]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
A few fixes of callback typecasting (for the upcoming ClangCFI)
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
29 */
30
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
54
55 /*
56 * ==========================================================================
57 * I/O type descriptions
58 * ==========================================================================
59 */
60 const char *zio_type_name[ZIO_TYPES] = {
61 /*
62 * Note: Linux kernel thread name length is limited
63 * so these names will differ from upstream open zfs.
64 */
65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
66 };
67
68 int zio_dva_throttle_enabled = B_TRUE;
69 int zio_deadman_log_all = B_FALSE;
70
71 /*
72 * ==========================================================================
73 * I/O kmem caches
74 * ==========================================================================
75 */
76 kmem_cache_t *zio_cache;
77 kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
84
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 int zio_slow_io_ms = (30 * MILLISEC);
87
88 #define BP_SPANB(indblkshift, level) \
89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define COMPARE_META_LEVEL 0x80000000ul
91 /*
92 * The following actions directly effect the spa's sync-to-convergence logic.
93 * The values below define the sync pass when we start performing the action.
94 * Care should be taken when changing these values as they directly impact
95 * spa_sync() performance. Tuning these values may introduce subtle performance
96 * pathologies and should only be done in the context of performance analysis.
97 * These tunables will eventually be removed and replaced with #defines once
98 * enough analysis has been done to determine optimal values.
99 *
100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101 * regular blocks are not deferred.
102 *
103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104 * compression (including of metadata). In practice, we don't have this
105 * many sync passes, so this has no effect.
106 *
107 * The original intent was that disabling compression would help the sync
108 * passes to converge. However, in practice disabling compression increases
109 * the average number of sync passes, because when we turn compression off, a
110 * lot of block's size will change and thus we have to re-allocate (not
111 * overwrite) them. It also increases the number of 128KB allocations (e.g.
112 * for indirect blocks and spacemaps) because these will not be compressed.
113 * The 128K allocations are especially detrimental to performance on highly
114 * fragmented systems, which may have very few free segments of this size,
115 * and may need to load new metaslabs to satisfy 128K allocations.
116 */
117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
118 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
119 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
120
121 /*
122 * An allocating zio is one that either currently has the DVA allocate
123 * stage set or will have it later in its lifetime.
124 */
125 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
126
127 /*
128 * Enable smaller cores by excluding metadata
129 * allocations as well.
130 */
131 int zio_exclude_metadata = 0;
132 int zio_requeue_io_start_cut_in_line = 1;
133
134 #ifdef ZFS_DEBUG
135 int zio_buf_debug_limit = 16384;
136 #else
137 int zio_buf_debug_limit = 0;
138 #endif
139
140 static inline void __zio_execute(zio_t *zio);
141
142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
143
144 void
145 zio_init(void)
146 {
147 size_t c;
148
149 zio_cache = kmem_cache_create("zio_cache",
150 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
151 zio_link_cache = kmem_cache_create("zio_link_cache",
152 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
153
154 /*
155 * For small buffers, we want a cache for each multiple of
156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
157 * for each quarter-power of 2.
158 */
159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
160 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
161 size_t p2 = size;
162 size_t align = 0;
163 size_t data_cflags, cflags;
164
165 data_cflags = KMC_NODEBUG;
166 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
167 KMC_NODEBUG : 0;
168
169 #if defined(_ILP32) && defined(_KERNEL)
170 /*
171 * Cache size limited to 1M on 32-bit platforms until ARC
172 * buffers no longer require virtual address space.
173 */
174 if (size > zfs_max_recordsize)
175 break;
176 #endif
177
178 while (!ISP2(p2))
179 p2 &= p2 - 1;
180
181 #ifndef _KERNEL
182 /*
183 * If we are using watchpoints, put each buffer on its own page,
184 * to eliminate the performance overhead of trapping to the
185 * kernel when modifying a non-watched buffer that shares the
186 * page with a watched buffer.
187 */
188 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
189 continue;
190 /*
191 * Here's the problem - on 4K native devices in userland on
192 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
193 * will fail with EINVAL, causing zdb (and others) to coredump.
194 * Since userland probably doesn't need optimized buffer caches,
195 * we just force 4K alignment on everything.
196 */
197 align = 8 * SPA_MINBLOCKSIZE;
198 #else
199 if (size < PAGESIZE) {
200 align = SPA_MINBLOCKSIZE;
201 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
202 align = PAGESIZE;
203 }
204 #endif
205
206 if (align != 0) {
207 char name[36];
208 if (cflags == data_cflags) {
209 /*
210 * Resulting kmem caches would be identical.
211 * Save memory by creating only one.
212 */
213 (void) snprintf(name, sizeof (name),
214 "zio_buf_comb_%lu", (ulong_t)size);
215 zio_buf_cache[c] = kmem_cache_create(name,
216 size, align, NULL, NULL, NULL, NULL, NULL,
217 cflags);
218 zio_data_buf_cache[c] = zio_buf_cache[c];
219 continue;
220 }
221 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
222 (ulong_t)size);
223 zio_buf_cache[c] = kmem_cache_create(name, size,
224 align, NULL, NULL, NULL, NULL, NULL, cflags);
225
226 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
227 (ulong_t)size);
228 zio_data_buf_cache[c] = kmem_cache_create(name, size,
229 align, NULL, NULL, NULL, NULL, NULL, data_cflags);
230 }
231 }
232
233 while (--c != 0) {
234 ASSERT(zio_buf_cache[c] != NULL);
235 if (zio_buf_cache[c - 1] == NULL)
236 zio_buf_cache[c - 1] = zio_buf_cache[c];
237
238 ASSERT(zio_data_buf_cache[c] != NULL);
239 if (zio_data_buf_cache[c - 1] == NULL)
240 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
241 }
242
243 zio_inject_init();
244
245 lz4_init();
246 }
247
248 void
249 zio_fini(void)
250 {
251 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
252
253 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
254 for (size_t i = 0; i < n; i++) {
255 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
256 (void) printf("zio_fini: [%d] %llu != %llu\n",
257 (int)((i + 1) << SPA_MINBLOCKSHIFT),
258 (long long unsigned)zio_buf_cache_allocs[i],
259 (long long unsigned)zio_buf_cache_frees[i]);
260 }
261 #endif
262
263 /*
264 * The same kmem cache can show up multiple times in both zio_buf_cache
265 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
266 * sort it out.
267 */
268 for (size_t i = 0; i < n; i++) {
269 kmem_cache_t *cache = zio_buf_cache[i];
270 if (cache == NULL)
271 continue;
272 for (size_t j = i; j < n; j++) {
273 if (cache == zio_buf_cache[j])
274 zio_buf_cache[j] = NULL;
275 if (cache == zio_data_buf_cache[j])
276 zio_data_buf_cache[j] = NULL;
277 }
278 kmem_cache_destroy(cache);
279 }
280
281 for (size_t i = 0; i < n; i++) {
282 kmem_cache_t *cache = zio_data_buf_cache[i];
283 if (cache == NULL)
284 continue;
285 for (size_t j = i; j < n; j++) {
286 if (cache == zio_data_buf_cache[j])
287 zio_data_buf_cache[j] = NULL;
288 }
289 kmem_cache_destroy(cache);
290 }
291
292 for (size_t i = 0; i < n; i++) {
293 VERIFY3P(zio_buf_cache[i], ==, NULL);
294 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
295 }
296
297 kmem_cache_destroy(zio_link_cache);
298 kmem_cache_destroy(zio_cache);
299
300 zio_inject_fini();
301
302 lz4_fini();
303 }
304
305 /*
306 * ==========================================================================
307 * Allocate and free I/O buffers
308 * ==========================================================================
309 */
310
311 /*
312 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
313 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
314 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
315 * excess / transient data in-core during a crashdump.
316 */
317 void *
318 zio_buf_alloc(size_t size)
319 {
320 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
321
322 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
323 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
324 atomic_add_64(&zio_buf_cache_allocs[c], 1);
325 #endif
326
327 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
328 }
329
330 /*
331 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
332 * crashdump if the kernel panics. This exists so that we will limit the amount
333 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
334 * of kernel heap dumped to disk when the kernel panics)
335 */
336 void *
337 zio_data_buf_alloc(size_t size)
338 {
339 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
340
341 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
342
343 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
344 }
345
346 void
347 zio_buf_free(void *buf, size_t size)
348 {
349 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
350
351 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
352 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
353 atomic_add_64(&zio_buf_cache_frees[c], 1);
354 #endif
355
356 kmem_cache_free(zio_buf_cache[c], buf);
357 }
358
359 void
360 zio_data_buf_free(void *buf, size_t size)
361 {
362 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
363
364 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
365
366 kmem_cache_free(zio_data_buf_cache[c], buf);
367 }
368
369 static void
370 zio_abd_free(void *abd, size_t size)
371 {
372 abd_free((abd_t *)abd);
373 }
374
375 /*
376 * ==========================================================================
377 * Push and pop I/O transform buffers
378 * ==========================================================================
379 */
380 void
381 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
382 zio_transform_func_t *transform)
383 {
384 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
385
386 zt->zt_orig_abd = zio->io_abd;
387 zt->zt_orig_size = zio->io_size;
388 zt->zt_bufsize = bufsize;
389 zt->zt_transform = transform;
390
391 zt->zt_next = zio->io_transform_stack;
392 zio->io_transform_stack = zt;
393
394 zio->io_abd = data;
395 zio->io_size = size;
396 }
397
398 void
399 zio_pop_transforms(zio_t *zio)
400 {
401 zio_transform_t *zt;
402
403 while ((zt = zio->io_transform_stack) != NULL) {
404 if (zt->zt_transform != NULL)
405 zt->zt_transform(zio,
406 zt->zt_orig_abd, zt->zt_orig_size);
407
408 if (zt->zt_bufsize != 0)
409 abd_free(zio->io_abd);
410
411 zio->io_abd = zt->zt_orig_abd;
412 zio->io_size = zt->zt_orig_size;
413 zio->io_transform_stack = zt->zt_next;
414
415 kmem_free(zt, sizeof (zio_transform_t));
416 }
417 }
418
419 /*
420 * ==========================================================================
421 * I/O transform callbacks for subblocks, decompression, and decryption
422 * ==========================================================================
423 */
424 static void
425 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
426 {
427 ASSERT(zio->io_size > size);
428
429 if (zio->io_type == ZIO_TYPE_READ)
430 abd_copy(data, zio->io_abd, size);
431 }
432
433 static void
434 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
435 {
436 if (zio->io_error == 0) {
437 void *tmp = abd_borrow_buf(data, size);
438 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
439 zio->io_abd, tmp, zio->io_size, size,
440 &zio->io_prop.zp_complevel);
441 abd_return_buf_copy(data, tmp, size);
442
443 if (zio_injection_enabled && ret == 0)
444 ret = zio_handle_fault_injection(zio, EINVAL);
445
446 if (ret != 0)
447 zio->io_error = SET_ERROR(EIO);
448 }
449 }
450
451 static void
452 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
453 {
454 int ret;
455 void *tmp;
456 blkptr_t *bp = zio->io_bp;
457 spa_t *spa = zio->io_spa;
458 uint64_t dsobj = zio->io_bookmark.zb_objset;
459 uint64_t lsize = BP_GET_LSIZE(bp);
460 dmu_object_type_t ot = BP_GET_TYPE(bp);
461 uint8_t salt[ZIO_DATA_SALT_LEN];
462 uint8_t iv[ZIO_DATA_IV_LEN];
463 uint8_t mac[ZIO_DATA_MAC_LEN];
464 boolean_t no_crypt = B_FALSE;
465
466 ASSERT(BP_USES_CRYPT(bp));
467 ASSERT3U(size, !=, 0);
468
469 if (zio->io_error != 0)
470 return;
471
472 /*
473 * Verify the cksum of MACs stored in an indirect bp. It will always
474 * be possible to verify this since it does not require an encryption
475 * key.
476 */
477 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
478 zio_crypt_decode_mac_bp(bp, mac);
479
480 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
481 /*
482 * We haven't decompressed the data yet, but
483 * zio_crypt_do_indirect_mac_checksum() requires
484 * decompressed data to be able to parse out the MACs
485 * from the indirect block. We decompress it now and
486 * throw away the result after we are finished.
487 */
488 tmp = zio_buf_alloc(lsize);
489 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
490 zio->io_abd, tmp, zio->io_size, lsize,
491 &zio->io_prop.zp_complevel);
492 if (ret != 0) {
493 ret = SET_ERROR(EIO);
494 goto error;
495 }
496 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
497 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
498 zio_buf_free(tmp, lsize);
499 } else {
500 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
501 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
502 }
503 abd_copy(data, zio->io_abd, size);
504
505 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
506 ret = zio_handle_decrypt_injection(spa,
507 &zio->io_bookmark, ot, ECKSUM);
508 }
509 if (ret != 0)
510 goto error;
511
512 return;
513 }
514
515 /*
516 * If this is an authenticated block, just check the MAC. It would be
517 * nice to separate this out into its own flag, but for the moment
518 * enum zio_flag is out of bits.
519 */
520 if (BP_IS_AUTHENTICATED(bp)) {
521 if (ot == DMU_OT_OBJSET) {
522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
524 } else {
525 zio_crypt_decode_mac_bp(bp, mac);
526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
527 zio->io_abd, size, mac);
528 if (zio_injection_enabled && ret == 0) {
529 ret = zio_handle_decrypt_injection(spa,
530 &zio->io_bookmark, ot, ECKSUM);
531 }
532 }
533 abd_copy(data, zio->io_abd, size);
534
535 if (ret != 0)
536 goto error;
537
538 return;
539 }
540
541 zio_crypt_decode_params_bp(bp, salt, iv);
542
543 if (ot == DMU_OT_INTENT_LOG) {
544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
545 zio_crypt_decode_mac_zil(tmp, mac);
546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
547 } else {
548 zio_crypt_decode_mac_bp(bp, mac);
549 }
550
551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
553 zio->io_abd, &no_crypt);
554 if (no_crypt)
555 abd_copy(data, zio->io_abd, size);
556
557 if (ret != 0)
558 goto error;
559
560 return;
561
562 error:
563 /* assert that the key was found unless this was speculative */
564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
565
566 /*
567 * If there was a decryption / authentication error return EIO as
568 * the io_error. If this was not a speculative zio, create an ereport.
569 */
570 if (ret == ECKSUM) {
571 zio->io_error = SET_ERROR(EIO);
572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
573 spa_log_error(spa, &zio->io_bookmark);
574 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
575 spa, NULL, &zio->io_bookmark, zio, 0);
576 }
577 } else {
578 zio->io_error = ret;
579 }
580 }
581
582 /*
583 * ==========================================================================
584 * I/O parent/child relationships and pipeline interlocks
585 * ==========================================================================
586 */
587 zio_t *
588 zio_walk_parents(zio_t *cio, zio_link_t **zl)
589 {
590 list_t *pl = &cio->io_parent_list;
591
592 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
593 if (*zl == NULL)
594 return (NULL);
595
596 ASSERT((*zl)->zl_child == cio);
597 return ((*zl)->zl_parent);
598 }
599
600 zio_t *
601 zio_walk_children(zio_t *pio, zio_link_t **zl)
602 {
603 list_t *cl = &pio->io_child_list;
604
605 ASSERT(MUTEX_HELD(&pio->io_lock));
606
607 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
608 if (*zl == NULL)
609 return (NULL);
610
611 ASSERT((*zl)->zl_parent == pio);
612 return ((*zl)->zl_child);
613 }
614
615 zio_t *
616 zio_unique_parent(zio_t *cio)
617 {
618 zio_link_t *zl = NULL;
619 zio_t *pio = zio_walk_parents(cio, &zl);
620
621 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
622 return (pio);
623 }
624
625 void
626 zio_add_child(zio_t *pio, zio_t *cio)
627 {
628 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
629
630 /*
631 * Logical I/Os can have logical, gang, or vdev children.
632 * Gang I/Os can have gang or vdev children.
633 * Vdev I/Os can only have vdev children.
634 * The following ASSERT captures all of these constraints.
635 */
636 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
637
638 zl->zl_parent = pio;
639 zl->zl_child = cio;
640
641 mutex_enter(&pio->io_lock);
642 mutex_enter(&cio->io_lock);
643
644 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
645
646 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
647 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
648
649 list_insert_head(&pio->io_child_list, zl);
650 list_insert_head(&cio->io_parent_list, zl);
651
652 pio->io_child_count++;
653 cio->io_parent_count++;
654
655 mutex_exit(&cio->io_lock);
656 mutex_exit(&pio->io_lock);
657 }
658
659 static void
660 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
661 {
662 ASSERT(zl->zl_parent == pio);
663 ASSERT(zl->zl_child == cio);
664
665 mutex_enter(&pio->io_lock);
666 mutex_enter(&cio->io_lock);
667
668 list_remove(&pio->io_child_list, zl);
669 list_remove(&cio->io_parent_list, zl);
670
671 pio->io_child_count--;
672 cio->io_parent_count--;
673
674 mutex_exit(&cio->io_lock);
675 mutex_exit(&pio->io_lock);
676 kmem_cache_free(zio_link_cache, zl);
677 }
678
679 static boolean_t
680 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
681 {
682 boolean_t waiting = B_FALSE;
683
684 mutex_enter(&zio->io_lock);
685 ASSERT(zio->io_stall == NULL);
686 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
687 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
688 continue;
689
690 uint64_t *countp = &zio->io_children[c][wait];
691 if (*countp != 0) {
692 zio->io_stage >>= 1;
693 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
694 zio->io_stall = countp;
695 waiting = B_TRUE;
696 break;
697 }
698 }
699 mutex_exit(&zio->io_lock);
700 return (waiting);
701 }
702
703 __attribute__((always_inline))
704 static inline void
705 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
706 zio_t **next_to_executep)
707 {
708 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
709 int *errorp = &pio->io_child_error[zio->io_child_type];
710
711 mutex_enter(&pio->io_lock);
712 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
713 *errorp = zio_worst_error(*errorp, zio->io_error);
714 pio->io_reexecute |= zio->io_reexecute;
715 ASSERT3U(*countp, >, 0);
716
717 (*countp)--;
718
719 if (*countp == 0 && pio->io_stall == countp) {
720 zio_taskq_type_t type =
721 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
722 ZIO_TASKQ_INTERRUPT;
723 pio->io_stall = NULL;
724 mutex_exit(&pio->io_lock);
725
726 /*
727 * If we can tell the caller to execute this parent next, do
728 * so. Otherwise dispatch the parent zio as its own task.
729 *
730 * Having the caller execute the parent when possible reduces
731 * locking on the zio taskq's, reduces context switch
732 * overhead, and has no recursion penalty. Note that one
733 * read from disk typically causes at least 3 zio's: a
734 * zio_null(), the logical zio_read(), and then a physical
735 * zio. When the physical ZIO completes, we are able to call
736 * zio_done() on all 3 of these zio's from one invocation of
737 * zio_execute() by returning the parent back to
738 * zio_execute(). Since the parent isn't executed until this
739 * thread returns back to zio_execute(), the caller should do
740 * so promptly.
741 *
742 * In other cases, dispatching the parent prevents
743 * overflowing the stack when we have deeply nested
744 * parent-child relationships, as we do with the "mega zio"
745 * of writes for spa_sync(), and the chain of ZIL blocks.
746 */
747 if (next_to_executep != NULL && *next_to_executep == NULL) {
748 *next_to_executep = pio;
749 } else {
750 zio_taskq_dispatch(pio, type, B_FALSE);
751 }
752 } else {
753 mutex_exit(&pio->io_lock);
754 }
755 }
756
757 static void
758 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
759 {
760 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
761 zio->io_error = zio->io_child_error[c];
762 }
763
764 int
765 zio_bookmark_compare(const void *x1, const void *x2)
766 {
767 const zio_t *z1 = x1;
768 const zio_t *z2 = x2;
769
770 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
771 return (-1);
772 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
773 return (1);
774
775 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
776 return (-1);
777 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
778 return (1);
779
780 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
781 return (-1);
782 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
783 return (1);
784
785 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
786 return (-1);
787 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
788 return (1);
789
790 if (z1 < z2)
791 return (-1);
792 if (z1 > z2)
793 return (1);
794
795 return (0);
796 }
797
798 /*
799 * ==========================================================================
800 * Create the various types of I/O (read, write, free, etc)
801 * ==========================================================================
802 */
803 static zio_t *
804 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
805 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
806 void *private, zio_type_t type, zio_priority_t priority,
807 enum zio_flag flags, vdev_t *vd, uint64_t offset,
808 const zbookmark_phys_t *zb, enum zio_stage stage,
809 enum zio_stage pipeline)
810 {
811 zio_t *zio;
812
813 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
814 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
815 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
816
817 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
818 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
819 ASSERT(vd || stage == ZIO_STAGE_OPEN);
820
821 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
822
823 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
824 bzero(zio, sizeof (zio_t));
825
826 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
827 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
828
829 list_create(&zio->io_parent_list, sizeof (zio_link_t),
830 offsetof(zio_link_t, zl_parent_node));
831 list_create(&zio->io_child_list, sizeof (zio_link_t),
832 offsetof(zio_link_t, zl_child_node));
833 metaslab_trace_init(&zio->io_alloc_list);
834
835 if (vd != NULL)
836 zio->io_child_type = ZIO_CHILD_VDEV;
837 else if (flags & ZIO_FLAG_GANG_CHILD)
838 zio->io_child_type = ZIO_CHILD_GANG;
839 else if (flags & ZIO_FLAG_DDT_CHILD)
840 zio->io_child_type = ZIO_CHILD_DDT;
841 else
842 zio->io_child_type = ZIO_CHILD_LOGICAL;
843
844 if (bp != NULL) {
845 zio->io_bp = (blkptr_t *)bp;
846 zio->io_bp_copy = *bp;
847 zio->io_bp_orig = *bp;
848 if (type != ZIO_TYPE_WRITE ||
849 zio->io_child_type == ZIO_CHILD_DDT)
850 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
851 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
852 zio->io_logical = zio;
853 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
854 pipeline |= ZIO_GANG_STAGES;
855 }
856
857 zio->io_spa = spa;
858 zio->io_txg = txg;
859 zio->io_done = done;
860 zio->io_private = private;
861 zio->io_type = type;
862 zio->io_priority = priority;
863 zio->io_vd = vd;
864 zio->io_offset = offset;
865 zio->io_orig_abd = zio->io_abd = data;
866 zio->io_orig_size = zio->io_size = psize;
867 zio->io_lsize = lsize;
868 zio->io_orig_flags = zio->io_flags = flags;
869 zio->io_orig_stage = zio->io_stage = stage;
870 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
871 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
872
873 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
874 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
875
876 if (zb != NULL)
877 zio->io_bookmark = *zb;
878
879 if (pio != NULL) {
880 if (zio->io_metaslab_class == NULL)
881 zio->io_metaslab_class = pio->io_metaslab_class;
882 if (zio->io_logical == NULL)
883 zio->io_logical = pio->io_logical;
884 if (zio->io_child_type == ZIO_CHILD_GANG)
885 zio->io_gang_leader = pio->io_gang_leader;
886 zio_add_child(pio, zio);
887 }
888
889 taskq_init_ent(&zio->io_tqent);
890
891 return (zio);
892 }
893
894 static void
895 zio_destroy(zio_t *zio)
896 {
897 metaslab_trace_fini(&zio->io_alloc_list);
898 list_destroy(&zio->io_parent_list);
899 list_destroy(&zio->io_child_list);
900 mutex_destroy(&zio->io_lock);
901 cv_destroy(&zio->io_cv);
902 kmem_cache_free(zio_cache, zio);
903 }
904
905 zio_t *
906 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
907 void *private, enum zio_flag flags)
908 {
909 zio_t *zio;
910
911 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
912 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
913 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
914
915 return (zio);
916 }
917
918 zio_t *
919 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
920 {
921 return (zio_null(NULL, spa, NULL, done, private, flags));
922 }
923
924 static int
925 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
926 enum blk_verify_flag blk_verify, const char *fmt, ...)
927 {
928 va_list adx;
929 char buf[256];
930
931 va_start(adx, fmt);
932 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
933 va_end(adx);
934
935 switch (blk_verify) {
936 case BLK_VERIFY_HALT:
937 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
938 zfs_panic_recover("%s: %s", spa_name(spa), buf);
939 break;
940 case BLK_VERIFY_LOG:
941 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
942 break;
943 case BLK_VERIFY_ONLY:
944 break;
945 }
946
947 return (1);
948 }
949
950 /*
951 * Verify the block pointer fields contain reasonable values. This means
952 * it only contains known object types, checksum/compression identifiers,
953 * block sizes within the maximum allowed limits, valid DVAs, etc.
954 *
955 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
956 * argument controls the behavior when an invalid field is detected.
957 *
958 * Modes for zfs_blkptr_verify:
959 * 1) BLK_VERIFY_ONLY (evaluate the block)
960 * 2) BLK_VERIFY_LOG (evaluate the block and log problems)
961 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
962 */
963 boolean_t
964 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
965 enum blk_verify_flag blk_verify)
966 {
967 int errors = 0;
968
969 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
970 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
971 "blkptr at %p has invalid TYPE %llu",
972 bp, (longlong_t)BP_GET_TYPE(bp));
973 }
974 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
975 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
976 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
977 "blkptr at %p has invalid CHECKSUM %llu",
978 bp, (longlong_t)BP_GET_CHECKSUM(bp));
979 }
980 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
981 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
982 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
983 "blkptr at %p has invalid COMPRESS %llu",
984 bp, (longlong_t)BP_GET_COMPRESS(bp));
985 }
986 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
987 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
988 "blkptr at %p has invalid LSIZE %llu",
989 bp, (longlong_t)BP_GET_LSIZE(bp));
990 }
991 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
992 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
993 "blkptr at %p has invalid PSIZE %llu",
994 bp, (longlong_t)BP_GET_PSIZE(bp));
995 }
996
997 if (BP_IS_EMBEDDED(bp)) {
998 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
999 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1000 "blkptr at %p has invalid ETYPE %llu",
1001 bp, (longlong_t)BPE_GET_ETYPE(bp));
1002 }
1003 }
1004
1005 /*
1006 * Do not verify individual DVAs if the config is not trusted. This
1007 * will be done once the zio is executed in vdev_mirror_map_alloc.
1008 */
1009 if (!spa->spa_trust_config)
1010 return (B_TRUE);
1011
1012 if (!config_held)
1013 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1014 else
1015 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1016 /*
1017 * Pool-specific checks.
1018 *
1019 * Note: it would be nice to verify that the blk_birth and
1020 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1021 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1022 * that are in the log) to be arbitrarily large.
1023 */
1024 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1025 const dva_t *dva = &bp->blk_dva[i];
1026 uint64_t vdevid = DVA_GET_VDEV(dva);
1027
1028 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1029 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1030 "blkptr at %p DVA %u has invalid VDEV %llu",
1031 bp, i, (longlong_t)vdevid);
1032 continue;
1033 }
1034 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1035 if (vd == NULL) {
1036 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1037 "blkptr at %p DVA %u has invalid VDEV %llu",
1038 bp, i, (longlong_t)vdevid);
1039 continue;
1040 }
1041 if (vd->vdev_ops == &vdev_hole_ops) {
1042 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1043 "blkptr at %p DVA %u has hole VDEV %llu",
1044 bp, i, (longlong_t)vdevid);
1045 continue;
1046 }
1047 if (vd->vdev_ops == &vdev_missing_ops) {
1048 /*
1049 * "missing" vdevs are valid during import, but we
1050 * don't have their detailed info (e.g. asize), so
1051 * we can't perform any more checks on them.
1052 */
1053 continue;
1054 }
1055 uint64_t offset = DVA_GET_OFFSET(dva);
1056 uint64_t asize = DVA_GET_ASIZE(dva);
1057 if (DVA_GET_GANG(dva))
1058 asize = vdev_gang_header_asize(vd);
1059 if (offset + asize > vd->vdev_asize) {
1060 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1061 "blkptr at %p DVA %u has invalid OFFSET %llu",
1062 bp, i, (longlong_t)offset);
1063 }
1064 }
1065 if (errors > 0)
1066 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1067 if (!config_held)
1068 spa_config_exit(spa, SCL_VDEV, bp);
1069
1070 return (errors == 0);
1071 }
1072
1073 boolean_t
1074 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1075 {
1076 uint64_t vdevid = DVA_GET_VDEV(dva);
1077
1078 if (vdevid >= spa->spa_root_vdev->vdev_children)
1079 return (B_FALSE);
1080
1081 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1082 if (vd == NULL)
1083 return (B_FALSE);
1084
1085 if (vd->vdev_ops == &vdev_hole_ops)
1086 return (B_FALSE);
1087
1088 if (vd->vdev_ops == &vdev_missing_ops) {
1089 return (B_FALSE);
1090 }
1091
1092 uint64_t offset = DVA_GET_OFFSET(dva);
1093 uint64_t asize = DVA_GET_ASIZE(dva);
1094
1095 if (DVA_GET_GANG(dva))
1096 asize = vdev_gang_header_asize(vd);
1097 if (offset + asize > vd->vdev_asize)
1098 return (B_FALSE);
1099
1100 return (B_TRUE);
1101 }
1102
1103 zio_t *
1104 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1105 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1106 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1107 {
1108 zio_t *zio;
1109
1110 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1111 data, size, size, done, private,
1112 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1113 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1114 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1115
1116 return (zio);
1117 }
1118
1119 zio_t *
1120 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1121 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1122 zio_done_func_t *ready, zio_done_func_t *children_ready,
1123 zio_done_func_t *physdone, zio_done_func_t *done,
1124 void *private, zio_priority_t priority, enum zio_flag flags,
1125 const zbookmark_phys_t *zb)
1126 {
1127 zio_t *zio;
1128
1129 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1130 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1131 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1132 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1133 DMU_OT_IS_VALID(zp->zp_type) &&
1134 zp->zp_level < 32 &&
1135 zp->zp_copies > 0 &&
1136 zp->zp_copies <= spa_max_replication(spa));
1137
1138 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1139 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1140 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1141 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1142
1143 zio->io_ready = ready;
1144 zio->io_children_ready = children_ready;
1145 zio->io_physdone = physdone;
1146 zio->io_prop = *zp;
1147
1148 /*
1149 * Data can be NULL if we are going to call zio_write_override() to
1150 * provide the already-allocated BP. But we may need the data to
1151 * verify a dedup hit (if requested). In this case, don't try to
1152 * dedup (just take the already-allocated BP verbatim). Encrypted
1153 * dedup blocks need data as well so we also disable dedup in this
1154 * case.
1155 */
1156 if (data == NULL &&
1157 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1158 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1159 }
1160
1161 return (zio);
1162 }
1163
1164 zio_t *
1165 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1166 uint64_t size, zio_done_func_t *done, void *private,
1167 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1168 {
1169 zio_t *zio;
1170
1171 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1172 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1173 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1174
1175 return (zio);
1176 }
1177
1178 void
1179 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1180 {
1181 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1182 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1183 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1184 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1185
1186 /*
1187 * We must reset the io_prop to match the values that existed
1188 * when the bp was first written by dmu_sync() keeping in mind
1189 * that nopwrite and dedup are mutually exclusive.
1190 */
1191 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1192 zio->io_prop.zp_nopwrite = nopwrite;
1193 zio->io_prop.zp_copies = copies;
1194 zio->io_bp_override = bp;
1195 }
1196
1197 void
1198 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1199 {
1200
1201 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1202
1203 /*
1204 * The check for EMBEDDED is a performance optimization. We
1205 * process the free here (by ignoring it) rather than
1206 * putting it on the list and then processing it in zio_free_sync().
1207 */
1208 if (BP_IS_EMBEDDED(bp))
1209 return;
1210 metaslab_check_free(spa, bp);
1211
1212 /*
1213 * Frees that are for the currently-syncing txg, are not going to be
1214 * deferred, and which will not need to do a read (i.e. not GANG or
1215 * DEDUP), can be processed immediately. Otherwise, put them on the
1216 * in-memory list for later processing.
1217 *
1218 * Note that we only defer frees after zfs_sync_pass_deferred_free
1219 * when the log space map feature is disabled. [see relevant comment
1220 * in spa_sync_iterate_to_convergence()]
1221 */
1222 if (BP_IS_GANG(bp) ||
1223 BP_GET_DEDUP(bp) ||
1224 txg != spa->spa_syncing_txg ||
1225 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1226 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1227 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1228 } else {
1229 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1230 }
1231 }
1232
1233 /*
1234 * To improve performance, this function may return NULL if we were able
1235 * to do the free immediately. This avoids the cost of creating a zio
1236 * (and linking it to the parent, etc).
1237 */
1238 zio_t *
1239 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1240 enum zio_flag flags)
1241 {
1242 ASSERT(!BP_IS_HOLE(bp));
1243 ASSERT(spa_syncing_txg(spa) == txg);
1244
1245 if (BP_IS_EMBEDDED(bp))
1246 return (NULL);
1247
1248 metaslab_check_free(spa, bp);
1249 arc_freed(spa, bp);
1250 dsl_scan_freed(spa, bp);
1251
1252 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1253 /*
1254 * GANG and DEDUP blocks can induce a read (for the gang block
1255 * header, or the DDT), so issue them asynchronously so that
1256 * this thread is not tied up.
1257 */
1258 enum zio_stage stage =
1259 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1260
1261 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1262 BP_GET_PSIZE(bp), NULL, NULL,
1263 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1264 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1265 } else {
1266 metaslab_free(spa, bp, txg, B_FALSE);
1267 return (NULL);
1268 }
1269 }
1270
1271 zio_t *
1272 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1273 zio_done_func_t *done, void *private, enum zio_flag flags)
1274 {
1275 zio_t *zio;
1276
1277 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1278 BLK_VERIFY_HALT);
1279
1280 if (BP_IS_EMBEDDED(bp))
1281 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1282
1283 /*
1284 * A claim is an allocation of a specific block. Claims are needed
1285 * to support immediate writes in the intent log. The issue is that
1286 * immediate writes contain committed data, but in a txg that was
1287 * *not* committed. Upon opening the pool after an unclean shutdown,
1288 * the intent log claims all blocks that contain immediate write data
1289 * so that the SPA knows they're in use.
1290 *
1291 * All claims *must* be resolved in the first txg -- before the SPA
1292 * starts allocating blocks -- so that nothing is allocated twice.
1293 * If txg == 0 we just verify that the block is claimable.
1294 */
1295 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1296 spa_min_claim_txg(spa));
1297 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1298 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1299
1300 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1301 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1302 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1303 ASSERT0(zio->io_queued_timestamp);
1304
1305 return (zio);
1306 }
1307
1308 zio_t *
1309 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1310 zio_done_func_t *done, void *private, enum zio_flag flags)
1311 {
1312 zio_t *zio;
1313 int c;
1314
1315 if (vd->vdev_children == 0) {
1316 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1317 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1318 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1319
1320 zio->io_cmd = cmd;
1321 } else {
1322 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1323
1324 for (c = 0; c < vd->vdev_children; c++)
1325 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1326 done, private, flags));
1327 }
1328
1329 return (zio);
1330 }
1331
1332 zio_t *
1333 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1334 zio_done_func_t *done, void *private, zio_priority_t priority,
1335 enum zio_flag flags, enum trim_flag trim_flags)
1336 {
1337 zio_t *zio;
1338
1339 ASSERT0(vd->vdev_children);
1340 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1341 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1342 ASSERT3U(size, !=, 0);
1343
1344 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1345 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1346 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1347 zio->io_trim_flags = trim_flags;
1348
1349 return (zio);
1350 }
1351
1352 zio_t *
1353 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1354 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1355 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1356 {
1357 zio_t *zio;
1358
1359 ASSERT(vd->vdev_children == 0);
1360 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1361 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1362 ASSERT3U(offset + size, <=, vd->vdev_psize);
1363
1364 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1365 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1366 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1367
1368 zio->io_prop.zp_checksum = checksum;
1369
1370 return (zio);
1371 }
1372
1373 zio_t *
1374 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1375 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1376 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1377 {
1378 zio_t *zio;
1379
1380 ASSERT(vd->vdev_children == 0);
1381 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1382 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1383 ASSERT3U(offset + size, <=, vd->vdev_psize);
1384
1385 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1386 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1387 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1388
1389 zio->io_prop.zp_checksum = checksum;
1390
1391 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1392 /*
1393 * zec checksums are necessarily destructive -- they modify
1394 * the end of the write buffer to hold the verifier/checksum.
1395 * Therefore, we must make a local copy in case the data is
1396 * being written to multiple places in parallel.
1397 */
1398 abd_t *wbuf = abd_alloc_sametype(data, size);
1399 abd_copy(wbuf, data, size);
1400
1401 zio_push_transform(zio, wbuf, size, size, NULL);
1402 }
1403
1404 return (zio);
1405 }
1406
1407 /*
1408 * Create a child I/O to do some work for us.
1409 */
1410 zio_t *
1411 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1412 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1413 enum zio_flag flags, zio_done_func_t *done, void *private)
1414 {
1415 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1416 zio_t *zio;
1417
1418 /*
1419 * vdev child I/Os do not propagate their error to the parent.
1420 * Therefore, for correct operation the caller *must* check for
1421 * and handle the error in the child i/o's done callback.
1422 * The only exceptions are i/os that we don't care about
1423 * (OPTIONAL or REPAIR).
1424 */
1425 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1426 done != NULL);
1427
1428 if (type == ZIO_TYPE_READ && bp != NULL) {
1429 /*
1430 * If we have the bp, then the child should perform the
1431 * checksum and the parent need not. This pushes error
1432 * detection as close to the leaves as possible and
1433 * eliminates redundant checksums in the interior nodes.
1434 */
1435 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1436 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1437 }
1438
1439 if (vd->vdev_ops->vdev_op_leaf) {
1440 ASSERT0(vd->vdev_children);
1441 offset += VDEV_LABEL_START_SIZE;
1442 }
1443
1444 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1445
1446 /*
1447 * If we've decided to do a repair, the write is not speculative --
1448 * even if the original read was.
1449 */
1450 if (flags & ZIO_FLAG_IO_REPAIR)
1451 flags &= ~ZIO_FLAG_SPECULATIVE;
1452
1453 /*
1454 * If we're creating a child I/O that is not associated with a
1455 * top-level vdev, then the child zio is not an allocating I/O.
1456 * If this is a retried I/O then we ignore it since we will
1457 * have already processed the original allocating I/O.
1458 */
1459 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1460 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1461 ASSERT(pio->io_metaslab_class != NULL);
1462 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1463 ASSERT(type == ZIO_TYPE_WRITE);
1464 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1465 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1466 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1467 pio->io_child_type == ZIO_CHILD_GANG);
1468
1469 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1470 }
1471
1472
1473 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1474 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1475 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1476 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1477
1478 zio->io_physdone = pio->io_physdone;
1479 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1480 zio->io_logical->io_phys_children++;
1481
1482 return (zio);
1483 }
1484
1485 zio_t *
1486 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1487 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1488 zio_done_func_t *done, void *private)
1489 {
1490 zio_t *zio;
1491
1492 ASSERT(vd->vdev_ops->vdev_op_leaf);
1493
1494 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1495 data, size, size, done, private, type, priority,
1496 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1497 vd, offset, NULL,
1498 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1499
1500 return (zio);
1501 }
1502
1503 void
1504 zio_flush(zio_t *zio, vdev_t *vd)
1505 {
1506 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1507 NULL, NULL,
1508 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1509 }
1510
1511 void
1512 zio_shrink(zio_t *zio, uint64_t size)
1513 {
1514 ASSERT3P(zio->io_executor, ==, NULL);
1515 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1516 ASSERT3U(size, <=, zio->io_size);
1517
1518 /*
1519 * We don't shrink for raidz because of problems with the
1520 * reconstruction when reading back less than the block size.
1521 * Note, BP_IS_RAIDZ() assumes no compression.
1522 */
1523 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1524 if (!BP_IS_RAIDZ(zio->io_bp)) {
1525 /* we are not doing a raw write */
1526 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1527 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1528 }
1529 }
1530
1531 /*
1532 * ==========================================================================
1533 * Prepare to read and write logical blocks
1534 * ==========================================================================
1535 */
1536
1537 static zio_t *
1538 zio_read_bp_init(zio_t *zio)
1539 {
1540 blkptr_t *bp = zio->io_bp;
1541 uint64_t psize =
1542 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1543
1544 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1545
1546 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1547 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1548 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1549 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1550 psize, psize, zio_decompress);
1551 }
1552
1553 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1554 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1555 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1556 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1557 psize, psize, zio_decrypt);
1558 }
1559
1560 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1561 int psize = BPE_GET_PSIZE(bp);
1562 void *data = abd_borrow_buf(zio->io_abd, psize);
1563
1564 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1565 decode_embedded_bp_compressed(bp, data);
1566 abd_return_buf_copy(zio->io_abd, data, psize);
1567 } else {
1568 ASSERT(!BP_IS_EMBEDDED(bp));
1569 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1570 }
1571
1572 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1573 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1574
1575 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1576 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1577
1578 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1579 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1580
1581 return (zio);
1582 }
1583
1584 static zio_t *
1585 zio_write_bp_init(zio_t *zio)
1586 {
1587 if (!IO_IS_ALLOCATING(zio))
1588 return (zio);
1589
1590 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1591
1592 if (zio->io_bp_override) {
1593 blkptr_t *bp = zio->io_bp;
1594 zio_prop_t *zp = &zio->io_prop;
1595
1596 ASSERT(bp->blk_birth != zio->io_txg);
1597 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1598
1599 *bp = *zio->io_bp_override;
1600 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1601
1602 if (BP_IS_EMBEDDED(bp))
1603 return (zio);
1604
1605 /*
1606 * If we've been overridden and nopwrite is set then
1607 * set the flag accordingly to indicate that a nopwrite
1608 * has already occurred.
1609 */
1610 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1611 ASSERT(!zp->zp_dedup);
1612 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1613 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1614 return (zio);
1615 }
1616
1617 ASSERT(!zp->zp_nopwrite);
1618
1619 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1620 return (zio);
1621
1622 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1623 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1624
1625 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1626 !zp->zp_encrypt) {
1627 BP_SET_DEDUP(bp, 1);
1628 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1629 return (zio);
1630 }
1631
1632 /*
1633 * We were unable to handle this as an override bp, treat
1634 * it as a regular write I/O.
1635 */
1636 zio->io_bp_override = NULL;
1637 *bp = zio->io_bp_orig;
1638 zio->io_pipeline = zio->io_orig_pipeline;
1639 }
1640
1641 return (zio);
1642 }
1643
1644 static zio_t *
1645 zio_write_compress(zio_t *zio)
1646 {
1647 spa_t *spa = zio->io_spa;
1648 zio_prop_t *zp = &zio->io_prop;
1649 enum zio_compress compress = zp->zp_compress;
1650 blkptr_t *bp = zio->io_bp;
1651 uint64_t lsize = zio->io_lsize;
1652 uint64_t psize = zio->io_size;
1653 int pass = 1;
1654
1655 /*
1656 * If our children haven't all reached the ready stage,
1657 * wait for them and then repeat this pipeline stage.
1658 */
1659 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1660 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1661 return (NULL);
1662 }
1663
1664 if (!IO_IS_ALLOCATING(zio))
1665 return (zio);
1666
1667 if (zio->io_children_ready != NULL) {
1668 /*
1669 * Now that all our children are ready, run the callback
1670 * associated with this zio in case it wants to modify the
1671 * data to be written.
1672 */
1673 ASSERT3U(zp->zp_level, >, 0);
1674 zio->io_children_ready(zio);
1675 }
1676
1677 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1678 ASSERT(zio->io_bp_override == NULL);
1679
1680 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1681 /*
1682 * We're rewriting an existing block, which means we're
1683 * working on behalf of spa_sync(). For spa_sync() to
1684 * converge, it must eventually be the case that we don't
1685 * have to allocate new blocks. But compression changes
1686 * the blocksize, which forces a reallocate, and makes
1687 * convergence take longer. Therefore, after the first
1688 * few passes, stop compressing to ensure convergence.
1689 */
1690 pass = spa_sync_pass(spa);
1691
1692 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1693 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1694 ASSERT(!BP_GET_DEDUP(bp));
1695
1696 if (pass >= zfs_sync_pass_dont_compress)
1697 compress = ZIO_COMPRESS_OFF;
1698
1699 /* Make sure someone doesn't change their mind on overwrites */
1700 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1701 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1702 }
1703
1704 /* If it's a compressed write that is not raw, compress the buffer. */
1705 if (compress != ZIO_COMPRESS_OFF &&
1706 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1707 void *cbuf = zio_buf_alloc(lsize);
1708 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1709 zp->zp_complevel);
1710 if (psize == 0 || psize >= lsize) {
1711 compress = ZIO_COMPRESS_OFF;
1712 zio_buf_free(cbuf, lsize);
1713 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1714 psize <= BPE_PAYLOAD_SIZE &&
1715 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1716 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1717 encode_embedded_bp_compressed(bp,
1718 cbuf, compress, lsize, psize);
1719 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1720 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1721 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1722 zio_buf_free(cbuf, lsize);
1723 bp->blk_birth = zio->io_txg;
1724 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1725 ASSERT(spa_feature_is_active(spa,
1726 SPA_FEATURE_EMBEDDED_DATA));
1727 return (zio);
1728 } else {
1729 /*
1730 * Round compressed size up to the minimum allocation
1731 * size of the smallest-ashift device, and zero the
1732 * tail. This ensures that the compressed size of the
1733 * BP (and thus compressratio property) are correct,
1734 * in that we charge for the padding used to fill out
1735 * the last sector.
1736 */
1737 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1738 size_t rounded = (size_t)roundup(psize,
1739 spa->spa_min_alloc);
1740 if (rounded >= lsize) {
1741 compress = ZIO_COMPRESS_OFF;
1742 zio_buf_free(cbuf, lsize);
1743 psize = lsize;
1744 } else {
1745 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1746 abd_take_ownership_of_buf(cdata, B_TRUE);
1747 abd_zero_off(cdata, psize, rounded - psize);
1748 psize = rounded;
1749 zio_push_transform(zio, cdata,
1750 psize, lsize, NULL);
1751 }
1752 }
1753
1754 /*
1755 * We were unable to handle this as an override bp, treat
1756 * it as a regular write I/O.
1757 */
1758 zio->io_bp_override = NULL;
1759 *bp = zio->io_bp_orig;
1760 zio->io_pipeline = zio->io_orig_pipeline;
1761
1762 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1763 zp->zp_type == DMU_OT_DNODE) {
1764 /*
1765 * The DMU actually relies on the zio layer's compression
1766 * to free metadnode blocks that have had all contained
1767 * dnodes freed. As a result, even when doing a raw
1768 * receive, we must check whether the block can be compressed
1769 * to a hole.
1770 */
1771 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1772 zio->io_abd, NULL, lsize, zp->zp_complevel);
1773 if (psize == 0 || psize >= lsize)
1774 compress = ZIO_COMPRESS_OFF;
1775 } else {
1776 ASSERT3U(psize, !=, 0);
1777 }
1778
1779 /*
1780 * The final pass of spa_sync() must be all rewrites, but the first
1781 * few passes offer a trade-off: allocating blocks defers convergence,
1782 * but newly allocated blocks are sequential, so they can be written
1783 * to disk faster. Therefore, we allow the first few passes of
1784 * spa_sync() to allocate new blocks, but force rewrites after that.
1785 * There should only be a handful of blocks after pass 1 in any case.
1786 */
1787 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1788 BP_GET_PSIZE(bp) == psize &&
1789 pass >= zfs_sync_pass_rewrite) {
1790 VERIFY3U(psize, !=, 0);
1791 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1792
1793 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1794 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1795 } else {
1796 BP_ZERO(bp);
1797 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1798 }
1799
1800 if (psize == 0) {
1801 if (zio->io_bp_orig.blk_birth != 0 &&
1802 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1803 BP_SET_LSIZE(bp, lsize);
1804 BP_SET_TYPE(bp, zp->zp_type);
1805 BP_SET_LEVEL(bp, zp->zp_level);
1806 BP_SET_BIRTH(bp, zio->io_txg, 0);
1807 }
1808 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1809 } else {
1810 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1811 BP_SET_LSIZE(bp, lsize);
1812 BP_SET_TYPE(bp, zp->zp_type);
1813 BP_SET_LEVEL(bp, zp->zp_level);
1814 BP_SET_PSIZE(bp, psize);
1815 BP_SET_COMPRESS(bp, compress);
1816 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1817 BP_SET_DEDUP(bp, zp->zp_dedup);
1818 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1819 if (zp->zp_dedup) {
1820 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1821 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1822 ASSERT(!zp->zp_encrypt ||
1823 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1824 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1825 }
1826 if (zp->zp_nopwrite) {
1827 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1828 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1829 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1830 }
1831 }
1832 return (zio);
1833 }
1834
1835 static zio_t *
1836 zio_free_bp_init(zio_t *zio)
1837 {
1838 blkptr_t *bp = zio->io_bp;
1839
1840 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1841 if (BP_GET_DEDUP(bp))
1842 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1843 }
1844
1845 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1846
1847 return (zio);
1848 }
1849
1850 /*
1851 * ==========================================================================
1852 * Execute the I/O pipeline
1853 * ==========================================================================
1854 */
1855
1856 static void
1857 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1858 {
1859 spa_t *spa = zio->io_spa;
1860 zio_type_t t = zio->io_type;
1861 int flags = (cutinline ? TQ_FRONT : 0);
1862
1863 /*
1864 * If we're a config writer or a probe, the normal issue and
1865 * interrupt threads may all be blocked waiting for the config lock.
1866 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1867 */
1868 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1869 t = ZIO_TYPE_NULL;
1870
1871 /*
1872 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1873 */
1874 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1875 t = ZIO_TYPE_NULL;
1876
1877 /*
1878 * If this is a high priority I/O, then use the high priority taskq if
1879 * available.
1880 */
1881 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1882 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1883 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1884 q++;
1885
1886 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1887
1888 /*
1889 * NB: We are assuming that the zio can only be dispatched
1890 * to a single taskq at a time. It would be a grievous error
1891 * to dispatch the zio to another taskq at the same time.
1892 */
1893 ASSERT(taskq_empty_ent(&zio->io_tqent));
1894 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1895 &zio->io_tqent);
1896 }
1897
1898 static boolean_t
1899 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1900 {
1901 spa_t *spa = zio->io_spa;
1902
1903 taskq_t *tq = taskq_of_curthread();
1904
1905 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1906 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1907 uint_t i;
1908 for (i = 0; i < tqs->stqs_count; i++) {
1909 if (tqs->stqs_taskq[i] == tq)
1910 return (B_TRUE);
1911 }
1912 }
1913
1914 return (B_FALSE);
1915 }
1916
1917 static zio_t *
1918 zio_issue_async(zio_t *zio)
1919 {
1920 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1921
1922 return (NULL);
1923 }
1924
1925 void
1926 zio_interrupt(void *zio)
1927 {
1928 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1929 }
1930
1931 void
1932 zio_delay_interrupt(zio_t *zio)
1933 {
1934 /*
1935 * The timeout_generic() function isn't defined in userspace, so
1936 * rather than trying to implement the function, the zio delay
1937 * functionality has been disabled for userspace builds.
1938 */
1939
1940 #ifdef _KERNEL
1941 /*
1942 * If io_target_timestamp is zero, then no delay has been registered
1943 * for this IO, thus jump to the end of this function and "skip" the
1944 * delay; issuing it directly to the zio layer.
1945 */
1946 if (zio->io_target_timestamp != 0) {
1947 hrtime_t now = gethrtime();
1948
1949 if (now >= zio->io_target_timestamp) {
1950 /*
1951 * This IO has already taken longer than the target
1952 * delay to complete, so we don't want to delay it
1953 * any longer; we "miss" the delay and issue it
1954 * directly to the zio layer. This is likely due to
1955 * the target latency being set to a value less than
1956 * the underlying hardware can satisfy (e.g. delay
1957 * set to 1ms, but the disks take 10ms to complete an
1958 * IO request).
1959 */
1960
1961 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1962 hrtime_t, now);
1963
1964 zio_interrupt(zio);
1965 } else {
1966 taskqid_t tid;
1967 hrtime_t diff = zio->io_target_timestamp - now;
1968 clock_t expire_at_tick = ddi_get_lbolt() +
1969 NSEC_TO_TICK(diff);
1970
1971 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1972 hrtime_t, now, hrtime_t, diff);
1973
1974 if (NSEC_TO_TICK(diff) == 0) {
1975 /* Our delay is less than a jiffy - just spin */
1976 zfs_sleep_until(zio->io_target_timestamp);
1977 zio_interrupt(zio);
1978 } else {
1979 /*
1980 * Use taskq_dispatch_delay() in the place of
1981 * OpenZFS's timeout_generic().
1982 */
1983 tid = taskq_dispatch_delay(system_taskq,
1984 zio_interrupt, zio, TQ_NOSLEEP,
1985 expire_at_tick);
1986 if (tid == TASKQID_INVALID) {
1987 /*
1988 * Couldn't allocate a task. Just
1989 * finish the zio without a delay.
1990 */
1991 zio_interrupt(zio);
1992 }
1993 }
1994 }
1995 return;
1996 }
1997 #endif
1998 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1999 zio_interrupt(zio);
2000 }
2001
2002 static void
2003 zio_deadman_impl(zio_t *pio, int ziodepth)
2004 {
2005 zio_t *cio, *cio_next;
2006 zio_link_t *zl = NULL;
2007 vdev_t *vd = pio->io_vd;
2008
2009 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2010 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2011 zbookmark_phys_t *zb = &pio->io_bookmark;
2012 uint64_t delta = gethrtime() - pio->io_timestamp;
2013 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2014
2015 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2016 "delta=%llu queued=%llu io=%llu "
2017 "path=%s "
2018 "last=%llu type=%d "
2019 "priority=%d flags=0x%x stage=0x%x "
2020 "pipeline=0x%x pipeline-trace=0x%x "
2021 "objset=%llu object=%llu "
2022 "level=%llu blkid=%llu "
2023 "offset=%llu size=%llu "
2024 "error=%d",
2025 ziodepth, pio, pio->io_timestamp,
2026 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2027 vd ? vd->vdev_path : "NULL",
2028 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2029 pio->io_priority, pio->io_flags, pio->io_stage,
2030 pio->io_pipeline, pio->io_pipeline_trace,
2031 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2032 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2033 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2034 pio->io_error);
2035 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2036 pio->io_spa, vd, zb, pio, 0);
2037
2038 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2039 taskq_empty_ent(&pio->io_tqent)) {
2040 zio_interrupt(pio);
2041 }
2042 }
2043
2044 mutex_enter(&pio->io_lock);
2045 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2046 cio_next = zio_walk_children(pio, &zl);
2047 zio_deadman_impl(cio, ziodepth + 1);
2048 }
2049 mutex_exit(&pio->io_lock);
2050 }
2051
2052 /*
2053 * Log the critical information describing this zio and all of its children
2054 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2055 */
2056 void
2057 zio_deadman(zio_t *pio, char *tag)
2058 {
2059 spa_t *spa = pio->io_spa;
2060 char *name = spa_name(spa);
2061
2062 if (!zfs_deadman_enabled || spa_suspended(spa))
2063 return;
2064
2065 zio_deadman_impl(pio, 0);
2066
2067 switch (spa_get_deadman_failmode(spa)) {
2068 case ZIO_FAILURE_MODE_WAIT:
2069 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2070 break;
2071
2072 case ZIO_FAILURE_MODE_CONTINUE:
2073 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2074 break;
2075
2076 case ZIO_FAILURE_MODE_PANIC:
2077 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2078 break;
2079 }
2080 }
2081
2082 /*
2083 * Execute the I/O pipeline until one of the following occurs:
2084 * (1) the I/O completes; (2) the pipeline stalls waiting for
2085 * dependent child I/Os; (3) the I/O issues, so we're waiting
2086 * for an I/O completion interrupt; (4) the I/O is delegated by
2087 * vdev-level caching or aggregation; (5) the I/O is deferred
2088 * due to vdev-level queueing; (6) the I/O is handed off to
2089 * another thread. In all cases, the pipeline stops whenever
2090 * there's no CPU work; it never burns a thread in cv_wait_io().
2091 *
2092 * There's no locking on io_stage because there's no legitimate way
2093 * for multiple threads to be attempting to process the same I/O.
2094 */
2095 static zio_pipe_stage_t *zio_pipeline[];
2096
2097 /*
2098 * zio_execute() is a wrapper around the static function
2099 * __zio_execute() so that we can force __zio_execute() to be
2100 * inlined. This reduces stack overhead which is important
2101 * because __zio_execute() is called recursively in several zio
2102 * code paths. zio_execute() itself cannot be inlined because
2103 * it is externally visible.
2104 */
2105 void
2106 zio_execute(void *zio)
2107 {
2108 fstrans_cookie_t cookie;
2109
2110 cookie = spl_fstrans_mark();
2111 __zio_execute(zio);
2112 spl_fstrans_unmark(cookie);
2113 }
2114
2115 /*
2116 * Used to determine if in the current context the stack is sized large
2117 * enough to allow zio_execute() to be called recursively. A minimum
2118 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2119 */
2120 static boolean_t
2121 zio_execute_stack_check(zio_t *zio)
2122 {
2123 #if !defined(HAVE_LARGE_STACKS)
2124 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2125
2126 /* Executing in txg_sync_thread() context. */
2127 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2128 return (B_TRUE);
2129
2130 /* Pool initialization outside of zio_taskq context. */
2131 if (dp && spa_is_initializing(dp->dp_spa) &&
2132 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2133 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2134 return (B_TRUE);
2135 #endif /* HAVE_LARGE_STACKS */
2136
2137 return (B_FALSE);
2138 }
2139
2140 __attribute__((always_inline))
2141 static inline void
2142 __zio_execute(zio_t *zio)
2143 {
2144 ASSERT3U(zio->io_queued_timestamp, >, 0);
2145
2146 while (zio->io_stage < ZIO_STAGE_DONE) {
2147 enum zio_stage pipeline = zio->io_pipeline;
2148 enum zio_stage stage = zio->io_stage;
2149
2150 zio->io_executor = curthread;
2151
2152 ASSERT(!MUTEX_HELD(&zio->io_lock));
2153 ASSERT(ISP2(stage));
2154 ASSERT(zio->io_stall == NULL);
2155
2156 do {
2157 stage <<= 1;
2158 } while ((stage & pipeline) == 0);
2159
2160 ASSERT(stage <= ZIO_STAGE_DONE);
2161
2162 /*
2163 * If we are in interrupt context and this pipeline stage
2164 * will grab a config lock that is held across I/O,
2165 * or may wait for an I/O that needs an interrupt thread
2166 * to complete, issue async to avoid deadlock.
2167 *
2168 * For VDEV_IO_START, we cut in line so that the io will
2169 * be sent to disk promptly.
2170 */
2171 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2172 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2173 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2174 zio_requeue_io_start_cut_in_line : B_FALSE;
2175 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2176 return;
2177 }
2178
2179 /*
2180 * If the current context doesn't have large enough stacks
2181 * the zio must be issued asynchronously to prevent overflow.
2182 */
2183 if (zio_execute_stack_check(zio)) {
2184 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2185 zio_requeue_io_start_cut_in_line : B_FALSE;
2186 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2187 return;
2188 }
2189
2190 zio->io_stage = stage;
2191 zio->io_pipeline_trace |= zio->io_stage;
2192
2193 /*
2194 * The zio pipeline stage returns the next zio to execute
2195 * (typically the same as this one), or NULL if we should
2196 * stop.
2197 */
2198 zio = zio_pipeline[highbit64(stage) - 1](zio);
2199
2200 if (zio == NULL)
2201 return;
2202 }
2203 }
2204
2205
2206 /*
2207 * ==========================================================================
2208 * Initiate I/O, either sync or async
2209 * ==========================================================================
2210 */
2211 int
2212 zio_wait(zio_t *zio)
2213 {
2214 /*
2215 * Some routines, like zio_free_sync(), may return a NULL zio
2216 * to avoid the performance overhead of creating and then destroying
2217 * an unneeded zio. For the callers' simplicity, we accept a NULL
2218 * zio and ignore it.
2219 */
2220 if (zio == NULL)
2221 return (0);
2222
2223 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2224 int error;
2225
2226 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2227 ASSERT3P(zio->io_executor, ==, NULL);
2228
2229 zio->io_waiter = curthread;
2230 ASSERT0(zio->io_queued_timestamp);
2231 zio->io_queued_timestamp = gethrtime();
2232
2233 __zio_execute(zio);
2234
2235 mutex_enter(&zio->io_lock);
2236 while (zio->io_executor != NULL) {
2237 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2238 ddi_get_lbolt() + timeout);
2239
2240 if (zfs_deadman_enabled && error == -1 &&
2241 gethrtime() - zio->io_queued_timestamp >
2242 spa_deadman_ziotime(zio->io_spa)) {
2243 mutex_exit(&zio->io_lock);
2244 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2245 zio_deadman(zio, FTAG);
2246 mutex_enter(&zio->io_lock);
2247 }
2248 }
2249 mutex_exit(&zio->io_lock);
2250
2251 error = zio->io_error;
2252 zio_destroy(zio);
2253
2254 return (error);
2255 }
2256
2257 void
2258 zio_nowait(zio_t *zio)
2259 {
2260 /*
2261 * See comment in zio_wait().
2262 */
2263 if (zio == NULL)
2264 return;
2265
2266 ASSERT3P(zio->io_executor, ==, NULL);
2267
2268 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2269 zio_unique_parent(zio) == NULL) {
2270 zio_t *pio;
2271
2272 /*
2273 * This is a logical async I/O with no parent to wait for it.
2274 * We add it to the spa_async_root_zio "Godfather" I/O which
2275 * will ensure they complete prior to unloading the pool.
2276 */
2277 spa_t *spa = zio->io_spa;
2278 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2279
2280 zio_add_child(pio, zio);
2281 }
2282
2283 ASSERT0(zio->io_queued_timestamp);
2284 zio->io_queued_timestamp = gethrtime();
2285 __zio_execute(zio);
2286 }
2287
2288 /*
2289 * ==========================================================================
2290 * Reexecute, cancel, or suspend/resume failed I/O
2291 * ==========================================================================
2292 */
2293
2294 static void
2295 zio_reexecute(void *arg)
2296 {
2297 zio_t *pio = arg;
2298 zio_t *cio, *cio_next;
2299
2300 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2301 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2302 ASSERT(pio->io_gang_leader == NULL);
2303 ASSERT(pio->io_gang_tree == NULL);
2304
2305 pio->io_flags = pio->io_orig_flags;
2306 pio->io_stage = pio->io_orig_stage;
2307 pio->io_pipeline = pio->io_orig_pipeline;
2308 pio->io_reexecute = 0;
2309 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2310 pio->io_pipeline_trace = 0;
2311 pio->io_error = 0;
2312 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2313 pio->io_state[w] = 0;
2314 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2315 pio->io_child_error[c] = 0;
2316
2317 if (IO_IS_ALLOCATING(pio))
2318 BP_ZERO(pio->io_bp);
2319
2320 /*
2321 * As we reexecute pio's children, new children could be created.
2322 * New children go to the head of pio's io_child_list, however,
2323 * so we will (correctly) not reexecute them. The key is that
2324 * the remainder of pio's io_child_list, from 'cio_next' onward,
2325 * cannot be affected by any side effects of reexecuting 'cio'.
2326 */
2327 zio_link_t *zl = NULL;
2328 mutex_enter(&pio->io_lock);
2329 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2330 cio_next = zio_walk_children(pio, &zl);
2331 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2332 pio->io_children[cio->io_child_type][w]++;
2333 mutex_exit(&pio->io_lock);
2334 zio_reexecute(cio);
2335 mutex_enter(&pio->io_lock);
2336 }
2337 mutex_exit(&pio->io_lock);
2338
2339 /*
2340 * Now that all children have been reexecuted, execute the parent.
2341 * We don't reexecute "The Godfather" I/O here as it's the
2342 * responsibility of the caller to wait on it.
2343 */
2344 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2345 pio->io_queued_timestamp = gethrtime();
2346 __zio_execute(pio);
2347 }
2348 }
2349
2350 void
2351 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2352 {
2353 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2354 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2355 "failure and the failure mode property for this pool "
2356 "is set to panic.", spa_name(spa));
2357
2358 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2359 "failure and has been suspended.\n", spa_name(spa));
2360
2361 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2362 NULL, NULL, 0);
2363
2364 mutex_enter(&spa->spa_suspend_lock);
2365
2366 if (spa->spa_suspend_zio_root == NULL)
2367 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2368 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2369 ZIO_FLAG_GODFATHER);
2370
2371 spa->spa_suspended = reason;
2372
2373 if (zio != NULL) {
2374 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2375 ASSERT(zio != spa->spa_suspend_zio_root);
2376 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2377 ASSERT(zio_unique_parent(zio) == NULL);
2378 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2379 zio_add_child(spa->spa_suspend_zio_root, zio);
2380 }
2381
2382 mutex_exit(&spa->spa_suspend_lock);
2383 }
2384
2385 int
2386 zio_resume(spa_t *spa)
2387 {
2388 zio_t *pio;
2389
2390 /*
2391 * Reexecute all previously suspended i/o.
2392 */
2393 mutex_enter(&spa->spa_suspend_lock);
2394 spa->spa_suspended = ZIO_SUSPEND_NONE;
2395 cv_broadcast(&spa->spa_suspend_cv);
2396 pio = spa->spa_suspend_zio_root;
2397 spa->spa_suspend_zio_root = NULL;
2398 mutex_exit(&spa->spa_suspend_lock);
2399
2400 if (pio == NULL)
2401 return (0);
2402
2403 zio_reexecute(pio);
2404 return (zio_wait(pio));
2405 }
2406
2407 void
2408 zio_resume_wait(spa_t *spa)
2409 {
2410 mutex_enter(&spa->spa_suspend_lock);
2411 while (spa_suspended(spa))
2412 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2413 mutex_exit(&spa->spa_suspend_lock);
2414 }
2415
2416 /*
2417 * ==========================================================================
2418 * Gang blocks.
2419 *
2420 * A gang block is a collection of small blocks that looks to the DMU
2421 * like one large block. When zio_dva_allocate() cannot find a block
2422 * of the requested size, due to either severe fragmentation or the pool
2423 * being nearly full, it calls zio_write_gang_block() to construct the
2424 * block from smaller fragments.
2425 *
2426 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2427 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2428 * an indirect block: it's an array of block pointers. It consumes
2429 * only one sector and hence is allocatable regardless of fragmentation.
2430 * The gang header's bps point to its gang members, which hold the data.
2431 *
2432 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2433 * as the verifier to ensure uniqueness of the SHA256 checksum.
2434 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2435 * not the gang header. This ensures that data block signatures (needed for
2436 * deduplication) are independent of how the block is physically stored.
2437 *
2438 * Gang blocks can be nested: a gang member may itself be a gang block.
2439 * Thus every gang block is a tree in which root and all interior nodes are
2440 * gang headers, and the leaves are normal blocks that contain user data.
2441 * The root of the gang tree is called the gang leader.
2442 *
2443 * To perform any operation (read, rewrite, free, claim) on a gang block,
2444 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2445 * in the io_gang_tree field of the original logical i/o by recursively
2446 * reading the gang leader and all gang headers below it. This yields
2447 * an in-core tree containing the contents of every gang header and the
2448 * bps for every constituent of the gang block.
2449 *
2450 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2451 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2452 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2453 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2454 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2455 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2456 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2457 * of the gang header plus zio_checksum_compute() of the data to update the
2458 * gang header's blk_cksum as described above.
2459 *
2460 * The two-phase assemble/issue model solves the problem of partial failure --
2461 * what if you'd freed part of a gang block but then couldn't read the
2462 * gang header for another part? Assembling the entire gang tree first
2463 * ensures that all the necessary gang header I/O has succeeded before
2464 * starting the actual work of free, claim, or write. Once the gang tree
2465 * is assembled, free and claim are in-memory operations that cannot fail.
2466 *
2467 * In the event that a gang write fails, zio_dva_unallocate() walks the
2468 * gang tree to immediately free (i.e. insert back into the space map)
2469 * everything we've allocated. This ensures that we don't get ENOSPC
2470 * errors during repeated suspend/resume cycles due to a flaky device.
2471 *
2472 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2473 * the gang tree, we won't modify the block, so we can safely defer the free
2474 * (knowing that the block is still intact). If we *can* assemble the gang
2475 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2476 * each constituent bp and we can allocate a new block on the next sync pass.
2477 *
2478 * In all cases, the gang tree allows complete recovery from partial failure.
2479 * ==========================================================================
2480 */
2481
2482 static void
2483 zio_gang_issue_func_done(zio_t *zio)
2484 {
2485 abd_free(zio->io_abd);
2486 }
2487
2488 static zio_t *
2489 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2490 uint64_t offset)
2491 {
2492 if (gn != NULL)
2493 return (pio);
2494
2495 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2496 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2497 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2498 &pio->io_bookmark));
2499 }
2500
2501 static zio_t *
2502 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2503 uint64_t offset)
2504 {
2505 zio_t *zio;
2506
2507 if (gn != NULL) {
2508 abd_t *gbh_abd =
2509 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2510 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2511 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2512 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2513 &pio->io_bookmark);
2514 /*
2515 * As we rewrite each gang header, the pipeline will compute
2516 * a new gang block header checksum for it; but no one will
2517 * compute a new data checksum, so we do that here. The one
2518 * exception is the gang leader: the pipeline already computed
2519 * its data checksum because that stage precedes gang assembly.
2520 * (Presently, nothing actually uses interior data checksums;
2521 * this is just good hygiene.)
2522 */
2523 if (gn != pio->io_gang_leader->io_gang_tree) {
2524 abd_t *buf = abd_get_offset(data, offset);
2525
2526 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2527 buf, BP_GET_PSIZE(bp));
2528
2529 abd_free(buf);
2530 }
2531 /*
2532 * If we are here to damage data for testing purposes,
2533 * leave the GBH alone so that we can detect the damage.
2534 */
2535 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2536 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2537 } else {
2538 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2539 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2540 zio_gang_issue_func_done, NULL, pio->io_priority,
2541 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2542 }
2543
2544 return (zio);
2545 }
2546
2547 /* ARGSUSED */
2548 static zio_t *
2549 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2550 uint64_t offset)
2551 {
2552 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2553 ZIO_GANG_CHILD_FLAGS(pio));
2554 if (zio == NULL) {
2555 zio = zio_null(pio, pio->io_spa,
2556 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2557 }
2558 return (zio);
2559 }
2560
2561 /* ARGSUSED */
2562 static zio_t *
2563 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2564 uint64_t offset)
2565 {
2566 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2567 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2568 }
2569
2570 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2571 NULL,
2572 zio_read_gang,
2573 zio_rewrite_gang,
2574 zio_free_gang,
2575 zio_claim_gang,
2576 NULL
2577 };
2578
2579 static void zio_gang_tree_assemble_done(zio_t *zio);
2580
2581 static zio_gang_node_t *
2582 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2583 {
2584 zio_gang_node_t *gn;
2585
2586 ASSERT(*gnpp == NULL);
2587
2588 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2589 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2590 *gnpp = gn;
2591
2592 return (gn);
2593 }
2594
2595 static void
2596 zio_gang_node_free(zio_gang_node_t **gnpp)
2597 {
2598 zio_gang_node_t *gn = *gnpp;
2599
2600 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2601 ASSERT(gn->gn_child[g] == NULL);
2602
2603 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2604 kmem_free(gn, sizeof (*gn));
2605 *gnpp = NULL;
2606 }
2607
2608 static void
2609 zio_gang_tree_free(zio_gang_node_t **gnpp)
2610 {
2611 zio_gang_node_t *gn = *gnpp;
2612
2613 if (gn == NULL)
2614 return;
2615
2616 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2617 zio_gang_tree_free(&gn->gn_child[g]);
2618
2619 zio_gang_node_free(gnpp);
2620 }
2621
2622 static void
2623 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2624 {
2625 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2626 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2627
2628 ASSERT(gio->io_gang_leader == gio);
2629 ASSERT(BP_IS_GANG(bp));
2630
2631 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2632 zio_gang_tree_assemble_done, gn, gio->io_priority,
2633 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2634 }
2635
2636 static void
2637 zio_gang_tree_assemble_done(zio_t *zio)
2638 {
2639 zio_t *gio = zio->io_gang_leader;
2640 zio_gang_node_t *gn = zio->io_private;
2641 blkptr_t *bp = zio->io_bp;
2642
2643 ASSERT(gio == zio_unique_parent(zio));
2644 ASSERT(zio->io_child_count == 0);
2645
2646 if (zio->io_error)
2647 return;
2648
2649 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2650 if (BP_SHOULD_BYTESWAP(bp))
2651 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2652
2653 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2654 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2655 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2656
2657 abd_free(zio->io_abd);
2658
2659 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2660 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2661 if (!BP_IS_GANG(gbp))
2662 continue;
2663 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2664 }
2665 }
2666
2667 static void
2668 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2669 uint64_t offset)
2670 {
2671 zio_t *gio = pio->io_gang_leader;
2672 zio_t *zio;
2673
2674 ASSERT(BP_IS_GANG(bp) == !!gn);
2675 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2676 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2677
2678 /*
2679 * If you're a gang header, your data is in gn->gn_gbh.
2680 * If you're a gang member, your data is in 'data' and gn == NULL.
2681 */
2682 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2683
2684 if (gn != NULL) {
2685 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2686
2687 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2688 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2689 if (BP_IS_HOLE(gbp))
2690 continue;
2691 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2692 offset);
2693 offset += BP_GET_PSIZE(gbp);
2694 }
2695 }
2696
2697 if (gn == gio->io_gang_tree)
2698 ASSERT3U(gio->io_size, ==, offset);
2699
2700 if (zio != pio)
2701 zio_nowait(zio);
2702 }
2703
2704 static zio_t *
2705 zio_gang_assemble(zio_t *zio)
2706 {
2707 blkptr_t *bp = zio->io_bp;
2708
2709 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2710 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2711
2712 zio->io_gang_leader = zio;
2713
2714 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2715
2716 return (zio);
2717 }
2718
2719 static zio_t *
2720 zio_gang_issue(zio_t *zio)
2721 {
2722 blkptr_t *bp = zio->io_bp;
2723
2724 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2725 return (NULL);
2726 }
2727
2728 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2729 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2730
2731 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2732 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2733 0);
2734 else
2735 zio_gang_tree_free(&zio->io_gang_tree);
2736
2737 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2738
2739 return (zio);
2740 }
2741
2742 static void
2743 zio_write_gang_member_ready(zio_t *zio)
2744 {
2745 zio_t *pio = zio_unique_parent(zio);
2746 dva_t *cdva = zio->io_bp->blk_dva;
2747 dva_t *pdva = pio->io_bp->blk_dva;
2748 uint64_t asize;
2749 zio_t *gio __maybe_unused = zio->io_gang_leader;
2750
2751 if (BP_IS_HOLE(zio->io_bp))
2752 return;
2753
2754 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2755
2756 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2757 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2758 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2759 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2760 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2761
2762 mutex_enter(&pio->io_lock);
2763 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2764 ASSERT(DVA_GET_GANG(&pdva[d]));
2765 asize = DVA_GET_ASIZE(&pdva[d]);
2766 asize += DVA_GET_ASIZE(&cdva[d]);
2767 DVA_SET_ASIZE(&pdva[d], asize);
2768 }
2769 mutex_exit(&pio->io_lock);
2770 }
2771
2772 static void
2773 zio_write_gang_done(zio_t *zio)
2774 {
2775 /*
2776 * The io_abd field will be NULL for a zio with no data. The io_flags
2777 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2778 * check for it here as it is cleared in zio_ready.
2779 */
2780 if (zio->io_abd != NULL)
2781 abd_free(zio->io_abd);
2782 }
2783
2784 static zio_t *
2785 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2786 {
2787 spa_t *spa = pio->io_spa;
2788 blkptr_t *bp = pio->io_bp;
2789 zio_t *gio = pio->io_gang_leader;
2790 zio_t *zio;
2791 zio_gang_node_t *gn, **gnpp;
2792 zio_gbh_phys_t *gbh;
2793 abd_t *gbh_abd;
2794 uint64_t txg = pio->io_txg;
2795 uint64_t resid = pio->io_size;
2796 uint64_t lsize;
2797 int copies = gio->io_prop.zp_copies;
2798 int gbh_copies;
2799 zio_prop_t zp;
2800 int error;
2801 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2802
2803 /*
2804 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2805 * have a third copy.
2806 */
2807 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2808 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2809 gbh_copies = SPA_DVAS_PER_BP - 1;
2810
2811 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2812 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2813 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2814 ASSERT(has_data);
2815
2816 flags |= METASLAB_ASYNC_ALLOC;
2817 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2818 mca_alloc_slots, pio));
2819
2820 /*
2821 * The logical zio has already placed a reservation for
2822 * 'copies' allocation slots but gang blocks may require
2823 * additional copies. These additional copies
2824 * (i.e. gbh_copies - copies) are guaranteed to succeed
2825 * since metaslab_class_throttle_reserve() always allows
2826 * additional reservations for gang blocks.
2827 */
2828 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2829 pio->io_allocator, pio, flags));
2830 }
2831
2832 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2833 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2834 &pio->io_alloc_list, pio, pio->io_allocator);
2835 if (error) {
2836 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2837 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2838 ASSERT(has_data);
2839
2840 /*
2841 * If we failed to allocate the gang block header then
2842 * we remove any additional allocation reservations that
2843 * we placed here. The original reservation will
2844 * be removed when the logical I/O goes to the ready
2845 * stage.
2846 */
2847 metaslab_class_throttle_unreserve(mc,
2848 gbh_copies - copies, pio->io_allocator, pio);
2849 }
2850
2851 pio->io_error = error;
2852 return (pio);
2853 }
2854
2855 if (pio == gio) {
2856 gnpp = &gio->io_gang_tree;
2857 } else {
2858 gnpp = pio->io_private;
2859 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2860 }
2861
2862 gn = zio_gang_node_alloc(gnpp);
2863 gbh = gn->gn_gbh;
2864 bzero(gbh, SPA_GANGBLOCKSIZE);
2865 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2866
2867 /*
2868 * Create the gang header.
2869 */
2870 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2871 zio_write_gang_done, NULL, pio->io_priority,
2872 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2873
2874 /*
2875 * Create and nowait the gang children.
2876 */
2877 for (int g = 0; resid != 0; resid -= lsize, g++) {
2878 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2879 SPA_MINBLOCKSIZE);
2880 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2881
2882 zp.zp_checksum = gio->io_prop.zp_checksum;
2883 zp.zp_compress = ZIO_COMPRESS_OFF;
2884 zp.zp_complevel = gio->io_prop.zp_complevel;
2885 zp.zp_type = DMU_OT_NONE;
2886 zp.zp_level = 0;
2887 zp.zp_copies = gio->io_prop.zp_copies;
2888 zp.zp_dedup = B_FALSE;
2889 zp.zp_dedup_verify = B_FALSE;
2890 zp.zp_nopwrite = B_FALSE;
2891 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2892 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2893 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2894 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2895 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2896
2897 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2898 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2899 resid) : NULL, lsize, lsize, &zp,
2900 zio_write_gang_member_ready, NULL, NULL,
2901 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2902 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2903
2904 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2905 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2906 ASSERT(has_data);
2907
2908 /*
2909 * Gang children won't throttle but we should
2910 * account for their work, so reserve an allocation
2911 * slot for them here.
2912 */
2913 VERIFY(metaslab_class_throttle_reserve(mc,
2914 zp.zp_copies, cio->io_allocator, cio, flags));
2915 }
2916 zio_nowait(cio);
2917 }
2918
2919 /*
2920 * Set pio's pipeline to just wait for zio to finish.
2921 */
2922 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2923
2924 /*
2925 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2926 */
2927 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2928
2929 zio_nowait(zio);
2930
2931 return (pio);
2932 }
2933
2934 /*
2935 * The zio_nop_write stage in the pipeline determines if allocating a
2936 * new bp is necessary. The nopwrite feature can handle writes in
2937 * either syncing or open context (i.e. zil writes) and as a result is
2938 * mutually exclusive with dedup.
2939 *
2940 * By leveraging a cryptographically secure checksum, such as SHA256, we
2941 * can compare the checksums of the new data and the old to determine if
2942 * allocating a new block is required. Note that our requirements for
2943 * cryptographic strength are fairly weak: there can't be any accidental
2944 * hash collisions, but we don't need to be secure against intentional
2945 * (malicious) collisions. To trigger a nopwrite, you have to be able
2946 * to write the file to begin with, and triggering an incorrect (hash
2947 * collision) nopwrite is no worse than simply writing to the file.
2948 * That said, there are no known attacks against the checksum algorithms
2949 * used for nopwrite, assuming that the salt and the checksums
2950 * themselves remain secret.
2951 */
2952 static zio_t *
2953 zio_nop_write(zio_t *zio)
2954 {
2955 blkptr_t *bp = zio->io_bp;
2956 blkptr_t *bp_orig = &zio->io_bp_orig;
2957 zio_prop_t *zp = &zio->io_prop;
2958
2959 ASSERT(BP_GET_LEVEL(bp) == 0);
2960 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2961 ASSERT(zp->zp_nopwrite);
2962 ASSERT(!zp->zp_dedup);
2963 ASSERT(zio->io_bp_override == NULL);
2964 ASSERT(IO_IS_ALLOCATING(zio));
2965
2966 /*
2967 * Check to see if the original bp and the new bp have matching
2968 * characteristics (i.e. same checksum, compression algorithms, etc).
2969 * If they don't then just continue with the pipeline which will
2970 * allocate a new bp.
2971 */
2972 if (BP_IS_HOLE(bp_orig) ||
2973 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2974 ZCHECKSUM_FLAG_NOPWRITE) ||
2975 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2976 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2977 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2978 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2979 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2980 return (zio);
2981
2982 /*
2983 * If the checksums match then reset the pipeline so that we
2984 * avoid allocating a new bp and issuing any I/O.
2985 */
2986 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2987 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2988 ZCHECKSUM_FLAG_NOPWRITE);
2989 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2990 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2991 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2992 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2993 sizeof (uint64_t)) == 0);
2994
2995 /*
2996 * If we're overwriting a block that is currently on an
2997 * indirect vdev, then ignore the nopwrite request and
2998 * allow a new block to be allocated on a concrete vdev.
2999 */
3000 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3001 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3002 DVA_GET_VDEV(&bp->blk_dva[0]));
3003 if (tvd->vdev_ops == &vdev_indirect_ops) {
3004 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3005 return (zio);
3006 }
3007 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3008
3009 *bp = *bp_orig;
3010 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3011 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3012 }
3013
3014 return (zio);
3015 }
3016
3017 /*
3018 * ==========================================================================
3019 * Dedup
3020 * ==========================================================================
3021 */
3022 static void
3023 zio_ddt_child_read_done(zio_t *zio)
3024 {
3025 blkptr_t *bp = zio->io_bp;
3026 ddt_entry_t *dde = zio->io_private;
3027 ddt_phys_t *ddp;
3028 zio_t *pio = zio_unique_parent(zio);
3029
3030 mutex_enter(&pio->io_lock);
3031 ddp = ddt_phys_select(dde, bp);
3032 if (zio->io_error == 0)
3033 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3034
3035 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3036 dde->dde_repair_abd = zio->io_abd;
3037 else
3038 abd_free(zio->io_abd);
3039 mutex_exit(&pio->io_lock);
3040 }
3041
3042 static zio_t *
3043 zio_ddt_read_start(zio_t *zio)
3044 {
3045 blkptr_t *bp = zio->io_bp;
3046
3047 ASSERT(BP_GET_DEDUP(bp));
3048 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3049 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3050
3051 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3052 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3053 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3054 ddt_phys_t *ddp = dde->dde_phys;
3055 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3056 blkptr_t blk;
3057
3058 ASSERT(zio->io_vsd == NULL);
3059 zio->io_vsd = dde;
3060
3061 if (ddp_self == NULL)
3062 return (zio);
3063
3064 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3065 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3066 continue;
3067 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3068 &blk);
3069 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3070 abd_alloc_for_io(zio->io_size, B_TRUE),
3071 zio->io_size, zio_ddt_child_read_done, dde,
3072 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3073 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3074 }
3075 return (zio);
3076 }
3077
3078 zio_nowait(zio_read(zio, zio->io_spa, bp,
3079 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3080 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3081
3082 return (zio);
3083 }
3084
3085 static zio_t *
3086 zio_ddt_read_done(zio_t *zio)
3087 {
3088 blkptr_t *bp = zio->io_bp;
3089
3090 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3091 return (NULL);
3092 }
3093
3094 ASSERT(BP_GET_DEDUP(bp));
3095 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3096 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3097
3098 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3099 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3100 ddt_entry_t *dde = zio->io_vsd;
3101 if (ddt == NULL) {
3102 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3103 return (zio);
3104 }
3105 if (dde == NULL) {
3106 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3107 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3108 return (NULL);
3109 }
3110 if (dde->dde_repair_abd != NULL) {
3111 abd_copy(zio->io_abd, dde->dde_repair_abd,
3112 zio->io_size);
3113 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3114 }
3115 ddt_repair_done(ddt, dde);
3116 zio->io_vsd = NULL;
3117 }
3118
3119 ASSERT(zio->io_vsd == NULL);
3120
3121 return (zio);
3122 }
3123
3124 static boolean_t
3125 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3126 {
3127 spa_t *spa = zio->io_spa;
3128 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3129
3130 ASSERT(!(zio->io_bp_override && do_raw));
3131
3132 /*
3133 * Note: we compare the original data, not the transformed data,
3134 * because when zio->io_bp is an override bp, we will not have
3135 * pushed the I/O transforms. That's an important optimization
3136 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3137 * However, we should never get a raw, override zio so in these
3138 * cases we can compare the io_abd directly. This is useful because
3139 * it allows us to do dedup verification even if we don't have access
3140 * to the original data (for instance, if the encryption keys aren't
3141 * loaded).
3142 */
3143
3144 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3145 zio_t *lio = dde->dde_lead_zio[p];
3146
3147 if (lio != NULL && do_raw) {
3148 return (lio->io_size != zio->io_size ||
3149 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3150 } else if (lio != NULL) {
3151 return (lio->io_orig_size != zio->io_orig_size ||
3152 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3153 }
3154 }
3155
3156 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3157 ddt_phys_t *ddp = &dde->dde_phys[p];
3158
3159 if (ddp->ddp_phys_birth != 0 && do_raw) {
3160 blkptr_t blk = *zio->io_bp;
3161 uint64_t psize;
3162 abd_t *tmpabd;
3163 int error;
3164
3165 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3166 psize = BP_GET_PSIZE(&blk);
3167
3168 if (psize != zio->io_size)
3169 return (B_TRUE);
3170
3171 ddt_exit(ddt);
3172
3173 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3174
3175 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3176 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3177 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3178 ZIO_FLAG_RAW, &zio->io_bookmark));
3179
3180 if (error == 0) {
3181 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3182 error = SET_ERROR(ENOENT);
3183 }
3184
3185 abd_free(tmpabd);
3186 ddt_enter(ddt);
3187 return (error != 0);
3188 } else if (ddp->ddp_phys_birth != 0) {
3189 arc_buf_t *abuf = NULL;
3190 arc_flags_t aflags = ARC_FLAG_WAIT;
3191 blkptr_t blk = *zio->io_bp;
3192 int error;
3193
3194 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3195
3196 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3197 return (B_TRUE);
3198
3199 ddt_exit(ddt);
3200
3201 error = arc_read(NULL, spa, &blk,
3202 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3203 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3204 &aflags, &zio->io_bookmark);
3205
3206 if (error == 0) {
3207 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3208 zio->io_orig_size) != 0)
3209 error = SET_ERROR(ENOENT);
3210 arc_buf_destroy(abuf, &abuf);
3211 }
3212
3213 ddt_enter(ddt);
3214 return (error != 0);
3215 }
3216 }
3217
3218 return (B_FALSE);
3219 }
3220
3221 static void
3222 zio_ddt_child_write_ready(zio_t *zio)
3223 {
3224 int p = zio->io_prop.zp_copies;
3225 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3226 ddt_entry_t *dde = zio->io_private;
3227 ddt_phys_t *ddp = &dde->dde_phys[p];
3228 zio_t *pio;
3229
3230 if (zio->io_error)
3231 return;
3232
3233 ddt_enter(ddt);
3234
3235 ASSERT(dde->dde_lead_zio[p] == zio);
3236
3237 ddt_phys_fill(ddp, zio->io_bp);
3238
3239 zio_link_t *zl = NULL;
3240 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3241 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3242
3243 ddt_exit(ddt);
3244 }
3245
3246 static void
3247 zio_ddt_child_write_done(zio_t *zio)
3248 {
3249 int p = zio->io_prop.zp_copies;
3250 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3251 ddt_entry_t *dde = zio->io_private;
3252 ddt_phys_t *ddp = &dde->dde_phys[p];
3253
3254 ddt_enter(ddt);
3255
3256 ASSERT(ddp->ddp_refcnt == 0);
3257 ASSERT(dde->dde_lead_zio[p] == zio);
3258 dde->dde_lead_zio[p] = NULL;
3259
3260 if (zio->io_error == 0) {
3261 zio_link_t *zl = NULL;
3262 while (zio_walk_parents(zio, &zl) != NULL)
3263 ddt_phys_addref(ddp);
3264 } else {
3265 ddt_phys_clear(ddp);
3266 }
3267
3268 ddt_exit(ddt);
3269 }
3270
3271 static zio_t *
3272 zio_ddt_write(zio_t *zio)
3273 {
3274 spa_t *spa = zio->io_spa;
3275 blkptr_t *bp = zio->io_bp;
3276 uint64_t txg = zio->io_txg;
3277 zio_prop_t *zp = &zio->io_prop;
3278 int p = zp->zp_copies;
3279 zio_t *cio = NULL;
3280 ddt_t *ddt = ddt_select(spa, bp);
3281 ddt_entry_t *dde;
3282 ddt_phys_t *ddp;
3283
3284 ASSERT(BP_GET_DEDUP(bp));
3285 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3286 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3287 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3288
3289 ddt_enter(ddt);
3290 dde = ddt_lookup(ddt, bp, B_TRUE);
3291 ddp = &dde->dde_phys[p];
3292
3293 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3294 /*
3295 * If we're using a weak checksum, upgrade to a strong checksum
3296 * and try again. If we're already using a strong checksum,
3297 * we can't resolve it, so just convert to an ordinary write.
3298 * (And automatically e-mail a paper to Nature?)
3299 */
3300 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3301 ZCHECKSUM_FLAG_DEDUP)) {
3302 zp->zp_checksum = spa_dedup_checksum(spa);
3303 zio_pop_transforms(zio);
3304 zio->io_stage = ZIO_STAGE_OPEN;
3305 BP_ZERO(bp);
3306 } else {
3307 zp->zp_dedup = B_FALSE;
3308 BP_SET_DEDUP(bp, B_FALSE);
3309 }
3310 ASSERT(!BP_GET_DEDUP(bp));
3311 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3312 ddt_exit(ddt);
3313 return (zio);
3314 }
3315
3316 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3317 if (ddp->ddp_phys_birth != 0)
3318 ddt_bp_fill(ddp, bp, txg);
3319 if (dde->dde_lead_zio[p] != NULL)
3320 zio_add_child(zio, dde->dde_lead_zio[p]);
3321 else
3322 ddt_phys_addref(ddp);
3323 } else if (zio->io_bp_override) {
3324 ASSERT(bp->blk_birth == txg);
3325 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3326 ddt_phys_fill(ddp, bp);
3327 ddt_phys_addref(ddp);
3328 } else {
3329 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3330 zio->io_orig_size, zio->io_orig_size, zp,
3331 zio_ddt_child_write_ready, NULL, NULL,
3332 zio_ddt_child_write_done, dde, zio->io_priority,
3333 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3334
3335 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3336 dde->dde_lead_zio[p] = cio;
3337 }
3338
3339 ddt_exit(ddt);
3340
3341 zio_nowait(cio);
3342
3343 return (zio);
3344 }
3345
3346 ddt_entry_t *freedde; /* for debugging */
3347
3348 static zio_t *
3349 zio_ddt_free(zio_t *zio)
3350 {
3351 spa_t *spa = zio->io_spa;
3352 blkptr_t *bp = zio->io_bp;
3353 ddt_t *ddt = ddt_select(spa, bp);
3354 ddt_entry_t *dde;
3355 ddt_phys_t *ddp;
3356
3357 ASSERT(BP_GET_DEDUP(bp));
3358 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3359
3360 ddt_enter(ddt);
3361 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3362 if (dde) {
3363 ddp = ddt_phys_select(dde, bp);
3364 if (ddp)
3365 ddt_phys_decref(ddp);
3366 }
3367 ddt_exit(ddt);
3368
3369 return (zio);
3370 }
3371
3372 /*
3373 * ==========================================================================
3374 * Allocate and free blocks
3375 * ==========================================================================
3376 */
3377
3378 static zio_t *
3379 zio_io_to_allocate(spa_t *spa, int allocator)
3380 {
3381 zio_t *zio;
3382
3383 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3384
3385 zio = avl_first(&spa->spa_alloc_trees[allocator]);
3386 if (zio == NULL)
3387 return (NULL);
3388
3389 ASSERT(IO_IS_ALLOCATING(zio));
3390
3391 /*
3392 * Try to place a reservation for this zio. If we're unable to
3393 * reserve then we throttle.
3394 */
3395 ASSERT3U(zio->io_allocator, ==, allocator);
3396 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3397 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3398 return (NULL);
3399 }
3400
3401 avl_remove(&spa->spa_alloc_trees[allocator], zio);
3402 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3403
3404 return (zio);
3405 }
3406
3407 static zio_t *
3408 zio_dva_throttle(zio_t *zio)
3409 {
3410 spa_t *spa = zio->io_spa;
3411 zio_t *nio;
3412 metaslab_class_t *mc;
3413
3414 /* locate an appropriate allocation class */
3415 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3416 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3417
3418 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3419 !mc->mc_alloc_throttle_enabled ||
3420 zio->io_child_type == ZIO_CHILD_GANG ||
3421 zio->io_flags & ZIO_FLAG_NODATA) {
3422 return (zio);
3423 }
3424
3425 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3426
3427 ASSERT3U(zio->io_queued_timestamp, >, 0);
3428 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3429
3430 zbookmark_phys_t *bm = &zio->io_bookmark;
3431 /*
3432 * We want to try to use as many allocators as possible to help improve
3433 * performance, but we also want logically adjacent IOs to be physically
3434 * adjacent to improve sequential read performance. We chunk each object
3435 * into 2^20 block regions, and then hash based on the objset, object,
3436 * level, and region to accomplish both of these goals.
3437 */
3438 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3439 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3440 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3441 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3442 zio->io_metaslab_class = mc;
3443 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3444 nio = zio_io_to_allocate(spa, zio->io_allocator);
3445 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3446 return (nio);
3447 }
3448
3449 static void
3450 zio_allocate_dispatch(spa_t *spa, int allocator)
3451 {
3452 zio_t *zio;
3453
3454 mutex_enter(&spa->spa_alloc_locks[allocator]);
3455 zio = zio_io_to_allocate(spa, allocator);
3456 mutex_exit(&spa->spa_alloc_locks[allocator]);
3457 if (zio == NULL)
3458 return;
3459
3460 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3461 ASSERT0(zio->io_error);
3462 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3463 }
3464
3465 static zio_t *
3466 zio_dva_allocate(zio_t *zio)
3467 {
3468 spa_t *spa = zio->io_spa;
3469 metaslab_class_t *mc;
3470 blkptr_t *bp = zio->io_bp;
3471 int error;
3472 int flags = 0;
3473
3474 if (zio->io_gang_leader == NULL) {
3475 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3476 zio->io_gang_leader = zio;
3477 }
3478
3479 ASSERT(BP_IS_HOLE(bp));
3480 ASSERT0(BP_GET_NDVAS(bp));
3481 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3482 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3483 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3484
3485 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3486 if (zio->io_flags & ZIO_FLAG_NODATA)
3487 flags |= METASLAB_DONT_THROTTLE;
3488 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3489 flags |= METASLAB_GANG_CHILD;
3490 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3491 flags |= METASLAB_ASYNC_ALLOC;
3492
3493 /*
3494 * if not already chosen, locate an appropriate allocation class
3495 */
3496 mc = zio->io_metaslab_class;
3497 if (mc == NULL) {
3498 mc = spa_preferred_class(spa, zio->io_size,
3499 zio->io_prop.zp_type, zio->io_prop.zp_level,
3500 zio->io_prop.zp_zpl_smallblk);
3501 zio->io_metaslab_class = mc;
3502 }
3503
3504 /*
3505 * Try allocating the block in the usual metaslab class.
3506 * If that's full, allocate it in the normal class.
3507 * If that's full, allocate as a gang block,
3508 * and if all are full, the allocation fails (which shouldn't happen).
3509 *
3510 * Note that we do not fall back on embedded slog (ZIL) space, to
3511 * preserve unfragmented slog space, which is critical for decent
3512 * sync write performance. If a log allocation fails, we will fall
3513 * back to spa_sync() which is abysmal for performance.
3514 */
3515 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3516 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3517 &zio->io_alloc_list, zio, zio->io_allocator);
3518
3519 /*
3520 * Fallback to normal class when an alloc class is full
3521 */
3522 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3523 /*
3524 * If throttling, transfer reservation over to normal class.
3525 * The io_allocator slot can remain the same even though we
3526 * are switching classes.
3527 */
3528 if (mc->mc_alloc_throttle_enabled &&
3529 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3530 metaslab_class_throttle_unreserve(mc,
3531 zio->io_prop.zp_copies, zio->io_allocator, zio);
3532 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3533
3534 VERIFY(metaslab_class_throttle_reserve(
3535 spa_normal_class(spa),
3536 zio->io_prop.zp_copies, zio->io_allocator, zio,
3537 flags | METASLAB_MUST_RESERVE));
3538 }
3539 zio->io_metaslab_class = mc = spa_normal_class(spa);
3540 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3541 zfs_dbgmsg("%s: metaslab allocation failure, "
3542 "trying normal class: zio %px, size %llu, error %d",
3543 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3544 error);
3545 }
3546
3547 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3548 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3549 &zio->io_alloc_list, zio, zio->io_allocator);
3550 }
3551
3552 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3553 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3554 zfs_dbgmsg("%s: metaslab allocation failure, "
3555 "trying ganging: zio %px, size %llu, error %d",
3556 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3557 error);
3558 }
3559 return (zio_write_gang_block(zio, mc));
3560 }
3561 if (error != 0) {
3562 if (error != ENOSPC ||
3563 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3564 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3565 "size %llu, error %d",
3566 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3567 error);
3568 }
3569 zio->io_error = error;
3570 }
3571
3572 return (zio);
3573 }
3574
3575 static zio_t *
3576 zio_dva_free(zio_t *zio)
3577 {
3578 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3579
3580 return (zio);
3581 }
3582
3583 static zio_t *
3584 zio_dva_claim(zio_t *zio)
3585 {
3586 int error;
3587
3588 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3589 if (error)
3590 zio->io_error = error;
3591
3592 return (zio);
3593 }
3594
3595 /*
3596 * Undo an allocation. This is used by zio_done() when an I/O fails
3597 * and we want to give back the block we just allocated.
3598 * This handles both normal blocks and gang blocks.
3599 */
3600 static void
3601 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3602 {
3603 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3604 ASSERT(zio->io_bp_override == NULL);
3605
3606 if (!BP_IS_HOLE(bp))
3607 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3608
3609 if (gn != NULL) {
3610 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3611 zio_dva_unallocate(zio, gn->gn_child[g],
3612 &gn->gn_gbh->zg_blkptr[g]);
3613 }
3614 }
3615 }
3616
3617 /*
3618 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3619 */
3620 int
3621 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3622 uint64_t size, boolean_t *slog)
3623 {
3624 int error = 1;
3625 zio_alloc_list_t io_alloc_list;
3626
3627 ASSERT(txg > spa_syncing_txg(spa));
3628
3629 metaslab_trace_init(&io_alloc_list);
3630
3631 /*
3632 * Block pointer fields are useful to metaslabs for stats and debugging.
3633 * Fill in the obvious ones before calling into metaslab_alloc().
3634 */
3635 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3636 BP_SET_PSIZE(new_bp, size);
3637 BP_SET_LEVEL(new_bp, 0);
3638
3639 /*
3640 * When allocating a zil block, we don't have information about
3641 * the final destination of the block except the objset it's part
3642 * of, so we just hash the objset ID to pick the allocator to get
3643 * some parallelism.
3644 */
3645 int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3646 int allocator = cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
3647 spa->spa_alloc_count;
3648 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3649 txg, NULL, flags, &io_alloc_list, NULL, allocator);
3650 *slog = (error == 0);
3651 if (error != 0) {
3652 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3653 new_bp, 1, txg, NULL, flags,
3654 &io_alloc_list, NULL, allocator);
3655 }
3656 if (error != 0) {
3657 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3658 new_bp, 1, txg, NULL, flags,
3659 &io_alloc_list, NULL, allocator);
3660 }
3661 metaslab_trace_fini(&io_alloc_list);
3662
3663 if (error == 0) {
3664 BP_SET_LSIZE(new_bp, size);
3665 BP_SET_PSIZE(new_bp, size);
3666 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3667 BP_SET_CHECKSUM(new_bp,
3668 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3669 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3670 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3671 BP_SET_LEVEL(new_bp, 0);
3672 BP_SET_DEDUP(new_bp, 0);
3673 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3674
3675 /*
3676 * encrypted blocks will require an IV and salt. We generate
3677 * these now since we will not be rewriting the bp at
3678 * rewrite time.
3679 */
3680 if (os->os_encrypted) {
3681 uint8_t iv[ZIO_DATA_IV_LEN];
3682 uint8_t salt[ZIO_DATA_SALT_LEN];
3683
3684 BP_SET_CRYPT(new_bp, B_TRUE);
3685 VERIFY0(spa_crypt_get_salt(spa,
3686 dmu_objset_id(os), salt));
3687 VERIFY0(zio_crypt_generate_iv(iv));
3688
3689 zio_crypt_encode_params_bp(new_bp, salt, iv);
3690 }
3691 } else {
3692 zfs_dbgmsg("%s: zil block allocation failure: "
3693 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3694 error);
3695 }
3696
3697 return (error);
3698 }
3699
3700 /*
3701 * ==========================================================================
3702 * Read and write to physical devices
3703 * ==========================================================================
3704 */
3705
3706 /*
3707 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3708 * stops after this stage and will resume upon I/O completion.
3709 * However, there are instances where the vdev layer may need to
3710 * continue the pipeline when an I/O was not issued. Since the I/O
3711 * that was sent to the vdev layer might be different than the one
3712 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3713 * force the underlying vdev layers to call either zio_execute() or
3714 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3715 */
3716 static zio_t *
3717 zio_vdev_io_start(zio_t *zio)
3718 {
3719 vdev_t *vd = zio->io_vd;
3720 uint64_t align;
3721 spa_t *spa = zio->io_spa;
3722
3723 zio->io_delay = 0;
3724
3725 ASSERT(zio->io_error == 0);
3726 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3727
3728 if (vd == NULL) {
3729 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3730 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3731
3732 /*
3733 * The mirror_ops handle multiple DVAs in a single BP.
3734 */
3735 vdev_mirror_ops.vdev_op_io_start(zio);
3736 return (NULL);
3737 }
3738
3739 ASSERT3P(zio->io_logical, !=, zio);
3740 if (zio->io_type == ZIO_TYPE_WRITE) {
3741 ASSERT(spa->spa_trust_config);
3742
3743 /*
3744 * Note: the code can handle other kinds of writes,
3745 * but we don't expect them.
3746 */
3747 if (zio->io_vd->vdev_removing) {
3748 ASSERT(zio->io_flags &
3749 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3750 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3751 }
3752 }
3753
3754 align = 1ULL << vd->vdev_top->vdev_ashift;
3755
3756 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3757 P2PHASE(zio->io_size, align) != 0) {
3758 /* Transform logical writes to be a full physical block size. */
3759 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3760 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3761 ASSERT(vd == vd->vdev_top);
3762 if (zio->io_type == ZIO_TYPE_WRITE) {
3763 abd_copy(abuf, zio->io_abd, zio->io_size);
3764 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3765 }
3766 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3767 }
3768
3769 /*
3770 * If this is not a physical io, make sure that it is properly aligned
3771 * before proceeding.
3772 */
3773 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3774 ASSERT0(P2PHASE(zio->io_offset, align));
3775 ASSERT0(P2PHASE(zio->io_size, align));
3776 } else {
3777 /*
3778 * For physical writes, we allow 512b aligned writes and assume
3779 * the device will perform a read-modify-write as necessary.
3780 */
3781 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3782 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3783 }
3784
3785 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3786
3787 /*
3788 * If this is a repair I/O, and there's no self-healing involved --
3789 * that is, we're just resilvering what we expect to resilver --
3790 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3791 * This prevents spurious resilvering.
3792 *
3793 * There are a few ways that we can end up creating these spurious
3794 * resilver i/os:
3795 *
3796 * 1. A resilver i/o will be issued if any DVA in the BP has a
3797 * dirty DTL. The mirror code will issue resilver writes to
3798 * each DVA, including the one(s) that are not on vdevs with dirty
3799 * DTLs.
3800 *
3801 * 2. With nested replication, which happens when we have a
3802 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3803 * For example, given mirror(replacing(A+B), C), it's likely that
3804 * only A is out of date (it's the new device). In this case, we'll
3805 * read from C, then use the data to resilver A+B -- but we don't
3806 * actually want to resilver B, just A. The top-level mirror has no
3807 * way to know this, so instead we just discard unnecessary repairs
3808 * as we work our way down the vdev tree.
3809 *
3810 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3811 * The same logic applies to any form of nested replication: ditto
3812 * + mirror, RAID-Z + replacing, etc.
3813 *
3814 * However, indirect vdevs point off to other vdevs which may have
3815 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3816 * will be properly bypassed instead.
3817 *
3818 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3819 * a dRAID spare vdev. For example, when a dRAID spare is first
3820 * used, its spare blocks need to be written to but the leaf vdev's
3821 * of such blocks can have empty DTL_PARTIAL.
3822 *
3823 * There seemed no clean way to allow such writes while bypassing
3824 * spurious ones. At this point, just avoid all bypassing for dRAID
3825 * for correctness.
3826 */
3827 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3828 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3829 zio->io_txg != 0 && /* not a delegated i/o */
3830 vd->vdev_ops != &vdev_indirect_ops &&
3831 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3832 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3833 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3834 zio_vdev_io_bypass(zio);
3835 return (zio);
3836 }
3837
3838 /*
3839 * Select the next best leaf I/O to process. Distributed spares are
3840 * excluded since they dispatch the I/O directly to a leaf vdev after
3841 * applying the dRAID mapping.
3842 */
3843 if (vd->vdev_ops->vdev_op_leaf &&
3844 vd->vdev_ops != &vdev_draid_spare_ops &&
3845 (zio->io_type == ZIO_TYPE_READ ||
3846 zio->io_type == ZIO_TYPE_WRITE ||
3847 zio->io_type == ZIO_TYPE_TRIM)) {
3848
3849 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3850 return (zio);
3851
3852 if ((zio = vdev_queue_io(zio)) == NULL)
3853 return (NULL);
3854
3855 if (!vdev_accessible(vd, zio)) {
3856 zio->io_error = SET_ERROR(ENXIO);
3857 zio_interrupt(zio);
3858 return (NULL);
3859 }
3860 zio->io_delay = gethrtime();
3861 }
3862
3863 vd->vdev_ops->vdev_op_io_start(zio);
3864 return (NULL);
3865 }
3866
3867 static zio_t *
3868 zio_vdev_io_done(zio_t *zio)
3869 {
3870 vdev_t *vd = zio->io_vd;
3871 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3872 boolean_t unexpected_error = B_FALSE;
3873
3874 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3875 return (NULL);
3876 }
3877
3878 ASSERT(zio->io_type == ZIO_TYPE_READ ||
3879 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3880
3881 if (zio->io_delay)
3882 zio->io_delay = gethrtime() - zio->io_delay;
3883
3884 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3885 vd->vdev_ops != &vdev_draid_spare_ops) {
3886 vdev_queue_io_done(zio);
3887
3888 if (zio->io_type == ZIO_TYPE_WRITE)
3889 vdev_cache_write(zio);
3890
3891 if (zio_injection_enabled && zio->io_error == 0)
3892 zio->io_error = zio_handle_device_injections(vd, zio,
3893 EIO, EILSEQ);
3894
3895 if (zio_injection_enabled && zio->io_error == 0)
3896 zio->io_error = zio_handle_label_injection(zio, EIO);
3897
3898 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3899 if (!vdev_accessible(vd, zio)) {
3900 zio->io_error = SET_ERROR(ENXIO);
3901 } else {
3902 unexpected_error = B_TRUE;
3903 }
3904 }
3905 }
3906
3907 ops->vdev_op_io_done(zio);
3908
3909 if (unexpected_error)
3910 VERIFY(vdev_probe(vd, zio) == NULL);
3911
3912 return (zio);
3913 }
3914
3915 /*
3916 * This function is used to change the priority of an existing zio that is
3917 * currently in-flight. This is used by the arc to upgrade priority in the
3918 * event that a demand read is made for a block that is currently queued
3919 * as a scrub or async read IO. Otherwise, the high priority read request
3920 * would end up having to wait for the lower priority IO.
3921 */
3922 void
3923 zio_change_priority(zio_t *pio, zio_priority_t priority)
3924 {
3925 zio_t *cio, *cio_next;
3926 zio_link_t *zl = NULL;
3927
3928 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3929
3930 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3931 vdev_queue_change_io_priority(pio, priority);
3932 } else {
3933 pio->io_priority = priority;
3934 }
3935
3936 mutex_enter(&pio->io_lock);
3937 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3938 cio_next = zio_walk_children(pio, &zl);
3939 zio_change_priority(cio, priority);
3940 }
3941 mutex_exit(&pio->io_lock);
3942 }
3943
3944 /*
3945 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3946 * disk, and use that to finish the checksum ereport later.
3947 */
3948 static void
3949 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3950 const abd_t *good_buf)
3951 {
3952 /* no processing needed */
3953 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3954 }
3955
3956 /*ARGSUSED*/
3957 void
3958 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3959 {
3960 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3961
3962 abd_copy(abd, zio->io_abd, zio->io_size);
3963
3964 zcr->zcr_cbinfo = zio->io_size;
3965 zcr->zcr_cbdata = abd;
3966 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3967 zcr->zcr_free = zio_abd_free;
3968 }
3969
3970 static zio_t *
3971 zio_vdev_io_assess(zio_t *zio)
3972 {
3973 vdev_t *vd = zio->io_vd;
3974
3975 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3976 return (NULL);
3977 }
3978
3979 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3980 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3981
3982 if (zio->io_vsd != NULL) {
3983 zio->io_vsd_ops->vsd_free(zio);
3984 zio->io_vsd = NULL;
3985 }
3986
3987 if (zio_injection_enabled && zio->io_error == 0)
3988 zio->io_error = zio_handle_fault_injection(zio, EIO);
3989
3990 /*
3991 * If the I/O failed, determine whether we should attempt to retry it.
3992 *
3993 * On retry, we cut in line in the issue queue, since we don't want
3994 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3995 */
3996 if (zio->io_error && vd == NULL &&
3997 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3998 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3999 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
4000 zio->io_error = 0;
4001 zio->io_flags |= ZIO_FLAG_IO_RETRY |
4002 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4003 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4004 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4005 zio_requeue_io_start_cut_in_line);
4006 return (NULL);
4007 }
4008
4009 /*
4010 * If we got an error on a leaf device, convert it to ENXIO
4011 * if the device is not accessible at all.
4012 */
4013 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4014 !vdev_accessible(vd, zio))
4015 zio->io_error = SET_ERROR(ENXIO);
4016
4017 /*
4018 * If we can't write to an interior vdev (mirror or RAID-Z),
4019 * set vdev_cant_write so that we stop trying to allocate from it.
4020 */
4021 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4022 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4023 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4024 "cant_write=TRUE due to write failure with ENXIO",
4025 zio);
4026 vd->vdev_cant_write = B_TRUE;
4027 }
4028
4029 /*
4030 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4031 * attempts will ever succeed. In this case we set a persistent
4032 * boolean flag so that we don't bother with it in the future.
4033 */
4034 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4035 zio->io_type == ZIO_TYPE_IOCTL &&
4036 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4037 vd->vdev_nowritecache = B_TRUE;
4038
4039 if (zio->io_error)
4040 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4041
4042 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4043 zio->io_physdone != NULL) {
4044 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4045 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4046 zio->io_physdone(zio->io_logical);
4047 }
4048
4049 return (zio);
4050 }
4051
4052 void
4053 zio_vdev_io_reissue(zio_t *zio)
4054 {
4055 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4056 ASSERT(zio->io_error == 0);
4057
4058 zio->io_stage >>= 1;
4059 }
4060
4061 void
4062 zio_vdev_io_redone(zio_t *zio)
4063 {
4064 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4065
4066 zio->io_stage >>= 1;
4067 }
4068
4069 void
4070 zio_vdev_io_bypass(zio_t *zio)
4071 {
4072 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4073 ASSERT(zio->io_error == 0);
4074
4075 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4076 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4077 }
4078
4079 /*
4080 * ==========================================================================
4081 * Encrypt and store encryption parameters
4082 * ==========================================================================
4083 */
4084
4085
4086 /*
4087 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4088 * managing the storage of encryption parameters and passing them to the
4089 * lower-level encryption functions.
4090 */
4091 static zio_t *
4092 zio_encrypt(zio_t *zio)
4093 {
4094 zio_prop_t *zp = &zio->io_prop;
4095 spa_t *spa = zio->io_spa;
4096 blkptr_t *bp = zio->io_bp;
4097 uint64_t psize = BP_GET_PSIZE(bp);
4098 uint64_t dsobj = zio->io_bookmark.zb_objset;
4099 dmu_object_type_t ot = BP_GET_TYPE(bp);
4100 void *enc_buf = NULL;
4101 abd_t *eabd = NULL;
4102 uint8_t salt[ZIO_DATA_SALT_LEN];
4103 uint8_t iv[ZIO_DATA_IV_LEN];
4104 uint8_t mac[ZIO_DATA_MAC_LEN];
4105 boolean_t no_crypt = B_FALSE;
4106
4107 /* the root zio already encrypted the data */
4108 if (zio->io_child_type == ZIO_CHILD_GANG)
4109 return (zio);
4110
4111 /* only ZIL blocks are re-encrypted on rewrite */
4112 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4113 return (zio);
4114
4115 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4116 BP_SET_CRYPT(bp, B_FALSE);
4117 return (zio);
4118 }
4119
4120 /* if we are doing raw encryption set the provided encryption params */
4121 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4122 ASSERT0(BP_GET_LEVEL(bp));
4123 BP_SET_CRYPT(bp, B_TRUE);
4124 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4125 if (ot != DMU_OT_OBJSET)
4126 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4127
4128 /* dnode blocks must be written out in the provided byteorder */
4129 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4130 ot == DMU_OT_DNODE) {
4131 void *bswap_buf = zio_buf_alloc(psize);
4132 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4133
4134 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4135 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4136 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4137 psize);
4138
4139 abd_take_ownership_of_buf(babd, B_TRUE);
4140 zio_push_transform(zio, babd, psize, psize, NULL);
4141 }
4142
4143 if (DMU_OT_IS_ENCRYPTED(ot))
4144 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4145 return (zio);
4146 }
4147
4148 /* indirect blocks only maintain a cksum of the lower level MACs */
4149 if (BP_GET_LEVEL(bp) > 0) {
4150 BP_SET_CRYPT(bp, B_TRUE);
4151 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4152 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4153 mac));
4154 zio_crypt_encode_mac_bp(bp, mac);
4155 return (zio);
4156 }
4157
4158 /*
4159 * Objset blocks are a special case since they have 2 256-bit MACs
4160 * embedded within them.
4161 */
4162 if (ot == DMU_OT_OBJSET) {
4163 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4164 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4165 BP_SET_CRYPT(bp, B_TRUE);
4166 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4167 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4168 return (zio);
4169 }
4170
4171 /* unencrypted object types are only authenticated with a MAC */
4172 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4173 BP_SET_CRYPT(bp, B_TRUE);
4174 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4175 zio->io_abd, psize, mac));
4176 zio_crypt_encode_mac_bp(bp, mac);
4177 return (zio);
4178 }
4179
4180 /*
4181 * Later passes of sync-to-convergence may decide to rewrite data
4182 * in place to avoid more disk reallocations. This presents a problem
4183 * for encryption because this constitutes rewriting the new data with
4184 * the same encryption key and IV. However, this only applies to blocks
4185 * in the MOS (particularly the spacemaps) and we do not encrypt the
4186 * MOS. We assert that the zio is allocating or an intent log write
4187 * to enforce this.
4188 */
4189 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4190 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4191 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4192 ASSERT3U(psize, !=, 0);
4193
4194 enc_buf = zio_buf_alloc(psize);
4195 eabd = abd_get_from_buf(enc_buf, psize);
4196 abd_take_ownership_of_buf(eabd, B_TRUE);
4197
4198 /*
4199 * For an explanation of what encryption parameters are stored
4200 * where, see the block comment in zio_crypt.c.
4201 */
4202 if (ot == DMU_OT_INTENT_LOG) {
4203 zio_crypt_decode_params_bp(bp, salt, iv);
4204 } else {
4205 BP_SET_CRYPT(bp, B_TRUE);
4206 }
4207
4208 /* Perform the encryption. This should not fail */
4209 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4210 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4211 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4212
4213 /* encode encryption metadata into the bp */
4214 if (ot == DMU_OT_INTENT_LOG) {
4215 /*
4216 * ZIL blocks store the MAC in the embedded checksum, so the
4217 * transform must always be applied.
4218 */
4219 zio_crypt_encode_mac_zil(enc_buf, mac);
4220 zio_push_transform(zio, eabd, psize, psize, NULL);
4221 } else {
4222 BP_SET_CRYPT(bp, B_TRUE);
4223 zio_crypt_encode_params_bp(bp, salt, iv);
4224 zio_crypt_encode_mac_bp(bp, mac);
4225
4226 if (no_crypt) {
4227 ASSERT3U(ot, ==, DMU_OT_DNODE);
4228 abd_free(eabd);
4229 } else {
4230 zio_push_transform(zio, eabd, psize, psize, NULL);
4231 }
4232 }
4233
4234 return (zio);
4235 }
4236
4237 /*
4238 * ==========================================================================
4239 * Generate and verify checksums
4240 * ==========================================================================
4241 */
4242 static zio_t *
4243 zio_checksum_generate(zio_t *zio)
4244 {
4245 blkptr_t *bp = zio->io_bp;
4246 enum zio_checksum checksum;
4247
4248 if (bp == NULL) {
4249 /*
4250 * This is zio_write_phys().
4251 * We're either generating a label checksum, or none at all.
4252 */
4253 checksum = zio->io_prop.zp_checksum;
4254
4255 if (checksum == ZIO_CHECKSUM_OFF)
4256 return (zio);
4257
4258 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4259 } else {
4260 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4261 ASSERT(!IO_IS_ALLOCATING(zio));
4262 checksum = ZIO_CHECKSUM_GANG_HEADER;
4263 } else {
4264 checksum = BP_GET_CHECKSUM(bp);
4265 }
4266 }
4267
4268 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4269
4270 return (zio);
4271 }
4272
4273 static zio_t *
4274 zio_checksum_verify(zio_t *zio)
4275 {
4276 zio_bad_cksum_t info;
4277 blkptr_t *bp = zio->io_bp;
4278 int error;
4279
4280 ASSERT(zio->io_vd != NULL);
4281
4282 if (bp == NULL) {
4283 /*
4284 * This is zio_read_phys().
4285 * We're either verifying a label checksum, or nothing at all.
4286 */
4287 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4288 return (zio);
4289
4290 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4291 }
4292
4293 if ((error = zio_checksum_error(zio, &info)) != 0) {
4294 zio->io_error = error;
4295 if (error == ECKSUM &&
4296 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4297 (void) zfs_ereport_start_checksum(zio->io_spa,
4298 zio->io_vd, &zio->io_bookmark, zio,
4299 zio->io_offset, zio->io_size, &info);
4300 mutex_enter(&zio->io_vd->vdev_stat_lock);
4301 zio->io_vd->vdev_stat.vs_checksum_errors++;
4302 mutex_exit(&zio->io_vd->vdev_stat_lock);
4303 }
4304 }
4305
4306 return (zio);
4307 }
4308
4309 /*
4310 * Called by RAID-Z to ensure we don't compute the checksum twice.
4311 */
4312 void
4313 zio_checksum_verified(zio_t *zio)
4314 {
4315 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4316 }
4317
4318 /*
4319 * ==========================================================================
4320 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4321 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4322 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4323 * indicate errors that are specific to one I/O, and most likely permanent.
4324 * Any other error is presumed to be worse because we weren't expecting it.
4325 * ==========================================================================
4326 */
4327 int
4328 zio_worst_error(int e1, int e2)
4329 {
4330 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4331 int r1, r2;
4332
4333 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4334 if (e1 == zio_error_rank[r1])
4335 break;
4336
4337 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4338 if (e2 == zio_error_rank[r2])
4339 break;
4340
4341 return (r1 > r2 ? e1 : e2);
4342 }
4343
4344 /*
4345 * ==========================================================================
4346 * I/O completion
4347 * ==========================================================================
4348 */
4349 static zio_t *
4350 zio_ready(zio_t *zio)
4351 {
4352 blkptr_t *bp = zio->io_bp;
4353 zio_t *pio, *pio_next;
4354 zio_link_t *zl = NULL;
4355
4356 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4357 ZIO_WAIT_READY)) {
4358 return (NULL);
4359 }
4360
4361 if (zio->io_ready) {
4362 ASSERT(IO_IS_ALLOCATING(zio));
4363 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4364 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4365 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4366
4367 zio->io_ready(zio);
4368 }
4369
4370 if (bp != NULL && bp != &zio->io_bp_copy)
4371 zio->io_bp_copy = *bp;
4372
4373 if (zio->io_error != 0) {
4374 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4375
4376 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4377 ASSERT(IO_IS_ALLOCATING(zio));
4378 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4379 ASSERT(zio->io_metaslab_class != NULL);
4380
4381 /*
4382 * We were unable to allocate anything, unreserve and
4383 * issue the next I/O to allocate.
4384 */
4385 metaslab_class_throttle_unreserve(
4386 zio->io_metaslab_class, zio->io_prop.zp_copies,
4387 zio->io_allocator, zio);
4388 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4389 }
4390 }
4391
4392 mutex_enter(&zio->io_lock);
4393 zio->io_state[ZIO_WAIT_READY] = 1;
4394 pio = zio_walk_parents(zio, &zl);
4395 mutex_exit(&zio->io_lock);
4396
4397 /*
4398 * As we notify zio's parents, new parents could be added.
4399 * New parents go to the head of zio's io_parent_list, however,
4400 * so we will (correctly) not notify them. The remainder of zio's
4401 * io_parent_list, from 'pio_next' onward, cannot change because
4402 * all parents must wait for us to be done before they can be done.
4403 */
4404 for (; pio != NULL; pio = pio_next) {
4405 pio_next = zio_walk_parents(zio, &zl);
4406 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4407 }
4408
4409 if (zio->io_flags & ZIO_FLAG_NODATA) {
4410 if (BP_IS_GANG(bp)) {
4411 zio->io_flags &= ~ZIO_FLAG_NODATA;
4412 } else {
4413 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4414 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4415 }
4416 }
4417
4418 if (zio_injection_enabled &&
4419 zio->io_spa->spa_syncing_txg == zio->io_txg)
4420 zio_handle_ignored_writes(zio);
4421
4422 return (zio);
4423 }
4424
4425 /*
4426 * Update the allocation throttle accounting.
4427 */
4428 static void
4429 zio_dva_throttle_done(zio_t *zio)
4430 {
4431 zio_t *lio __maybe_unused = zio->io_logical;
4432 zio_t *pio = zio_unique_parent(zio);
4433 vdev_t *vd = zio->io_vd;
4434 int flags = METASLAB_ASYNC_ALLOC;
4435
4436 ASSERT3P(zio->io_bp, !=, NULL);
4437 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4438 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4439 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4440 ASSERT(vd != NULL);
4441 ASSERT3P(vd, ==, vd->vdev_top);
4442 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4443 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4444 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4445 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4446 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4447
4448 /*
4449 * Parents of gang children can have two flavors -- ones that
4450 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4451 * and ones that allocated the constituent blocks. The allocation
4452 * throttle needs to know the allocating parent zio so we must find
4453 * it here.
4454 */
4455 if (pio->io_child_type == ZIO_CHILD_GANG) {
4456 /*
4457 * If our parent is a rewrite gang child then our grandparent
4458 * would have been the one that performed the allocation.
4459 */
4460 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4461 pio = zio_unique_parent(pio);
4462 flags |= METASLAB_GANG_CHILD;
4463 }
4464
4465 ASSERT(IO_IS_ALLOCATING(pio));
4466 ASSERT3P(zio, !=, zio->io_logical);
4467 ASSERT(zio->io_logical != NULL);
4468 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4469 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4470 ASSERT(zio->io_metaslab_class != NULL);
4471
4472 mutex_enter(&pio->io_lock);
4473 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4474 pio->io_allocator, B_TRUE);
4475 mutex_exit(&pio->io_lock);
4476
4477 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4478 pio->io_allocator, pio);
4479
4480 /*
4481 * Call into the pipeline to see if there is more work that
4482 * needs to be done. If there is work to be done it will be
4483 * dispatched to another taskq thread.
4484 */
4485 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4486 }
4487
4488 static zio_t *
4489 zio_done(zio_t *zio)
4490 {
4491 /*
4492 * Always attempt to keep stack usage minimal here since
4493 * we can be called recursively up to 19 levels deep.
4494 */
4495 const uint64_t psize = zio->io_size;
4496 zio_t *pio, *pio_next;
4497 zio_link_t *zl = NULL;
4498
4499 /*
4500 * If our children haven't all completed,
4501 * wait for them and then repeat this pipeline stage.
4502 */
4503 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4504 return (NULL);
4505 }
4506
4507 /*
4508 * If the allocation throttle is enabled, then update the accounting.
4509 * We only track child I/Os that are part of an allocating async
4510 * write. We must do this since the allocation is performed
4511 * by the logical I/O but the actual write is done by child I/Os.
4512 */
4513 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4514 zio->io_child_type == ZIO_CHILD_VDEV) {
4515 ASSERT(zio->io_metaslab_class != NULL);
4516 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4517 zio_dva_throttle_done(zio);
4518 }
4519
4520 /*
4521 * If the allocation throttle is enabled, verify that
4522 * we have decremented the refcounts for every I/O that was throttled.
4523 */
4524 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4525 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4526 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4527 ASSERT(zio->io_bp != NULL);
4528
4529 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4530 zio->io_allocator);
4531 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4532 mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4533 }
4534
4535
4536 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4537 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4538 ASSERT(zio->io_children[c][w] == 0);
4539
4540 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4541 ASSERT(zio->io_bp->blk_pad[0] == 0);
4542 ASSERT(zio->io_bp->blk_pad[1] == 0);
4543 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4544 sizeof (blkptr_t)) == 0 ||
4545 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4546 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4547 zio->io_bp_override == NULL &&
4548 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4549 ASSERT3U(zio->io_prop.zp_copies, <=,
4550 BP_GET_NDVAS(zio->io_bp));
4551 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4552 (BP_COUNT_GANG(zio->io_bp) ==
4553 BP_GET_NDVAS(zio->io_bp)));
4554 }
4555 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4556 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4557 }
4558
4559 /*
4560 * If there were child vdev/gang/ddt errors, they apply to us now.
4561 */
4562 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4563 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4564 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4565
4566 /*
4567 * If the I/O on the transformed data was successful, generate any
4568 * checksum reports now while we still have the transformed data.
4569 */
4570 if (zio->io_error == 0) {
4571 while (zio->io_cksum_report != NULL) {
4572 zio_cksum_report_t *zcr = zio->io_cksum_report;
4573 uint64_t align = zcr->zcr_align;
4574 uint64_t asize = P2ROUNDUP(psize, align);
4575 abd_t *adata = zio->io_abd;
4576
4577 if (adata != NULL && asize != psize) {
4578 adata = abd_alloc(asize, B_TRUE);
4579 abd_copy(adata, zio->io_abd, psize);
4580 abd_zero_off(adata, psize, asize - psize);
4581 }
4582
4583 zio->io_cksum_report = zcr->zcr_next;
4584 zcr->zcr_next = NULL;
4585 zcr->zcr_finish(zcr, adata);
4586 zfs_ereport_free_checksum(zcr);
4587
4588 if (adata != NULL && asize != psize)
4589 abd_free(adata);
4590 }
4591 }
4592
4593 zio_pop_transforms(zio); /* note: may set zio->io_error */
4594
4595 vdev_stat_update(zio, psize);
4596
4597 /*
4598 * If this I/O is attached to a particular vdev is slow, exceeding
4599 * 30 seconds to complete, post an error described the I/O delay.
4600 * We ignore these errors if the device is currently unavailable.
4601 */
4602 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4603 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4604 /*
4605 * We want to only increment our slow IO counters if
4606 * the IO is valid (i.e. not if the drive is removed).
4607 *
4608 * zfs_ereport_post() will also do these checks, but
4609 * it can also ratelimit and have other failures, so we
4610 * need to increment the slow_io counters independent
4611 * of it.
4612 */
4613 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4614 zio->io_spa, zio->io_vd, zio)) {
4615 mutex_enter(&zio->io_vd->vdev_stat_lock);
4616 zio->io_vd->vdev_stat.vs_slow_ios++;
4617 mutex_exit(&zio->io_vd->vdev_stat_lock);
4618
4619 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4620 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4621 zio, 0);
4622 }
4623 }
4624 }
4625
4626 if (zio->io_error) {
4627 /*
4628 * If this I/O is attached to a particular vdev,
4629 * generate an error message describing the I/O failure
4630 * at the block level. We ignore these errors if the
4631 * device is currently unavailable.
4632 */
4633 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4634 !vdev_is_dead(zio->io_vd)) {
4635 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4636 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4637 if (ret != EALREADY) {
4638 mutex_enter(&zio->io_vd->vdev_stat_lock);
4639 if (zio->io_type == ZIO_TYPE_READ)
4640 zio->io_vd->vdev_stat.vs_read_errors++;
4641 else if (zio->io_type == ZIO_TYPE_WRITE)
4642 zio->io_vd->vdev_stat.vs_write_errors++;
4643 mutex_exit(&zio->io_vd->vdev_stat_lock);
4644 }
4645 }
4646
4647 if ((zio->io_error == EIO || !(zio->io_flags &
4648 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4649 zio == zio->io_logical) {
4650 /*
4651 * For logical I/O requests, tell the SPA to log the
4652 * error and generate a logical data ereport.
4653 */
4654 spa_log_error(zio->io_spa, &zio->io_bookmark);
4655 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4656 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4657 }
4658 }
4659
4660 if (zio->io_error && zio == zio->io_logical) {
4661 /*
4662 * Determine whether zio should be reexecuted. This will
4663 * propagate all the way to the root via zio_notify_parent().
4664 */
4665 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4666 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4667
4668 if (IO_IS_ALLOCATING(zio) &&
4669 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4670 if (zio->io_error != ENOSPC)
4671 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4672 else
4673 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4674 }
4675
4676 if ((zio->io_type == ZIO_TYPE_READ ||
4677 zio->io_type == ZIO_TYPE_FREE) &&
4678 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4679 zio->io_error == ENXIO &&
4680 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4681 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4682 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4683
4684 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4685 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4686
4687 /*
4688 * Here is a possibly good place to attempt to do
4689 * either combinatorial reconstruction or error correction
4690 * based on checksums. It also might be a good place
4691 * to send out preliminary ereports before we suspend
4692 * processing.
4693 */
4694 }
4695
4696 /*
4697 * If there were logical child errors, they apply to us now.
4698 * We defer this until now to avoid conflating logical child
4699 * errors with errors that happened to the zio itself when
4700 * updating vdev stats and reporting FMA events above.
4701 */
4702 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4703
4704 if ((zio->io_error || zio->io_reexecute) &&
4705 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4706 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4707 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4708
4709 zio_gang_tree_free(&zio->io_gang_tree);
4710
4711 /*
4712 * Godfather I/Os should never suspend.
4713 */
4714 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4715 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4716 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4717
4718 if (zio->io_reexecute) {
4719 /*
4720 * This is a logical I/O that wants to reexecute.
4721 *
4722 * Reexecute is top-down. When an i/o fails, if it's not
4723 * the root, it simply notifies its parent and sticks around.
4724 * The parent, seeing that it still has children in zio_done(),
4725 * does the same. This percolates all the way up to the root.
4726 * The root i/o will reexecute or suspend the entire tree.
4727 *
4728 * This approach ensures that zio_reexecute() honors
4729 * all the original i/o dependency relationships, e.g.
4730 * parents not executing until children are ready.
4731 */
4732 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4733
4734 zio->io_gang_leader = NULL;
4735
4736 mutex_enter(&zio->io_lock);
4737 zio->io_state[ZIO_WAIT_DONE] = 1;
4738 mutex_exit(&zio->io_lock);
4739
4740 /*
4741 * "The Godfather" I/O monitors its children but is
4742 * not a true parent to them. It will track them through
4743 * the pipeline but severs its ties whenever they get into
4744 * trouble (e.g. suspended). This allows "The Godfather"
4745 * I/O to return status without blocking.
4746 */
4747 zl = NULL;
4748 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4749 pio = pio_next) {
4750 zio_link_t *remove_zl = zl;
4751 pio_next = zio_walk_parents(zio, &zl);
4752
4753 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4754 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4755 zio_remove_child(pio, zio, remove_zl);
4756 /*
4757 * This is a rare code path, so we don't
4758 * bother with "next_to_execute".
4759 */
4760 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4761 NULL);
4762 }
4763 }
4764
4765 if ((pio = zio_unique_parent(zio)) != NULL) {
4766 /*
4767 * We're not a root i/o, so there's nothing to do
4768 * but notify our parent. Don't propagate errors
4769 * upward since we haven't permanently failed yet.
4770 */
4771 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4772 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4773 /*
4774 * This is a rare code path, so we don't bother with
4775 * "next_to_execute".
4776 */
4777 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4778 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4779 /*
4780 * We'd fail again if we reexecuted now, so suspend
4781 * until conditions improve (e.g. device comes online).
4782 */
4783 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4784 } else {
4785 /*
4786 * Reexecution is potentially a huge amount of work.
4787 * Hand it off to the otherwise-unused claim taskq.
4788 */
4789 ASSERT(taskq_empty_ent(&zio->io_tqent));
4790 spa_taskq_dispatch_ent(zio->io_spa,
4791 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4792 zio_reexecute, zio, 0, &zio->io_tqent);
4793 }
4794 return (NULL);
4795 }
4796
4797 ASSERT(zio->io_child_count == 0);
4798 ASSERT(zio->io_reexecute == 0);
4799 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4800
4801 /*
4802 * Report any checksum errors, since the I/O is complete.
4803 */
4804 while (zio->io_cksum_report != NULL) {
4805 zio_cksum_report_t *zcr = zio->io_cksum_report;
4806 zio->io_cksum_report = zcr->zcr_next;
4807 zcr->zcr_next = NULL;
4808 zcr->zcr_finish(zcr, NULL);
4809 zfs_ereport_free_checksum(zcr);
4810 }
4811
4812 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4813 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4814 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4815 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4816 }
4817
4818 /*
4819 * It is the responsibility of the done callback to ensure that this
4820 * particular zio is no longer discoverable for adoption, and as
4821 * such, cannot acquire any new parents.
4822 */
4823 if (zio->io_done)
4824 zio->io_done(zio);
4825
4826 mutex_enter(&zio->io_lock);
4827 zio->io_state[ZIO_WAIT_DONE] = 1;
4828 mutex_exit(&zio->io_lock);
4829
4830 /*
4831 * We are done executing this zio. We may want to execute a parent
4832 * next. See the comment in zio_notify_parent().
4833 */
4834 zio_t *next_to_execute = NULL;
4835 zl = NULL;
4836 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4837 zio_link_t *remove_zl = zl;
4838 pio_next = zio_walk_parents(zio, &zl);
4839 zio_remove_child(pio, zio, remove_zl);
4840 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4841 }
4842
4843 if (zio->io_waiter != NULL) {
4844 mutex_enter(&zio->io_lock);
4845 zio->io_executor = NULL;
4846 cv_broadcast(&zio->io_cv);
4847 mutex_exit(&zio->io_lock);
4848 } else {
4849 zio_destroy(zio);
4850 }
4851
4852 return (next_to_execute);
4853 }
4854
4855 /*
4856 * ==========================================================================
4857 * I/O pipeline definition
4858 * ==========================================================================
4859 */
4860 static zio_pipe_stage_t *zio_pipeline[] = {
4861 NULL,
4862 zio_read_bp_init,
4863 zio_write_bp_init,
4864 zio_free_bp_init,
4865 zio_issue_async,
4866 zio_write_compress,
4867 zio_encrypt,
4868 zio_checksum_generate,
4869 zio_nop_write,
4870 zio_ddt_read_start,
4871 zio_ddt_read_done,
4872 zio_ddt_write,
4873 zio_ddt_free,
4874 zio_gang_assemble,
4875 zio_gang_issue,
4876 zio_dva_throttle,
4877 zio_dva_allocate,
4878 zio_dva_free,
4879 zio_dva_claim,
4880 zio_ready,
4881 zio_vdev_io_start,
4882 zio_vdev_io_done,
4883 zio_vdev_io_assess,
4884 zio_checksum_verify,
4885 zio_done
4886 };
4887
4888
4889
4890
4891 /*
4892 * Compare two zbookmark_phys_t's to see which we would reach first in a
4893 * pre-order traversal of the object tree.
4894 *
4895 * This is simple in every case aside from the meta-dnode object. For all other
4896 * objects, we traverse them in order (object 1 before object 2, and so on).
4897 * However, all of these objects are traversed while traversing object 0, since
4898 * the data it points to is the list of objects. Thus, we need to convert to a
4899 * canonical representation so we can compare meta-dnode bookmarks to
4900 * non-meta-dnode bookmarks.
4901 *
4902 * We do this by calculating "equivalents" for each field of the zbookmark.
4903 * zbookmarks outside of the meta-dnode use their own object and level, and
4904 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4905 * blocks this bookmark refers to) by multiplying their blkid by their span
4906 * (the number of L0 blocks contained within one block at their level).
4907 * zbookmarks inside the meta-dnode calculate their object equivalent
4908 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4909 * level + 1<<31 (any value larger than a level could ever be) for their level.
4910 * This causes them to always compare before a bookmark in their object
4911 * equivalent, compare appropriately to bookmarks in other objects, and to
4912 * compare appropriately to other bookmarks in the meta-dnode.
4913 */
4914 int
4915 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4916 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4917 {
4918 /*
4919 * These variables represent the "equivalent" values for the zbookmark,
4920 * after converting zbookmarks inside the meta dnode to their
4921 * normal-object equivalents.
4922 */
4923 uint64_t zb1obj, zb2obj;
4924 uint64_t zb1L0, zb2L0;
4925 uint64_t zb1level, zb2level;
4926
4927 if (zb1->zb_object == zb2->zb_object &&
4928 zb1->zb_level == zb2->zb_level &&
4929 zb1->zb_blkid == zb2->zb_blkid)
4930 return (0);
4931
4932 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4933 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4934
4935 /*
4936 * BP_SPANB calculates the span in blocks.
4937 */
4938 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4939 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4940
4941 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4942 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4943 zb1L0 = 0;
4944 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4945 } else {
4946 zb1obj = zb1->zb_object;
4947 zb1level = zb1->zb_level;
4948 }
4949
4950 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4951 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4952 zb2L0 = 0;
4953 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4954 } else {
4955 zb2obj = zb2->zb_object;
4956 zb2level = zb2->zb_level;
4957 }
4958
4959 /* Now that we have a canonical representation, do the comparison. */
4960 if (zb1obj != zb2obj)
4961 return (zb1obj < zb2obj ? -1 : 1);
4962 else if (zb1L0 != zb2L0)
4963 return (zb1L0 < zb2L0 ? -1 : 1);
4964 else if (zb1level != zb2level)
4965 return (zb1level > zb2level ? -1 : 1);
4966 /*
4967 * This can (theoretically) happen if the bookmarks have the same object
4968 * and level, but different blkids, if the block sizes are not the same.
4969 * There is presently no way to change the indirect block sizes
4970 */
4971 return (0);
4972 }
4973
4974 /*
4975 * This function checks the following: given that last_block is the place that
4976 * our traversal stopped last time, does that guarantee that we've visited
4977 * every node under subtree_root? Therefore, we can't just use the raw output
4978 * of zbookmark_compare. We have to pass in a modified version of
4979 * subtree_root; by incrementing the block id, and then checking whether
4980 * last_block is before or equal to that, we can tell whether or not having
4981 * visited last_block implies that all of subtree_root's children have been
4982 * visited.
4983 */
4984 boolean_t
4985 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4986 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4987 {
4988 zbookmark_phys_t mod_zb = *subtree_root;
4989 mod_zb.zb_blkid++;
4990 ASSERT(last_block->zb_level == 0);
4991
4992 /* The objset_phys_t isn't before anything. */
4993 if (dnp == NULL)
4994 return (B_FALSE);
4995
4996 /*
4997 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4998 * data block size in sectors, because that variable is only used if
4999 * the bookmark refers to a block in the meta-dnode. Since we don't
5000 * know without examining it what object it refers to, and there's no
5001 * harm in passing in this value in other cases, we always pass it in.
5002 *
5003 * We pass in 0 for the indirect block size shift because zb2 must be
5004 * level 0. The indirect block size is only used to calculate the span
5005 * of the bookmark, but since the bookmark must be level 0, the span is
5006 * always 1, so the math works out.
5007 *
5008 * If you make changes to how the zbookmark_compare code works, be sure
5009 * to make sure that this code still works afterwards.
5010 */
5011 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5012 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5013 last_block) <= 0);
5014 }
5015
5016 EXPORT_SYMBOL(zio_type_name);
5017 EXPORT_SYMBOL(zio_buf_alloc);
5018 EXPORT_SYMBOL(zio_data_buf_alloc);
5019 EXPORT_SYMBOL(zio_buf_free);
5020 EXPORT_SYMBOL(zio_data_buf_free);
5021
5022 /* BEGIN CSTYLED */
5023 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5024 "Max I/O completion time (milliseconds) before marking it as slow");
5025
5026 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5027 "Prioritize requeued I/O");
5028
5029 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW,
5030 "Defer frees starting in this pass");
5031
5032 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
5033 "Don't compress starting in this pass");
5034
5035 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
5036 "Rewrite new bps starting in this pass");
5037
5038 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5039 "Throttle block allocations in the ZIO pipeline");
5040
5041 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5042 "Log all slow ZIOs, not just those with vdevs");
5043 /* END CSTYLED */