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2949 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2950 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2951 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2952 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2953 return (zio);
2954
2955 /*
2956 * If the checksums match then reset the pipeline so that we
2957 * avoid allocating a new bp and issuing any I/O.
2958 */
2959 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2960 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2961 ZCHECKSUM_FLAG_NOPWRITE);
2962 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2963 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2964 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2965 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2966 sizeof (uint64_t)) == 0);
2967
2968 /*
2969 * If we're overwriting a block that is currently on an
2970 * indirect vdev, then ignore the nopwrite request and
2971 * allow a new block to be allocated on a concrete vdev.
2972 */
2973 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
2974 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
2975 DVA_GET_VDEV(&bp->blk_dva[0]));
2976 if (tvd->vdev_ops == &vdev_indirect_ops) {
2977 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
2978 return (zio);
2979 }
2980 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
2981
2982 *bp = *bp_orig;
2983 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2984 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2985 }
2986
2987 return (zio);
2988 }
2989
2990 /*
2991 * ==========================================================================
2992 * Dedup
2993 * ==========================================================================
2994 */
2995 static void
2996 zio_ddt_child_read_done(zio_t *zio)
2997 {
2998 blkptr_t *bp = zio->io_bp;
2999 ddt_entry_t *dde = zio->io_private;
3000 ddt_phys_t *ddp;
3001 zio_t *pio = zio_unique_parent(zio);
3002
3003 mutex_enter(&pio->io_lock);
3004 ddp = ddt_phys_select(dde, bp);
3005 if (zio->io_error == 0)
3006 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3007
3008 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3009 dde->dde_repair_abd = zio->io_abd;
3010 else
3011 abd_free(zio->io_abd);
3012 mutex_exit(&pio->io_lock);
3013 }
3014
3015 static zio_t *
3016 zio_ddt_read_start(zio_t *zio)
3017 {
3018 blkptr_t *bp = zio->io_bp;
3019
3020 ASSERT(BP_GET_DEDUP(bp));
3021 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3022 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3023
3024 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3025 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3026 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3027 ddt_phys_t *ddp = dde->dde_phys;
3028 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3029 blkptr_t blk;
3030
3031 ASSERT(zio->io_vsd == NULL);
3032 zio->io_vsd = dde;
3033
3034 if (ddp_self == NULL)
3035 return (zio);
3036
3037 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3038 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3039 continue;
3040 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3041 &blk);
3042 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3043 abd_alloc_for_io(zio->io_size, B_TRUE),
3044 zio->io_size, zio_ddt_child_read_done, dde,
3045 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3046 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3047 }
3048 return (zio);
3049 }
3050
3051 zio_nowait(zio_read(zio, zio->io_spa, bp,
3052 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3053 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3054
3055 return (zio);
3056 }
3057
3058 static zio_t *
3059 zio_ddt_read_done(zio_t *zio)
3060 {
3061 blkptr_t *bp = zio->io_bp;
3062
3063 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3064 return (NULL);
3065 }
3066
3067 ASSERT(BP_GET_DEDUP(bp));
3068 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3069 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3070
3071 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3072 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3073 ddt_entry_t *dde = zio->io_vsd;
3074 if (ddt == NULL) {
3075 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3076 return (zio);
3077 }
3078 if (dde == NULL) {
3079 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3080 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3081 return (NULL);
3082 }
3083 if (dde->dde_repair_abd != NULL) {
3084 abd_copy(zio->io_abd, dde->dde_repair_abd,
3085 zio->io_size);
3086 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3087 }
3088 ddt_repair_done(ddt, dde);
3089 zio->io_vsd = NULL;
3090 }
3091
3092 ASSERT(zio->io_vsd == NULL);
3093
3094 return (zio);
3095 }
3096
3097 static boolean_t
3098 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3099 {
3100 spa_t *spa = zio->io_spa;
3101 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3102
3103 ASSERT(!(zio->io_bp_override && do_raw));
3104
3105 /*
3106 * Note: we compare the original data, not the transformed data,
3107 * because when zio->io_bp is an override bp, we will not have
3108 * pushed the I/O transforms. That's an important optimization
3109 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3110 * However, we should never get a raw, override zio so in these
3111 * cases we can compare the io_abd directly. This is useful because
3112 * it allows us to do dedup verification even if we don't have access
3113 * to the original data (for instance, if the encryption keys aren't
3114 * loaded).
3115 */
3116
3117 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3118 zio_t *lio = dde->dde_lead_zio[p];
3119
3120 if (lio != NULL && do_raw) {
3121 return (lio->io_size != zio->io_size ||
3122 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3123 } else if (lio != NULL) {
3124 return (lio->io_orig_size != zio->io_orig_size ||
3125 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3126 }
3127 }
3128
3129 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3130 ddt_phys_t *ddp = &dde->dde_phys[p];
3131
3132 if (ddp->ddp_phys_birth != 0 && do_raw) {
3133 blkptr_t blk = *zio->io_bp;
3134 uint64_t psize;
3135 abd_t *tmpabd;
3136 int error;
3137
3138 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3139 psize = BP_GET_PSIZE(&blk);
3140
3141 if (psize != zio->io_size)
3142 return (B_TRUE);
3143
3144 ddt_exit(ddt);
3145
3146 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3147
3148 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3149 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3150 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3151 ZIO_FLAG_RAW, &zio->io_bookmark));
3152
3153 if (error == 0) {
3154 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3155 error = SET_ERROR(ENOENT);
3156 }
3157
3158 abd_free(tmpabd);
3159 ddt_enter(ddt);
3160 return (error != 0);
3161 } else if (ddp->ddp_phys_birth != 0) {
3162 arc_buf_t *abuf = NULL;
3163 arc_flags_t aflags = ARC_FLAG_WAIT;
3164 blkptr_t blk = *zio->io_bp;
3165 int error;
3166
3167 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3168
3169 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3170 return (B_TRUE);
3171
3172 ddt_exit(ddt);
3173
3174 error = arc_read(NULL, spa, &blk,
3175 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3176 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3177 &aflags, &zio->io_bookmark);
3178
3179 if (error == 0) {
3180 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3181 zio->io_orig_size) != 0)
3182 error = SET_ERROR(ENOENT);
3183 arc_buf_destroy(abuf, &abuf);
3184 }
3185
3186 ddt_enter(ddt);
3187 return (error != 0);
3188 }
3189 }
3190
3191 return (B_FALSE);
3192 }
3193
3194 static void
3195 zio_ddt_child_write_ready(zio_t *zio)
3196 {
3197 int p = zio->io_prop.zp_copies;
3198 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3199 ddt_entry_t *dde = zio->io_private;
3200 ddt_phys_t *ddp = &dde->dde_phys[p];
3201 zio_t *pio;
3202
3203 if (zio->io_error)
3204 return;
3205
3206 ddt_enter(ddt);
3207
3208 ASSERT(dde->dde_lead_zio[p] == zio);
3209
3210 ddt_phys_fill(ddp, zio->io_bp);
3211
3212 zio_link_t *zl = NULL;
3213 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3214 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3215
3216 ddt_exit(ddt);
3217 }
3218
3219 static void
3220 zio_ddt_child_write_done(zio_t *zio)
3221 {
3222 int p = zio->io_prop.zp_copies;
3223 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3224 ddt_entry_t *dde = zio->io_private;
3225 ddt_phys_t *ddp = &dde->dde_phys[p];
3226
3227 ddt_enter(ddt);
3228
3229 ASSERT(ddp->ddp_refcnt == 0);
3230 ASSERT(dde->dde_lead_zio[p] == zio);
3231 dde->dde_lead_zio[p] = NULL;
3232
3233 if (zio->io_error == 0) {
3234 zio_link_t *zl = NULL;
3235 while (zio_walk_parents(zio, &zl) != NULL)
3236 ddt_phys_addref(ddp);
3237 } else {
3238 ddt_phys_clear(ddp);
3239 }
3240
3241 ddt_exit(ddt);
3242 }
3243
3244 static zio_t *
3245 zio_ddt_write(zio_t *zio)
3246 {
3247 spa_t *spa = zio->io_spa;
3248 blkptr_t *bp = zio->io_bp;
3249 uint64_t txg = zio->io_txg;
3250 zio_prop_t *zp = &zio->io_prop;
3251 int p = zp->zp_copies;
3252 zio_t *cio = NULL;
3253 ddt_t *ddt = ddt_select(spa, bp);
3254 ddt_entry_t *dde;
3255 ddt_phys_t *ddp;
3256
3257 ASSERT(BP_GET_DEDUP(bp));
3258 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3259 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3260 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3261
3262 ddt_enter(ddt);
3263 dde = ddt_lookup(ddt, bp, B_TRUE);
3264 ddp = &dde->dde_phys[p];
3265
3266 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3267 /*
3268 * If we're using a weak checksum, upgrade to a strong checksum
3269 * and try again. If we're already using a strong checksum,
3270 * we can't resolve it, so just convert to an ordinary write.
3271 * (And automatically e-mail a paper to Nature?)
3272 */
3273 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3274 ZCHECKSUM_FLAG_DEDUP)) {
3275 zp->zp_checksum = spa_dedup_checksum(spa);
3276 zio_pop_transforms(zio);
3277 zio->io_stage = ZIO_STAGE_OPEN;
3278 BP_ZERO(bp);
3279 } else {
3280 zp->zp_dedup = B_FALSE;
3281 BP_SET_DEDUP(bp, B_FALSE);
3282 }
3283 ASSERT(!BP_GET_DEDUP(bp));
3284 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3285 ddt_exit(ddt);
3286 return (zio);
3287 }
3288
3289 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3290 if (ddp->ddp_phys_birth != 0)
3291 ddt_bp_fill(ddp, bp, txg);
3292 if (dde->dde_lead_zio[p] != NULL)
3293 zio_add_child(zio, dde->dde_lead_zio[p]);
3294 else
3295 ddt_phys_addref(ddp);
3296 } else if (zio->io_bp_override) {
3297 ASSERT(bp->blk_birth == txg);
3298 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3299 ddt_phys_fill(ddp, bp);
3300 ddt_phys_addref(ddp);
3301 } else {
3302 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3303 zio->io_orig_size, zio->io_orig_size, zp,
3304 zio_ddt_child_write_ready, NULL, NULL,
3305 zio_ddt_child_write_done, dde, zio->io_priority,
3306 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3307
3308 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3309 dde->dde_lead_zio[p] = cio;
3310 }
3311
3312 ddt_exit(ddt);
3313
3314 zio_nowait(cio);
3315
3316 return (zio);
3317 }
3318
3319 ddt_entry_t *freedde; /* for debugging */
3320
3321 static zio_t *
3322 zio_ddt_free(zio_t *zio)
3323 {
3324 spa_t *spa = zio->io_spa;
3325 blkptr_t *bp = zio->io_bp;
3326 ddt_t *ddt = ddt_select(spa, bp);
3327 ddt_entry_t *dde;
3328 ddt_phys_t *ddp;
3329
3330 ASSERT(BP_GET_DEDUP(bp));
3331 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3332
3333 ddt_enter(ddt);
3334 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3335 if (dde) {
3336 ddp = ddt_phys_select(dde, bp);
3337 if (ddp)
3338 ddt_phys_decref(ddp);
3339 }
3340 ddt_exit(ddt);
3341
3342 return (zio);
3343 }
3344
3345 /*
3346 * ==========================================================================
3347 * Allocate and free blocks
3348 * ==========================================================================
3349 */
3350
3351 static zio_t *
3352 zio_io_to_allocate(spa_t *spa, int allocator)
3353 {
3354 zio_t *zio;
3355
3356 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3357
3358 zio = avl_first(&spa->spa_alloc_trees[allocator]);
3359 if (zio == NULL)
3360 return (NULL);
3361
3362 ASSERT(IO_IS_ALLOCATING(zio));
3363
3364 /*
3365 * Try to place a reservation for this zio. If we're unable to
3366 * reserve then we throttle.
3367 */
3368 ASSERT3U(zio->io_allocator, ==, allocator);
3369 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3370 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3371 return (NULL);
3372 }
3373
3374 avl_remove(&spa->spa_alloc_trees[allocator], zio);
3375 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3376
3377 return (zio);
3378 }
3379
3380 static zio_t *
3381 zio_dva_throttle(zio_t *zio)
3382 {
3383 spa_t *spa = zio->io_spa;
3384 zio_t *nio;
3385 metaslab_class_t *mc;
3386
3387 /* locate an appropriate allocation class */
3388 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3389 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3390
3391 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3392 !mc->mc_alloc_throttle_enabled ||
3393 zio->io_child_type == ZIO_CHILD_GANG ||
3394 zio->io_flags & ZIO_FLAG_NODATA) {
3395 return (zio);
3396 }
3397
3398 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3399
3400 ASSERT3U(zio->io_queued_timestamp, >, 0);
3401 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3402
3403 zbookmark_phys_t *bm = &zio->io_bookmark;
3404 /*
3405 * We want to try to use as many allocators as possible to help improve
3406 * performance, but we also want logically adjacent IOs to be physically
3407 * adjacent to improve sequential read performance. We chunk each object
3408 * into 2^20 block regions, and then hash based on the objset, object,
3409 * level, and region to accomplish both of these goals.
3410 */
3411 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3412 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3413 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3414 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3415 zio->io_metaslab_class = mc;
3416 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3417 nio = zio_io_to_allocate(spa, zio->io_allocator);
3418 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3419 return (nio);
3420 }
3421
3422 static void
3423 zio_allocate_dispatch(spa_t *spa, int allocator)
3424 {
3425 zio_t *zio;
3426
3427 mutex_enter(&spa->spa_alloc_locks[allocator]);
3428 zio = zio_io_to_allocate(spa, allocator);
3429 mutex_exit(&spa->spa_alloc_locks[allocator]);
3430 if (zio == NULL)
3431 return;
3432
3433 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3434 ASSERT0(zio->io_error);
3435 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3436 }
3437
3438 static zio_t *
3439 zio_dva_allocate(zio_t *zio)
3440 {
3441 spa_t *spa = zio->io_spa;
3442 metaslab_class_t *mc;
3443 blkptr_t *bp = zio->io_bp;
3444 int error;
3445 int flags = 0;
3446
3447 if (zio->io_gang_leader == NULL) {
3448 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3449 zio->io_gang_leader = zio;
3450 }
3451
3452 ASSERT(BP_IS_HOLE(bp));
3453 ASSERT0(BP_GET_NDVAS(bp));
3454 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3455 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3456 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3457
3458 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3459 if (zio->io_flags & ZIO_FLAG_NODATA)
3460 flags |= METASLAB_DONT_THROTTLE;
3461 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3462 flags |= METASLAB_GANG_CHILD;
3463 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3464 flags |= METASLAB_ASYNC_ALLOC;
3465
3466 /*
3467 * if not already chosen, locate an appropriate allocation class
3468 */
3469 mc = zio->io_metaslab_class;
3470 if (mc == NULL) {
3471 mc = spa_preferred_class(spa, zio->io_size,
3472 zio->io_prop.zp_type, zio->io_prop.zp_level,
3473 zio->io_prop.zp_zpl_smallblk);
3474 zio->io_metaslab_class = mc;
3475 }
3476
3477 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3478 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3479 &zio->io_alloc_list, zio, zio->io_allocator);
3480
3481 /*
3482 * Fallback to normal class when an alloc class is full
3483 */
3484 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3485 /*
3486 * If throttling, transfer reservation over to normal class.
3487 * The io_allocator slot can remain the same even though we
3488 * are switching classes.
3489 */
3490 if (mc->mc_alloc_throttle_enabled &&
3491 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3492 metaslab_class_throttle_unreserve(mc,
3493 zio->io_prop.zp_copies, zio->io_allocator, zio);
3494 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3495
3496 mc = spa_normal_class(spa);
3497 VERIFY(metaslab_class_throttle_reserve(mc,
3498 zio->io_prop.zp_copies, zio->io_allocator, zio,
3499 flags | METASLAB_MUST_RESERVE));
3500 } else {
3501 mc = spa_normal_class(spa);
3502 }
3503 zio->io_metaslab_class = mc;
3504
3505 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3506 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3507 &zio->io_alloc_list, zio, zio->io_allocator);
3508 }
3509
3510 if (error != 0) {
3511 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3512 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3513 error);
3514 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3515 return (zio_write_gang_block(zio));
3516 zio->io_error = error;
3517 }
3518
3519 return (zio);
3520 }
3521
3522 static zio_t *
3523 zio_dva_free(zio_t *zio)
3524 {
3525 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3526
3527 return (zio);
3528 }
3529
3530 static zio_t *
3531 zio_dva_claim(zio_t *zio)
3532 {
3533 int error;
3534
3535 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3536 if (error)
3537 zio->io_error = error;
3538
3539 return (zio);
3540 }
3541
3542 /*
3543 * Undo an allocation. This is used by zio_done() when an I/O fails
3544 * and we want to give back the block we just allocated.
3545 * This handles both normal blocks and gang blocks.
3546 */
3547 static void
3548 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3549 {
3550 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3551 ASSERT(zio->io_bp_override == NULL);
3552
3553 if (!BP_IS_HOLE(bp))
3554 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3555
3556 if (gn != NULL) {
3557 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3558 zio_dva_unallocate(zio, gn->gn_child[g],
3559 &gn->gn_gbh->zg_blkptr[g]);
3560 }
3561 }
3562 }
3563
3564 /*
3565 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3566 */
3567 int
3568 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3569 uint64_t size, boolean_t *slog)
3570 {
3571 int error = 1;
3572 zio_alloc_list_t io_alloc_list;
3573
3574 ASSERT(txg > spa_syncing_txg(spa));
3575
3576 metaslab_trace_init(&io_alloc_list);
3577
3578 /*
3579 * Block pointer fields are useful to metaslabs for stats and debugging.
3580 * Fill in the obvious ones before calling into metaslab_alloc().
3581 */
3582 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3583 BP_SET_PSIZE(new_bp, size);
3584 BP_SET_LEVEL(new_bp, 0);
3585
3586 /*
3587 * When allocating a zil block, we don't have information about
3588 * the final destination of the block except the objset it's part
3589 * of, so we just hash the objset ID to pick the allocator to get
3590 * some parallelism.
3591 */
3592 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3593 txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL,
3594 cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
3595 spa->spa_alloc_count);
3596 if (error == 0) {
3597 *slog = TRUE;
3598 } else {
3599 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3600 new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
3601 &io_alloc_list, NULL, cityhash4(0, 0, 0,
3602 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3603 if (error == 0)
3604 *slog = FALSE;
3605 }
3606 metaslab_trace_fini(&io_alloc_list);
3607
3608 if (error == 0) {
3609 BP_SET_LSIZE(new_bp, size);
3610 BP_SET_PSIZE(new_bp, size);
3611 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3612 BP_SET_CHECKSUM(new_bp,
3613 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3614 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3615 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3616 BP_SET_LEVEL(new_bp, 0);
3617 BP_SET_DEDUP(new_bp, 0);
3618 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3619
3620 /*
3621 * encrypted blocks will require an IV and salt. We generate
3622 * these now since we will not be rewriting the bp at
3623 * rewrite time.
3624 */
3625 if (os->os_encrypted) {
3626 uint8_t iv[ZIO_DATA_IV_LEN];
3627 uint8_t salt[ZIO_DATA_SALT_LEN];
3628
3629 BP_SET_CRYPT(new_bp, B_TRUE);
3630 VERIFY0(spa_crypt_get_salt(spa,
3631 dmu_objset_id(os), salt));
3632 VERIFY0(zio_crypt_generate_iv(iv));
3633
3634 zio_crypt_encode_params_bp(new_bp, salt, iv);
3635 }
3636 } else {
3637 zfs_dbgmsg("%s: zil block allocation failure: "
3638 "size %llu, error %d", spa_name(spa), size, error);
3639 }
3640
3641 return (error);
3642 }
3643
3644 /*
3645 * ==========================================================================
3646 * Read and write to physical devices
3647 * ==========================================================================
3648 */
3649
3650 /*
3651 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3652 * stops after this stage and will resume upon I/O completion.
3653 * However, there are instances where the vdev layer may need to
3654 * continue the pipeline when an I/O was not issued. Since the I/O
3655 * that was sent to the vdev layer might be different than the one
3656 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3657 * force the underlying vdev layers to call either zio_execute() or
3658 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3659 */
3660 static zio_t *
3661 zio_vdev_io_start(zio_t *zio)
3662 {
3663 vdev_t *vd = zio->io_vd;
3664 uint64_t align;
3665 spa_t *spa = zio->io_spa;
3666
3667 zio->io_delay = 0;
3668
3669 ASSERT(zio->io_error == 0);
3670 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3671
3672 if (vd == NULL) {
3673 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3674 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3675
3676 /*
3677 * The mirror_ops handle multiple DVAs in a single BP.
3678 */
3679 vdev_mirror_ops.vdev_op_io_start(zio);
3680 return (NULL);
3681 }
3682
3683 ASSERT3P(zio->io_logical, !=, zio);
3684 if (zio->io_type == ZIO_TYPE_WRITE) {
3685 ASSERT(spa->spa_trust_config);
3686
3687 /*
3688 * Note: the code can handle other kinds of writes,
3689 * but we don't expect them.
3690 */
3691 if (zio->io_vd->vdev_removing) {
3692 ASSERT(zio->io_flags &
3693 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3694 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3695 }
3696 }
3697
3698 align = 1ULL << vd->vdev_top->vdev_ashift;
3699
3700 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3701 P2PHASE(zio->io_size, align) != 0) {
3702 /* Transform logical writes to be a full physical block size. */
3703 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3704 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3705 ASSERT(vd == vd->vdev_top);
3706 if (zio->io_type == ZIO_TYPE_WRITE) {
3707 abd_copy(abuf, zio->io_abd, zio->io_size);
3708 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3709 }
3710 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3711 }
3712
3713 /*
3714 * If this is not a physical io, make sure that it is properly aligned
3715 * before proceeding.
3716 */
3717 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3718 ASSERT0(P2PHASE(zio->io_offset, align));
3719 ASSERT0(P2PHASE(zio->io_size, align));
3720 } else {
3721 /*
3722 * For physical writes, we allow 512b aligned writes and assume
3723 * the device will perform a read-modify-write as necessary.
3724 */
3725 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3726 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3727 }
3728
3729 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3730
3731 /*
3732 * If this is a repair I/O, and there's no self-healing involved --
3733 * that is, we're just resilvering what we expect to resilver --
3734 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3735 * This prevents spurious resilvering.
3736 *
3737 * There are a few ways that we can end up creating these spurious
3738 * resilver i/os:
3739 *
3740 * 1. A resilver i/o will be issued if any DVA in the BP has a
3741 * dirty DTL. The mirror code will issue resilver writes to
3742 * each DVA, including the one(s) that are not on vdevs with dirty
3743 * DTLs.
3744 *
3745 * 2. With nested replication, which happens when we have a
3746 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3747 * For example, given mirror(replacing(A+B), C), it's likely that
3748 * only A is out of date (it's the new device). In this case, we'll
3749 * read from C, then use the data to resilver A+B -- but we don't
3750 * actually want to resilver B, just A. The top-level mirror has no
3751 * way to know this, so instead we just discard unnecessary repairs
3752 * as we work our way down the vdev tree.
3753 *
3754 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3755 * The same logic applies to any form of nested replication: ditto
3756 * + mirror, RAID-Z + replacing, etc.
3757 *
3758 * However, indirect vdevs point off to other vdevs which may have
3759 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3760 * will be properly bypassed instead.
3761 */
3762 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3763 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3764 zio->io_txg != 0 && /* not a delegated i/o */
3765 vd->vdev_ops != &vdev_indirect_ops &&
3766 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3767 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3768 zio_vdev_io_bypass(zio);
3769 return (zio);
3770 }
3771
3772 if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
3773 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
3774
3775 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3776 return (zio);
3777
3778 if ((zio = vdev_queue_io(zio)) == NULL)
3779 return (NULL);
3780
3781 if (!vdev_accessible(vd, zio)) {
3782 zio->io_error = SET_ERROR(ENXIO);
3783 zio_interrupt(zio);
3784 return (NULL);
3785 }
3786 zio->io_delay = gethrtime();
3787 }
3788
3789 vd->vdev_ops->vdev_op_io_start(zio);
3790 return (NULL);
3791 }
3792
3793 static zio_t *
3794 zio_vdev_io_done(zio_t *zio)
3795 {
3796 vdev_t *vd = zio->io_vd;
3797 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3798 boolean_t unexpected_error = B_FALSE;
3799
3800 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3801 return (NULL);
3802 }
3803
3804 ASSERT(zio->io_type == ZIO_TYPE_READ ||
3805 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3806
3807 if (zio->io_delay)
3808 zio->io_delay = gethrtime() - zio->io_delay;
3809
3810 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3811
3812 vdev_queue_io_done(zio);
3813
3814 if (zio->io_type == ZIO_TYPE_WRITE)
3815 vdev_cache_write(zio);
3816
3817 if (zio_injection_enabled && zio->io_error == 0)
3818 zio->io_error = zio_handle_device_injections(vd, zio,
3819 EIO, EILSEQ);
3820
3821 if (zio_injection_enabled && zio->io_error == 0)
3822 zio->io_error = zio_handle_label_injection(zio, EIO);
3823
3824 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3825 if (!vdev_accessible(vd, zio)) {
3826 zio->io_error = SET_ERROR(ENXIO);
3827 } else {
3828 unexpected_error = B_TRUE;
3829 }
3830 }
3831 }
3832
3833 ops->vdev_op_io_done(zio);
3834
3835 if (unexpected_error)
3836 VERIFY(vdev_probe(vd, zio) == NULL);
3837
3838 return (zio);
3839 }
3840
3841 /*
3842 * This function is used to change the priority of an existing zio that is
3843 * currently in-flight. This is used by the arc to upgrade priority in the
3844 * event that a demand read is made for a block that is currently queued
3845 * as a scrub or async read IO. Otherwise, the high priority read request
3846 * would end up having to wait for the lower priority IO.
3847 */
3848 void
3849 zio_change_priority(zio_t *pio, zio_priority_t priority)
3850 {
3851 zio_t *cio, *cio_next;
3852 zio_link_t *zl = NULL;
3853
3854 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3855
3856 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3857 vdev_queue_change_io_priority(pio, priority);
3858 } else {
3859 pio->io_priority = priority;
3860 }
3861
3862 mutex_enter(&pio->io_lock);
3863 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3864 cio_next = zio_walk_children(pio, &zl);
3865 zio_change_priority(cio, priority);
3866 }
3867 mutex_exit(&pio->io_lock);
3868 }
3869
3870 /*
3871 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3872 * disk, and use that to finish the checksum ereport later.
3873 */
3874 static void
3875 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3876 const abd_t *good_buf)
3877 {
3878 /* no processing needed */
3879 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3880 }
3881
3882 /*ARGSUSED*/
3883 void
3884 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3885 {
3886 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3887
3888 abd_copy(abd, zio->io_abd, zio->io_size);
3889
3890 zcr->zcr_cbinfo = zio->io_size;
3891 zcr->zcr_cbdata = abd;
3892 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3893 zcr->zcr_free = zio_abd_free;
3894 }
3895
3896 static zio_t *
3897 zio_vdev_io_assess(zio_t *zio)
3898 {
3899 vdev_t *vd = zio->io_vd;
3900
3901 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3902 return (NULL);
3903 }
3904
3905 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3906 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3907
3908 if (zio->io_vsd != NULL) {
3909 zio->io_vsd_ops->vsd_free(zio);
3910 zio->io_vsd = NULL;
3911 }
3912
3913 if (zio_injection_enabled && zio->io_error == 0)
3914 zio->io_error = zio_handle_fault_injection(zio, EIO);
3915
3916 /*
3917 * If the I/O failed, determine whether we should attempt to retry it.
3918 *
3919 * On retry, we cut in line in the issue queue, since we don't want
3920 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3921 */
3922 if (zio->io_error && vd == NULL &&
3923 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3924 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3925 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3926 zio->io_error = 0;
3927 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3928 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3929 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3930 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3931 zio_requeue_io_start_cut_in_line);
3932 return (NULL);
3933 }
3934
3935 /*
3936 * If we got an error on a leaf device, convert it to ENXIO
3937 * if the device is not accessible at all.
3938 */
3939 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3940 !vdev_accessible(vd, zio))
3941 zio->io_error = SET_ERROR(ENXIO);
3942
3943 /*
3944 * If we can't write to an interior vdev (mirror or RAID-Z),
3945 * set vdev_cant_write so that we stop trying to allocate from it.
3946 */
3947 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3948 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3949 vd->vdev_cant_write = B_TRUE;
3950 }
3951
3952 /*
3953 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3954 * attempts will ever succeed. In this case we set a persistent
3955 * boolean flag so that we don't bother with it in the future.
3956 */
3957 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3958 zio->io_type == ZIO_TYPE_IOCTL &&
3959 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3960 vd->vdev_nowritecache = B_TRUE;
3961
3962 if (zio->io_error)
3963 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3964
3965 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3966 zio->io_physdone != NULL) {
3967 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3968 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3969 zio->io_physdone(zio->io_logical);
3970 }
3971
3972 return (zio);
3973 }
3974
3975 void
3976 zio_vdev_io_reissue(zio_t *zio)
3977 {
3978 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3979 ASSERT(zio->io_error == 0);
3980
3981 zio->io_stage >>= 1;
3982 }
3983
3984 void
3985 zio_vdev_io_redone(zio_t *zio)
3986 {
3987 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3988
3989 zio->io_stage >>= 1;
3990 }
3991
3992 void
3993 zio_vdev_io_bypass(zio_t *zio)
3994 {
3995 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3996 ASSERT(zio->io_error == 0);
3997
3998 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3999 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4000 }
4001
4002 /*
4003 * ==========================================================================
4004 * Encrypt and store encryption parameters
4005 * ==========================================================================
4006 */
4007
4008
4009 /*
4010 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4011 * managing the storage of encryption parameters and passing them to the
4012 * lower-level encryption functions.
4013 */
4014 static zio_t *
4015 zio_encrypt(zio_t *zio)
4016 {
4017 zio_prop_t *zp = &zio->io_prop;
4018 spa_t *spa = zio->io_spa;
4019 blkptr_t *bp = zio->io_bp;
4020 uint64_t psize = BP_GET_PSIZE(bp);
4021 uint64_t dsobj = zio->io_bookmark.zb_objset;
4022 dmu_object_type_t ot = BP_GET_TYPE(bp);
4023 void *enc_buf = NULL;
4024 abd_t *eabd = NULL;
4025 uint8_t salt[ZIO_DATA_SALT_LEN];
4026 uint8_t iv[ZIO_DATA_IV_LEN];
4027 uint8_t mac[ZIO_DATA_MAC_LEN];
4028 boolean_t no_crypt = B_FALSE;
4029
4030 /* the root zio already encrypted the data */
4031 if (zio->io_child_type == ZIO_CHILD_GANG)
4032 return (zio);
4033
4034 /* only ZIL blocks are re-encrypted on rewrite */
4035 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4036 return (zio);
4037
4038 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4039 BP_SET_CRYPT(bp, B_FALSE);
4040 return (zio);
4041 }
4042
4043 /* if we are doing raw encryption set the provided encryption params */
4044 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4045 ASSERT0(BP_GET_LEVEL(bp));
4046 BP_SET_CRYPT(bp, B_TRUE);
4047 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4048 if (ot != DMU_OT_OBJSET)
4049 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4050
4051 /* dnode blocks must be written out in the provided byteorder */
4052 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4053 ot == DMU_OT_DNODE) {
4054 void *bswap_buf = zio_buf_alloc(psize);
4055 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4056
4057 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4058 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4059 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4060 psize);
4061
4062 abd_take_ownership_of_buf(babd, B_TRUE);
4063 zio_push_transform(zio, babd, psize, psize, NULL);
4064 }
4065
4066 if (DMU_OT_IS_ENCRYPTED(ot))
4067 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4068 return (zio);
4069 }
4070
4071 /* indirect blocks only maintain a cksum of the lower level MACs */
4072 if (BP_GET_LEVEL(bp) > 0) {
4073 BP_SET_CRYPT(bp, B_TRUE);
4074 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4075 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4076 mac));
4077 zio_crypt_encode_mac_bp(bp, mac);
4078 return (zio);
4079 }
4080
4081 /*
4082 * Objset blocks are a special case since they have 2 256-bit MACs
4083 * embedded within them.
4084 */
4085 if (ot == DMU_OT_OBJSET) {
4086 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4087 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4088 BP_SET_CRYPT(bp, B_TRUE);
4089 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4090 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4091 return (zio);
4092 }
4093
4094 /* unencrypted object types are only authenticated with a MAC */
4095 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4096 BP_SET_CRYPT(bp, B_TRUE);
4097 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4098 zio->io_abd, psize, mac));
4099 zio_crypt_encode_mac_bp(bp, mac);
4100 return (zio);
4101 }
4102
4103 /*
4104 * Later passes of sync-to-convergence may decide to rewrite data
4105 * in place to avoid more disk reallocations. This presents a problem
4106 * for encryption because this constitutes rewriting the new data with
4107 * the same encryption key and IV. However, this only applies to blocks
4108 * in the MOS (particularly the spacemaps) and we do not encrypt the
4109 * MOS. We assert that the zio is allocating or an intent log write
4110 * to enforce this.
4111 */
4112 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4113 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4114 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4115 ASSERT3U(psize, !=, 0);
4116
4117 enc_buf = zio_buf_alloc(psize);
4118 eabd = abd_get_from_buf(enc_buf, psize);
4119 abd_take_ownership_of_buf(eabd, B_TRUE);
4120
4121 /*
4122 * For an explanation of what encryption parameters are stored
4123 * where, see the block comment in zio_crypt.c.
4124 */
4125 if (ot == DMU_OT_INTENT_LOG) {
4126 zio_crypt_decode_params_bp(bp, salt, iv);
4127 } else {
4128 BP_SET_CRYPT(bp, B_TRUE);
4129 }
4130
4131 /* Perform the encryption. This should not fail */
4132 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4133 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4134 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4135
4136 /* encode encryption metadata into the bp */
4137 if (ot == DMU_OT_INTENT_LOG) {
4138 /*
4139 * ZIL blocks store the MAC in the embedded checksum, so the
4140 * transform must always be applied.
4141 */
4142 zio_crypt_encode_mac_zil(enc_buf, mac);
4143 zio_push_transform(zio, eabd, psize, psize, NULL);
4144 } else {
4145 BP_SET_CRYPT(bp, B_TRUE);
4146 zio_crypt_encode_params_bp(bp, salt, iv);
4147 zio_crypt_encode_mac_bp(bp, mac);
4148
4149 if (no_crypt) {
4150 ASSERT3U(ot, ==, DMU_OT_DNODE);
4151 abd_free(eabd);
4152 } else {
4153 zio_push_transform(zio, eabd, psize, psize, NULL);
4154 }
4155 }
4156
4157 return (zio);
4158 }
4159
4160 /*
4161 * ==========================================================================
4162 * Generate and verify checksums
4163 * ==========================================================================
4164 */
4165 static zio_t *
4166 zio_checksum_generate(zio_t *zio)
4167 {
4168 blkptr_t *bp = zio->io_bp;
4169 enum zio_checksum checksum;
4170
4171 if (bp == NULL) {
4172 /*
4173 * This is zio_write_phys().
4174 * We're either generating a label checksum, or none at all.
4175 */
4176 checksum = zio->io_prop.zp_checksum;
4177
4178 if (checksum == ZIO_CHECKSUM_OFF)
4179 return (zio);
4180
4181 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4182 } else {
4183 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4184 ASSERT(!IO_IS_ALLOCATING(zio));
4185 checksum = ZIO_CHECKSUM_GANG_HEADER;
4186 } else {
4187 checksum = BP_GET_CHECKSUM(bp);
4188 }
4189 }
4190
4191 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4192
4193 return (zio);
4194 }
4195
4196 static zio_t *
4197 zio_checksum_verify(zio_t *zio)
4198 {
4199 zio_bad_cksum_t info;
4200 blkptr_t *bp = zio->io_bp;
4201 int error;
4202
4203 ASSERT(zio->io_vd != NULL);
4204
4205 if (bp == NULL) {
4206 /*
4207 * This is zio_read_phys().
4208 * We're either verifying a label checksum, or nothing at all.
4209 */
4210 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4211 return (zio);
4212
4213 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
4214 }
4215
4216 if ((error = zio_checksum_error(zio, &info)) != 0) {
4217 zio->io_error = error;
4218 if (error == ECKSUM &&
4219 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4220 mutex_enter(&zio->io_vd->vdev_stat_lock);
4221 zio->io_vd->vdev_stat.vs_checksum_errors++;
4222 mutex_exit(&zio->io_vd->vdev_stat_lock);
4223
4224 zfs_ereport_start_checksum(zio->io_spa,
4225 zio->io_vd, &zio->io_bookmark, zio,
4226 zio->io_offset, zio->io_size, NULL, &info);
4227 }
4228 }
4229
4230 return (zio);
4231 }
4232
4233 /*
4234 * Called by RAID-Z to ensure we don't compute the checksum twice.
4235 */
4236 void
4237 zio_checksum_verified(zio_t *zio)
4238 {
4239 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4240 }
4241
4242 /*
4243 * ==========================================================================
4244 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4245 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4246 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4247 * indicate errors that are specific to one I/O, and most likely permanent.
4248 * Any other error is presumed to be worse because we weren't expecting it.
4249 * ==========================================================================
4250 */
4251 int
4252 zio_worst_error(int e1, int e2)
4253 {
4254 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4255 int r1, r2;
4256
4257 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4258 if (e1 == zio_error_rank[r1])
4259 break;
4260
4261 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4262 if (e2 == zio_error_rank[r2])
4263 break;
4264
4265 return (r1 > r2 ? e1 : e2);
4266 }
4267
4268 /*
4269 * ==========================================================================
4270 * I/O completion
4271 * ==========================================================================
4272 */
4273 static zio_t *
4274 zio_ready(zio_t *zio)
4275 {
4276 blkptr_t *bp = zio->io_bp;
4277 zio_t *pio, *pio_next;
4278 zio_link_t *zl = NULL;
4279
4280 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4281 ZIO_WAIT_READY)) {
4282 return (NULL);
4283 }
4284
4285 if (zio->io_ready) {
4286 ASSERT(IO_IS_ALLOCATING(zio));
4287 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4288 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4289 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4290
4291 zio->io_ready(zio);
4292 }
4293
4294 if (bp != NULL && bp != &zio->io_bp_copy)
4295 zio->io_bp_copy = *bp;
4296
4297 if (zio->io_error != 0) {
4298 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4299
4300 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4301 ASSERT(IO_IS_ALLOCATING(zio));
4302 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4303 ASSERT(zio->io_metaslab_class != NULL);
4304
4305 /*
4306 * We were unable to allocate anything, unreserve and
4307 * issue the next I/O to allocate.
4308 */
4309 metaslab_class_throttle_unreserve(
4310 zio->io_metaslab_class, zio->io_prop.zp_copies,
4311 zio->io_allocator, zio);
4312 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4313 }
4314 }
4315
4316 mutex_enter(&zio->io_lock);
4317 zio->io_state[ZIO_WAIT_READY] = 1;
4318 pio = zio_walk_parents(zio, &zl);
4319 mutex_exit(&zio->io_lock);
4320
4321 /*
4322 * As we notify zio's parents, new parents could be added.
4323 * New parents go to the head of zio's io_parent_list, however,
4324 * so we will (correctly) not notify them. The remainder of zio's
4325 * io_parent_list, from 'pio_next' onward, cannot change because
4326 * all parents must wait for us to be done before they can be done.
4327 */
4328 for (; pio != NULL; pio = pio_next) {
4329 pio_next = zio_walk_parents(zio, &zl);
4330 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4331 }
4332
4333 if (zio->io_flags & ZIO_FLAG_NODATA) {
4334 if (BP_IS_GANG(bp)) {
4335 zio->io_flags &= ~ZIO_FLAG_NODATA;
4336 } else {
4337 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4338 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4339 }
4340 }
4341
4342 if (zio_injection_enabled &&
4343 zio->io_spa->spa_syncing_txg == zio->io_txg)
4344 zio_handle_ignored_writes(zio);
4345
4346 return (zio);
4347 }
4348
4349 /*
4350 * Update the allocation throttle accounting.
4351 */
4352 static void
4353 zio_dva_throttle_done(zio_t *zio)
4354 {
4355 zio_t *lio __maybe_unused = zio->io_logical;
4356 zio_t *pio = zio_unique_parent(zio);
4357 vdev_t *vd = zio->io_vd;
4358 int flags = METASLAB_ASYNC_ALLOC;
4359
4360 ASSERT3P(zio->io_bp, !=, NULL);
4361 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4362 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4363 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4364 ASSERT(vd != NULL);
4365 ASSERT3P(vd, ==, vd->vdev_top);
4366 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4367 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4368 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4369 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4370 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4371
4372 /*
4373 * Parents of gang children can have two flavors -- ones that
4374 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4375 * and ones that allocated the constituent blocks. The allocation
4376 * throttle needs to know the allocating parent zio so we must find
4377 * it here.
4378 */
4379 if (pio->io_child_type == ZIO_CHILD_GANG) {
4380 /*
4381 * If our parent is a rewrite gang child then our grandparent
4382 * would have been the one that performed the allocation.
4383 */
4384 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4385 pio = zio_unique_parent(pio);
4386 flags |= METASLAB_GANG_CHILD;
4387 }
4388
4389 ASSERT(IO_IS_ALLOCATING(pio));
4390 ASSERT3P(zio, !=, zio->io_logical);
4391 ASSERT(zio->io_logical != NULL);
4392 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4393 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4394 ASSERT(zio->io_metaslab_class != NULL);
4395
4396 mutex_enter(&pio->io_lock);
4397 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4398 pio->io_allocator, B_TRUE);
4399 mutex_exit(&pio->io_lock);
4400
4401 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4402 pio->io_allocator, pio);
4403
4404 /*
4405 * Call into the pipeline to see if there is more work that
4406 * needs to be done. If there is work to be done it will be
4407 * dispatched to another taskq thread.
4408 */
4409 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4410 }
4411
4412 static zio_t *
4413 zio_done(zio_t *zio)
4414 {
4415 /*
4416 * Always attempt to keep stack usage minimal here since
4417 * we can be called recursively up to 19 levels deep.
4418 */
4419 const uint64_t psize = zio->io_size;
4420 zio_t *pio, *pio_next;
4421 zio_link_t *zl = NULL;
4422
4423 /*
4424 * If our children haven't all completed,
4425 * wait for them and then repeat this pipeline stage.
4426 */
4427 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4428 return (NULL);
4429 }
4430
4431 /*
4432 * If the allocation throttle is enabled, then update the accounting.
4433 * We only track child I/Os that are part of an allocating async
4434 * write. We must do this since the allocation is performed
4435 * by the logical I/O but the actual write is done by child I/Os.
4436 */
4437 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4438 zio->io_child_type == ZIO_CHILD_VDEV) {
4439 ASSERT(zio->io_metaslab_class != NULL);
4440 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4441 zio_dva_throttle_done(zio);
4442 }
4443
4444 /*
4445 * If the allocation throttle is enabled, verify that
4446 * we have decremented the refcounts for every I/O that was throttled.
4447 */
4448 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4449 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4450 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4451 ASSERT(zio->io_bp != NULL);
4452
4453 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4454 zio->io_allocator);
4455 VERIFY(zfs_refcount_not_held(
4456 &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
4457 zio));
4458 }
4459
4460
4461 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4462 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4463 ASSERT(zio->io_children[c][w] == 0);
4464
4465 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4466 ASSERT(zio->io_bp->blk_pad[0] == 0);
4467 ASSERT(zio->io_bp->blk_pad[1] == 0);
4468 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4469 sizeof (blkptr_t)) == 0 ||
4470 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4471 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4472 zio->io_bp_override == NULL &&
4473 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4474 ASSERT3U(zio->io_prop.zp_copies, <=,
4475 BP_GET_NDVAS(zio->io_bp));
4476 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4477 (BP_COUNT_GANG(zio->io_bp) ==
4478 BP_GET_NDVAS(zio->io_bp)));
4479 }
4480 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4481 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4482 }
4483
4484 /*
4485 * If there were child vdev/gang/ddt errors, they apply to us now.
4486 */
4487 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4488 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4489 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4490
4491 /*
4492 * If the I/O on the transformed data was successful, generate any
4493 * checksum reports now while we still have the transformed data.
4494 */
4495 if (zio->io_error == 0) {
4496 while (zio->io_cksum_report != NULL) {
4497 zio_cksum_report_t *zcr = zio->io_cksum_report;
4498 uint64_t align = zcr->zcr_align;
4499 uint64_t asize = P2ROUNDUP(psize, align);
4500 abd_t *adata = zio->io_abd;
4501
4502 if (asize != psize) {
4503 adata = abd_alloc(asize, B_TRUE);
4504 abd_copy(adata, zio->io_abd, psize);
4505 abd_zero_off(adata, psize, asize - psize);
4506 }
4507
4508 zio->io_cksum_report = zcr->zcr_next;
4509 zcr->zcr_next = NULL;
4510 zcr->zcr_finish(zcr, adata);
4511 zfs_ereport_free_checksum(zcr);
4512
4513 if (asize != psize)
4514 abd_free(adata);
4515 }
4516 }
4517
4518 zio_pop_transforms(zio); /* note: may set zio->io_error */
4519
4520 vdev_stat_update(zio, psize);
4521
4522 /*
4523 * If this I/O is attached to a particular vdev is slow, exceeding
4524 * 30 seconds to complete, post an error described the I/O delay.
4525 * We ignore these errors if the device is currently unavailable.
4526 */
4527 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4528 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4529 /*
4530 * We want to only increment our slow IO counters if
4531 * the IO is valid (i.e. not if the drive is removed).
4532 *
4533 * zfs_ereport_post() will also do these checks, but
4534 * it can also ratelimit and have other failures, so we
4535 * need to increment the slow_io counters independent
4536 * of it.
4537 */
4538 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4539 zio->io_spa, zio->io_vd, zio)) {
4540 mutex_enter(&zio->io_vd->vdev_stat_lock);
4541 zio->io_vd->vdev_stat.vs_slow_ios++;
4542 mutex_exit(&zio->io_vd->vdev_stat_lock);
4543
4544 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4545 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4546 zio, 0, 0);
4547 }
4548 }
4549 }
4550
4551 if (zio->io_error) {
4552 /*
4553 * If this I/O is attached to a particular vdev,
4554 * generate an error message describing the I/O failure
4555 * at the block level. We ignore these errors if the
4556 * device is currently unavailable.
4557 */
4558 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4559 !vdev_is_dead(zio->io_vd)) {
4560 mutex_enter(&zio->io_vd->vdev_stat_lock);
4561 if (zio->io_type == ZIO_TYPE_READ) {
4562 zio->io_vd->vdev_stat.vs_read_errors++;
4563 } else if (zio->io_type == ZIO_TYPE_WRITE) {
4564 zio->io_vd->vdev_stat.vs_write_errors++;
4565 }
4566 mutex_exit(&zio->io_vd->vdev_stat_lock);
4567
4568 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
4569 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4570 }
4571
4572 if ((zio->io_error == EIO || !(zio->io_flags &
4573 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4574 zio == zio->io_logical) {
4575 /*
4576 * For logical I/O requests, tell the SPA to log the
4577 * error and generate a logical data ereport.
4578 */
4579 spa_log_error(zio->io_spa, &zio->io_bookmark);
4580 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa,
4581 NULL, &zio->io_bookmark, zio, 0, 0);
4582 }
4583 }
4584
4585 if (zio->io_error && zio == zio->io_logical) {
4586 /*
4587 * Determine whether zio should be reexecuted. This will
4588 * propagate all the way to the root via zio_notify_parent().
4589 */
4590 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4591 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4592
4593 if (IO_IS_ALLOCATING(zio) &&
4594 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4595 if (zio->io_error != ENOSPC)
4596 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4597 else
4598 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4599 }
4600
4601 if ((zio->io_type == ZIO_TYPE_READ ||
4602 zio->io_type == ZIO_TYPE_FREE) &&
4603 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4604 zio->io_error == ENXIO &&
4605 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4606 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4607 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4608
4609 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4610 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4611
4612 /*
4613 * Here is a possibly good place to attempt to do
4614 * either combinatorial reconstruction or error correction
4615 * based on checksums. It also might be a good place
4616 * to send out preliminary ereports before we suspend
4617 * processing.
4618 */
4619 }
4620
4621 /*
4622 * If there were logical child errors, they apply to us now.
4623 * We defer this until now to avoid conflating logical child
4624 * errors with errors that happened to the zio itself when
4625 * updating vdev stats and reporting FMA events above.
4626 */
4627 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4628
4629 if ((zio->io_error || zio->io_reexecute) &&
4630 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4631 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4632 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4633
4634 zio_gang_tree_free(&zio->io_gang_tree);
4635
4636 /*
4637 * Godfather I/Os should never suspend.
4638 */
4639 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4640 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4641 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4642
4643 if (zio->io_reexecute) {
4644 /*
4645 * This is a logical I/O that wants to reexecute.
4646 *
4647 * Reexecute is top-down. When an i/o fails, if it's not
4648 * the root, it simply notifies its parent and sticks around.
4649 * The parent, seeing that it still has children in zio_done(),
4650 * does the same. This percolates all the way up to the root.
4651 * The root i/o will reexecute or suspend the entire tree.
4652 *
4653 * This approach ensures that zio_reexecute() honors
4654 * all the original i/o dependency relationships, e.g.
4655 * parents not executing until children are ready.
4656 */
4657 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4658
4659 zio->io_gang_leader = NULL;
4660
4661 mutex_enter(&zio->io_lock);
4662 zio->io_state[ZIO_WAIT_DONE] = 1;
4663 mutex_exit(&zio->io_lock);
4664
4665 /*
4666 * "The Godfather" I/O monitors its children but is
4667 * not a true parent to them. It will track them through
4668 * the pipeline but severs its ties whenever they get into
4669 * trouble (e.g. suspended). This allows "The Godfather"
4670 * I/O to return status without blocking.
4671 */
4672 zl = NULL;
4673 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4674 pio = pio_next) {
4675 zio_link_t *remove_zl = zl;
4676 pio_next = zio_walk_parents(zio, &zl);
4677
4678 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4679 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4680 zio_remove_child(pio, zio, remove_zl);
4681 /*
4682 * This is a rare code path, so we don't
4683 * bother with "next_to_execute".
4684 */
4685 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4686 NULL);
4687 }
4688 }
4689
4690 if ((pio = zio_unique_parent(zio)) != NULL) {
4691 /*
4692 * We're not a root i/o, so there's nothing to do
4693 * but notify our parent. Don't propagate errors
4694 * upward since we haven't permanently failed yet.
4695 */
4696 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4697 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4698 /*
4699 * This is a rare code path, so we don't bother with
4700 * "next_to_execute".
4701 */
4702 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4703 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4704 /*
4705 * We'd fail again if we reexecuted now, so suspend
4706 * until conditions improve (e.g. device comes online).
4707 */
4708 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4709 } else {
4710 /*
4711 * Reexecution is potentially a huge amount of work.
4712 * Hand it off to the otherwise-unused claim taskq.
4713 */
4714 ASSERT(taskq_empty_ent(&zio->io_tqent));
4715 spa_taskq_dispatch_ent(zio->io_spa,
4716 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4717 (task_func_t *)zio_reexecute, zio, 0,
4718 &zio->io_tqent);
4719 }
4720 return (NULL);
4721 }
4722
4723 ASSERT(zio->io_child_count == 0);
4724 ASSERT(zio->io_reexecute == 0);
4725 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4726
4727 /*
4728 * Report any checksum errors, since the I/O is complete.
4729 */
4730 while (zio->io_cksum_report != NULL) {
4731 zio_cksum_report_t *zcr = zio->io_cksum_report;
4732 zio->io_cksum_report = zcr->zcr_next;
4733 zcr->zcr_next = NULL;
4734 zcr->zcr_finish(zcr, NULL);
4735 zfs_ereport_free_checksum(zcr);
4736 }
4737
4738 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4739 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4740 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4741 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4742 }
4743
4744 /*
4745 * It is the responsibility of the done callback to ensure that this
4746 * particular zio is no longer discoverable for adoption, and as
4747 * such, cannot acquire any new parents.
4748 */
4749 if (zio->io_done)
4750 zio->io_done(zio);
4751
4752 mutex_enter(&zio->io_lock);
4753 zio->io_state[ZIO_WAIT_DONE] = 1;
4754 mutex_exit(&zio->io_lock);
4755
4756 /*
4757 * We are done executing this zio. We may want to execute a parent
4758 * next. See the comment in zio_notify_parent().
4759 */
4760 zio_t *next_to_execute = NULL;
4761 zl = NULL;
4762 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4763 zio_link_t *remove_zl = zl;
4764 pio_next = zio_walk_parents(zio, &zl);
4765 zio_remove_child(pio, zio, remove_zl);
4766 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4767 }
4768
4769 if (zio->io_waiter != NULL) {
4770 mutex_enter(&zio->io_lock);
4771 zio->io_executor = NULL;
4772 cv_broadcast(&zio->io_cv);
4773 mutex_exit(&zio->io_lock);
4774 } else {
4775 zio_destroy(zio);
4776 }
4777
4778 return (next_to_execute);
4779 }
4780
4781 /*
4782 * ==========================================================================
4783 * I/O pipeline definition
4784 * ==========================================================================
4785 */
4786 static zio_pipe_stage_t *zio_pipeline[] = {
4787 NULL,
4788 zio_read_bp_init,
4789 zio_write_bp_init,
4790 zio_free_bp_init,
4791 zio_issue_async,
4792 zio_write_compress,
4793 zio_encrypt,
4794 zio_checksum_generate,
4795 zio_nop_write,
4796 zio_ddt_read_start,
4797 zio_ddt_read_done,
4798 zio_ddt_write,
4799 zio_ddt_free,
4800 zio_gang_assemble,
4801 zio_gang_issue,
4802 zio_dva_throttle,
4803 zio_dva_allocate,
4804 zio_dva_free,
4805 zio_dva_claim,
4806 zio_ready,
4807 zio_vdev_io_start,
4808 zio_vdev_io_done,
4809 zio_vdev_io_assess,
4810 zio_checksum_verify,
4811 zio_done
4812 };
4813
4814
4815
4816
4817 /*
4818 * Compare two zbookmark_phys_t's to see which we would reach first in a
4819 * pre-order traversal of the object tree.
4820 *
4821 * This is simple in every case aside from the meta-dnode object. For all other
4822 * objects, we traverse them in order (object 1 before object 2, and so on).
4823 * However, all of these objects are traversed while traversing object 0, since
4824 * the data it points to is the list of objects. Thus, we need to convert to a
4825 * canonical representation so we can compare meta-dnode bookmarks to
4826 * non-meta-dnode bookmarks.
4827 *
4828 * We do this by calculating "equivalents" for each field of the zbookmark.
4829 * zbookmarks outside of the meta-dnode use their own object and level, and
4830 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4831 * blocks this bookmark refers to) by multiplying their blkid by their span
4832 * (the number of L0 blocks contained within one block at their level).
4833 * zbookmarks inside the meta-dnode calculate their object equivalent
4834 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4835 * level + 1<<31 (any value larger than a level could ever be) for their level.
4836 * This causes them to always compare before a bookmark in their object
4837 * equivalent, compare appropriately to bookmarks in other objects, and to
4838 * compare appropriately to other bookmarks in the meta-dnode.
4839 */
4840 int
4841 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4842 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4843 {
4844 /*
4845 * These variables represent the "equivalent" values for the zbookmark,
4846 * after converting zbookmarks inside the meta dnode to their
4847 * normal-object equivalents.
4848 */
4849 uint64_t zb1obj, zb2obj;
4850 uint64_t zb1L0, zb2L0;
4851 uint64_t zb1level, zb2level;
4852
4853 if (zb1->zb_object == zb2->zb_object &&
4854 zb1->zb_level == zb2->zb_level &&
4855 zb1->zb_blkid == zb2->zb_blkid)
4856 return (0);
4857
4858 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4859 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4860
4861 /*
4862 * BP_SPANB calculates the span in blocks.
4863 */
4864 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4865 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4866
4867 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4868 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4869 zb1L0 = 0;
4870 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4871 } else {
4872 zb1obj = zb1->zb_object;
4873 zb1level = zb1->zb_level;
4874 }
4875
4876 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4877 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4878 zb2L0 = 0;
4879 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4880 } else {
4881 zb2obj = zb2->zb_object;
4882 zb2level = zb2->zb_level;
4883 }
4884
4885 /* Now that we have a canonical representation, do the comparison. */
4886 if (zb1obj != zb2obj)
4887 return (zb1obj < zb2obj ? -1 : 1);
4888 else if (zb1L0 != zb2L0)
4889 return (zb1L0 < zb2L0 ? -1 : 1);
4890 else if (zb1level != zb2level)
4891 return (zb1level > zb2level ? -1 : 1);
4892 /*
4893 * This can (theoretically) happen if the bookmarks have the same object
4894 * and level, but different blkids, if the block sizes are not the same.
4895 * There is presently no way to change the indirect block sizes
4896 */
4897 return (0);
4898 }
4899
4900 /*
4901 * This function checks the following: given that last_block is the place that
4902 * our traversal stopped last time, does that guarantee that we've visited
4903 * every node under subtree_root? Therefore, we can't just use the raw output
4904 * of zbookmark_compare. We have to pass in a modified version of
4905 * subtree_root; by incrementing the block id, and then checking whether
4906 * last_block is before or equal to that, we can tell whether or not having
4907 * visited last_block implies that all of subtree_root's children have been
4908 * visited.
4909 */
4910 boolean_t
4911 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4912 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4913 {
4914 zbookmark_phys_t mod_zb = *subtree_root;
4915 mod_zb.zb_blkid++;
4916 ASSERT(last_block->zb_level == 0);
4917
4918 /* The objset_phys_t isn't before anything. */
4919 if (dnp == NULL)
4920 return (B_FALSE);
4921
4922 /*
4923 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4924 * data block size in sectors, because that variable is only used if
4925 * the bookmark refers to a block in the meta-dnode. Since we don't
4926 * know without examining it what object it refers to, and there's no
4927 * harm in passing in this value in other cases, we always pass it in.
4928 *
4929 * We pass in 0 for the indirect block size shift because zb2 must be
4930 * level 0. The indirect block size is only used to calculate the span
4931 * of the bookmark, but since the bookmark must be level 0, the span is
4932 * always 1, so the math works out.
4933 *
4934 * If you make changes to how the zbookmark_compare code works, be sure
4935 * to make sure that this code still works afterwards.
4936 */
4937 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4938 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4939 last_block) <= 0);
4940 }
4941
4942 EXPORT_SYMBOL(zio_type_name);
4943 EXPORT_SYMBOL(zio_buf_alloc);
4944 EXPORT_SYMBOL(zio_data_buf_alloc);
4945 EXPORT_SYMBOL(zio_buf_free);
4946 EXPORT_SYMBOL(zio_data_buf_free);
4947
4948 /* BEGIN CSTYLED */
4949 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
4950 "Max I/O completion time (milliseconds) before marking it as slow");
4951
4952 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
4953 "Prioritize requeued I/O");
4954
4955 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW,
4956 "Defer frees starting in this pass");
4957
4958 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
4959 "Don't compress starting in this pass");
4960
4961 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
4962 "Rewrite new bps starting in this pass");
4963
4964 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
4965 "Throttle block allocations in the ZIO pipeline");
4966
4967 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
4968 "Log all slow ZIOs, not just those with vdevs");
4969 /* END CSTYLED */