]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Illumos #3498 panic in arc_read()
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39
40 /*
41 * ==========================================================================
42 * I/O priority table
43 * ==========================================================================
44 */
45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
46 0, /* ZIO_PRIORITY_NOW */
47 0, /* ZIO_PRIORITY_SYNC_READ */
48 0, /* ZIO_PRIORITY_SYNC_WRITE */
49 0, /* ZIO_PRIORITY_LOG_WRITE */
50 1, /* ZIO_PRIORITY_CACHE_FILL */
51 1, /* ZIO_PRIORITY_AGG */
52 4, /* ZIO_PRIORITY_FREE */
53 4, /* ZIO_PRIORITY_ASYNC_WRITE */
54 6, /* ZIO_PRIORITY_ASYNC_READ */
55 10, /* ZIO_PRIORITY_RESILVER */
56 20, /* ZIO_PRIORITY_SCRUB */
57 2, /* ZIO_PRIORITY_DDT_PREFETCH */
58 };
59
60 /*
61 * ==========================================================================
62 * I/O type descriptions
63 * ==========================================================================
64 */
65 char *zio_type_name[ZIO_TYPES] = {
66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
67 };
68
69 /*
70 * ==========================================================================
71 * I/O kmem caches
72 * ==========================================================================
73 */
74 kmem_cache_t *zio_cache;
75 kmem_cache_t *zio_link_cache;
76 kmem_cache_t *zio_vdev_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 int zio_bulk_flags = 0;
80 int zio_delay_max = ZIO_DELAY_MAX;
81
82 #ifdef _KERNEL
83 extern vmem_t *zio_alloc_arena;
84 #endif
85 extern int zfs_mg_alloc_failures;
86
87 /*
88 * The following actions directly effect the spa's sync-to-convergence logic.
89 * The values below define the sync pass when we start performing the action.
90 * Care should be taken when changing these values as they directly impact
91 * spa_sync() performance. Tuning these values may introduce subtle performance
92 * pathologies and should only be done in the context of performance analysis.
93 * These tunables will eventually be removed and replaced with #defines once
94 * enough analysis has been done to determine optimal values.
95 *
96 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
97 * regular blocks are not deferred.
98 */
99 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
100 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
101 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
102
103 /*
104 * An allocating zio is one that either currently has the DVA allocate
105 * stage set or will have it later in its lifetime.
106 */
107 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
108
109 int zio_requeue_io_start_cut_in_line = 1;
110
111 #ifdef ZFS_DEBUG
112 int zio_buf_debug_limit = 16384;
113 #else
114 int zio_buf_debug_limit = 0;
115 #endif
116
117 static inline void __zio_execute(zio_t *zio);
118
119 static int
120 zio_cons(void *arg, void *unused, int kmflag)
121 {
122 zio_t *zio = arg;
123
124 bzero(zio, sizeof (zio_t));
125
126 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
127 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
128
129 list_create(&zio->io_parent_list, sizeof (zio_link_t),
130 offsetof(zio_link_t, zl_parent_node));
131 list_create(&zio->io_child_list, sizeof (zio_link_t),
132 offsetof(zio_link_t, zl_child_node));
133
134 return (0);
135 }
136
137 static void
138 zio_dest(void *arg, void *unused)
139 {
140 zio_t *zio = arg;
141
142 mutex_destroy(&zio->io_lock);
143 cv_destroy(&zio->io_cv);
144 list_destroy(&zio->io_parent_list);
145 list_destroy(&zio->io_child_list);
146 }
147
148 void
149 zio_init(void)
150 {
151 size_t c;
152 vmem_t *data_alloc_arena = NULL;
153
154 #ifdef _KERNEL
155 data_alloc_arena = zio_alloc_arena;
156 #endif
157 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0,
158 zio_cons, zio_dest, NULL, NULL, NULL, KMC_KMEM);
159 zio_link_cache = kmem_cache_create("zio_link_cache",
160 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, KMC_KMEM);
161 zio_vdev_cache = kmem_cache_create("zio_vdev_cache", sizeof(vdev_io_t),
162 PAGESIZE, NULL, NULL, NULL, NULL, NULL, KMC_VMEM);
163
164 /*
165 * For small buffers, we want a cache for each multiple of
166 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache
167 * for each quarter-power of 2. For large buffers, we want
168 * a cache for each multiple of PAGESIZE.
169 */
170 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
171 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
172 size_t p2 = size;
173 size_t align = 0;
174
175 while (p2 & (p2 - 1))
176 p2 &= p2 - 1;
177
178 if (size <= 4 * SPA_MINBLOCKSIZE) {
179 align = SPA_MINBLOCKSIZE;
180 } else if (P2PHASE(size, PAGESIZE) == 0) {
181 align = PAGESIZE;
182 } else if (P2PHASE(size, p2 >> 2) == 0) {
183 align = p2 >> 2;
184 }
185
186 if (align != 0) {
187 char name[36];
188 int flags = zio_bulk_flags;
189
190 /*
191 * The smallest buffers (512b) are heavily used and
192 * experience a lot of churn. The slabs allocated
193 * for them are also relatively small (32K). Thus
194 * in over to avoid expensive calls to vmalloc() we
195 * make an exception to the usual slab allocation
196 * policy and force these buffers to be kmem backed.
197 */
198 if (size == (1 << SPA_MINBLOCKSHIFT))
199 flags |= KMC_KMEM;
200
201 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
202 zio_buf_cache[c] = kmem_cache_create(name, size,
203 align, NULL, NULL, NULL, NULL, NULL, flags);
204
205 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
206 zio_data_buf_cache[c] = kmem_cache_create(name, size,
207 align, NULL, NULL, NULL, NULL,
208 data_alloc_arena, flags);
209 }
210 }
211
212 while (--c != 0) {
213 ASSERT(zio_buf_cache[c] != NULL);
214 if (zio_buf_cache[c - 1] == NULL)
215 zio_buf_cache[c - 1] = zio_buf_cache[c];
216
217 ASSERT(zio_data_buf_cache[c] != NULL);
218 if (zio_data_buf_cache[c - 1] == NULL)
219 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
220 }
221
222 /*
223 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
224 * to fail 3 times per txg or 8 failures, whichever is greater.
225 */
226 zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
227
228 zio_inject_init();
229
230 lz4_init();
231 }
232
233 void
234 zio_fini(void)
235 {
236 size_t c;
237 kmem_cache_t *last_cache = NULL;
238 kmem_cache_t *last_data_cache = NULL;
239
240 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
241 if (zio_buf_cache[c] != last_cache) {
242 last_cache = zio_buf_cache[c];
243 kmem_cache_destroy(zio_buf_cache[c]);
244 }
245 zio_buf_cache[c] = NULL;
246
247 if (zio_data_buf_cache[c] != last_data_cache) {
248 last_data_cache = zio_data_buf_cache[c];
249 kmem_cache_destroy(zio_data_buf_cache[c]);
250 }
251 zio_data_buf_cache[c] = NULL;
252 }
253
254 kmem_cache_destroy(zio_vdev_cache);
255 kmem_cache_destroy(zio_link_cache);
256 kmem_cache_destroy(zio_cache);
257
258 zio_inject_fini();
259
260 lz4_fini();
261 }
262
263 /*
264 * ==========================================================================
265 * Allocate and free I/O buffers
266 * ==========================================================================
267 */
268
269 /*
270 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
271 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
272 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
273 * excess / transient data in-core during a crashdump.
274 */
275 void *
276 zio_buf_alloc(size_t size)
277 {
278 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
279
280 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
281
282 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE | KM_NODEBUG));
283 }
284
285 /*
286 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
287 * crashdump if the kernel panics. This exists so that we will limit the amount
288 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
289 * of kernel heap dumped to disk when the kernel panics)
290 */
291 void *
292 zio_data_buf_alloc(size_t size)
293 {
294 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
295
296 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
297
298 return (kmem_cache_alloc(zio_data_buf_cache[c],
299 KM_PUSHPAGE | KM_NODEBUG));
300 }
301
302 void
303 zio_buf_free(void *buf, size_t size)
304 {
305 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
306
307 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
308
309 kmem_cache_free(zio_buf_cache[c], buf);
310 }
311
312 void
313 zio_data_buf_free(void *buf, size_t size)
314 {
315 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
316
317 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
318
319 kmem_cache_free(zio_data_buf_cache[c], buf);
320 }
321
322 /*
323 * Dedicated I/O buffers to ensure that memory fragmentation never prevents
324 * or significantly delays the issuing of a zio. These buffers are used
325 * to aggregate I/O and could be used for raidz stripes.
326 */
327 void *
328 zio_vdev_alloc(void)
329 {
330 return (kmem_cache_alloc(zio_vdev_cache, KM_PUSHPAGE));
331 }
332
333 void
334 zio_vdev_free(void *buf)
335 {
336 kmem_cache_free(zio_vdev_cache, buf);
337
338 }
339
340 /*
341 * ==========================================================================
342 * Push and pop I/O transform buffers
343 * ==========================================================================
344 */
345 static void
346 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
347 zio_transform_func_t *transform)
348 {
349 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_PUSHPAGE);
350
351 zt->zt_orig_data = zio->io_data;
352 zt->zt_orig_size = zio->io_size;
353 zt->zt_bufsize = bufsize;
354 zt->zt_transform = transform;
355
356 zt->zt_next = zio->io_transform_stack;
357 zio->io_transform_stack = zt;
358
359 zio->io_data = data;
360 zio->io_size = size;
361 }
362
363 static void
364 zio_pop_transforms(zio_t *zio)
365 {
366 zio_transform_t *zt;
367
368 while ((zt = zio->io_transform_stack) != NULL) {
369 if (zt->zt_transform != NULL)
370 zt->zt_transform(zio,
371 zt->zt_orig_data, zt->zt_orig_size);
372
373 if (zt->zt_bufsize != 0)
374 zio_buf_free(zio->io_data, zt->zt_bufsize);
375
376 zio->io_data = zt->zt_orig_data;
377 zio->io_size = zt->zt_orig_size;
378 zio->io_transform_stack = zt->zt_next;
379
380 kmem_free(zt, sizeof (zio_transform_t));
381 }
382 }
383
384 /*
385 * ==========================================================================
386 * I/O transform callbacks for subblocks and decompression
387 * ==========================================================================
388 */
389 static void
390 zio_subblock(zio_t *zio, void *data, uint64_t size)
391 {
392 ASSERT(zio->io_size > size);
393
394 if (zio->io_type == ZIO_TYPE_READ)
395 bcopy(zio->io_data, data, size);
396 }
397
398 static void
399 zio_decompress(zio_t *zio, void *data, uint64_t size)
400 {
401 if (zio->io_error == 0 &&
402 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
403 zio->io_data, data, zio->io_size, size) != 0)
404 zio->io_error = EIO;
405 }
406
407 /*
408 * ==========================================================================
409 * I/O parent/child relationships and pipeline interlocks
410 * ==========================================================================
411 */
412 /*
413 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
414 * continue calling these functions until they return NULL.
415 * Otherwise, the next caller will pick up the list walk in
416 * some indeterminate state. (Otherwise every caller would
417 * have to pass in a cookie to keep the state represented by
418 * io_walk_link, which gets annoying.)
419 */
420 zio_t *
421 zio_walk_parents(zio_t *cio)
422 {
423 zio_link_t *zl = cio->io_walk_link;
424 list_t *pl = &cio->io_parent_list;
425
426 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
427 cio->io_walk_link = zl;
428
429 if (zl == NULL)
430 return (NULL);
431
432 ASSERT(zl->zl_child == cio);
433 return (zl->zl_parent);
434 }
435
436 zio_t *
437 zio_walk_children(zio_t *pio)
438 {
439 zio_link_t *zl = pio->io_walk_link;
440 list_t *cl = &pio->io_child_list;
441
442 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
443 pio->io_walk_link = zl;
444
445 if (zl == NULL)
446 return (NULL);
447
448 ASSERT(zl->zl_parent == pio);
449 return (zl->zl_child);
450 }
451
452 zio_t *
453 zio_unique_parent(zio_t *cio)
454 {
455 zio_t *pio = zio_walk_parents(cio);
456
457 VERIFY(zio_walk_parents(cio) == NULL);
458 return (pio);
459 }
460
461 void
462 zio_add_child(zio_t *pio, zio_t *cio)
463 {
464 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_PUSHPAGE);
465 int w;
466
467 /*
468 * Logical I/Os can have logical, gang, or vdev children.
469 * Gang I/Os can have gang or vdev children.
470 * Vdev I/Os can only have vdev children.
471 * The following ASSERT captures all of these constraints.
472 */
473 ASSERT(cio->io_child_type <= pio->io_child_type);
474
475 zl->zl_parent = pio;
476 zl->zl_child = cio;
477
478 mutex_enter(&cio->io_lock);
479 mutex_enter(&pio->io_lock);
480
481 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
482
483 for (w = 0; w < ZIO_WAIT_TYPES; w++)
484 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
485
486 list_insert_head(&pio->io_child_list, zl);
487 list_insert_head(&cio->io_parent_list, zl);
488
489 pio->io_child_count++;
490 cio->io_parent_count++;
491
492 mutex_exit(&pio->io_lock);
493 mutex_exit(&cio->io_lock);
494 }
495
496 static void
497 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
498 {
499 ASSERT(zl->zl_parent == pio);
500 ASSERT(zl->zl_child == cio);
501
502 mutex_enter(&cio->io_lock);
503 mutex_enter(&pio->io_lock);
504
505 list_remove(&pio->io_child_list, zl);
506 list_remove(&cio->io_parent_list, zl);
507
508 pio->io_child_count--;
509 cio->io_parent_count--;
510
511 mutex_exit(&pio->io_lock);
512 mutex_exit(&cio->io_lock);
513
514 kmem_cache_free(zio_link_cache, zl);
515 }
516
517 static boolean_t
518 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
519 {
520 uint64_t *countp = &zio->io_children[child][wait];
521 boolean_t waiting = B_FALSE;
522
523 mutex_enter(&zio->io_lock);
524 ASSERT(zio->io_stall == NULL);
525 if (*countp != 0) {
526 zio->io_stage >>= 1;
527 zio->io_stall = countp;
528 waiting = B_TRUE;
529 }
530 mutex_exit(&zio->io_lock);
531
532 return (waiting);
533 }
534
535 __attribute__((always_inline))
536 static inline void
537 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
538 {
539 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
540 int *errorp = &pio->io_child_error[zio->io_child_type];
541
542 mutex_enter(&pio->io_lock);
543 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
544 *errorp = zio_worst_error(*errorp, zio->io_error);
545 pio->io_reexecute |= zio->io_reexecute;
546 ASSERT3U(*countp, >, 0);
547 if (--*countp == 0 && pio->io_stall == countp) {
548 pio->io_stall = NULL;
549 mutex_exit(&pio->io_lock);
550 __zio_execute(pio);
551 } else {
552 mutex_exit(&pio->io_lock);
553 }
554 }
555
556 static void
557 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
558 {
559 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
560 zio->io_error = zio->io_child_error[c];
561 }
562
563 /*
564 * ==========================================================================
565 * Create the various types of I/O (read, write, free, etc)
566 * ==========================================================================
567 */
568 static zio_t *
569 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
570 void *data, uint64_t size, zio_done_func_t *done, void *private,
571 zio_type_t type, int priority, enum zio_flag flags,
572 vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
573 enum zio_stage stage, enum zio_stage pipeline)
574 {
575 zio_t *zio;
576
577 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
578 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
579 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
580
581 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
582 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
583 ASSERT(vd || stage == ZIO_STAGE_OPEN);
584
585 zio = kmem_cache_alloc(zio_cache, KM_PUSHPAGE);
586
587 if (vd != NULL)
588 zio->io_child_type = ZIO_CHILD_VDEV;
589 else if (flags & ZIO_FLAG_GANG_CHILD)
590 zio->io_child_type = ZIO_CHILD_GANG;
591 else if (flags & ZIO_FLAG_DDT_CHILD)
592 zio->io_child_type = ZIO_CHILD_DDT;
593 else
594 zio->io_child_type = ZIO_CHILD_LOGICAL;
595
596 if (bp != NULL) {
597 zio->io_logical = NULL;
598 zio->io_bp = (blkptr_t *)bp;
599 zio->io_bp_copy = *bp;
600 zio->io_bp_orig = *bp;
601 if (type != ZIO_TYPE_WRITE ||
602 zio->io_child_type == ZIO_CHILD_DDT)
603 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
604 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
605 zio->io_logical = zio;
606 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
607 pipeline |= ZIO_GANG_STAGES;
608 } else {
609 zio->io_logical = NULL;
610 zio->io_bp = NULL;
611 bzero(&zio->io_bp_copy, sizeof (blkptr_t));
612 bzero(&zio->io_bp_orig, sizeof (blkptr_t));
613 }
614
615 zio->io_spa = spa;
616 zio->io_txg = txg;
617 zio->io_ready = NULL;
618 zio->io_done = done;
619 zio->io_private = private;
620 zio->io_prev_space_delta = 0;
621 zio->io_type = type;
622 zio->io_priority = priority;
623 zio->io_vd = vd;
624 zio->io_vsd = NULL;
625 zio->io_vsd_ops = NULL;
626 zio->io_offset = offset;
627 zio->io_deadline = 0;
628 zio->io_timestamp = 0;
629 zio->io_delta = 0;
630 zio->io_delay = 0;
631 zio->io_orig_data = zio->io_data = data;
632 zio->io_orig_size = zio->io_size = size;
633 zio->io_orig_flags = zio->io_flags = flags;
634 zio->io_orig_stage = zio->io_stage = stage;
635 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
636 bzero(&zio->io_prop, sizeof (zio_prop_t));
637 zio->io_cmd = 0;
638 zio->io_reexecute = 0;
639 zio->io_bp_override = NULL;
640 zio->io_walk_link = NULL;
641 zio->io_transform_stack = NULL;
642 zio->io_error = 0;
643 zio->io_child_count = 0;
644 zio->io_parent_count = 0;
645 zio->io_stall = NULL;
646 zio->io_gang_leader = NULL;
647 zio->io_gang_tree = NULL;
648 zio->io_executor = NULL;
649 zio->io_waiter = NULL;
650 zio->io_cksum_report = NULL;
651 zio->io_ena = 0;
652 bzero(zio->io_child_error, sizeof (int) * ZIO_CHILD_TYPES);
653 bzero(zio->io_children,
654 sizeof (uint64_t) * ZIO_CHILD_TYPES * ZIO_WAIT_TYPES);
655 bzero(&zio->io_bookmark, sizeof (zbookmark_t));
656
657 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
658 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
659
660 if (zb != NULL)
661 zio->io_bookmark = *zb;
662
663 if (pio != NULL) {
664 if (zio->io_logical == NULL)
665 zio->io_logical = pio->io_logical;
666 if (zio->io_child_type == ZIO_CHILD_GANG)
667 zio->io_gang_leader = pio->io_gang_leader;
668 zio_add_child(pio, zio);
669 }
670
671 taskq_init_ent(&zio->io_tqent);
672
673 return (zio);
674 }
675
676 static void
677 zio_destroy(zio_t *zio)
678 {
679 kmem_cache_free(zio_cache, zio);
680 }
681
682 zio_t *
683 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
684 void *private, enum zio_flag flags)
685 {
686 zio_t *zio;
687
688 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
689 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
690 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
691
692 return (zio);
693 }
694
695 zio_t *
696 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
697 {
698 return (zio_null(NULL, spa, NULL, done, private, flags));
699 }
700
701 zio_t *
702 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
703 void *data, uint64_t size, zio_done_func_t *done, void *private,
704 int priority, enum zio_flag flags, const zbookmark_t *zb)
705 {
706 zio_t *zio;
707
708 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
709 data, size, done, private,
710 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
711 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
712 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
713
714 return (zio);
715 }
716
717 zio_t *
718 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
719 void *data, uint64_t size, const zio_prop_t *zp,
720 zio_done_func_t *ready, zio_done_func_t *done, void *private,
721 int priority, enum zio_flag flags, const zbookmark_t *zb)
722 {
723 zio_t *zio;
724
725 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
726 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
727 zp->zp_compress >= ZIO_COMPRESS_OFF &&
728 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
729 DMU_OT_IS_VALID(zp->zp_type) &&
730 zp->zp_level < 32 &&
731 zp->zp_copies > 0 &&
732 zp->zp_copies <= spa_max_replication(spa) &&
733 zp->zp_dedup <= 1 &&
734 zp->zp_dedup_verify <= 1);
735
736 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
737 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
738 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
739 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
740
741 zio->io_ready = ready;
742 zio->io_prop = *zp;
743
744 return (zio);
745 }
746
747 zio_t *
748 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
749 uint64_t size, zio_done_func_t *done, void *private, int priority,
750 enum zio_flag flags, zbookmark_t *zb)
751 {
752 zio_t *zio;
753
754 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
755 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
756 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
757
758 return (zio);
759 }
760
761 void
762 zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
763 {
764 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
765 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
766 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
767 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
768
769 zio->io_prop.zp_copies = copies;
770 zio->io_bp_override = bp;
771 }
772
773 void
774 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
775 {
776 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
777 }
778
779 zio_t *
780 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
781 enum zio_flag flags)
782 {
783 zio_t *zio;
784
785 dprintf_bp(bp, "freeing in txg %llu, pass %u",
786 (longlong_t)txg, spa->spa_sync_pass);
787
788 ASSERT(!BP_IS_HOLE(bp));
789 ASSERT(spa_syncing_txg(spa) == txg);
790 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
791
792 arc_freed(spa, bp);
793
794 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
795 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
796 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
797
798 return (zio);
799 }
800
801 zio_t *
802 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
803 zio_done_func_t *done, void *private, enum zio_flag flags)
804 {
805 zio_t *zio;
806
807 /*
808 * A claim is an allocation of a specific block. Claims are needed
809 * to support immediate writes in the intent log. The issue is that
810 * immediate writes contain committed data, but in a txg that was
811 * *not* committed. Upon opening the pool after an unclean shutdown,
812 * the intent log claims all blocks that contain immediate write data
813 * so that the SPA knows they're in use.
814 *
815 * All claims *must* be resolved in the first txg -- before the SPA
816 * starts allocating blocks -- so that nothing is allocated twice.
817 * If txg == 0 we just verify that the block is claimable.
818 */
819 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
820 ASSERT(txg == spa_first_txg(spa) || txg == 0);
821 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
822
823 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
824 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
825 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
826
827 return (zio);
828 }
829
830 zio_t *
831 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
832 zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
833 {
834 zio_t *zio;
835 int c;
836
837 if (vd->vdev_children == 0) {
838 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
839 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
840 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
841
842 zio->io_cmd = cmd;
843 } else {
844 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
845
846 for (c = 0; c < vd->vdev_children; c++)
847 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
848 done, private, priority, flags));
849 }
850
851 return (zio);
852 }
853
854 zio_t *
855 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
856 void *data, int checksum, zio_done_func_t *done, void *private,
857 int priority, enum zio_flag flags, boolean_t labels)
858 {
859 zio_t *zio;
860
861 ASSERT(vd->vdev_children == 0);
862 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
863 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
864 ASSERT3U(offset + size, <=, vd->vdev_psize);
865
866 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
867 ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
868 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
869
870 zio->io_prop.zp_checksum = checksum;
871
872 return (zio);
873 }
874
875 zio_t *
876 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
877 void *data, int checksum, zio_done_func_t *done, void *private,
878 int priority, enum zio_flag flags, boolean_t labels)
879 {
880 zio_t *zio;
881
882 ASSERT(vd->vdev_children == 0);
883 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
884 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
885 ASSERT3U(offset + size, <=, vd->vdev_psize);
886
887 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
888 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
889 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
890
891 zio->io_prop.zp_checksum = checksum;
892
893 if (zio_checksum_table[checksum].ci_eck) {
894 /*
895 * zec checksums are necessarily destructive -- they modify
896 * the end of the write buffer to hold the verifier/checksum.
897 * Therefore, we must make a local copy in case the data is
898 * being written to multiple places in parallel.
899 */
900 void *wbuf = zio_buf_alloc(size);
901 bcopy(data, wbuf, size);
902 zio_push_transform(zio, wbuf, size, size, NULL);
903 }
904
905 return (zio);
906 }
907
908 /*
909 * Create a child I/O to do some work for us.
910 */
911 zio_t *
912 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
913 void *data, uint64_t size, int type, int priority, enum zio_flag flags,
914 zio_done_func_t *done, void *private)
915 {
916 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
917 zio_t *zio;
918
919 ASSERT(vd->vdev_parent ==
920 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
921
922 if (type == ZIO_TYPE_READ && bp != NULL) {
923 /*
924 * If we have the bp, then the child should perform the
925 * checksum and the parent need not. This pushes error
926 * detection as close to the leaves as possible and
927 * eliminates redundant checksums in the interior nodes.
928 */
929 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
930 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
931 }
932
933 if (vd->vdev_children == 0)
934 offset += VDEV_LABEL_START_SIZE;
935
936 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
937
938 /*
939 * If we've decided to do a repair, the write is not speculative --
940 * even if the original read was.
941 */
942 if (flags & ZIO_FLAG_IO_REPAIR)
943 flags &= ~ZIO_FLAG_SPECULATIVE;
944
945 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
946 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
947 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
948
949 return (zio);
950 }
951
952 zio_t *
953 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
954 int type, int priority, enum zio_flag flags,
955 zio_done_func_t *done, void *private)
956 {
957 zio_t *zio;
958
959 ASSERT(vd->vdev_ops->vdev_op_leaf);
960
961 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
962 data, size, done, private, type, priority,
963 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
964 vd, offset, NULL,
965 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
966
967 return (zio);
968 }
969
970 void
971 zio_flush(zio_t *zio, vdev_t *vd)
972 {
973 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
974 NULL, NULL, ZIO_PRIORITY_NOW,
975 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
976 }
977
978 void
979 zio_shrink(zio_t *zio, uint64_t size)
980 {
981 ASSERT(zio->io_executor == NULL);
982 ASSERT(zio->io_orig_size == zio->io_size);
983 ASSERT(size <= zio->io_size);
984
985 /*
986 * We don't shrink for raidz because of problems with the
987 * reconstruction when reading back less than the block size.
988 * Note, BP_IS_RAIDZ() assumes no compression.
989 */
990 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
991 if (!BP_IS_RAIDZ(zio->io_bp))
992 zio->io_orig_size = zio->io_size = size;
993 }
994
995 /*
996 * ==========================================================================
997 * Prepare to read and write logical blocks
998 * ==========================================================================
999 */
1000
1001 static int
1002 zio_read_bp_init(zio_t *zio)
1003 {
1004 blkptr_t *bp = zio->io_bp;
1005
1006 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1007 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1008 !(zio->io_flags & ZIO_FLAG_RAW)) {
1009 uint64_t psize = BP_GET_PSIZE(bp);
1010 void *cbuf = zio_buf_alloc(psize);
1011
1012 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
1013 }
1014
1015 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1016 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1017
1018 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1019 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1020
1021 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1022 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1023
1024 return (ZIO_PIPELINE_CONTINUE);
1025 }
1026
1027 static int
1028 zio_write_bp_init(zio_t *zio)
1029 {
1030 spa_t *spa = zio->io_spa;
1031 zio_prop_t *zp = &zio->io_prop;
1032 enum zio_compress compress = zp->zp_compress;
1033 blkptr_t *bp = zio->io_bp;
1034 uint64_t lsize = zio->io_size;
1035 uint64_t psize = lsize;
1036 int pass = 1;
1037
1038 /*
1039 * If our children haven't all reached the ready stage,
1040 * wait for them and then repeat this pipeline stage.
1041 */
1042 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1043 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1044 return (ZIO_PIPELINE_STOP);
1045
1046 if (!IO_IS_ALLOCATING(zio))
1047 return (ZIO_PIPELINE_CONTINUE);
1048
1049 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1050
1051 if (zio->io_bp_override) {
1052 ASSERT(bp->blk_birth != zio->io_txg);
1053 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1054
1055 *bp = *zio->io_bp_override;
1056 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1057
1058 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1059 return (ZIO_PIPELINE_CONTINUE);
1060
1061 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1062 zp->zp_dedup_verify);
1063
1064 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1065 BP_SET_DEDUP(bp, 1);
1066 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1067 return (ZIO_PIPELINE_CONTINUE);
1068 }
1069 zio->io_bp_override = NULL;
1070 BP_ZERO(bp);
1071 }
1072
1073 if (bp->blk_birth == zio->io_txg) {
1074 /*
1075 * We're rewriting an existing block, which means we're
1076 * working on behalf of spa_sync(). For spa_sync() to
1077 * converge, it must eventually be the case that we don't
1078 * have to allocate new blocks. But compression changes
1079 * the blocksize, which forces a reallocate, and makes
1080 * convergence take longer. Therefore, after the first
1081 * few passes, stop compressing to ensure convergence.
1082 */
1083 pass = spa_sync_pass(spa);
1084
1085 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1086 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1087 ASSERT(!BP_GET_DEDUP(bp));
1088
1089 if (pass >= zfs_sync_pass_dont_compress)
1090 compress = ZIO_COMPRESS_OFF;
1091
1092 /* Make sure someone doesn't change their mind on overwrites */
1093 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1094 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1095 }
1096
1097 if (compress != ZIO_COMPRESS_OFF) {
1098 void *cbuf = zio_buf_alloc(lsize);
1099 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1100 if (psize == 0 || psize == lsize) {
1101 compress = ZIO_COMPRESS_OFF;
1102 zio_buf_free(cbuf, lsize);
1103 } else {
1104 ASSERT(psize < lsize);
1105 zio_push_transform(zio, cbuf, psize, lsize, NULL);
1106 }
1107 }
1108
1109 /*
1110 * The final pass of spa_sync() must be all rewrites, but the first
1111 * few passes offer a trade-off: allocating blocks defers convergence,
1112 * but newly allocated blocks are sequential, so they can be written
1113 * to disk faster. Therefore, we allow the first few passes of
1114 * spa_sync() to allocate new blocks, but force rewrites after that.
1115 * There should only be a handful of blocks after pass 1 in any case.
1116 */
1117 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1118 pass >= zfs_sync_pass_rewrite) {
1119 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1120 ASSERT(psize != 0);
1121 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1122 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1123 } else {
1124 BP_ZERO(bp);
1125 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1126 }
1127
1128 if (psize == 0) {
1129 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1130 } else {
1131 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1132 BP_SET_LSIZE(bp, lsize);
1133 BP_SET_PSIZE(bp, psize);
1134 BP_SET_COMPRESS(bp, compress);
1135 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1136 BP_SET_TYPE(bp, zp->zp_type);
1137 BP_SET_LEVEL(bp, zp->zp_level);
1138 BP_SET_DEDUP(bp, zp->zp_dedup);
1139 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1140 if (zp->zp_dedup) {
1141 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1142 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1143 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1144 }
1145 }
1146
1147 return (ZIO_PIPELINE_CONTINUE);
1148 }
1149
1150 static int
1151 zio_free_bp_init(zio_t *zio)
1152 {
1153 blkptr_t *bp = zio->io_bp;
1154
1155 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1156 if (BP_GET_DEDUP(bp))
1157 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1158 }
1159
1160 return (ZIO_PIPELINE_CONTINUE);
1161 }
1162
1163 /*
1164 * ==========================================================================
1165 * Execute the I/O pipeline
1166 * ==========================================================================
1167 */
1168
1169 static void
1170 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1171 {
1172 spa_t *spa = zio->io_spa;
1173 zio_type_t t = zio->io_type;
1174 int flags = (cutinline ? TQ_FRONT : 0);
1175
1176 /*
1177 * If we're a config writer or a probe, the normal issue and
1178 * interrupt threads may all be blocked waiting for the config lock.
1179 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1180 */
1181 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1182 t = ZIO_TYPE_NULL;
1183
1184 /*
1185 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1186 */
1187 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1188 t = ZIO_TYPE_NULL;
1189
1190 /*
1191 * If this is a high priority I/O, then use the high priority taskq if
1192 * available.
1193 */
1194 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1195 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1196 q++;
1197
1198 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1199
1200 /*
1201 * NB: We are assuming that the zio can only be dispatched
1202 * to a single taskq at a time. It would be a grievous error
1203 * to dispatch the zio to another taskq at the same time.
1204 */
1205 ASSERT(taskq_empty_ent(&zio->io_tqent));
1206 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1207 flags, &zio->io_tqent);
1208 }
1209
1210 static boolean_t
1211 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1212 {
1213 kthread_t *executor = zio->io_executor;
1214 spa_t *spa = zio->io_spa;
1215 zio_type_t t;
1216
1217 for (t = 0; t < ZIO_TYPES; t++) {
1218 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1219 uint_t i;
1220 for (i = 0; i < tqs->stqs_count; i++) {
1221 if (taskq_member(tqs->stqs_taskq[i], executor))
1222 return (B_TRUE);
1223 }
1224 }
1225
1226 return (B_FALSE);
1227 }
1228
1229 static int
1230 zio_issue_async(zio_t *zio)
1231 {
1232 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1233
1234 return (ZIO_PIPELINE_STOP);
1235 }
1236
1237 void
1238 zio_interrupt(zio_t *zio)
1239 {
1240 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1241 }
1242
1243 /*
1244 * Execute the I/O pipeline until one of the following occurs:
1245 * (1) the I/O completes; (2) the pipeline stalls waiting for
1246 * dependent child I/Os; (3) the I/O issues, so we're waiting
1247 * for an I/O completion interrupt; (4) the I/O is delegated by
1248 * vdev-level caching or aggregation; (5) the I/O is deferred
1249 * due to vdev-level queueing; (6) the I/O is handed off to
1250 * another thread. In all cases, the pipeline stops whenever
1251 * there's no CPU work; it never burns a thread in cv_wait().
1252 *
1253 * There's no locking on io_stage because there's no legitimate way
1254 * for multiple threads to be attempting to process the same I/O.
1255 */
1256 static zio_pipe_stage_t *zio_pipeline[];
1257
1258 /*
1259 * zio_execute() is a wrapper around the static function
1260 * __zio_execute() so that we can force __zio_execute() to be
1261 * inlined. This reduces stack overhead which is important
1262 * because __zio_execute() is called recursively in several zio
1263 * code paths. zio_execute() itself cannot be inlined because
1264 * it is externally visible.
1265 */
1266 void
1267 zio_execute(zio_t *zio)
1268 {
1269 __zio_execute(zio);
1270 }
1271
1272 __attribute__((always_inline))
1273 static inline void
1274 __zio_execute(zio_t *zio)
1275 {
1276 zio->io_executor = curthread;
1277
1278 while (zio->io_stage < ZIO_STAGE_DONE) {
1279 enum zio_stage pipeline = zio->io_pipeline;
1280 enum zio_stage stage = zio->io_stage;
1281 dsl_pool_t *dp;
1282 boolean_t cut;
1283 int rv;
1284
1285 ASSERT(!MUTEX_HELD(&zio->io_lock));
1286 ASSERT(ISP2(stage));
1287 ASSERT(zio->io_stall == NULL);
1288
1289 do {
1290 stage <<= 1;
1291 } while ((stage & pipeline) == 0);
1292
1293 ASSERT(stage <= ZIO_STAGE_DONE);
1294
1295 dp = spa_get_dsl(zio->io_spa);
1296 cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1297 zio_requeue_io_start_cut_in_line : B_FALSE;
1298
1299 /*
1300 * If we are in interrupt context and this pipeline stage
1301 * will grab a config lock that is held across I/O,
1302 * or may wait for an I/O that needs an interrupt thread
1303 * to complete, issue async to avoid deadlock.
1304 *
1305 * For VDEV_IO_START, we cut in line so that the io will
1306 * be sent to disk promptly.
1307 */
1308 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1309 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1310 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1311 return;
1312 }
1313
1314 #ifdef _KERNEL
1315 /*
1316 * If we executing in the context of the tx_sync_thread,
1317 * or we are performing pool initialization outside of a
1318 * zio_taskq[ZIO_TASKQ_ISSUE] context. Then issue the zio
1319 * async to minimize stack usage for these deep call paths.
1320 */
1321 if ((dp && curthread == dp->dp_tx.tx_sync_thread) ||
1322 (dp && spa_is_initializing(dp->dp_spa) &&
1323 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE))) {
1324 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1325 return;
1326 }
1327 #endif
1328
1329 zio->io_stage = stage;
1330 rv = zio_pipeline[highbit(stage) - 1](zio);
1331
1332 if (rv == ZIO_PIPELINE_STOP)
1333 return;
1334
1335 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1336 }
1337 }
1338
1339
1340 /*
1341 * ==========================================================================
1342 * Initiate I/O, either sync or async
1343 * ==========================================================================
1344 */
1345 int
1346 zio_wait(zio_t *zio)
1347 {
1348 int error;
1349
1350 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1351 ASSERT(zio->io_executor == NULL);
1352
1353 zio->io_waiter = curthread;
1354
1355 __zio_execute(zio);
1356
1357 mutex_enter(&zio->io_lock);
1358 while (zio->io_executor != NULL)
1359 cv_wait_io(&zio->io_cv, &zio->io_lock);
1360 mutex_exit(&zio->io_lock);
1361
1362 error = zio->io_error;
1363 zio_destroy(zio);
1364
1365 return (error);
1366 }
1367
1368 void
1369 zio_nowait(zio_t *zio)
1370 {
1371 ASSERT(zio->io_executor == NULL);
1372
1373 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1374 zio_unique_parent(zio) == NULL) {
1375 /*
1376 * This is a logical async I/O with no parent to wait for it.
1377 * We add it to the spa_async_root_zio "Godfather" I/O which
1378 * will ensure they complete prior to unloading the pool.
1379 */
1380 spa_t *spa = zio->io_spa;
1381
1382 zio_add_child(spa->spa_async_zio_root, zio);
1383 }
1384
1385 __zio_execute(zio);
1386 }
1387
1388 /*
1389 * ==========================================================================
1390 * Reexecute or suspend/resume failed I/O
1391 * ==========================================================================
1392 */
1393
1394 static void
1395 zio_reexecute(zio_t *pio)
1396 {
1397 zio_t *cio, *cio_next;
1398 int c, w;
1399
1400 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1401 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1402 ASSERT(pio->io_gang_leader == NULL);
1403 ASSERT(pio->io_gang_tree == NULL);
1404
1405 pio->io_flags = pio->io_orig_flags;
1406 pio->io_stage = pio->io_orig_stage;
1407 pio->io_pipeline = pio->io_orig_pipeline;
1408 pio->io_reexecute = 0;
1409 pio->io_error = 0;
1410 for (w = 0; w < ZIO_WAIT_TYPES; w++)
1411 pio->io_state[w] = 0;
1412 for (c = 0; c < ZIO_CHILD_TYPES; c++)
1413 pio->io_child_error[c] = 0;
1414
1415 if (IO_IS_ALLOCATING(pio))
1416 BP_ZERO(pio->io_bp);
1417
1418 /*
1419 * As we reexecute pio's children, new children could be created.
1420 * New children go to the head of pio's io_child_list, however,
1421 * so we will (correctly) not reexecute them. The key is that
1422 * the remainder of pio's io_child_list, from 'cio_next' onward,
1423 * cannot be affected by any side effects of reexecuting 'cio'.
1424 */
1425 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1426 cio_next = zio_walk_children(pio);
1427 mutex_enter(&pio->io_lock);
1428 for (w = 0; w < ZIO_WAIT_TYPES; w++)
1429 pio->io_children[cio->io_child_type][w]++;
1430 mutex_exit(&pio->io_lock);
1431 zio_reexecute(cio);
1432 }
1433
1434 /*
1435 * Now that all children have been reexecuted, execute the parent.
1436 * We don't reexecute "The Godfather" I/O here as it's the
1437 * responsibility of the caller to wait on him.
1438 */
1439 if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1440 __zio_execute(pio);
1441 }
1442
1443 void
1444 zio_suspend(spa_t *spa, zio_t *zio)
1445 {
1446 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1447 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1448 "failure and the failure mode property for this pool "
1449 "is set to panic.", spa_name(spa));
1450
1451 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1452
1453 mutex_enter(&spa->spa_suspend_lock);
1454
1455 if (spa->spa_suspend_zio_root == NULL)
1456 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1457 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1458 ZIO_FLAG_GODFATHER);
1459
1460 spa->spa_suspended = B_TRUE;
1461
1462 if (zio != NULL) {
1463 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1464 ASSERT(zio != spa->spa_suspend_zio_root);
1465 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1466 ASSERT(zio_unique_parent(zio) == NULL);
1467 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1468 zio_add_child(spa->spa_suspend_zio_root, zio);
1469 }
1470
1471 mutex_exit(&spa->spa_suspend_lock);
1472 }
1473
1474 int
1475 zio_resume(spa_t *spa)
1476 {
1477 zio_t *pio;
1478
1479 /*
1480 * Reexecute all previously suspended i/o.
1481 */
1482 mutex_enter(&spa->spa_suspend_lock);
1483 spa->spa_suspended = B_FALSE;
1484 cv_broadcast(&spa->spa_suspend_cv);
1485 pio = spa->spa_suspend_zio_root;
1486 spa->spa_suspend_zio_root = NULL;
1487 mutex_exit(&spa->spa_suspend_lock);
1488
1489 if (pio == NULL)
1490 return (0);
1491
1492 zio_reexecute(pio);
1493 return (zio_wait(pio));
1494 }
1495
1496 void
1497 zio_resume_wait(spa_t *spa)
1498 {
1499 mutex_enter(&spa->spa_suspend_lock);
1500 while (spa_suspended(spa))
1501 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1502 mutex_exit(&spa->spa_suspend_lock);
1503 }
1504
1505 /*
1506 * ==========================================================================
1507 * Gang blocks.
1508 *
1509 * A gang block is a collection of small blocks that looks to the DMU
1510 * like one large block. When zio_dva_allocate() cannot find a block
1511 * of the requested size, due to either severe fragmentation or the pool
1512 * being nearly full, it calls zio_write_gang_block() to construct the
1513 * block from smaller fragments.
1514 *
1515 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1516 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1517 * an indirect block: it's an array of block pointers. It consumes
1518 * only one sector and hence is allocatable regardless of fragmentation.
1519 * The gang header's bps point to its gang members, which hold the data.
1520 *
1521 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1522 * as the verifier to ensure uniqueness of the SHA256 checksum.
1523 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1524 * not the gang header. This ensures that data block signatures (needed for
1525 * deduplication) are independent of how the block is physically stored.
1526 *
1527 * Gang blocks can be nested: a gang member may itself be a gang block.
1528 * Thus every gang block is a tree in which root and all interior nodes are
1529 * gang headers, and the leaves are normal blocks that contain user data.
1530 * The root of the gang tree is called the gang leader.
1531 *
1532 * To perform any operation (read, rewrite, free, claim) on a gang block,
1533 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1534 * in the io_gang_tree field of the original logical i/o by recursively
1535 * reading the gang leader and all gang headers below it. This yields
1536 * an in-core tree containing the contents of every gang header and the
1537 * bps for every constituent of the gang block.
1538 *
1539 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1540 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1541 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1542 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1543 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1544 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1545 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1546 * of the gang header plus zio_checksum_compute() of the data to update the
1547 * gang header's blk_cksum as described above.
1548 *
1549 * The two-phase assemble/issue model solves the problem of partial failure --
1550 * what if you'd freed part of a gang block but then couldn't read the
1551 * gang header for another part? Assembling the entire gang tree first
1552 * ensures that all the necessary gang header I/O has succeeded before
1553 * starting the actual work of free, claim, or write. Once the gang tree
1554 * is assembled, free and claim are in-memory operations that cannot fail.
1555 *
1556 * In the event that a gang write fails, zio_dva_unallocate() walks the
1557 * gang tree to immediately free (i.e. insert back into the space map)
1558 * everything we've allocated. This ensures that we don't get ENOSPC
1559 * errors during repeated suspend/resume cycles due to a flaky device.
1560 *
1561 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1562 * the gang tree, we won't modify the block, so we can safely defer the free
1563 * (knowing that the block is still intact). If we *can* assemble the gang
1564 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1565 * each constituent bp and we can allocate a new block on the next sync pass.
1566 *
1567 * In all cases, the gang tree allows complete recovery from partial failure.
1568 * ==========================================================================
1569 */
1570
1571 static zio_t *
1572 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1573 {
1574 if (gn != NULL)
1575 return (pio);
1576
1577 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1578 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1579 &pio->io_bookmark));
1580 }
1581
1582 zio_t *
1583 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1584 {
1585 zio_t *zio;
1586
1587 if (gn != NULL) {
1588 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1589 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1590 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1591 /*
1592 * As we rewrite each gang header, the pipeline will compute
1593 * a new gang block header checksum for it; but no one will
1594 * compute a new data checksum, so we do that here. The one
1595 * exception is the gang leader: the pipeline already computed
1596 * its data checksum because that stage precedes gang assembly.
1597 * (Presently, nothing actually uses interior data checksums;
1598 * this is just good hygiene.)
1599 */
1600 if (gn != pio->io_gang_leader->io_gang_tree) {
1601 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1602 data, BP_GET_PSIZE(bp));
1603 }
1604 /*
1605 * If we are here to damage data for testing purposes,
1606 * leave the GBH alone so that we can detect the damage.
1607 */
1608 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1609 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1610 } else {
1611 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1612 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1613 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1614 }
1615
1616 return (zio);
1617 }
1618
1619 /* ARGSUSED */
1620 zio_t *
1621 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1622 {
1623 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1624 ZIO_GANG_CHILD_FLAGS(pio)));
1625 }
1626
1627 /* ARGSUSED */
1628 zio_t *
1629 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1630 {
1631 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1632 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1633 }
1634
1635 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1636 NULL,
1637 zio_read_gang,
1638 zio_rewrite_gang,
1639 zio_free_gang,
1640 zio_claim_gang,
1641 NULL
1642 };
1643
1644 static void zio_gang_tree_assemble_done(zio_t *zio);
1645
1646 static zio_gang_node_t *
1647 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1648 {
1649 zio_gang_node_t *gn;
1650
1651 ASSERT(*gnpp == NULL);
1652
1653 gn = kmem_zalloc(sizeof (*gn), KM_PUSHPAGE);
1654 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1655 *gnpp = gn;
1656
1657 return (gn);
1658 }
1659
1660 static void
1661 zio_gang_node_free(zio_gang_node_t **gnpp)
1662 {
1663 zio_gang_node_t *gn = *gnpp;
1664 int g;
1665
1666 for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
1667 ASSERT(gn->gn_child[g] == NULL);
1668
1669 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1670 kmem_free(gn, sizeof (*gn));
1671 *gnpp = NULL;
1672 }
1673
1674 static void
1675 zio_gang_tree_free(zio_gang_node_t **gnpp)
1676 {
1677 zio_gang_node_t *gn = *gnpp;
1678 int g;
1679
1680 if (gn == NULL)
1681 return;
1682
1683 for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
1684 zio_gang_tree_free(&gn->gn_child[g]);
1685
1686 zio_gang_node_free(gnpp);
1687 }
1688
1689 static void
1690 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1691 {
1692 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1693
1694 ASSERT(gio->io_gang_leader == gio);
1695 ASSERT(BP_IS_GANG(bp));
1696
1697 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1698 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1699 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1700 }
1701
1702 static void
1703 zio_gang_tree_assemble_done(zio_t *zio)
1704 {
1705 zio_t *gio = zio->io_gang_leader;
1706 zio_gang_node_t *gn = zio->io_private;
1707 blkptr_t *bp = zio->io_bp;
1708 int g;
1709
1710 ASSERT(gio == zio_unique_parent(zio));
1711 ASSERT(zio->io_child_count == 0);
1712
1713 if (zio->io_error)
1714 return;
1715
1716 if (BP_SHOULD_BYTESWAP(bp))
1717 byteswap_uint64_array(zio->io_data, zio->io_size);
1718
1719 ASSERT(zio->io_data == gn->gn_gbh);
1720 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1721 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1722
1723 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1724 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1725 if (!BP_IS_GANG(gbp))
1726 continue;
1727 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1728 }
1729 }
1730
1731 static void
1732 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1733 {
1734 zio_t *gio = pio->io_gang_leader;
1735 zio_t *zio;
1736 int g;
1737
1738 ASSERT(BP_IS_GANG(bp) == !!gn);
1739 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1740 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1741
1742 /*
1743 * If you're a gang header, your data is in gn->gn_gbh.
1744 * If you're a gang member, your data is in 'data' and gn == NULL.
1745 */
1746 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1747
1748 if (gn != NULL) {
1749 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1750
1751 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1752 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1753 if (BP_IS_HOLE(gbp))
1754 continue;
1755 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1756 data = (char *)data + BP_GET_PSIZE(gbp);
1757 }
1758 }
1759
1760 if (gn == gio->io_gang_tree)
1761 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1762
1763 if (zio != pio)
1764 zio_nowait(zio);
1765 }
1766
1767 static int
1768 zio_gang_assemble(zio_t *zio)
1769 {
1770 blkptr_t *bp = zio->io_bp;
1771
1772 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1773 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1774
1775 zio->io_gang_leader = zio;
1776
1777 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1778
1779 return (ZIO_PIPELINE_CONTINUE);
1780 }
1781
1782 static int
1783 zio_gang_issue(zio_t *zio)
1784 {
1785 blkptr_t *bp = zio->io_bp;
1786
1787 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1788 return (ZIO_PIPELINE_STOP);
1789
1790 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1791 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1792
1793 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1794 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1795 else
1796 zio_gang_tree_free(&zio->io_gang_tree);
1797
1798 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1799
1800 return (ZIO_PIPELINE_CONTINUE);
1801 }
1802
1803 static void
1804 zio_write_gang_member_ready(zio_t *zio)
1805 {
1806 zio_t *pio = zio_unique_parent(zio);
1807 ASSERTV(zio_t *gio = zio->io_gang_leader;)
1808 dva_t *cdva = zio->io_bp->blk_dva;
1809 dva_t *pdva = pio->io_bp->blk_dva;
1810 uint64_t asize;
1811 int d;
1812
1813 if (BP_IS_HOLE(zio->io_bp))
1814 return;
1815
1816 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1817
1818 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1819 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1820 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1821 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1822 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1823
1824 mutex_enter(&pio->io_lock);
1825 for (d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1826 ASSERT(DVA_GET_GANG(&pdva[d]));
1827 asize = DVA_GET_ASIZE(&pdva[d]);
1828 asize += DVA_GET_ASIZE(&cdva[d]);
1829 DVA_SET_ASIZE(&pdva[d], asize);
1830 }
1831 mutex_exit(&pio->io_lock);
1832 }
1833
1834 static int
1835 zio_write_gang_block(zio_t *pio)
1836 {
1837 spa_t *spa = pio->io_spa;
1838 blkptr_t *bp = pio->io_bp;
1839 zio_t *gio = pio->io_gang_leader;
1840 zio_t *zio;
1841 zio_gang_node_t *gn, **gnpp;
1842 zio_gbh_phys_t *gbh;
1843 uint64_t txg = pio->io_txg;
1844 uint64_t resid = pio->io_size;
1845 uint64_t lsize;
1846 int copies = gio->io_prop.zp_copies;
1847 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1848 zio_prop_t zp;
1849 int g, error;
1850
1851 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1852 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1853 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1854 if (error) {
1855 pio->io_error = error;
1856 return (ZIO_PIPELINE_CONTINUE);
1857 }
1858
1859 if (pio == gio) {
1860 gnpp = &gio->io_gang_tree;
1861 } else {
1862 gnpp = pio->io_private;
1863 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1864 }
1865
1866 gn = zio_gang_node_alloc(gnpp);
1867 gbh = gn->gn_gbh;
1868 bzero(gbh, SPA_GANGBLOCKSIZE);
1869
1870 /*
1871 * Create the gang header.
1872 */
1873 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1874 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1875
1876 /*
1877 * Create and nowait the gang children.
1878 */
1879 for (g = 0; resid != 0; resid -= lsize, g++) {
1880 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1881 SPA_MINBLOCKSIZE);
1882 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1883
1884 zp.zp_checksum = gio->io_prop.zp_checksum;
1885 zp.zp_compress = ZIO_COMPRESS_OFF;
1886 zp.zp_type = DMU_OT_NONE;
1887 zp.zp_level = 0;
1888 zp.zp_copies = gio->io_prop.zp_copies;
1889 zp.zp_dedup = 0;
1890 zp.zp_dedup_verify = 0;
1891
1892 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1893 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1894 zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1895 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1896 &pio->io_bookmark));
1897 }
1898
1899 /*
1900 * Set pio's pipeline to just wait for zio to finish.
1901 */
1902 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1903
1904 /*
1905 * We didn't allocate this bp, so make sure it doesn't get unmarked.
1906 */
1907 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
1908
1909 zio_nowait(zio);
1910
1911 return (ZIO_PIPELINE_CONTINUE);
1912 }
1913
1914 /*
1915 * ==========================================================================
1916 * Dedup
1917 * ==========================================================================
1918 */
1919 static void
1920 zio_ddt_child_read_done(zio_t *zio)
1921 {
1922 blkptr_t *bp = zio->io_bp;
1923 ddt_entry_t *dde = zio->io_private;
1924 ddt_phys_t *ddp;
1925 zio_t *pio = zio_unique_parent(zio);
1926
1927 mutex_enter(&pio->io_lock);
1928 ddp = ddt_phys_select(dde, bp);
1929 if (zio->io_error == 0)
1930 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
1931 if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1932 dde->dde_repair_data = zio->io_data;
1933 else
1934 zio_buf_free(zio->io_data, zio->io_size);
1935 mutex_exit(&pio->io_lock);
1936 }
1937
1938 static int
1939 zio_ddt_read_start(zio_t *zio)
1940 {
1941 blkptr_t *bp = zio->io_bp;
1942 int p;
1943
1944 ASSERT(BP_GET_DEDUP(bp));
1945 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1946 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1947
1948 if (zio->io_child_error[ZIO_CHILD_DDT]) {
1949 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1950 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1951 ddt_phys_t *ddp = dde->dde_phys;
1952 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1953 blkptr_t blk;
1954
1955 ASSERT(zio->io_vsd == NULL);
1956 zio->io_vsd = dde;
1957
1958 if (ddp_self == NULL)
1959 return (ZIO_PIPELINE_CONTINUE);
1960
1961 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1962 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1963 continue;
1964 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1965 &blk);
1966 zio_nowait(zio_read(zio, zio->io_spa, &blk,
1967 zio_buf_alloc(zio->io_size), zio->io_size,
1968 zio_ddt_child_read_done, dde, zio->io_priority,
1969 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1970 &zio->io_bookmark));
1971 }
1972 return (ZIO_PIPELINE_CONTINUE);
1973 }
1974
1975 zio_nowait(zio_read(zio, zio->io_spa, bp,
1976 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1977 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1978
1979 return (ZIO_PIPELINE_CONTINUE);
1980 }
1981
1982 static int
1983 zio_ddt_read_done(zio_t *zio)
1984 {
1985 blkptr_t *bp = zio->io_bp;
1986
1987 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1988 return (ZIO_PIPELINE_STOP);
1989
1990 ASSERT(BP_GET_DEDUP(bp));
1991 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1992 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1993
1994 if (zio->io_child_error[ZIO_CHILD_DDT]) {
1995 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1996 ddt_entry_t *dde = zio->io_vsd;
1997 if (ddt == NULL) {
1998 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1999 return (ZIO_PIPELINE_CONTINUE);
2000 }
2001 if (dde == NULL) {
2002 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2003 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2004 return (ZIO_PIPELINE_STOP);
2005 }
2006 if (dde->dde_repair_data != NULL) {
2007 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
2008 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2009 }
2010 ddt_repair_done(ddt, dde);
2011 zio->io_vsd = NULL;
2012 }
2013
2014 ASSERT(zio->io_vsd == NULL);
2015
2016 return (ZIO_PIPELINE_CONTINUE);
2017 }
2018
2019 static boolean_t
2020 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2021 {
2022 spa_t *spa = zio->io_spa;
2023 int p;
2024
2025 /*
2026 * Note: we compare the original data, not the transformed data,
2027 * because when zio->io_bp is an override bp, we will not have
2028 * pushed the I/O transforms. That's an important optimization
2029 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2030 */
2031 for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2032 zio_t *lio = dde->dde_lead_zio[p];
2033
2034 if (lio != NULL) {
2035 return (lio->io_orig_size != zio->io_orig_size ||
2036 bcmp(zio->io_orig_data, lio->io_orig_data,
2037 zio->io_orig_size) != 0);
2038 }
2039 }
2040
2041 for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2042 ddt_phys_t *ddp = &dde->dde_phys[p];
2043
2044 if (ddp->ddp_phys_birth != 0) {
2045 arc_buf_t *abuf = NULL;
2046 uint32_t aflags = ARC_WAIT;
2047 blkptr_t blk = *zio->io_bp;
2048 int error;
2049
2050 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2051
2052 ddt_exit(ddt);
2053
2054 error = arc_read(NULL, spa, &blk,
2055 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2056 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2057 &aflags, &zio->io_bookmark);
2058
2059 if (error == 0) {
2060 if (arc_buf_size(abuf) != zio->io_orig_size ||
2061 bcmp(abuf->b_data, zio->io_orig_data,
2062 zio->io_orig_size) != 0)
2063 error = EEXIST;
2064 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
2065 }
2066
2067 ddt_enter(ddt);
2068 return (error != 0);
2069 }
2070 }
2071
2072 return (B_FALSE);
2073 }
2074
2075 static void
2076 zio_ddt_child_write_ready(zio_t *zio)
2077 {
2078 int p = zio->io_prop.zp_copies;
2079 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2080 ddt_entry_t *dde = zio->io_private;
2081 ddt_phys_t *ddp = &dde->dde_phys[p];
2082 zio_t *pio;
2083
2084 if (zio->io_error)
2085 return;
2086
2087 ddt_enter(ddt);
2088
2089 ASSERT(dde->dde_lead_zio[p] == zio);
2090
2091 ddt_phys_fill(ddp, zio->io_bp);
2092
2093 while ((pio = zio_walk_parents(zio)) != NULL)
2094 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2095
2096 ddt_exit(ddt);
2097 }
2098
2099 static void
2100 zio_ddt_child_write_done(zio_t *zio)
2101 {
2102 int p = zio->io_prop.zp_copies;
2103 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2104 ddt_entry_t *dde = zio->io_private;
2105 ddt_phys_t *ddp = &dde->dde_phys[p];
2106
2107 ddt_enter(ddt);
2108
2109 ASSERT(ddp->ddp_refcnt == 0);
2110 ASSERT(dde->dde_lead_zio[p] == zio);
2111 dde->dde_lead_zio[p] = NULL;
2112
2113 if (zio->io_error == 0) {
2114 while (zio_walk_parents(zio) != NULL)
2115 ddt_phys_addref(ddp);
2116 } else {
2117 ddt_phys_clear(ddp);
2118 }
2119
2120 ddt_exit(ddt);
2121 }
2122
2123 static void
2124 zio_ddt_ditto_write_done(zio_t *zio)
2125 {
2126 int p = DDT_PHYS_DITTO;
2127 blkptr_t *bp = zio->io_bp;
2128 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2129 ddt_entry_t *dde = zio->io_private;
2130 ddt_phys_t *ddp = &dde->dde_phys[p];
2131 ddt_key_t *ddk = &dde->dde_key;
2132 ASSERTV(zio_prop_t *zp = &zio->io_prop);
2133
2134 ddt_enter(ddt);
2135
2136 ASSERT(ddp->ddp_refcnt == 0);
2137 ASSERT(dde->dde_lead_zio[p] == zio);
2138 dde->dde_lead_zio[p] = NULL;
2139
2140 if (zio->io_error == 0) {
2141 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2142 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2143 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2144 if (ddp->ddp_phys_birth != 0)
2145 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2146 ddt_phys_fill(ddp, bp);
2147 }
2148
2149 ddt_exit(ddt);
2150 }
2151
2152 static int
2153 zio_ddt_write(zio_t *zio)
2154 {
2155 spa_t *spa = zio->io_spa;
2156 blkptr_t *bp = zio->io_bp;
2157 uint64_t txg = zio->io_txg;
2158 zio_prop_t *zp = &zio->io_prop;
2159 int p = zp->zp_copies;
2160 int ditto_copies;
2161 zio_t *cio = NULL;
2162 zio_t *dio = NULL;
2163 ddt_t *ddt = ddt_select(spa, bp);
2164 ddt_entry_t *dde;
2165 ddt_phys_t *ddp;
2166
2167 ASSERT(BP_GET_DEDUP(bp));
2168 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2169 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2170
2171 ddt_enter(ddt);
2172 dde = ddt_lookup(ddt, bp, B_TRUE);
2173 ddp = &dde->dde_phys[p];
2174
2175 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2176 /*
2177 * If we're using a weak checksum, upgrade to a strong checksum
2178 * and try again. If we're already using a strong checksum,
2179 * we can't resolve it, so just convert to an ordinary write.
2180 * (And automatically e-mail a paper to Nature?)
2181 */
2182 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2183 zp->zp_checksum = spa_dedup_checksum(spa);
2184 zio_pop_transforms(zio);
2185 zio->io_stage = ZIO_STAGE_OPEN;
2186 BP_ZERO(bp);
2187 } else {
2188 zp->zp_dedup = 0;
2189 }
2190 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2191 ddt_exit(ddt);
2192 return (ZIO_PIPELINE_CONTINUE);
2193 }
2194
2195 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2196 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2197
2198 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2199 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2200 zio_prop_t czp = *zp;
2201
2202 czp.zp_copies = ditto_copies;
2203
2204 /*
2205 * If we arrived here with an override bp, we won't have run
2206 * the transform stack, so we won't have the data we need to
2207 * generate a child i/o. So, toss the override bp and restart.
2208 * This is safe, because using the override bp is just an
2209 * optimization; and it's rare, so the cost doesn't matter.
2210 */
2211 if (zio->io_bp_override) {
2212 zio_pop_transforms(zio);
2213 zio->io_stage = ZIO_STAGE_OPEN;
2214 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2215 zio->io_bp_override = NULL;
2216 BP_ZERO(bp);
2217 ddt_exit(ddt);
2218 return (ZIO_PIPELINE_CONTINUE);
2219 }
2220
2221 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2222 zio->io_orig_size, &czp, NULL,
2223 zio_ddt_ditto_write_done, dde, zio->io_priority,
2224 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2225
2226 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2227 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2228 }
2229
2230 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2231 if (ddp->ddp_phys_birth != 0)
2232 ddt_bp_fill(ddp, bp, txg);
2233 if (dde->dde_lead_zio[p] != NULL)
2234 zio_add_child(zio, dde->dde_lead_zio[p]);
2235 else
2236 ddt_phys_addref(ddp);
2237 } else if (zio->io_bp_override) {
2238 ASSERT(bp->blk_birth == txg);
2239 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2240 ddt_phys_fill(ddp, bp);
2241 ddt_phys_addref(ddp);
2242 } else {
2243 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2244 zio->io_orig_size, zp, zio_ddt_child_write_ready,
2245 zio_ddt_child_write_done, dde, zio->io_priority,
2246 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2247
2248 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2249 dde->dde_lead_zio[p] = cio;
2250 }
2251
2252 ddt_exit(ddt);
2253
2254 if (cio)
2255 zio_nowait(cio);
2256 if (dio)
2257 zio_nowait(dio);
2258
2259 return (ZIO_PIPELINE_CONTINUE);
2260 }
2261
2262 ddt_entry_t *freedde; /* for debugging */
2263
2264 static int
2265 zio_ddt_free(zio_t *zio)
2266 {
2267 spa_t *spa = zio->io_spa;
2268 blkptr_t *bp = zio->io_bp;
2269 ddt_t *ddt = ddt_select(spa, bp);
2270 ddt_entry_t *dde;
2271 ddt_phys_t *ddp;
2272
2273 ASSERT(BP_GET_DEDUP(bp));
2274 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2275
2276 ddt_enter(ddt);
2277 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2278 if (dde) {
2279 ddp = ddt_phys_select(dde, bp);
2280 if (ddp)
2281 ddt_phys_decref(ddp);
2282 }
2283 ddt_exit(ddt);
2284
2285 return (ZIO_PIPELINE_CONTINUE);
2286 }
2287
2288 /*
2289 * ==========================================================================
2290 * Allocate and free blocks
2291 * ==========================================================================
2292 */
2293 static int
2294 zio_dva_allocate(zio_t *zio)
2295 {
2296 spa_t *spa = zio->io_spa;
2297 metaslab_class_t *mc = spa_normal_class(spa);
2298 blkptr_t *bp = zio->io_bp;
2299 int error;
2300 int flags = 0;
2301
2302 if (zio->io_gang_leader == NULL) {
2303 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2304 zio->io_gang_leader = zio;
2305 }
2306
2307 ASSERT(BP_IS_HOLE(bp));
2308 ASSERT0(BP_GET_NDVAS(bp));
2309 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2310 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2311 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2312
2313 /*
2314 * The dump device does not support gang blocks so allocation on
2315 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2316 * the "fast" gang feature.
2317 */
2318 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2319 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2320 METASLAB_GANG_CHILD : 0;
2321 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
2322 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2323 zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2324
2325 if (error) {
2326 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2327 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2328 error);
2329 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2330 return (zio_write_gang_block(zio));
2331 zio->io_error = error;
2332 }
2333
2334 return (ZIO_PIPELINE_CONTINUE);
2335 }
2336
2337 static int
2338 zio_dva_free(zio_t *zio)
2339 {
2340 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2341
2342 return (ZIO_PIPELINE_CONTINUE);
2343 }
2344
2345 static int
2346 zio_dva_claim(zio_t *zio)
2347 {
2348 int error;
2349
2350 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2351 if (error)
2352 zio->io_error = error;
2353
2354 return (ZIO_PIPELINE_CONTINUE);
2355 }
2356
2357 /*
2358 * Undo an allocation. This is used by zio_done() when an I/O fails
2359 * and we want to give back the block we just allocated.
2360 * This handles both normal blocks and gang blocks.
2361 */
2362 static void
2363 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2364 {
2365 int g;
2366
2367 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2368 ASSERT(zio->io_bp_override == NULL);
2369
2370 if (!BP_IS_HOLE(bp))
2371 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2372
2373 if (gn != NULL) {
2374 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2375 zio_dva_unallocate(zio, gn->gn_child[g],
2376 &gn->gn_gbh->zg_blkptr[g]);
2377 }
2378 }
2379 }
2380
2381 /*
2382 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2383 */
2384 int
2385 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, uint64_t size,
2386 boolean_t use_slog)
2387 {
2388 int error = 1;
2389
2390 ASSERT(txg > spa_syncing_txg(spa));
2391
2392 /*
2393 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2394 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2395 * when allocating them.
2396 */
2397 if (use_slog) {
2398 error = metaslab_alloc(spa, spa_log_class(spa), size,
2399 new_bp, 1, txg, NULL,
2400 METASLAB_FASTWRITE | METASLAB_GANG_AVOID);
2401 }
2402
2403 if (error) {
2404 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2405 new_bp, 1, txg, NULL,
2406 METASLAB_FASTWRITE | METASLAB_GANG_AVOID);
2407 }
2408
2409 if (error == 0) {
2410 BP_SET_LSIZE(new_bp, size);
2411 BP_SET_PSIZE(new_bp, size);
2412 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2413 BP_SET_CHECKSUM(new_bp,
2414 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2415 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2416 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2417 BP_SET_LEVEL(new_bp, 0);
2418 BP_SET_DEDUP(new_bp, 0);
2419 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2420 }
2421
2422 return (error);
2423 }
2424
2425 /*
2426 * Free an intent log block.
2427 */
2428 void
2429 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2430 {
2431 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2432 ASSERT(!BP_IS_GANG(bp));
2433
2434 zio_free(spa, txg, bp);
2435 }
2436
2437 /*
2438 * ==========================================================================
2439 * Read and write to physical devices
2440 * ==========================================================================
2441 */
2442 static int
2443 zio_vdev_io_start(zio_t *zio)
2444 {
2445 vdev_t *vd = zio->io_vd;
2446 uint64_t align;
2447 spa_t *spa = zio->io_spa;
2448
2449 ASSERT(zio->io_error == 0);
2450 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2451
2452 if (vd == NULL) {
2453 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2454 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2455
2456 /*
2457 * The mirror_ops handle multiple DVAs in a single BP.
2458 */
2459 return (vdev_mirror_ops.vdev_op_io_start(zio));
2460 }
2461
2462 /*
2463 * We keep track of time-sensitive I/Os so that the scan thread
2464 * can quickly react to certain workloads. In particular, we care
2465 * about non-scrubbing, top-level reads and writes with the following
2466 * characteristics:
2467 * - synchronous writes of user data to non-slog devices
2468 * - any reads of user data
2469 * When these conditions are met, adjust the timestamp of spa_last_io
2470 * which allows the scan thread to adjust its workload accordingly.
2471 */
2472 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2473 vd == vd->vdev_top && !vd->vdev_islog &&
2474 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2475 zio->io_txg != spa_syncing_txg(spa)) {
2476 uint64_t old = spa->spa_last_io;
2477 uint64_t new = ddi_get_lbolt64();
2478 if (old != new)
2479 (void) atomic_cas_64(&spa->spa_last_io, old, new);
2480 }
2481
2482 align = 1ULL << vd->vdev_top->vdev_ashift;
2483
2484 if (P2PHASE(zio->io_size, align) != 0) {
2485 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2486 char *abuf = zio_buf_alloc(asize);
2487 ASSERT(vd == vd->vdev_top);
2488 if (zio->io_type == ZIO_TYPE_WRITE) {
2489 bcopy(zio->io_data, abuf, zio->io_size);
2490 bzero(abuf + zio->io_size, asize - zio->io_size);
2491 }
2492 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2493 }
2494
2495 ASSERT(P2PHASE(zio->io_offset, align) == 0);
2496 ASSERT(P2PHASE(zio->io_size, align) == 0);
2497 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2498
2499 /*
2500 * If this is a repair I/O, and there's no self-healing involved --
2501 * that is, we're just resilvering what we expect to resilver --
2502 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2503 * This prevents spurious resilvering with nested replication.
2504 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2505 * A is out of date, we'll read from C+D, then use the data to
2506 * resilver A+B -- but we don't actually want to resilver B, just A.
2507 * The top-level mirror has no way to know this, so instead we just
2508 * discard unnecessary repairs as we work our way down the vdev tree.
2509 * The same logic applies to any form of nested replication:
2510 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
2511 */
2512 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2513 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2514 zio->io_txg != 0 && /* not a delegated i/o */
2515 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2516 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2517 zio_vdev_io_bypass(zio);
2518 return (ZIO_PIPELINE_CONTINUE);
2519 }
2520
2521 if (vd->vdev_ops->vdev_op_leaf &&
2522 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2523
2524 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2525 return (ZIO_PIPELINE_CONTINUE);
2526
2527 if ((zio = vdev_queue_io(zio)) == NULL)
2528 return (ZIO_PIPELINE_STOP);
2529
2530 if (!vdev_accessible(vd, zio)) {
2531 zio->io_error = ENXIO;
2532 zio_interrupt(zio);
2533 return (ZIO_PIPELINE_STOP);
2534 }
2535 }
2536
2537 return (vd->vdev_ops->vdev_op_io_start(zio));
2538 }
2539
2540 static int
2541 zio_vdev_io_done(zio_t *zio)
2542 {
2543 vdev_t *vd = zio->io_vd;
2544 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2545 boolean_t unexpected_error = B_FALSE;
2546
2547 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2548 return (ZIO_PIPELINE_STOP);
2549
2550 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2551
2552 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2553
2554 vdev_queue_io_done(zio);
2555
2556 if (zio->io_type == ZIO_TYPE_WRITE)
2557 vdev_cache_write(zio);
2558
2559 if (zio_injection_enabled && zio->io_error == 0)
2560 zio->io_error = zio_handle_device_injection(vd,
2561 zio, EIO);
2562
2563 if (zio_injection_enabled && zio->io_error == 0)
2564 zio->io_error = zio_handle_label_injection(zio, EIO);
2565
2566 if (zio->io_error) {
2567 if (!vdev_accessible(vd, zio)) {
2568 zio->io_error = ENXIO;
2569 } else {
2570 unexpected_error = B_TRUE;
2571 }
2572 }
2573 }
2574
2575 ops->vdev_op_io_done(zio);
2576
2577 if (unexpected_error)
2578 VERIFY(vdev_probe(vd, zio) == NULL);
2579
2580 return (ZIO_PIPELINE_CONTINUE);
2581 }
2582
2583 /*
2584 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2585 * disk, and use that to finish the checksum ereport later.
2586 */
2587 static void
2588 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2589 const void *good_buf)
2590 {
2591 /* no processing needed */
2592 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2593 }
2594
2595 /*ARGSUSED*/
2596 void
2597 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2598 {
2599 void *buf = zio_buf_alloc(zio->io_size);
2600
2601 bcopy(zio->io_data, buf, zio->io_size);
2602
2603 zcr->zcr_cbinfo = zio->io_size;
2604 zcr->zcr_cbdata = buf;
2605 zcr->zcr_finish = zio_vsd_default_cksum_finish;
2606 zcr->zcr_free = zio_buf_free;
2607 }
2608
2609 static int
2610 zio_vdev_io_assess(zio_t *zio)
2611 {
2612 vdev_t *vd = zio->io_vd;
2613
2614 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2615 return (ZIO_PIPELINE_STOP);
2616
2617 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2618 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2619
2620 if (zio->io_vsd != NULL) {
2621 zio->io_vsd_ops->vsd_free(zio);
2622 zio->io_vsd = NULL;
2623 }
2624
2625 if (zio_injection_enabled && zio->io_error == 0)
2626 zio->io_error = zio_handle_fault_injection(zio, EIO);
2627
2628 /*
2629 * If the I/O failed, determine whether we should attempt to retry it.
2630 *
2631 * On retry, we cut in line in the issue queue, since we don't want
2632 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2633 */
2634 if (zio->io_error && vd == NULL &&
2635 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2636 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
2637 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
2638 zio->io_error = 0;
2639 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2640 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2641 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2642 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2643 zio_requeue_io_start_cut_in_line);
2644 return (ZIO_PIPELINE_STOP);
2645 }
2646
2647 /*
2648 * If we got an error on a leaf device, convert it to ENXIO
2649 * if the device is not accessible at all.
2650 */
2651 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2652 !vdev_accessible(vd, zio))
2653 zio->io_error = ENXIO;
2654
2655 /*
2656 * If we can't write to an interior vdev (mirror or RAID-Z),
2657 * set vdev_cant_write so that we stop trying to allocate from it.
2658 */
2659 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2660 vd != NULL && !vd->vdev_ops->vdev_op_leaf)
2661 vd->vdev_cant_write = B_TRUE;
2662
2663 if (zio->io_error)
2664 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2665
2666 return (ZIO_PIPELINE_CONTINUE);
2667 }
2668
2669 void
2670 zio_vdev_io_reissue(zio_t *zio)
2671 {
2672 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2673 ASSERT(zio->io_error == 0);
2674
2675 zio->io_stage >>= 1;
2676 }
2677
2678 void
2679 zio_vdev_io_redone(zio_t *zio)
2680 {
2681 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2682
2683 zio->io_stage >>= 1;
2684 }
2685
2686 void
2687 zio_vdev_io_bypass(zio_t *zio)
2688 {
2689 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2690 ASSERT(zio->io_error == 0);
2691
2692 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2693 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2694 }
2695
2696 /*
2697 * ==========================================================================
2698 * Generate and verify checksums
2699 * ==========================================================================
2700 */
2701 static int
2702 zio_checksum_generate(zio_t *zio)
2703 {
2704 blkptr_t *bp = zio->io_bp;
2705 enum zio_checksum checksum;
2706
2707 if (bp == NULL) {
2708 /*
2709 * This is zio_write_phys().
2710 * We're either generating a label checksum, or none at all.
2711 */
2712 checksum = zio->io_prop.zp_checksum;
2713
2714 if (checksum == ZIO_CHECKSUM_OFF)
2715 return (ZIO_PIPELINE_CONTINUE);
2716
2717 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2718 } else {
2719 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2720 ASSERT(!IO_IS_ALLOCATING(zio));
2721 checksum = ZIO_CHECKSUM_GANG_HEADER;
2722 } else {
2723 checksum = BP_GET_CHECKSUM(bp);
2724 }
2725 }
2726
2727 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2728
2729 return (ZIO_PIPELINE_CONTINUE);
2730 }
2731
2732 static int
2733 zio_checksum_verify(zio_t *zio)
2734 {
2735 zio_bad_cksum_t info;
2736 blkptr_t *bp = zio->io_bp;
2737 int error;
2738
2739 ASSERT(zio->io_vd != NULL);
2740
2741 if (bp == NULL) {
2742 /*
2743 * This is zio_read_phys().
2744 * We're either verifying a label checksum, or nothing at all.
2745 */
2746 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2747 return (ZIO_PIPELINE_CONTINUE);
2748
2749 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2750 }
2751
2752 if ((error = zio_checksum_error(zio, &info)) != 0) {
2753 zio->io_error = error;
2754 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2755 zfs_ereport_start_checksum(zio->io_spa,
2756 zio->io_vd, zio, zio->io_offset,
2757 zio->io_size, NULL, &info);
2758 }
2759 }
2760
2761 return (ZIO_PIPELINE_CONTINUE);
2762 }
2763
2764 /*
2765 * Called by RAID-Z to ensure we don't compute the checksum twice.
2766 */
2767 void
2768 zio_checksum_verified(zio_t *zio)
2769 {
2770 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2771 }
2772
2773 /*
2774 * ==========================================================================
2775 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2776 * An error of 0 indictes success. ENXIO indicates whole-device failure,
2777 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
2778 * indicate errors that are specific to one I/O, and most likely permanent.
2779 * Any other error is presumed to be worse because we weren't expecting it.
2780 * ==========================================================================
2781 */
2782 int
2783 zio_worst_error(int e1, int e2)
2784 {
2785 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2786 int r1, r2;
2787
2788 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2789 if (e1 == zio_error_rank[r1])
2790 break;
2791
2792 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2793 if (e2 == zio_error_rank[r2])
2794 break;
2795
2796 return (r1 > r2 ? e1 : e2);
2797 }
2798
2799 /*
2800 * ==========================================================================
2801 * I/O completion
2802 * ==========================================================================
2803 */
2804 static int
2805 zio_ready(zio_t *zio)
2806 {
2807 blkptr_t *bp = zio->io_bp;
2808 zio_t *pio, *pio_next;
2809
2810 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2811 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2812 return (ZIO_PIPELINE_STOP);
2813
2814 if (zio->io_ready) {
2815 ASSERT(IO_IS_ALLOCATING(zio));
2816 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2817 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2818
2819 zio->io_ready(zio);
2820 }
2821
2822 if (bp != NULL && bp != &zio->io_bp_copy)
2823 zio->io_bp_copy = *bp;
2824
2825 if (zio->io_error)
2826 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2827
2828 mutex_enter(&zio->io_lock);
2829 zio->io_state[ZIO_WAIT_READY] = 1;
2830 pio = zio_walk_parents(zio);
2831 mutex_exit(&zio->io_lock);
2832
2833 /*
2834 * As we notify zio's parents, new parents could be added.
2835 * New parents go to the head of zio's io_parent_list, however,
2836 * so we will (correctly) not notify them. The remainder of zio's
2837 * io_parent_list, from 'pio_next' onward, cannot change because
2838 * all parents must wait for us to be done before they can be done.
2839 */
2840 for (; pio != NULL; pio = pio_next) {
2841 pio_next = zio_walk_parents(zio);
2842 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2843 }
2844
2845 if (zio->io_flags & ZIO_FLAG_NODATA) {
2846 if (BP_IS_GANG(bp)) {
2847 zio->io_flags &= ~ZIO_FLAG_NODATA;
2848 } else {
2849 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2850 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2851 }
2852 }
2853
2854 if (zio_injection_enabled &&
2855 zio->io_spa->spa_syncing_txg == zio->io_txg)
2856 zio_handle_ignored_writes(zio);
2857
2858 return (ZIO_PIPELINE_CONTINUE);
2859 }
2860
2861 static int
2862 zio_done(zio_t *zio)
2863 {
2864 zio_t *pio, *pio_next;
2865 int c, w;
2866
2867 /*
2868 * If our children haven't all completed,
2869 * wait for them and then repeat this pipeline stage.
2870 */
2871 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2872 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2873 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2874 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2875 return (ZIO_PIPELINE_STOP);
2876
2877 for (c = 0; c < ZIO_CHILD_TYPES; c++)
2878 for (w = 0; w < ZIO_WAIT_TYPES; w++)
2879 ASSERT(zio->io_children[c][w] == 0);
2880
2881 if (zio->io_bp != NULL) {
2882 ASSERT(zio->io_bp->blk_pad[0] == 0);
2883 ASSERT(zio->io_bp->blk_pad[1] == 0);
2884 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2885 (zio->io_bp == zio_unique_parent(zio)->io_bp));
2886 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
2887 zio->io_bp_override == NULL &&
2888 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2889 ASSERT(!BP_SHOULD_BYTESWAP(zio->io_bp));
2890 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2891 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
2892 (BP_COUNT_GANG(zio->io_bp) == BP_GET_NDVAS(zio->io_bp)));
2893 }
2894 }
2895
2896 /*
2897 * If there were child vdev/gang/ddt errors, they apply to us now.
2898 */
2899 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2900 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2901 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2902
2903 /*
2904 * If the I/O on the transformed data was successful, generate any
2905 * checksum reports now while we still have the transformed data.
2906 */
2907 if (zio->io_error == 0) {
2908 while (zio->io_cksum_report != NULL) {
2909 zio_cksum_report_t *zcr = zio->io_cksum_report;
2910 uint64_t align = zcr->zcr_align;
2911 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2912 char *abuf = zio->io_data;
2913
2914 if (asize != zio->io_size) {
2915 abuf = zio_buf_alloc(asize);
2916 bcopy(zio->io_data, abuf, zio->io_size);
2917 bzero(abuf + zio->io_size, asize - zio->io_size);
2918 }
2919
2920 zio->io_cksum_report = zcr->zcr_next;
2921 zcr->zcr_next = NULL;
2922 zcr->zcr_finish(zcr, abuf);
2923 zfs_ereport_free_checksum(zcr);
2924
2925 if (asize != zio->io_size)
2926 zio_buf_free(abuf, asize);
2927 }
2928 }
2929
2930 zio_pop_transforms(zio); /* note: may set zio->io_error */
2931
2932 vdev_stat_update(zio, zio->io_size);
2933
2934 /*
2935 * If this I/O is attached to a particular vdev is slow, exceeding
2936 * 30 seconds to complete, post an error described the I/O delay.
2937 * We ignore these errors if the device is currently unavailable.
2938 */
2939 if (zio->io_delay >= MSEC_TO_TICK(zio_delay_max)) {
2940 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
2941 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
2942 zio->io_vd, zio, 0, 0);
2943 }
2944
2945 if (zio->io_error) {
2946 /*
2947 * If this I/O is attached to a particular vdev,
2948 * generate an error message describing the I/O failure
2949 * at the block level. We ignore these errors if the
2950 * device is currently unavailable.
2951 */
2952 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
2953 !vdev_is_dead(zio->io_vd))
2954 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
2955 zio->io_vd, zio, 0, 0);
2956
2957 if ((zio->io_error == EIO || !(zio->io_flags &
2958 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2959 zio == zio->io_logical) {
2960 /*
2961 * For logical I/O requests, tell the SPA to log the
2962 * error and generate a logical data ereport.
2963 */
2964 spa_log_error(zio->io_spa, zio);
2965 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa, NULL, zio,
2966 0, 0);
2967 }
2968 }
2969
2970 if (zio->io_error && zio == zio->io_logical) {
2971 /*
2972 * Determine whether zio should be reexecuted. This will
2973 * propagate all the way to the root via zio_notify_parent().
2974 */
2975 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
2976 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2977
2978 if (IO_IS_ALLOCATING(zio) &&
2979 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2980 if (zio->io_error != ENOSPC)
2981 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2982 else
2983 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2984 }
2985
2986 if ((zio->io_type == ZIO_TYPE_READ ||
2987 zio->io_type == ZIO_TYPE_FREE) &&
2988 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2989 zio->io_error == ENXIO &&
2990 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
2991 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
2992 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2993
2994 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2995 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2996
2997 /*
2998 * Here is a possibly good place to attempt to do
2999 * either combinatorial reconstruction or error correction
3000 * based on checksums. It also might be a good place
3001 * to send out preliminary ereports before we suspend
3002 * processing.
3003 */
3004 }
3005
3006 /*
3007 * If there were logical child errors, they apply to us now.
3008 * We defer this until now to avoid conflating logical child
3009 * errors with errors that happened to the zio itself when
3010 * updating vdev stats and reporting FMA events above.
3011 */
3012 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
3013
3014 if ((zio->io_error || zio->io_reexecute) &&
3015 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
3016 !(zio->io_flags & ZIO_FLAG_IO_REWRITE))
3017 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
3018
3019 zio_gang_tree_free(&zio->io_gang_tree);
3020
3021 /*
3022 * Godfather I/Os should never suspend.
3023 */
3024 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
3025 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
3026 zio->io_reexecute = 0;
3027
3028 if (zio->io_reexecute) {
3029 /*
3030 * This is a logical I/O that wants to reexecute.
3031 *
3032 * Reexecute is top-down. When an i/o fails, if it's not
3033 * the root, it simply notifies its parent and sticks around.
3034 * The parent, seeing that it still has children in zio_done(),
3035 * does the same. This percolates all the way up to the root.
3036 * The root i/o will reexecute or suspend the entire tree.
3037 *
3038 * This approach ensures that zio_reexecute() honors
3039 * all the original i/o dependency relationships, e.g.
3040 * parents not executing until children are ready.
3041 */
3042 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3043
3044 zio->io_gang_leader = NULL;
3045
3046 mutex_enter(&zio->io_lock);
3047 zio->io_state[ZIO_WAIT_DONE] = 1;
3048 mutex_exit(&zio->io_lock);
3049
3050 /*
3051 * "The Godfather" I/O monitors its children but is
3052 * not a true parent to them. It will track them through
3053 * the pipeline but severs its ties whenever they get into
3054 * trouble (e.g. suspended). This allows "The Godfather"
3055 * I/O to return status without blocking.
3056 */
3057 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3058 zio_link_t *zl = zio->io_walk_link;
3059 pio_next = zio_walk_parents(zio);
3060
3061 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3062 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3063 zio_remove_child(pio, zio, zl);
3064 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3065 }
3066 }
3067
3068 if ((pio = zio_unique_parent(zio)) != NULL) {
3069 /*
3070 * We're not a root i/o, so there's nothing to do
3071 * but notify our parent. Don't propagate errors
3072 * upward since we haven't permanently failed yet.
3073 */
3074 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3075 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3076 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3077 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3078 /*
3079 * We'd fail again if we reexecuted now, so suspend
3080 * until conditions improve (e.g. device comes online).
3081 */
3082 zio_suspend(zio->io_spa, zio);
3083 } else {
3084 /*
3085 * Reexecution is potentially a huge amount of work.
3086 * Hand it off to the otherwise-unused claim taskq.
3087 */
3088 ASSERT(taskq_empty_ent(&zio->io_tqent));
3089 spa_taskq_dispatch_ent(zio->io_spa,
3090 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
3091 (task_func_t *)zio_reexecute, zio, 0,
3092 &zio->io_tqent);
3093 }
3094 return (ZIO_PIPELINE_STOP);
3095 }
3096
3097 ASSERT(zio->io_child_count == 0);
3098 ASSERT(zio->io_reexecute == 0);
3099 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3100
3101 /*
3102 * Report any checksum errors, since the I/O is complete.
3103 */
3104 while (zio->io_cksum_report != NULL) {
3105 zio_cksum_report_t *zcr = zio->io_cksum_report;
3106 zio->io_cksum_report = zcr->zcr_next;
3107 zcr->zcr_next = NULL;
3108 zcr->zcr_finish(zcr, NULL);
3109 zfs_ereport_free_checksum(zcr);
3110 }
3111
3112 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
3113 !BP_IS_HOLE(zio->io_bp)) {
3114 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
3115 }
3116
3117 /*
3118 * It is the responsibility of the done callback to ensure that this
3119 * particular zio is no longer discoverable for adoption, and as
3120 * such, cannot acquire any new parents.
3121 */
3122 if (zio->io_done)
3123 zio->io_done(zio);
3124
3125 mutex_enter(&zio->io_lock);
3126 zio->io_state[ZIO_WAIT_DONE] = 1;
3127 mutex_exit(&zio->io_lock);
3128
3129 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3130 zio_link_t *zl = zio->io_walk_link;
3131 pio_next = zio_walk_parents(zio);
3132 zio_remove_child(pio, zio, zl);
3133 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3134 }
3135
3136 if (zio->io_waiter != NULL) {
3137 mutex_enter(&zio->io_lock);
3138 zio->io_executor = NULL;
3139 cv_broadcast(&zio->io_cv);
3140 mutex_exit(&zio->io_lock);
3141 } else {
3142 zio_destroy(zio);
3143 }
3144
3145 return (ZIO_PIPELINE_STOP);
3146 }
3147
3148 /*
3149 * ==========================================================================
3150 * I/O pipeline definition
3151 * ==========================================================================
3152 */
3153 static zio_pipe_stage_t *zio_pipeline[] = {
3154 NULL,
3155 zio_read_bp_init,
3156 zio_free_bp_init,
3157 zio_issue_async,
3158 zio_write_bp_init,
3159 zio_checksum_generate,
3160 zio_ddt_read_start,
3161 zio_ddt_read_done,
3162 zio_ddt_write,
3163 zio_ddt_free,
3164 zio_gang_assemble,
3165 zio_gang_issue,
3166 zio_dva_allocate,
3167 zio_dva_free,
3168 zio_dva_claim,
3169 zio_ready,
3170 zio_vdev_io_start,
3171 zio_vdev_io_done,
3172 zio_vdev_io_assess,
3173 zio_checksum_verify,
3174 zio_done
3175 };
3176
3177 /* dnp is the dnode for zb1->zb_object */
3178 boolean_t
3179 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3180 const zbookmark_t *zb2)
3181 {
3182 uint64_t zb1nextL0, zb2thisobj;
3183
3184 ASSERT(zb1->zb_objset == zb2->zb_objset);
3185 ASSERT(zb2->zb_level == 0);
3186
3187 /*
3188 * A bookmark in the deadlist is considered to be after
3189 * everything else.
3190 */
3191 if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3192 return (B_TRUE);
3193
3194 /* The objset_phys_t isn't before anything. */
3195 if (dnp == NULL)
3196 return (B_FALSE);
3197
3198 zb1nextL0 = (zb1->zb_blkid + 1) <<
3199 ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3200
3201 zb2thisobj = zb2->zb_object ? zb2->zb_object :
3202 zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3203
3204 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3205 uint64_t nextobj = zb1nextL0 *
3206 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3207 return (nextobj <= zb2thisobj);
3208 }
3209
3210 if (zb1->zb_object < zb2thisobj)
3211 return (B_TRUE);
3212 if (zb1->zb_object > zb2thisobj)
3213 return (B_FALSE);
3214 if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3215 return (B_FALSE);
3216 return (zb1nextL0 <= zb2->zb_blkid);
3217 }
3218
3219 #if defined(_KERNEL) && defined(HAVE_SPL)
3220 /* Fault injection */
3221 EXPORT_SYMBOL(zio_injection_enabled);
3222 EXPORT_SYMBOL(zio_inject_fault);
3223 EXPORT_SYMBOL(zio_inject_list_next);
3224 EXPORT_SYMBOL(zio_clear_fault);
3225 EXPORT_SYMBOL(zio_handle_fault_injection);
3226 EXPORT_SYMBOL(zio_handle_device_injection);
3227 EXPORT_SYMBOL(zio_handle_label_injection);
3228 EXPORT_SYMBOL(zio_priority_table);
3229 EXPORT_SYMBOL(zio_type_name);
3230
3231 module_param(zio_bulk_flags, int, 0644);
3232 MODULE_PARM_DESC(zio_bulk_flags, "Additional flags to pass to bulk buffers");
3233
3234 module_param(zio_delay_max, int, 0644);
3235 MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
3236
3237 module_param(zio_requeue_io_start_cut_in_line, int, 0644);
3238 MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
3239
3240 module_param(zfs_sync_pass_deferred_free, int, 0644);
3241 MODULE_PARM_DESC(zfs_sync_pass_deferred_free,
3242 "defer frees starting in this pass");
3243
3244 module_param(zfs_sync_pass_dont_compress, int, 0644);
3245 MODULE_PARM_DESC(zfs_sync_pass_dont_compress,
3246 "don't compress starting in this pass");
3247
3248 module_param(zfs_sync_pass_rewrite, int, 0644);
3249 MODULE_PARM_DESC(zfs_sync_pass_rewrite,
3250 "rewrite new bps starting in this pass");
3251 #endif