]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Replace ASSERTV macro with compiler annotation
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 */
27
28 #include <sys/sysmacros.h>
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/txg.h>
33 #include <sys/spa_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_trim.h>
36 #include <sys/zio_impl.h>
37 #include <sys/zio_compress.h>
38 #include <sys/zio_checksum.h>
39 #include <sys/dmu_objset.h>
40 #include <sys/arc.h>
41 #include <sys/ddt.h>
42 #include <sys/blkptr.h>
43 #include <sys/zfeature.h>
44 #include <sys/dsl_scan.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/time.h>
47 #include <sys/trace_zfs.h>
48 #include <sys/abd.h>
49 #include <sys/dsl_crypt.h>
50 #include <sys/cityhash.h>
51
52 /*
53 * ==========================================================================
54 * I/O type descriptions
55 * ==========================================================================
56 */
57 const char *zio_type_name[ZIO_TYPES] = {
58 /*
59 * Note: Linux kernel thread name length is limited
60 * so these names will differ from upstream open zfs.
61 */
62 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
63 };
64
65 int zio_dva_throttle_enabled = B_TRUE;
66 int zio_deadman_log_all = B_FALSE;
67
68 /*
69 * ==========================================================================
70 * I/O kmem caches
71 * ==========================================================================
72 */
73 kmem_cache_t *zio_cache;
74 kmem_cache_t *zio_link_cache;
75 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
76 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
77 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
78 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #endif
81
82 /* Mark IOs as "slow" if they take longer than 30 seconds */
83 int zio_slow_io_ms = (30 * MILLISEC);
84
85 #define BP_SPANB(indblkshift, level) \
86 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
87 #define COMPARE_META_LEVEL 0x80000000ul
88 /*
89 * The following actions directly effect the spa's sync-to-convergence logic.
90 * The values below define the sync pass when we start performing the action.
91 * Care should be taken when changing these values as they directly impact
92 * spa_sync() performance. Tuning these values may introduce subtle performance
93 * pathologies and should only be done in the context of performance analysis.
94 * These tunables will eventually be removed and replaced with #defines once
95 * enough analysis has been done to determine optimal values.
96 *
97 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
98 * regular blocks are not deferred.
99 *
100 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
101 * compression (including of metadata). In practice, we don't have this
102 * many sync passes, so this has no effect.
103 *
104 * The original intent was that disabling compression would help the sync
105 * passes to converge. However, in practice disabling compression increases
106 * the average number of sync passes, because when we turn compression off, a
107 * lot of block's size will change and thus we have to re-allocate (not
108 * overwrite) them. It also increases the number of 128KB allocations (e.g.
109 * for indirect blocks and spacemaps) because these will not be compressed.
110 * The 128K allocations are especially detrimental to performance on highly
111 * fragmented systems, which may have very few free segments of this size,
112 * and may need to load new metaslabs to satisfy 128K allocations.
113 */
114 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
115 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
116 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
117
118 /*
119 * An allocating zio is one that either currently has the DVA allocate
120 * stage set or will have it later in its lifetime.
121 */
122 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
123
124 int zio_requeue_io_start_cut_in_line = 1;
125
126 #ifdef ZFS_DEBUG
127 int zio_buf_debug_limit = 16384;
128 #else
129 int zio_buf_debug_limit = 0;
130 #endif
131
132 static inline void __zio_execute(zio_t *zio);
133
134 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
135
136 void
137 zio_init(void)
138 {
139 size_t c;
140 vmem_t *data_alloc_arena = NULL;
141
142 zio_cache = kmem_cache_create("zio_cache",
143 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
144 zio_link_cache = kmem_cache_create("zio_link_cache",
145 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
146
147 /*
148 * For small buffers, we want a cache for each multiple of
149 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
150 * for each quarter-power of 2.
151 */
152 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
153 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
154 size_t p2 = size;
155 size_t align = 0;
156 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
157
158 #if defined(_ILP32) && defined(_KERNEL)
159 /*
160 * Cache size limited to 1M on 32-bit platforms until ARC
161 * buffers no longer require virtual address space.
162 */
163 if (size > zfs_max_recordsize)
164 break;
165 #endif
166
167 while (!ISP2(p2))
168 p2 &= p2 - 1;
169
170 #ifndef _KERNEL
171 /*
172 * If we are using watchpoints, put each buffer on its own page,
173 * to eliminate the performance overhead of trapping to the
174 * kernel when modifying a non-watched buffer that shares the
175 * page with a watched buffer.
176 */
177 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
178 continue;
179 /*
180 * Here's the problem - on 4K native devices in userland on
181 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
182 * will fail with EINVAL, causing zdb (and others) to coredump.
183 * Since userland probably doesn't need optimized buffer caches,
184 * we just force 4K alignment on everything.
185 */
186 align = 8 * SPA_MINBLOCKSIZE;
187 #else
188 if (size < PAGESIZE) {
189 align = SPA_MINBLOCKSIZE;
190 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
191 align = PAGESIZE;
192 }
193 #endif
194
195 if (align != 0) {
196 char name[36];
197 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
198 zio_buf_cache[c] = kmem_cache_create(name, size,
199 align, NULL, NULL, NULL, NULL, NULL, cflags);
200
201 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
202 zio_data_buf_cache[c] = kmem_cache_create(name, size,
203 align, NULL, NULL, NULL, NULL,
204 data_alloc_arena, cflags);
205 }
206 }
207
208 while (--c != 0) {
209 ASSERT(zio_buf_cache[c] != NULL);
210 if (zio_buf_cache[c - 1] == NULL)
211 zio_buf_cache[c - 1] = zio_buf_cache[c];
212
213 ASSERT(zio_data_buf_cache[c] != NULL);
214 if (zio_data_buf_cache[c - 1] == NULL)
215 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
216 }
217
218 zio_inject_init();
219
220 lz4_init();
221 }
222
223 void
224 zio_fini(void)
225 {
226 size_t c;
227 kmem_cache_t *last_cache = NULL;
228 kmem_cache_t *last_data_cache = NULL;
229
230 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
231 #ifdef _ILP32
232 /*
233 * Cache size limited to 1M on 32-bit platforms until ARC
234 * buffers no longer require virtual address space.
235 */
236 if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize)
237 break;
238 #endif
239 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
240 if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c])
241 (void) printf("zio_fini: [%d] %llu != %llu\n",
242 (int)((c + 1) << SPA_MINBLOCKSHIFT),
243 (long long unsigned)zio_buf_cache_allocs[c],
244 (long long unsigned)zio_buf_cache_frees[c]);
245 #endif
246 if (zio_buf_cache[c] != last_cache) {
247 last_cache = zio_buf_cache[c];
248 kmem_cache_destroy(zio_buf_cache[c]);
249 }
250 zio_buf_cache[c] = NULL;
251
252 if (zio_data_buf_cache[c] != last_data_cache) {
253 last_data_cache = zio_data_buf_cache[c];
254 kmem_cache_destroy(zio_data_buf_cache[c]);
255 }
256 zio_data_buf_cache[c] = NULL;
257 }
258
259 kmem_cache_destroy(zio_link_cache);
260 kmem_cache_destroy(zio_cache);
261
262 zio_inject_fini();
263
264 lz4_fini();
265 }
266
267 /*
268 * ==========================================================================
269 * Allocate and free I/O buffers
270 * ==========================================================================
271 */
272
273 /*
274 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
275 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
276 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
277 * excess / transient data in-core during a crashdump.
278 */
279 void *
280 zio_buf_alloc(size_t size)
281 {
282 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
283
284 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
285 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
286 atomic_add_64(&zio_buf_cache_allocs[c], 1);
287 #endif
288
289 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
290 }
291
292 /*
293 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
294 * crashdump if the kernel panics. This exists so that we will limit the amount
295 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
296 * of kernel heap dumped to disk when the kernel panics)
297 */
298 void *
299 zio_data_buf_alloc(size_t size)
300 {
301 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
302
303 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
304
305 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
306 }
307
308 void
309 zio_buf_free(void *buf, size_t size)
310 {
311 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
312
313 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
314 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
315 atomic_add_64(&zio_buf_cache_frees[c], 1);
316 #endif
317
318 kmem_cache_free(zio_buf_cache[c], buf);
319 }
320
321 void
322 zio_data_buf_free(void *buf, size_t size)
323 {
324 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
325
326 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
327
328 kmem_cache_free(zio_data_buf_cache[c], buf);
329 }
330
331 static void
332 zio_abd_free(void *abd, size_t size)
333 {
334 abd_free((abd_t *)abd);
335 }
336
337 /*
338 * ==========================================================================
339 * Push and pop I/O transform buffers
340 * ==========================================================================
341 */
342 void
343 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
344 zio_transform_func_t *transform)
345 {
346 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
347
348 zt->zt_orig_abd = zio->io_abd;
349 zt->zt_orig_size = zio->io_size;
350 zt->zt_bufsize = bufsize;
351 zt->zt_transform = transform;
352
353 zt->zt_next = zio->io_transform_stack;
354 zio->io_transform_stack = zt;
355
356 zio->io_abd = data;
357 zio->io_size = size;
358 }
359
360 void
361 zio_pop_transforms(zio_t *zio)
362 {
363 zio_transform_t *zt;
364
365 while ((zt = zio->io_transform_stack) != NULL) {
366 if (zt->zt_transform != NULL)
367 zt->zt_transform(zio,
368 zt->zt_orig_abd, zt->zt_orig_size);
369
370 if (zt->zt_bufsize != 0)
371 abd_free(zio->io_abd);
372
373 zio->io_abd = zt->zt_orig_abd;
374 zio->io_size = zt->zt_orig_size;
375 zio->io_transform_stack = zt->zt_next;
376
377 kmem_free(zt, sizeof (zio_transform_t));
378 }
379 }
380
381 /*
382 * ==========================================================================
383 * I/O transform callbacks for subblocks, decompression, and decryption
384 * ==========================================================================
385 */
386 static void
387 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
388 {
389 ASSERT(zio->io_size > size);
390
391 if (zio->io_type == ZIO_TYPE_READ)
392 abd_copy(data, zio->io_abd, size);
393 }
394
395 static void
396 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
397 {
398 if (zio->io_error == 0) {
399 void *tmp = abd_borrow_buf(data, size);
400 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
401 zio->io_abd, tmp, zio->io_size, size);
402 abd_return_buf_copy(data, tmp, size);
403
404 if (zio_injection_enabled && ret == 0)
405 ret = zio_handle_fault_injection(zio, EINVAL);
406
407 if (ret != 0)
408 zio->io_error = SET_ERROR(EIO);
409 }
410 }
411
412 static void
413 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
414 {
415 int ret;
416 void *tmp;
417 blkptr_t *bp = zio->io_bp;
418 spa_t *spa = zio->io_spa;
419 uint64_t dsobj = zio->io_bookmark.zb_objset;
420 uint64_t lsize = BP_GET_LSIZE(bp);
421 dmu_object_type_t ot = BP_GET_TYPE(bp);
422 uint8_t salt[ZIO_DATA_SALT_LEN];
423 uint8_t iv[ZIO_DATA_IV_LEN];
424 uint8_t mac[ZIO_DATA_MAC_LEN];
425 boolean_t no_crypt = B_FALSE;
426
427 ASSERT(BP_USES_CRYPT(bp));
428 ASSERT3U(size, !=, 0);
429
430 if (zio->io_error != 0)
431 return;
432
433 /*
434 * Verify the cksum of MACs stored in an indirect bp. It will always
435 * be possible to verify this since it does not require an encryption
436 * key.
437 */
438 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
439 zio_crypt_decode_mac_bp(bp, mac);
440
441 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
442 /*
443 * We haven't decompressed the data yet, but
444 * zio_crypt_do_indirect_mac_checksum() requires
445 * decompressed data to be able to parse out the MACs
446 * from the indirect block. We decompress it now and
447 * throw away the result after we are finished.
448 */
449 tmp = zio_buf_alloc(lsize);
450 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
451 zio->io_abd, tmp, zio->io_size, lsize);
452 if (ret != 0) {
453 ret = SET_ERROR(EIO);
454 goto error;
455 }
456 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
457 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
458 zio_buf_free(tmp, lsize);
459 } else {
460 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
461 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
462 }
463 abd_copy(data, zio->io_abd, size);
464
465 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
466 ret = zio_handle_decrypt_injection(spa,
467 &zio->io_bookmark, ot, ECKSUM);
468 }
469 if (ret != 0)
470 goto error;
471
472 return;
473 }
474
475 /*
476 * If this is an authenticated block, just check the MAC. It would be
477 * nice to separate this out into its own flag, but for the moment
478 * enum zio_flag is out of bits.
479 */
480 if (BP_IS_AUTHENTICATED(bp)) {
481 if (ot == DMU_OT_OBJSET) {
482 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
483 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
484 } else {
485 zio_crypt_decode_mac_bp(bp, mac);
486 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
487 zio->io_abd, size, mac);
488 if (zio_injection_enabled && ret == 0) {
489 ret = zio_handle_decrypt_injection(spa,
490 &zio->io_bookmark, ot, ECKSUM);
491 }
492 }
493 abd_copy(data, zio->io_abd, size);
494
495 if (ret != 0)
496 goto error;
497
498 return;
499 }
500
501 zio_crypt_decode_params_bp(bp, salt, iv);
502
503 if (ot == DMU_OT_INTENT_LOG) {
504 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
505 zio_crypt_decode_mac_zil(tmp, mac);
506 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
507 } else {
508 zio_crypt_decode_mac_bp(bp, mac);
509 }
510
511 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
512 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
513 zio->io_abd, &no_crypt);
514 if (no_crypt)
515 abd_copy(data, zio->io_abd, size);
516
517 if (ret != 0)
518 goto error;
519
520 return;
521
522 error:
523 /* assert that the key was found unless this was speculative */
524 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
525
526 /*
527 * If there was a decryption / authentication error return EIO as
528 * the io_error. If this was not a speculative zio, create an ereport.
529 */
530 if (ret == ECKSUM) {
531 zio->io_error = SET_ERROR(EIO);
532 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
533 spa_log_error(spa, &zio->io_bookmark);
534 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
535 spa, NULL, &zio->io_bookmark, zio, 0, 0);
536 }
537 } else {
538 zio->io_error = ret;
539 }
540 }
541
542 /*
543 * ==========================================================================
544 * I/O parent/child relationships and pipeline interlocks
545 * ==========================================================================
546 */
547 zio_t *
548 zio_walk_parents(zio_t *cio, zio_link_t **zl)
549 {
550 list_t *pl = &cio->io_parent_list;
551
552 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
553 if (*zl == NULL)
554 return (NULL);
555
556 ASSERT((*zl)->zl_child == cio);
557 return ((*zl)->zl_parent);
558 }
559
560 zio_t *
561 zio_walk_children(zio_t *pio, zio_link_t **zl)
562 {
563 list_t *cl = &pio->io_child_list;
564
565 ASSERT(MUTEX_HELD(&pio->io_lock));
566
567 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
568 if (*zl == NULL)
569 return (NULL);
570
571 ASSERT((*zl)->zl_parent == pio);
572 return ((*zl)->zl_child);
573 }
574
575 zio_t *
576 zio_unique_parent(zio_t *cio)
577 {
578 zio_link_t *zl = NULL;
579 zio_t *pio = zio_walk_parents(cio, &zl);
580
581 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
582 return (pio);
583 }
584
585 void
586 zio_add_child(zio_t *pio, zio_t *cio)
587 {
588 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
589
590 /*
591 * Logical I/Os can have logical, gang, or vdev children.
592 * Gang I/Os can have gang or vdev children.
593 * Vdev I/Os can only have vdev children.
594 * The following ASSERT captures all of these constraints.
595 */
596 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
597
598 zl->zl_parent = pio;
599 zl->zl_child = cio;
600
601 mutex_enter(&pio->io_lock);
602 mutex_enter(&cio->io_lock);
603
604 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
605
606 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
607 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
608
609 list_insert_head(&pio->io_child_list, zl);
610 list_insert_head(&cio->io_parent_list, zl);
611
612 pio->io_child_count++;
613 cio->io_parent_count++;
614
615 mutex_exit(&cio->io_lock);
616 mutex_exit(&pio->io_lock);
617 }
618
619 static void
620 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
621 {
622 ASSERT(zl->zl_parent == pio);
623 ASSERT(zl->zl_child == cio);
624
625 mutex_enter(&pio->io_lock);
626 mutex_enter(&cio->io_lock);
627
628 list_remove(&pio->io_child_list, zl);
629 list_remove(&cio->io_parent_list, zl);
630
631 pio->io_child_count--;
632 cio->io_parent_count--;
633
634 mutex_exit(&cio->io_lock);
635 mutex_exit(&pio->io_lock);
636 kmem_cache_free(zio_link_cache, zl);
637 }
638
639 static boolean_t
640 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
641 {
642 boolean_t waiting = B_FALSE;
643
644 mutex_enter(&zio->io_lock);
645 ASSERT(zio->io_stall == NULL);
646 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
647 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
648 continue;
649
650 uint64_t *countp = &zio->io_children[c][wait];
651 if (*countp != 0) {
652 zio->io_stage >>= 1;
653 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
654 zio->io_stall = countp;
655 waiting = B_TRUE;
656 break;
657 }
658 }
659 mutex_exit(&zio->io_lock);
660 return (waiting);
661 }
662
663 __attribute__((always_inline))
664 static inline void
665 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
666 zio_t **next_to_executep)
667 {
668 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
669 int *errorp = &pio->io_child_error[zio->io_child_type];
670
671 mutex_enter(&pio->io_lock);
672 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
673 *errorp = zio_worst_error(*errorp, zio->io_error);
674 pio->io_reexecute |= zio->io_reexecute;
675 ASSERT3U(*countp, >, 0);
676
677 (*countp)--;
678
679 if (*countp == 0 && pio->io_stall == countp) {
680 zio_taskq_type_t type =
681 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
682 ZIO_TASKQ_INTERRUPT;
683 pio->io_stall = NULL;
684 mutex_exit(&pio->io_lock);
685
686 /*
687 * If we can tell the caller to execute this parent next, do
688 * so. Otherwise dispatch the parent zio as its own task.
689 *
690 * Having the caller execute the parent when possible reduces
691 * locking on the zio taskq's, reduces context switch
692 * overhead, and has no recursion penalty. Note that one
693 * read from disk typically causes at least 3 zio's: a
694 * zio_null(), the logical zio_read(), and then a physical
695 * zio. When the physical ZIO completes, we are able to call
696 * zio_done() on all 3 of these zio's from one invocation of
697 * zio_execute() by returning the parent back to
698 * zio_execute(). Since the parent isn't executed until this
699 * thread returns back to zio_execute(), the caller should do
700 * so promptly.
701 *
702 * In other cases, dispatching the parent prevents
703 * overflowing the stack when we have deeply nested
704 * parent-child relationships, as we do with the "mega zio"
705 * of writes for spa_sync(), and the chain of ZIL blocks.
706 */
707 if (next_to_executep != NULL && *next_to_executep == NULL) {
708 *next_to_executep = pio;
709 } else {
710 zio_taskq_dispatch(pio, type, B_FALSE);
711 }
712 } else {
713 mutex_exit(&pio->io_lock);
714 }
715 }
716
717 static void
718 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
719 {
720 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
721 zio->io_error = zio->io_child_error[c];
722 }
723
724 int
725 zio_bookmark_compare(const void *x1, const void *x2)
726 {
727 const zio_t *z1 = x1;
728 const zio_t *z2 = x2;
729
730 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
731 return (-1);
732 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
733 return (1);
734
735 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
736 return (-1);
737 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
738 return (1);
739
740 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
741 return (-1);
742 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
743 return (1);
744
745 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
746 return (-1);
747 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
748 return (1);
749
750 if (z1 < z2)
751 return (-1);
752 if (z1 > z2)
753 return (1);
754
755 return (0);
756 }
757
758 /*
759 * ==========================================================================
760 * Create the various types of I/O (read, write, free, etc)
761 * ==========================================================================
762 */
763 static zio_t *
764 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
765 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
766 void *private, zio_type_t type, zio_priority_t priority,
767 enum zio_flag flags, vdev_t *vd, uint64_t offset,
768 const zbookmark_phys_t *zb, enum zio_stage stage,
769 enum zio_stage pipeline)
770 {
771 zio_t *zio;
772
773 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
774 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
775 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
776
777 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
778 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
779 ASSERT(vd || stage == ZIO_STAGE_OPEN);
780
781 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
782
783 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
784 bzero(zio, sizeof (zio_t));
785
786 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
787 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
788
789 list_create(&zio->io_parent_list, sizeof (zio_link_t),
790 offsetof(zio_link_t, zl_parent_node));
791 list_create(&zio->io_child_list, sizeof (zio_link_t),
792 offsetof(zio_link_t, zl_child_node));
793 metaslab_trace_init(&zio->io_alloc_list);
794
795 if (vd != NULL)
796 zio->io_child_type = ZIO_CHILD_VDEV;
797 else if (flags & ZIO_FLAG_GANG_CHILD)
798 zio->io_child_type = ZIO_CHILD_GANG;
799 else if (flags & ZIO_FLAG_DDT_CHILD)
800 zio->io_child_type = ZIO_CHILD_DDT;
801 else
802 zio->io_child_type = ZIO_CHILD_LOGICAL;
803
804 if (bp != NULL) {
805 zio->io_bp = (blkptr_t *)bp;
806 zio->io_bp_copy = *bp;
807 zio->io_bp_orig = *bp;
808 if (type != ZIO_TYPE_WRITE ||
809 zio->io_child_type == ZIO_CHILD_DDT)
810 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
811 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
812 zio->io_logical = zio;
813 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
814 pipeline |= ZIO_GANG_STAGES;
815 }
816
817 zio->io_spa = spa;
818 zio->io_txg = txg;
819 zio->io_done = done;
820 zio->io_private = private;
821 zio->io_type = type;
822 zio->io_priority = priority;
823 zio->io_vd = vd;
824 zio->io_offset = offset;
825 zio->io_orig_abd = zio->io_abd = data;
826 zio->io_orig_size = zio->io_size = psize;
827 zio->io_lsize = lsize;
828 zio->io_orig_flags = zio->io_flags = flags;
829 zio->io_orig_stage = zio->io_stage = stage;
830 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
831 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
832
833 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
834 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
835
836 if (zb != NULL)
837 zio->io_bookmark = *zb;
838
839 if (pio != NULL) {
840 if (zio->io_metaslab_class == NULL)
841 zio->io_metaslab_class = pio->io_metaslab_class;
842 if (zio->io_logical == NULL)
843 zio->io_logical = pio->io_logical;
844 if (zio->io_child_type == ZIO_CHILD_GANG)
845 zio->io_gang_leader = pio->io_gang_leader;
846 zio_add_child(pio, zio);
847 }
848
849 taskq_init_ent(&zio->io_tqent);
850
851 return (zio);
852 }
853
854 static void
855 zio_destroy(zio_t *zio)
856 {
857 metaslab_trace_fini(&zio->io_alloc_list);
858 list_destroy(&zio->io_parent_list);
859 list_destroy(&zio->io_child_list);
860 mutex_destroy(&zio->io_lock);
861 cv_destroy(&zio->io_cv);
862 kmem_cache_free(zio_cache, zio);
863 }
864
865 zio_t *
866 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
867 void *private, enum zio_flag flags)
868 {
869 zio_t *zio;
870
871 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
872 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
873 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
874
875 return (zio);
876 }
877
878 zio_t *
879 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
880 {
881 return (zio_null(NULL, spa, NULL, done, private, flags));
882 }
883
884 static void
885 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held)
886 {
887 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
888 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
889 bp, (longlong_t)BP_GET_TYPE(bp));
890 }
891 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
892 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
893 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
894 bp, (longlong_t)BP_GET_CHECKSUM(bp));
895 }
896 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
897 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
898 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
899 bp, (longlong_t)BP_GET_COMPRESS(bp));
900 }
901 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
902 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
903 bp, (longlong_t)BP_GET_LSIZE(bp));
904 }
905 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
906 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
907 bp, (longlong_t)BP_GET_PSIZE(bp));
908 }
909
910 if (BP_IS_EMBEDDED(bp)) {
911 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
912 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
913 bp, (longlong_t)BPE_GET_ETYPE(bp));
914 }
915 }
916
917 /*
918 * Do not verify individual DVAs if the config is not trusted. This
919 * will be done once the zio is executed in vdev_mirror_map_alloc.
920 */
921 if (!spa->spa_trust_config)
922 return;
923
924 if (!config_held)
925 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
926 else
927 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
928 /*
929 * Pool-specific checks.
930 *
931 * Note: it would be nice to verify that the blk_birth and
932 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
933 * allows the birth time of log blocks (and dmu_sync()-ed blocks
934 * that are in the log) to be arbitrarily large.
935 */
936 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
937 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
938
939 if (vdevid >= spa->spa_root_vdev->vdev_children) {
940 zfs_panic_recover("blkptr at %p DVA %u has invalid "
941 "VDEV %llu",
942 bp, i, (longlong_t)vdevid);
943 continue;
944 }
945 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
946 if (vd == NULL) {
947 zfs_panic_recover("blkptr at %p DVA %u has invalid "
948 "VDEV %llu",
949 bp, i, (longlong_t)vdevid);
950 continue;
951 }
952 if (vd->vdev_ops == &vdev_hole_ops) {
953 zfs_panic_recover("blkptr at %p DVA %u has hole "
954 "VDEV %llu",
955 bp, i, (longlong_t)vdevid);
956 continue;
957 }
958 if (vd->vdev_ops == &vdev_missing_ops) {
959 /*
960 * "missing" vdevs are valid during import, but we
961 * don't have their detailed info (e.g. asize), so
962 * we can't perform any more checks on them.
963 */
964 continue;
965 }
966 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
967 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
968 if (BP_IS_GANG(bp))
969 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
970 if (offset + asize > vd->vdev_asize) {
971 zfs_panic_recover("blkptr at %p DVA %u has invalid "
972 "OFFSET %llu",
973 bp, i, (longlong_t)offset);
974 }
975 }
976 if (!config_held)
977 spa_config_exit(spa, SCL_VDEV, bp);
978 }
979
980 boolean_t
981 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
982 {
983 uint64_t vdevid = DVA_GET_VDEV(dva);
984
985 if (vdevid >= spa->spa_root_vdev->vdev_children)
986 return (B_FALSE);
987
988 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
989 if (vd == NULL)
990 return (B_FALSE);
991
992 if (vd->vdev_ops == &vdev_hole_ops)
993 return (B_FALSE);
994
995 if (vd->vdev_ops == &vdev_missing_ops) {
996 return (B_FALSE);
997 }
998
999 uint64_t offset = DVA_GET_OFFSET(dva);
1000 uint64_t asize = DVA_GET_ASIZE(dva);
1001
1002 if (BP_IS_GANG(bp))
1003 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1004 if (offset + asize > vd->vdev_asize)
1005 return (B_FALSE);
1006
1007 return (B_TRUE);
1008 }
1009
1010 zio_t *
1011 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1012 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1013 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1014 {
1015 zio_t *zio;
1016
1017 zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER);
1018
1019 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1020 data, size, size, done, private,
1021 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1022 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1023 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1024
1025 return (zio);
1026 }
1027
1028 zio_t *
1029 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1030 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1031 zio_done_func_t *ready, zio_done_func_t *children_ready,
1032 zio_done_func_t *physdone, zio_done_func_t *done,
1033 void *private, zio_priority_t priority, enum zio_flag flags,
1034 const zbookmark_phys_t *zb)
1035 {
1036 zio_t *zio;
1037
1038 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1039 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1040 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1041 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1042 DMU_OT_IS_VALID(zp->zp_type) &&
1043 zp->zp_level < 32 &&
1044 zp->zp_copies > 0 &&
1045 zp->zp_copies <= spa_max_replication(spa));
1046
1047 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1048 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1049 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1050 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1051
1052 zio->io_ready = ready;
1053 zio->io_children_ready = children_ready;
1054 zio->io_physdone = physdone;
1055 zio->io_prop = *zp;
1056
1057 /*
1058 * Data can be NULL if we are going to call zio_write_override() to
1059 * provide the already-allocated BP. But we may need the data to
1060 * verify a dedup hit (if requested). In this case, don't try to
1061 * dedup (just take the already-allocated BP verbatim). Encrypted
1062 * dedup blocks need data as well so we also disable dedup in this
1063 * case.
1064 */
1065 if (data == NULL &&
1066 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1067 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1068 }
1069
1070 return (zio);
1071 }
1072
1073 zio_t *
1074 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1075 uint64_t size, zio_done_func_t *done, void *private,
1076 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1077 {
1078 zio_t *zio;
1079
1080 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1081 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1082 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1083
1084 return (zio);
1085 }
1086
1087 void
1088 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1089 {
1090 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1091 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1092 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1093 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1094
1095 /*
1096 * We must reset the io_prop to match the values that existed
1097 * when the bp was first written by dmu_sync() keeping in mind
1098 * that nopwrite and dedup are mutually exclusive.
1099 */
1100 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1101 zio->io_prop.zp_nopwrite = nopwrite;
1102 zio->io_prop.zp_copies = copies;
1103 zio->io_bp_override = bp;
1104 }
1105
1106 void
1107 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1108 {
1109
1110 zfs_blkptr_verify(spa, bp, B_FALSE);
1111
1112 /*
1113 * The check for EMBEDDED is a performance optimization. We
1114 * process the free here (by ignoring it) rather than
1115 * putting it on the list and then processing it in zio_free_sync().
1116 */
1117 if (BP_IS_EMBEDDED(bp))
1118 return;
1119 metaslab_check_free(spa, bp);
1120
1121 /*
1122 * Frees that are for the currently-syncing txg, are not going to be
1123 * deferred, and which will not need to do a read (i.e. not GANG or
1124 * DEDUP), can be processed immediately. Otherwise, put them on the
1125 * in-memory list for later processing.
1126 *
1127 * Note that we only defer frees after zfs_sync_pass_deferred_free
1128 * when the log space map feature is disabled. [see relevant comment
1129 * in spa_sync_iterate_to_convergence()]
1130 */
1131 if (BP_IS_GANG(bp) ||
1132 BP_GET_DEDUP(bp) ||
1133 txg != spa->spa_syncing_txg ||
1134 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1135 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1136 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1137 } else {
1138 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1139 }
1140 }
1141
1142 zio_t *
1143 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1144 enum zio_flag flags)
1145 {
1146 zio_t *zio;
1147 enum zio_stage stage = ZIO_FREE_PIPELINE;
1148
1149 ASSERT(!BP_IS_HOLE(bp));
1150 ASSERT(spa_syncing_txg(spa) == txg);
1151
1152 if (BP_IS_EMBEDDED(bp))
1153 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1154
1155 metaslab_check_free(spa, bp);
1156 arc_freed(spa, bp);
1157 dsl_scan_freed(spa, bp);
1158
1159 /*
1160 * GANG and DEDUP blocks can induce a read (for the gang block header,
1161 * or the DDT), so issue them asynchronously so that this thread is
1162 * not tied up.
1163 */
1164 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1165 stage |= ZIO_STAGE_ISSUE_ASYNC;
1166
1167 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1168 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1169 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1170
1171 return (zio);
1172 }
1173
1174 zio_t *
1175 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1176 zio_done_func_t *done, void *private, enum zio_flag flags)
1177 {
1178 zio_t *zio;
1179
1180 zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER);
1181
1182 if (BP_IS_EMBEDDED(bp))
1183 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1184
1185 /*
1186 * A claim is an allocation of a specific block. Claims are needed
1187 * to support immediate writes in the intent log. The issue is that
1188 * immediate writes contain committed data, but in a txg that was
1189 * *not* committed. Upon opening the pool after an unclean shutdown,
1190 * the intent log claims all blocks that contain immediate write data
1191 * so that the SPA knows they're in use.
1192 *
1193 * All claims *must* be resolved in the first txg -- before the SPA
1194 * starts allocating blocks -- so that nothing is allocated twice.
1195 * If txg == 0 we just verify that the block is claimable.
1196 */
1197 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1198 spa_min_claim_txg(spa));
1199 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1200 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
1201
1202 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1203 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1204 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1205 ASSERT0(zio->io_queued_timestamp);
1206
1207 return (zio);
1208 }
1209
1210 zio_t *
1211 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1212 zio_done_func_t *done, void *private, enum zio_flag flags)
1213 {
1214 zio_t *zio;
1215 int c;
1216
1217 if (vd->vdev_children == 0) {
1218 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1219 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1220 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1221
1222 zio->io_cmd = cmd;
1223 } else {
1224 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1225
1226 for (c = 0; c < vd->vdev_children; c++)
1227 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1228 done, private, flags));
1229 }
1230
1231 return (zio);
1232 }
1233
1234 zio_t *
1235 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1236 zio_done_func_t *done, void *private, zio_priority_t priority,
1237 enum zio_flag flags, enum trim_flag trim_flags)
1238 {
1239 zio_t *zio;
1240
1241 ASSERT0(vd->vdev_children);
1242 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1243 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1244 ASSERT3U(size, !=, 0);
1245
1246 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1247 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1248 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1249 zio->io_trim_flags = trim_flags;
1250
1251 return (zio);
1252 }
1253
1254 zio_t *
1255 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1256 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1257 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1258 {
1259 zio_t *zio;
1260
1261 ASSERT(vd->vdev_children == 0);
1262 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1263 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1264 ASSERT3U(offset + size, <=, vd->vdev_psize);
1265
1266 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1267 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1268 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1269
1270 zio->io_prop.zp_checksum = checksum;
1271
1272 return (zio);
1273 }
1274
1275 zio_t *
1276 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1277 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1278 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1279 {
1280 zio_t *zio;
1281
1282 ASSERT(vd->vdev_children == 0);
1283 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1284 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1285 ASSERT3U(offset + size, <=, vd->vdev_psize);
1286
1287 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1288 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1289 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1290
1291 zio->io_prop.zp_checksum = checksum;
1292
1293 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1294 /*
1295 * zec checksums are necessarily destructive -- they modify
1296 * the end of the write buffer to hold the verifier/checksum.
1297 * Therefore, we must make a local copy in case the data is
1298 * being written to multiple places in parallel.
1299 */
1300 abd_t *wbuf = abd_alloc_sametype(data, size);
1301 abd_copy(wbuf, data, size);
1302
1303 zio_push_transform(zio, wbuf, size, size, NULL);
1304 }
1305
1306 return (zio);
1307 }
1308
1309 /*
1310 * Create a child I/O to do some work for us.
1311 */
1312 zio_t *
1313 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1314 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1315 enum zio_flag flags, zio_done_func_t *done, void *private)
1316 {
1317 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1318 zio_t *zio;
1319
1320 /*
1321 * vdev child I/Os do not propagate their error to the parent.
1322 * Therefore, for correct operation the caller *must* check for
1323 * and handle the error in the child i/o's done callback.
1324 * The only exceptions are i/os that we don't care about
1325 * (OPTIONAL or REPAIR).
1326 */
1327 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1328 done != NULL);
1329
1330 if (type == ZIO_TYPE_READ && bp != NULL) {
1331 /*
1332 * If we have the bp, then the child should perform the
1333 * checksum and the parent need not. This pushes error
1334 * detection as close to the leaves as possible and
1335 * eliminates redundant checksums in the interior nodes.
1336 */
1337 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1338 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1339 }
1340
1341 if (vd->vdev_ops->vdev_op_leaf) {
1342 ASSERT0(vd->vdev_children);
1343 offset += VDEV_LABEL_START_SIZE;
1344 }
1345
1346 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1347
1348 /*
1349 * If we've decided to do a repair, the write is not speculative --
1350 * even if the original read was.
1351 */
1352 if (flags & ZIO_FLAG_IO_REPAIR)
1353 flags &= ~ZIO_FLAG_SPECULATIVE;
1354
1355 /*
1356 * If we're creating a child I/O that is not associated with a
1357 * top-level vdev, then the child zio is not an allocating I/O.
1358 * If this is a retried I/O then we ignore it since we will
1359 * have already processed the original allocating I/O.
1360 */
1361 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1362 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1363 ASSERT(pio->io_metaslab_class != NULL);
1364 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1365 ASSERT(type == ZIO_TYPE_WRITE);
1366 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1367 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1368 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1369 pio->io_child_type == ZIO_CHILD_GANG);
1370
1371 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1372 }
1373
1374
1375 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1376 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1377 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1378 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1379
1380 zio->io_physdone = pio->io_physdone;
1381 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1382 zio->io_logical->io_phys_children++;
1383
1384 return (zio);
1385 }
1386
1387 zio_t *
1388 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1389 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1390 zio_done_func_t *done, void *private)
1391 {
1392 zio_t *zio;
1393
1394 ASSERT(vd->vdev_ops->vdev_op_leaf);
1395
1396 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1397 data, size, size, done, private, type, priority,
1398 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1399 vd, offset, NULL,
1400 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1401
1402 return (zio);
1403 }
1404
1405 void
1406 zio_flush(zio_t *zio, vdev_t *vd)
1407 {
1408 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1409 NULL, NULL,
1410 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1411 }
1412
1413 void
1414 zio_shrink(zio_t *zio, uint64_t size)
1415 {
1416 ASSERT3P(zio->io_executor, ==, NULL);
1417 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1418 ASSERT3U(size, <=, zio->io_size);
1419
1420 /*
1421 * We don't shrink for raidz because of problems with the
1422 * reconstruction when reading back less than the block size.
1423 * Note, BP_IS_RAIDZ() assumes no compression.
1424 */
1425 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1426 if (!BP_IS_RAIDZ(zio->io_bp)) {
1427 /* we are not doing a raw write */
1428 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1429 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1430 }
1431 }
1432
1433 /*
1434 * ==========================================================================
1435 * Prepare to read and write logical blocks
1436 * ==========================================================================
1437 */
1438
1439 static zio_t *
1440 zio_read_bp_init(zio_t *zio)
1441 {
1442 blkptr_t *bp = zio->io_bp;
1443 uint64_t psize =
1444 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1445
1446 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1447
1448 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1449 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1450 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1451 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1452 psize, psize, zio_decompress);
1453 }
1454
1455 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1456 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1457 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1458 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1459 psize, psize, zio_decrypt);
1460 }
1461
1462 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1463 int psize = BPE_GET_PSIZE(bp);
1464 void *data = abd_borrow_buf(zio->io_abd, psize);
1465
1466 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1467 decode_embedded_bp_compressed(bp, data);
1468 abd_return_buf_copy(zio->io_abd, data, psize);
1469 } else {
1470 ASSERT(!BP_IS_EMBEDDED(bp));
1471 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1472 }
1473
1474 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1475 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1476
1477 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1478 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1479
1480 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1481 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1482
1483 return (zio);
1484 }
1485
1486 static zio_t *
1487 zio_write_bp_init(zio_t *zio)
1488 {
1489 if (!IO_IS_ALLOCATING(zio))
1490 return (zio);
1491
1492 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1493
1494 if (zio->io_bp_override) {
1495 blkptr_t *bp = zio->io_bp;
1496 zio_prop_t *zp = &zio->io_prop;
1497
1498 ASSERT(bp->blk_birth != zio->io_txg);
1499 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1500
1501 *bp = *zio->io_bp_override;
1502 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1503
1504 if (BP_IS_EMBEDDED(bp))
1505 return (zio);
1506
1507 /*
1508 * If we've been overridden and nopwrite is set then
1509 * set the flag accordingly to indicate that a nopwrite
1510 * has already occurred.
1511 */
1512 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1513 ASSERT(!zp->zp_dedup);
1514 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1515 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1516 return (zio);
1517 }
1518
1519 ASSERT(!zp->zp_nopwrite);
1520
1521 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1522 return (zio);
1523
1524 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1525 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1526
1527 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1528 !zp->zp_encrypt) {
1529 BP_SET_DEDUP(bp, 1);
1530 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1531 return (zio);
1532 }
1533
1534 /*
1535 * We were unable to handle this as an override bp, treat
1536 * it as a regular write I/O.
1537 */
1538 zio->io_bp_override = NULL;
1539 *bp = zio->io_bp_orig;
1540 zio->io_pipeline = zio->io_orig_pipeline;
1541 }
1542
1543 return (zio);
1544 }
1545
1546 static zio_t *
1547 zio_write_compress(zio_t *zio)
1548 {
1549 spa_t *spa = zio->io_spa;
1550 zio_prop_t *zp = &zio->io_prop;
1551 enum zio_compress compress = zp->zp_compress;
1552 blkptr_t *bp = zio->io_bp;
1553 uint64_t lsize = zio->io_lsize;
1554 uint64_t psize = zio->io_size;
1555 int pass = 1;
1556
1557 /*
1558 * If our children haven't all reached the ready stage,
1559 * wait for them and then repeat this pipeline stage.
1560 */
1561 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1562 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1563 return (NULL);
1564 }
1565
1566 if (!IO_IS_ALLOCATING(zio))
1567 return (zio);
1568
1569 if (zio->io_children_ready != NULL) {
1570 /*
1571 * Now that all our children are ready, run the callback
1572 * associated with this zio in case it wants to modify the
1573 * data to be written.
1574 */
1575 ASSERT3U(zp->zp_level, >, 0);
1576 zio->io_children_ready(zio);
1577 }
1578
1579 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1580 ASSERT(zio->io_bp_override == NULL);
1581
1582 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1583 /*
1584 * We're rewriting an existing block, which means we're
1585 * working on behalf of spa_sync(). For spa_sync() to
1586 * converge, it must eventually be the case that we don't
1587 * have to allocate new blocks. But compression changes
1588 * the blocksize, which forces a reallocate, and makes
1589 * convergence take longer. Therefore, after the first
1590 * few passes, stop compressing to ensure convergence.
1591 */
1592 pass = spa_sync_pass(spa);
1593
1594 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1595 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1596 ASSERT(!BP_GET_DEDUP(bp));
1597
1598 if (pass >= zfs_sync_pass_dont_compress)
1599 compress = ZIO_COMPRESS_OFF;
1600
1601 /* Make sure someone doesn't change their mind on overwrites */
1602 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1603 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1604 }
1605
1606 /* If it's a compressed write that is not raw, compress the buffer. */
1607 if (compress != ZIO_COMPRESS_OFF &&
1608 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1609 void *cbuf = zio_buf_alloc(lsize);
1610 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1611 if (psize == 0 || psize == lsize) {
1612 compress = ZIO_COMPRESS_OFF;
1613 zio_buf_free(cbuf, lsize);
1614 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1615 psize <= BPE_PAYLOAD_SIZE &&
1616 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1617 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1618 encode_embedded_bp_compressed(bp,
1619 cbuf, compress, lsize, psize);
1620 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1621 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1622 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1623 zio_buf_free(cbuf, lsize);
1624 bp->blk_birth = zio->io_txg;
1625 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1626 ASSERT(spa_feature_is_active(spa,
1627 SPA_FEATURE_EMBEDDED_DATA));
1628 return (zio);
1629 } else {
1630 /*
1631 * Round up compressed size up to the ashift
1632 * of the smallest-ashift device, and zero the tail.
1633 * This ensures that the compressed size of the BP
1634 * (and thus compressratio property) are correct,
1635 * in that we charge for the padding used to fill out
1636 * the last sector.
1637 */
1638 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1639 size_t rounded = (size_t)P2ROUNDUP(psize,
1640 1ULL << spa->spa_min_ashift);
1641 if (rounded >= lsize) {
1642 compress = ZIO_COMPRESS_OFF;
1643 zio_buf_free(cbuf, lsize);
1644 psize = lsize;
1645 } else {
1646 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1647 abd_take_ownership_of_buf(cdata, B_TRUE);
1648 abd_zero_off(cdata, psize, rounded - psize);
1649 psize = rounded;
1650 zio_push_transform(zio, cdata,
1651 psize, lsize, NULL);
1652 }
1653 }
1654
1655 /*
1656 * We were unable to handle this as an override bp, treat
1657 * it as a regular write I/O.
1658 */
1659 zio->io_bp_override = NULL;
1660 *bp = zio->io_bp_orig;
1661 zio->io_pipeline = zio->io_orig_pipeline;
1662
1663 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1664 zp->zp_type == DMU_OT_DNODE) {
1665 /*
1666 * The DMU actually relies on the zio layer's compression
1667 * to free metadnode blocks that have had all contained
1668 * dnodes freed. As a result, even when doing a raw
1669 * receive, we must check whether the block can be compressed
1670 * to a hole.
1671 */
1672 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1673 zio->io_abd, NULL, lsize);
1674 if (psize == 0)
1675 compress = ZIO_COMPRESS_OFF;
1676 } else {
1677 ASSERT3U(psize, !=, 0);
1678 }
1679
1680 /*
1681 * The final pass of spa_sync() must be all rewrites, but the first
1682 * few passes offer a trade-off: allocating blocks defers convergence,
1683 * but newly allocated blocks are sequential, so they can be written
1684 * to disk faster. Therefore, we allow the first few passes of
1685 * spa_sync() to allocate new blocks, but force rewrites after that.
1686 * There should only be a handful of blocks after pass 1 in any case.
1687 */
1688 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1689 BP_GET_PSIZE(bp) == psize &&
1690 pass >= zfs_sync_pass_rewrite) {
1691 VERIFY3U(psize, !=, 0);
1692 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1693
1694 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1695 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1696 } else {
1697 BP_ZERO(bp);
1698 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1699 }
1700
1701 if (psize == 0) {
1702 if (zio->io_bp_orig.blk_birth != 0 &&
1703 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1704 BP_SET_LSIZE(bp, lsize);
1705 BP_SET_TYPE(bp, zp->zp_type);
1706 BP_SET_LEVEL(bp, zp->zp_level);
1707 BP_SET_BIRTH(bp, zio->io_txg, 0);
1708 }
1709 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1710 } else {
1711 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1712 BP_SET_LSIZE(bp, lsize);
1713 BP_SET_TYPE(bp, zp->zp_type);
1714 BP_SET_LEVEL(bp, zp->zp_level);
1715 BP_SET_PSIZE(bp, psize);
1716 BP_SET_COMPRESS(bp, compress);
1717 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1718 BP_SET_DEDUP(bp, zp->zp_dedup);
1719 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1720 if (zp->zp_dedup) {
1721 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1722 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1723 ASSERT(!zp->zp_encrypt ||
1724 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1725 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1726 }
1727 if (zp->zp_nopwrite) {
1728 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1729 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1730 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1731 }
1732 }
1733 return (zio);
1734 }
1735
1736 static zio_t *
1737 zio_free_bp_init(zio_t *zio)
1738 {
1739 blkptr_t *bp = zio->io_bp;
1740
1741 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1742 if (BP_GET_DEDUP(bp))
1743 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1744 }
1745
1746 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1747
1748 return (zio);
1749 }
1750
1751 /*
1752 * ==========================================================================
1753 * Execute the I/O pipeline
1754 * ==========================================================================
1755 */
1756
1757 static void
1758 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1759 {
1760 spa_t *spa = zio->io_spa;
1761 zio_type_t t = zio->io_type;
1762 int flags = (cutinline ? TQ_FRONT : 0);
1763
1764 /*
1765 * If we're a config writer or a probe, the normal issue and
1766 * interrupt threads may all be blocked waiting for the config lock.
1767 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1768 */
1769 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1770 t = ZIO_TYPE_NULL;
1771
1772 /*
1773 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1774 */
1775 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1776 t = ZIO_TYPE_NULL;
1777
1778 /*
1779 * If this is a high priority I/O, then use the high priority taskq if
1780 * available.
1781 */
1782 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1783 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1784 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1785 q++;
1786
1787 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1788
1789 /*
1790 * NB: We are assuming that the zio can only be dispatched
1791 * to a single taskq at a time. It would be a grievous error
1792 * to dispatch the zio to another taskq at the same time.
1793 */
1794 ASSERT(taskq_empty_ent(&zio->io_tqent));
1795 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1796 flags, &zio->io_tqent);
1797 }
1798
1799 static boolean_t
1800 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1801 {
1802 kthread_t *executor = zio->io_executor;
1803 spa_t *spa = zio->io_spa;
1804
1805 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1806 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1807 uint_t i;
1808 for (i = 0; i < tqs->stqs_count; i++) {
1809 if (taskq_member(tqs->stqs_taskq[i], executor))
1810 return (B_TRUE);
1811 }
1812 }
1813
1814 return (B_FALSE);
1815 }
1816
1817 static zio_t *
1818 zio_issue_async(zio_t *zio)
1819 {
1820 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1821
1822 return (NULL);
1823 }
1824
1825 void
1826 zio_interrupt(zio_t *zio)
1827 {
1828 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1829 }
1830
1831 static void
1832 zio_deadman_impl(zio_t *pio, int ziodepth)
1833 {
1834 zio_t *cio, *cio_next;
1835 zio_link_t *zl = NULL;
1836 vdev_t *vd = pio->io_vd;
1837
1838 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
1839 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
1840 zbookmark_phys_t *zb = &pio->io_bookmark;
1841 uint64_t delta = gethrtime() - pio->io_timestamp;
1842 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
1843
1844 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
1845 "delta=%llu queued=%llu io=%llu "
1846 "path=%s last=%llu "
1847 "type=%d priority=%d flags=0x%x "
1848 "stage=0x%x pipeline=0x%x pipeline-trace=0x%x "
1849 "objset=%llu object=%llu level=%llu blkid=%llu "
1850 "offset=%llu size=%llu error=%d",
1851 ziodepth, pio, pio->io_timestamp,
1852 delta, pio->io_delta, pio->io_delay,
1853 vd ? vd->vdev_path : "NULL", vq ? vq->vq_io_complete_ts : 0,
1854 pio->io_type, pio->io_priority, pio->io_flags,
1855 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
1856 zb->zb_objset, zb->zb_object, zb->zb_level, zb->zb_blkid,
1857 pio->io_offset, pio->io_size, pio->io_error);
1858 zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
1859 pio->io_spa, vd, zb, pio, 0, 0);
1860
1861 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
1862 taskq_empty_ent(&pio->io_tqent)) {
1863 zio_interrupt(pio);
1864 }
1865 }
1866
1867 mutex_enter(&pio->io_lock);
1868 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1869 cio_next = zio_walk_children(pio, &zl);
1870 zio_deadman_impl(cio, ziodepth + 1);
1871 }
1872 mutex_exit(&pio->io_lock);
1873 }
1874
1875 /*
1876 * Log the critical information describing this zio and all of its children
1877 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
1878 */
1879 void
1880 zio_deadman(zio_t *pio, char *tag)
1881 {
1882 spa_t *spa = pio->io_spa;
1883 char *name = spa_name(spa);
1884
1885 if (!zfs_deadman_enabled || spa_suspended(spa))
1886 return;
1887
1888 zio_deadman_impl(pio, 0);
1889
1890 switch (spa_get_deadman_failmode(spa)) {
1891 case ZIO_FAILURE_MODE_WAIT:
1892 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
1893 break;
1894
1895 case ZIO_FAILURE_MODE_CONTINUE:
1896 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
1897 break;
1898
1899 case ZIO_FAILURE_MODE_PANIC:
1900 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
1901 break;
1902 }
1903 }
1904
1905 /*
1906 * Execute the I/O pipeline until one of the following occurs:
1907 * (1) the I/O completes; (2) the pipeline stalls waiting for
1908 * dependent child I/Os; (3) the I/O issues, so we're waiting
1909 * for an I/O completion interrupt; (4) the I/O is delegated by
1910 * vdev-level caching or aggregation; (5) the I/O is deferred
1911 * due to vdev-level queueing; (6) the I/O is handed off to
1912 * another thread. In all cases, the pipeline stops whenever
1913 * there's no CPU work; it never burns a thread in cv_wait_io().
1914 *
1915 * There's no locking on io_stage because there's no legitimate way
1916 * for multiple threads to be attempting to process the same I/O.
1917 */
1918 static zio_pipe_stage_t *zio_pipeline[];
1919
1920 /*
1921 * zio_execute() is a wrapper around the static function
1922 * __zio_execute() so that we can force __zio_execute() to be
1923 * inlined. This reduces stack overhead which is important
1924 * because __zio_execute() is called recursively in several zio
1925 * code paths. zio_execute() itself cannot be inlined because
1926 * it is externally visible.
1927 */
1928 void
1929 zio_execute(zio_t *zio)
1930 {
1931 fstrans_cookie_t cookie;
1932
1933 cookie = spl_fstrans_mark();
1934 __zio_execute(zio);
1935 spl_fstrans_unmark(cookie);
1936 }
1937
1938 /*
1939 * Used to determine if in the current context the stack is sized large
1940 * enough to allow zio_execute() to be called recursively. A minimum
1941 * stack size of 16K is required to avoid needing to re-dispatch the zio.
1942 */
1943 boolean_t
1944 zio_execute_stack_check(zio_t *zio)
1945 {
1946 #if !defined(HAVE_LARGE_STACKS)
1947 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
1948
1949 /* Executing in txg_sync_thread() context. */
1950 if (dp && curthread == dp->dp_tx.tx_sync_thread)
1951 return (B_TRUE);
1952
1953 /* Pool initialization outside of zio_taskq context. */
1954 if (dp && spa_is_initializing(dp->dp_spa) &&
1955 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
1956 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
1957 return (B_TRUE);
1958 #endif /* HAVE_LARGE_STACKS */
1959
1960 return (B_FALSE);
1961 }
1962
1963 __attribute__((always_inline))
1964 static inline void
1965 __zio_execute(zio_t *zio)
1966 {
1967 ASSERT3U(zio->io_queued_timestamp, >, 0);
1968
1969 while (zio->io_stage < ZIO_STAGE_DONE) {
1970 enum zio_stage pipeline = zio->io_pipeline;
1971 enum zio_stage stage = zio->io_stage;
1972
1973 zio->io_executor = curthread;
1974
1975 ASSERT(!MUTEX_HELD(&zio->io_lock));
1976 ASSERT(ISP2(stage));
1977 ASSERT(zio->io_stall == NULL);
1978
1979 do {
1980 stage <<= 1;
1981 } while ((stage & pipeline) == 0);
1982
1983 ASSERT(stage <= ZIO_STAGE_DONE);
1984
1985 /*
1986 * If we are in interrupt context and this pipeline stage
1987 * will grab a config lock that is held across I/O,
1988 * or may wait for an I/O that needs an interrupt thread
1989 * to complete, issue async to avoid deadlock.
1990 *
1991 * For VDEV_IO_START, we cut in line so that the io will
1992 * be sent to disk promptly.
1993 */
1994 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1995 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1996 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1997 zio_requeue_io_start_cut_in_line : B_FALSE;
1998 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1999 return;
2000 }
2001
2002 /*
2003 * If the current context doesn't have large enough stacks
2004 * the zio must be issued asynchronously to prevent overflow.
2005 */
2006 if (zio_execute_stack_check(zio)) {
2007 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2008 zio_requeue_io_start_cut_in_line : B_FALSE;
2009 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2010 return;
2011 }
2012
2013 zio->io_stage = stage;
2014 zio->io_pipeline_trace |= zio->io_stage;
2015
2016 /*
2017 * The zio pipeline stage returns the next zio to execute
2018 * (typically the same as this one), or NULL if we should
2019 * stop.
2020 */
2021 zio = zio_pipeline[highbit64(stage) - 1](zio);
2022
2023 if (zio == NULL)
2024 return;
2025 }
2026 }
2027
2028
2029 /*
2030 * ==========================================================================
2031 * Initiate I/O, either sync or async
2032 * ==========================================================================
2033 */
2034 int
2035 zio_wait(zio_t *zio)
2036 {
2037 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2038 int error;
2039
2040 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2041 ASSERT3P(zio->io_executor, ==, NULL);
2042
2043 zio->io_waiter = curthread;
2044 ASSERT0(zio->io_queued_timestamp);
2045 zio->io_queued_timestamp = gethrtime();
2046
2047 __zio_execute(zio);
2048
2049 mutex_enter(&zio->io_lock);
2050 while (zio->io_executor != NULL) {
2051 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2052 ddi_get_lbolt() + timeout);
2053
2054 if (zfs_deadman_enabled && error == -1 &&
2055 gethrtime() - zio->io_queued_timestamp >
2056 spa_deadman_ziotime(zio->io_spa)) {
2057 mutex_exit(&zio->io_lock);
2058 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2059 zio_deadman(zio, FTAG);
2060 mutex_enter(&zio->io_lock);
2061 }
2062 }
2063 mutex_exit(&zio->io_lock);
2064
2065 error = zio->io_error;
2066 zio_destroy(zio);
2067
2068 return (error);
2069 }
2070
2071 void
2072 zio_nowait(zio_t *zio)
2073 {
2074 ASSERT3P(zio->io_executor, ==, NULL);
2075
2076 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2077 zio_unique_parent(zio) == NULL) {
2078 zio_t *pio;
2079
2080 /*
2081 * This is a logical async I/O with no parent to wait for it.
2082 * We add it to the spa_async_root_zio "Godfather" I/O which
2083 * will ensure they complete prior to unloading the pool.
2084 */
2085 spa_t *spa = zio->io_spa;
2086 kpreempt_disable();
2087 pio = spa->spa_async_zio_root[CPU_SEQID];
2088 kpreempt_enable();
2089
2090 zio_add_child(pio, zio);
2091 }
2092
2093 ASSERT0(zio->io_queued_timestamp);
2094 zio->io_queued_timestamp = gethrtime();
2095 __zio_execute(zio);
2096 }
2097
2098 /*
2099 * ==========================================================================
2100 * Reexecute, cancel, or suspend/resume failed I/O
2101 * ==========================================================================
2102 */
2103
2104 static void
2105 zio_reexecute(zio_t *pio)
2106 {
2107 zio_t *cio, *cio_next;
2108
2109 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2110 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2111 ASSERT(pio->io_gang_leader == NULL);
2112 ASSERT(pio->io_gang_tree == NULL);
2113
2114 pio->io_flags = pio->io_orig_flags;
2115 pio->io_stage = pio->io_orig_stage;
2116 pio->io_pipeline = pio->io_orig_pipeline;
2117 pio->io_reexecute = 0;
2118 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2119 pio->io_pipeline_trace = 0;
2120 pio->io_error = 0;
2121 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2122 pio->io_state[w] = 0;
2123 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2124 pio->io_child_error[c] = 0;
2125
2126 if (IO_IS_ALLOCATING(pio))
2127 BP_ZERO(pio->io_bp);
2128
2129 /*
2130 * As we reexecute pio's children, new children could be created.
2131 * New children go to the head of pio's io_child_list, however,
2132 * so we will (correctly) not reexecute them. The key is that
2133 * the remainder of pio's io_child_list, from 'cio_next' onward,
2134 * cannot be affected by any side effects of reexecuting 'cio'.
2135 */
2136 zio_link_t *zl = NULL;
2137 mutex_enter(&pio->io_lock);
2138 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2139 cio_next = zio_walk_children(pio, &zl);
2140 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2141 pio->io_children[cio->io_child_type][w]++;
2142 mutex_exit(&pio->io_lock);
2143 zio_reexecute(cio);
2144 mutex_enter(&pio->io_lock);
2145 }
2146 mutex_exit(&pio->io_lock);
2147
2148 /*
2149 * Now that all children have been reexecuted, execute the parent.
2150 * We don't reexecute "The Godfather" I/O here as it's the
2151 * responsibility of the caller to wait on it.
2152 */
2153 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2154 pio->io_queued_timestamp = gethrtime();
2155 __zio_execute(pio);
2156 }
2157 }
2158
2159 void
2160 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2161 {
2162 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2163 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2164 "failure and the failure mode property for this pool "
2165 "is set to panic.", spa_name(spa));
2166
2167 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2168 "failure and has been suspended.\n", spa_name(spa));
2169
2170 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2171 NULL, NULL, 0, 0);
2172
2173 mutex_enter(&spa->spa_suspend_lock);
2174
2175 if (spa->spa_suspend_zio_root == NULL)
2176 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2177 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2178 ZIO_FLAG_GODFATHER);
2179
2180 spa->spa_suspended = reason;
2181
2182 if (zio != NULL) {
2183 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2184 ASSERT(zio != spa->spa_suspend_zio_root);
2185 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2186 ASSERT(zio_unique_parent(zio) == NULL);
2187 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2188 zio_add_child(spa->spa_suspend_zio_root, zio);
2189 }
2190
2191 mutex_exit(&spa->spa_suspend_lock);
2192 }
2193
2194 int
2195 zio_resume(spa_t *spa)
2196 {
2197 zio_t *pio;
2198
2199 /*
2200 * Reexecute all previously suspended i/o.
2201 */
2202 mutex_enter(&spa->spa_suspend_lock);
2203 spa->spa_suspended = ZIO_SUSPEND_NONE;
2204 cv_broadcast(&spa->spa_suspend_cv);
2205 pio = spa->spa_suspend_zio_root;
2206 spa->spa_suspend_zio_root = NULL;
2207 mutex_exit(&spa->spa_suspend_lock);
2208
2209 if (pio == NULL)
2210 return (0);
2211
2212 zio_reexecute(pio);
2213 return (zio_wait(pio));
2214 }
2215
2216 void
2217 zio_resume_wait(spa_t *spa)
2218 {
2219 mutex_enter(&spa->spa_suspend_lock);
2220 while (spa_suspended(spa))
2221 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2222 mutex_exit(&spa->spa_suspend_lock);
2223 }
2224
2225 /*
2226 * ==========================================================================
2227 * Gang blocks.
2228 *
2229 * A gang block is a collection of small blocks that looks to the DMU
2230 * like one large block. When zio_dva_allocate() cannot find a block
2231 * of the requested size, due to either severe fragmentation or the pool
2232 * being nearly full, it calls zio_write_gang_block() to construct the
2233 * block from smaller fragments.
2234 *
2235 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2236 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2237 * an indirect block: it's an array of block pointers. It consumes
2238 * only one sector and hence is allocatable regardless of fragmentation.
2239 * The gang header's bps point to its gang members, which hold the data.
2240 *
2241 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2242 * as the verifier to ensure uniqueness of the SHA256 checksum.
2243 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2244 * not the gang header. This ensures that data block signatures (needed for
2245 * deduplication) are independent of how the block is physically stored.
2246 *
2247 * Gang blocks can be nested: a gang member may itself be a gang block.
2248 * Thus every gang block is a tree in which root and all interior nodes are
2249 * gang headers, and the leaves are normal blocks that contain user data.
2250 * The root of the gang tree is called the gang leader.
2251 *
2252 * To perform any operation (read, rewrite, free, claim) on a gang block,
2253 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2254 * in the io_gang_tree field of the original logical i/o by recursively
2255 * reading the gang leader and all gang headers below it. This yields
2256 * an in-core tree containing the contents of every gang header and the
2257 * bps for every constituent of the gang block.
2258 *
2259 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2260 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2261 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2262 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2263 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2264 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2265 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2266 * of the gang header plus zio_checksum_compute() of the data to update the
2267 * gang header's blk_cksum as described above.
2268 *
2269 * The two-phase assemble/issue model solves the problem of partial failure --
2270 * what if you'd freed part of a gang block but then couldn't read the
2271 * gang header for another part? Assembling the entire gang tree first
2272 * ensures that all the necessary gang header I/O has succeeded before
2273 * starting the actual work of free, claim, or write. Once the gang tree
2274 * is assembled, free and claim are in-memory operations that cannot fail.
2275 *
2276 * In the event that a gang write fails, zio_dva_unallocate() walks the
2277 * gang tree to immediately free (i.e. insert back into the space map)
2278 * everything we've allocated. This ensures that we don't get ENOSPC
2279 * errors during repeated suspend/resume cycles due to a flaky device.
2280 *
2281 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2282 * the gang tree, we won't modify the block, so we can safely defer the free
2283 * (knowing that the block is still intact). If we *can* assemble the gang
2284 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2285 * each constituent bp and we can allocate a new block on the next sync pass.
2286 *
2287 * In all cases, the gang tree allows complete recovery from partial failure.
2288 * ==========================================================================
2289 */
2290
2291 static void
2292 zio_gang_issue_func_done(zio_t *zio)
2293 {
2294 abd_put(zio->io_abd);
2295 }
2296
2297 static zio_t *
2298 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2299 uint64_t offset)
2300 {
2301 if (gn != NULL)
2302 return (pio);
2303
2304 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2305 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2306 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2307 &pio->io_bookmark));
2308 }
2309
2310 static zio_t *
2311 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2312 uint64_t offset)
2313 {
2314 zio_t *zio;
2315
2316 if (gn != NULL) {
2317 abd_t *gbh_abd =
2318 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2319 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2320 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2321 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2322 &pio->io_bookmark);
2323 /*
2324 * As we rewrite each gang header, the pipeline will compute
2325 * a new gang block header checksum for it; but no one will
2326 * compute a new data checksum, so we do that here. The one
2327 * exception is the gang leader: the pipeline already computed
2328 * its data checksum because that stage precedes gang assembly.
2329 * (Presently, nothing actually uses interior data checksums;
2330 * this is just good hygiene.)
2331 */
2332 if (gn != pio->io_gang_leader->io_gang_tree) {
2333 abd_t *buf = abd_get_offset(data, offset);
2334
2335 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2336 buf, BP_GET_PSIZE(bp));
2337
2338 abd_put(buf);
2339 }
2340 /*
2341 * If we are here to damage data for testing purposes,
2342 * leave the GBH alone so that we can detect the damage.
2343 */
2344 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2345 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2346 } else {
2347 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2348 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2349 zio_gang_issue_func_done, NULL, pio->io_priority,
2350 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2351 }
2352
2353 return (zio);
2354 }
2355
2356 /* ARGSUSED */
2357 static zio_t *
2358 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2359 uint64_t offset)
2360 {
2361 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2362 ZIO_GANG_CHILD_FLAGS(pio)));
2363 }
2364
2365 /* ARGSUSED */
2366 static zio_t *
2367 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2368 uint64_t offset)
2369 {
2370 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2371 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2372 }
2373
2374 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2375 NULL,
2376 zio_read_gang,
2377 zio_rewrite_gang,
2378 zio_free_gang,
2379 zio_claim_gang,
2380 NULL
2381 };
2382
2383 static void zio_gang_tree_assemble_done(zio_t *zio);
2384
2385 static zio_gang_node_t *
2386 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2387 {
2388 zio_gang_node_t *gn;
2389
2390 ASSERT(*gnpp == NULL);
2391
2392 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2393 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2394 *gnpp = gn;
2395
2396 return (gn);
2397 }
2398
2399 static void
2400 zio_gang_node_free(zio_gang_node_t **gnpp)
2401 {
2402 zio_gang_node_t *gn = *gnpp;
2403
2404 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2405 ASSERT(gn->gn_child[g] == NULL);
2406
2407 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2408 kmem_free(gn, sizeof (*gn));
2409 *gnpp = NULL;
2410 }
2411
2412 static void
2413 zio_gang_tree_free(zio_gang_node_t **gnpp)
2414 {
2415 zio_gang_node_t *gn = *gnpp;
2416
2417 if (gn == NULL)
2418 return;
2419
2420 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2421 zio_gang_tree_free(&gn->gn_child[g]);
2422
2423 zio_gang_node_free(gnpp);
2424 }
2425
2426 static void
2427 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2428 {
2429 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2430 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2431
2432 ASSERT(gio->io_gang_leader == gio);
2433 ASSERT(BP_IS_GANG(bp));
2434
2435 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2436 zio_gang_tree_assemble_done, gn, gio->io_priority,
2437 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2438 }
2439
2440 static void
2441 zio_gang_tree_assemble_done(zio_t *zio)
2442 {
2443 zio_t *gio = zio->io_gang_leader;
2444 zio_gang_node_t *gn = zio->io_private;
2445 blkptr_t *bp = zio->io_bp;
2446
2447 ASSERT(gio == zio_unique_parent(zio));
2448 ASSERT(zio->io_child_count == 0);
2449
2450 if (zio->io_error)
2451 return;
2452
2453 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2454 if (BP_SHOULD_BYTESWAP(bp))
2455 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2456
2457 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2458 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2459 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2460
2461 abd_put(zio->io_abd);
2462
2463 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2464 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2465 if (!BP_IS_GANG(gbp))
2466 continue;
2467 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2468 }
2469 }
2470
2471 static void
2472 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2473 uint64_t offset)
2474 {
2475 zio_t *gio = pio->io_gang_leader;
2476 zio_t *zio;
2477
2478 ASSERT(BP_IS_GANG(bp) == !!gn);
2479 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2480 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2481
2482 /*
2483 * If you're a gang header, your data is in gn->gn_gbh.
2484 * If you're a gang member, your data is in 'data' and gn == NULL.
2485 */
2486 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2487
2488 if (gn != NULL) {
2489 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2490
2491 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2492 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2493 if (BP_IS_HOLE(gbp))
2494 continue;
2495 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2496 offset);
2497 offset += BP_GET_PSIZE(gbp);
2498 }
2499 }
2500
2501 if (gn == gio->io_gang_tree)
2502 ASSERT3U(gio->io_size, ==, offset);
2503
2504 if (zio != pio)
2505 zio_nowait(zio);
2506 }
2507
2508 static zio_t *
2509 zio_gang_assemble(zio_t *zio)
2510 {
2511 blkptr_t *bp = zio->io_bp;
2512
2513 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2514 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2515
2516 zio->io_gang_leader = zio;
2517
2518 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2519
2520 return (zio);
2521 }
2522
2523 static zio_t *
2524 zio_gang_issue(zio_t *zio)
2525 {
2526 blkptr_t *bp = zio->io_bp;
2527
2528 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2529 return (NULL);
2530 }
2531
2532 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2533 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2534
2535 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2536 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2537 0);
2538 else
2539 zio_gang_tree_free(&zio->io_gang_tree);
2540
2541 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2542
2543 return (zio);
2544 }
2545
2546 static void
2547 zio_write_gang_member_ready(zio_t *zio)
2548 {
2549 zio_t *pio = zio_unique_parent(zio);
2550 dva_t *cdva = zio->io_bp->blk_dva;
2551 dva_t *pdva = pio->io_bp->blk_dva;
2552 uint64_t asize;
2553 zio_t *gio __maybe_unused = zio->io_gang_leader;
2554
2555 if (BP_IS_HOLE(zio->io_bp))
2556 return;
2557
2558 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2559
2560 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2561 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2562 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2563 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2564 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2565
2566 mutex_enter(&pio->io_lock);
2567 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2568 ASSERT(DVA_GET_GANG(&pdva[d]));
2569 asize = DVA_GET_ASIZE(&pdva[d]);
2570 asize += DVA_GET_ASIZE(&cdva[d]);
2571 DVA_SET_ASIZE(&pdva[d], asize);
2572 }
2573 mutex_exit(&pio->io_lock);
2574 }
2575
2576 static void
2577 zio_write_gang_done(zio_t *zio)
2578 {
2579 /*
2580 * The io_abd field will be NULL for a zio with no data. The io_flags
2581 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2582 * check for it here as it is cleared in zio_ready.
2583 */
2584 if (zio->io_abd != NULL)
2585 abd_put(zio->io_abd);
2586 }
2587
2588 static zio_t *
2589 zio_write_gang_block(zio_t *pio)
2590 {
2591 spa_t *spa = pio->io_spa;
2592 metaslab_class_t *mc = spa_normal_class(spa);
2593 blkptr_t *bp = pio->io_bp;
2594 zio_t *gio = pio->io_gang_leader;
2595 zio_t *zio;
2596 zio_gang_node_t *gn, **gnpp;
2597 zio_gbh_phys_t *gbh;
2598 abd_t *gbh_abd;
2599 uint64_t txg = pio->io_txg;
2600 uint64_t resid = pio->io_size;
2601 uint64_t lsize;
2602 int copies = gio->io_prop.zp_copies;
2603 int gbh_copies;
2604 zio_prop_t zp;
2605 int error;
2606 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2607
2608 /*
2609 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2610 * have a third copy.
2611 */
2612 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2613 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2614 gbh_copies = SPA_DVAS_PER_BP - 1;
2615
2616 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2617 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2618 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2619 ASSERT(has_data);
2620
2621 flags |= METASLAB_ASYNC_ALLOC;
2622 VERIFY(zfs_refcount_held(&mc->mc_alloc_slots[pio->io_allocator],
2623 pio));
2624
2625 /*
2626 * The logical zio has already placed a reservation for
2627 * 'copies' allocation slots but gang blocks may require
2628 * additional copies. These additional copies
2629 * (i.e. gbh_copies - copies) are guaranteed to succeed
2630 * since metaslab_class_throttle_reserve() always allows
2631 * additional reservations for gang blocks.
2632 */
2633 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2634 pio->io_allocator, pio, flags));
2635 }
2636
2637 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2638 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2639 &pio->io_alloc_list, pio, pio->io_allocator);
2640 if (error) {
2641 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2642 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2643 ASSERT(has_data);
2644
2645 /*
2646 * If we failed to allocate the gang block header then
2647 * we remove any additional allocation reservations that
2648 * we placed here. The original reservation will
2649 * be removed when the logical I/O goes to the ready
2650 * stage.
2651 */
2652 metaslab_class_throttle_unreserve(mc,
2653 gbh_copies - copies, pio->io_allocator, pio);
2654 }
2655
2656 pio->io_error = error;
2657 return (pio);
2658 }
2659
2660 if (pio == gio) {
2661 gnpp = &gio->io_gang_tree;
2662 } else {
2663 gnpp = pio->io_private;
2664 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2665 }
2666
2667 gn = zio_gang_node_alloc(gnpp);
2668 gbh = gn->gn_gbh;
2669 bzero(gbh, SPA_GANGBLOCKSIZE);
2670 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2671
2672 /*
2673 * Create the gang header.
2674 */
2675 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2676 zio_write_gang_done, NULL, pio->io_priority,
2677 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2678
2679 /*
2680 * Create and nowait the gang children.
2681 */
2682 for (int g = 0; resid != 0; resid -= lsize, g++) {
2683 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2684 SPA_MINBLOCKSIZE);
2685 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2686
2687 zp.zp_checksum = gio->io_prop.zp_checksum;
2688 zp.zp_compress = ZIO_COMPRESS_OFF;
2689 zp.zp_type = DMU_OT_NONE;
2690 zp.zp_level = 0;
2691 zp.zp_copies = gio->io_prop.zp_copies;
2692 zp.zp_dedup = B_FALSE;
2693 zp.zp_dedup_verify = B_FALSE;
2694 zp.zp_nopwrite = B_FALSE;
2695 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2696 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2697 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2698 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2699 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2700
2701 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2702 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2703 resid) : NULL, lsize, lsize, &zp,
2704 zio_write_gang_member_ready, NULL, NULL,
2705 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2706 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2707
2708 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2709 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2710 ASSERT(has_data);
2711
2712 /*
2713 * Gang children won't throttle but we should
2714 * account for their work, so reserve an allocation
2715 * slot for them here.
2716 */
2717 VERIFY(metaslab_class_throttle_reserve(mc,
2718 zp.zp_copies, cio->io_allocator, cio, flags));
2719 }
2720 zio_nowait(cio);
2721 }
2722
2723 /*
2724 * Set pio's pipeline to just wait for zio to finish.
2725 */
2726 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2727
2728 /*
2729 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2730 */
2731 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2732
2733 zio_nowait(zio);
2734
2735 return (pio);
2736 }
2737
2738 /*
2739 * The zio_nop_write stage in the pipeline determines if allocating a
2740 * new bp is necessary. The nopwrite feature can handle writes in
2741 * either syncing or open context (i.e. zil writes) and as a result is
2742 * mutually exclusive with dedup.
2743 *
2744 * By leveraging a cryptographically secure checksum, such as SHA256, we
2745 * can compare the checksums of the new data and the old to determine if
2746 * allocating a new block is required. Note that our requirements for
2747 * cryptographic strength are fairly weak: there can't be any accidental
2748 * hash collisions, but we don't need to be secure against intentional
2749 * (malicious) collisions. To trigger a nopwrite, you have to be able
2750 * to write the file to begin with, and triggering an incorrect (hash
2751 * collision) nopwrite is no worse than simply writing to the file.
2752 * That said, there are no known attacks against the checksum algorithms
2753 * used for nopwrite, assuming that the salt and the checksums
2754 * themselves remain secret.
2755 */
2756 static zio_t *
2757 zio_nop_write(zio_t *zio)
2758 {
2759 blkptr_t *bp = zio->io_bp;
2760 blkptr_t *bp_orig = &zio->io_bp_orig;
2761 zio_prop_t *zp = &zio->io_prop;
2762
2763 ASSERT(BP_GET_LEVEL(bp) == 0);
2764 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2765 ASSERT(zp->zp_nopwrite);
2766 ASSERT(!zp->zp_dedup);
2767 ASSERT(zio->io_bp_override == NULL);
2768 ASSERT(IO_IS_ALLOCATING(zio));
2769
2770 /*
2771 * Check to see if the original bp and the new bp have matching
2772 * characteristics (i.e. same checksum, compression algorithms, etc).
2773 * If they don't then just continue with the pipeline which will
2774 * allocate a new bp.
2775 */
2776 if (BP_IS_HOLE(bp_orig) ||
2777 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2778 ZCHECKSUM_FLAG_NOPWRITE) ||
2779 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2780 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2781 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2782 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2783 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2784 return (zio);
2785
2786 /*
2787 * If the checksums match then reset the pipeline so that we
2788 * avoid allocating a new bp and issuing any I/O.
2789 */
2790 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2791 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2792 ZCHECKSUM_FLAG_NOPWRITE);
2793 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2794 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2795 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2796 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2797 sizeof (uint64_t)) == 0);
2798
2799 /*
2800 * If we're overwriting a block that is currently on an
2801 * indirect vdev, then ignore the nopwrite request and
2802 * allow a new block to be allocated on a concrete vdev.
2803 */
2804 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
2805 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
2806 DVA_GET_VDEV(&bp->blk_dva[0]));
2807 if (tvd->vdev_ops == &vdev_indirect_ops) {
2808 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
2809 return (zio);
2810 }
2811 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
2812
2813 *bp = *bp_orig;
2814 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2815 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2816 }
2817
2818 return (zio);
2819 }
2820
2821 /*
2822 * ==========================================================================
2823 * Dedup
2824 * ==========================================================================
2825 */
2826 static void
2827 zio_ddt_child_read_done(zio_t *zio)
2828 {
2829 blkptr_t *bp = zio->io_bp;
2830 ddt_entry_t *dde = zio->io_private;
2831 ddt_phys_t *ddp;
2832 zio_t *pio = zio_unique_parent(zio);
2833
2834 mutex_enter(&pio->io_lock);
2835 ddp = ddt_phys_select(dde, bp);
2836 if (zio->io_error == 0)
2837 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2838
2839 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2840 dde->dde_repair_abd = zio->io_abd;
2841 else
2842 abd_free(zio->io_abd);
2843 mutex_exit(&pio->io_lock);
2844 }
2845
2846 static zio_t *
2847 zio_ddt_read_start(zio_t *zio)
2848 {
2849 blkptr_t *bp = zio->io_bp;
2850
2851 ASSERT(BP_GET_DEDUP(bp));
2852 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2853 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2854
2855 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2856 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2857 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2858 ddt_phys_t *ddp = dde->dde_phys;
2859 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2860 blkptr_t blk;
2861
2862 ASSERT(zio->io_vsd == NULL);
2863 zio->io_vsd = dde;
2864
2865 if (ddp_self == NULL)
2866 return (zio);
2867
2868 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2869 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2870 continue;
2871 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2872 &blk);
2873 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2874 abd_alloc_for_io(zio->io_size, B_TRUE),
2875 zio->io_size, zio_ddt_child_read_done, dde,
2876 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2877 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2878 }
2879 return (zio);
2880 }
2881
2882 zio_nowait(zio_read(zio, zio->io_spa, bp,
2883 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2884 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2885
2886 return (zio);
2887 }
2888
2889 static zio_t *
2890 zio_ddt_read_done(zio_t *zio)
2891 {
2892 blkptr_t *bp = zio->io_bp;
2893
2894 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
2895 return (NULL);
2896 }
2897
2898 ASSERT(BP_GET_DEDUP(bp));
2899 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2900 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2901
2902 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2903 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2904 ddt_entry_t *dde = zio->io_vsd;
2905 if (ddt == NULL) {
2906 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2907 return (zio);
2908 }
2909 if (dde == NULL) {
2910 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2911 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2912 return (NULL);
2913 }
2914 if (dde->dde_repair_abd != NULL) {
2915 abd_copy(zio->io_abd, dde->dde_repair_abd,
2916 zio->io_size);
2917 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2918 }
2919 ddt_repair_done(ddt, dde);
2920 zio->io_vsd = NULL;
2921 }
2922
2923 ASSERT(zio->io_vsd == NULL);
2924
2925 return (zio);
2926 }
2927
2928 static boolean_t
2929 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2930 {
2931 spa_t *spa = zio->io_spa;
2932 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2933
2934 ASSERT(!(zio->io_bp_override && do_raw));
2935
2936 /*
2937 * Note: we compare the original data, not the transformed data,
2938 * because when zio->io_bp is an override bp, we will not have
2939 * pushed the I/O transforms. That's an important optimization
2940 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2941 * However, we should never get a raw, override zio so in these
2942 * cases we can compare the io_abd directly. This is useful because
2943 * it allows us to do dedup verification even if we don't have access
2944 * to the original data (for instance, if the encryption keys aren't
2945 * loaded).
2946 */
2947
2948 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2949 zio_t *lio = dde->dde_lead_zio[p];
2950
2951 if (lio != NULL && do_raw) {
2952 return (lio->io_size != zio->io_size ||
2953 abd_cmp(zio->io_abd, lio->io_abd) != 0);
2954 } else if (lio != NULL) {
2955 return (lio->io_orig_size != zio->io_orig_size ||
2956 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
2957 }
2958 }
2959
2960 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2961 ddt_phys_t *ddp = &dde->dde_phys[p];
2962
2963 if (ddp->ddp_phys_birth != 0 && do_raw) {
2964 blkptr_t blk = *zio->io_bp;
2965 uint64_t psize;
2966 abd_t *tmpabd;
2967 int error;
2968
2969 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2970 psize = BP_GET_PSIZE(&blk);
2971
2972 if (psize != zio->io_size)
2973 return (B_TRUE);
2974
2975 ddt_exit(ddt);
2976
2977 tmpabd = abd_alloc_for_io(psize, B_TRUE);
2978
2979 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2980 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2981 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2982 ZIO_FLAG_RAW, &zio->io_bookmark));
2983
2984 if (error == 0) {
2985 if (abd_cmp(tmpabd, zio->io_abd) != 0)
2986 error = SET_ERROR(ENOENT);
2987 }
2988
2989 abd_free(tmpabd);
2990 ddt_enter(ddt);
2991 return (error != 0);
2992 } else if (ddp->ddp_phys_birth != 0) {
2993 arc_buf_t *abuf = NULL;
2994 arc_flags_t aflags = ARC_FLAG_WAIT;
2995 blkptr_t blk = *zio->io_bp;
2996 int error;
2997
2998 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2999
3000 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3001 return (B_TRUE);
3002
3003 ddt_exit(ddt);
3004
3005 error = arc_read(NULL, spa, &blk,
3006 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3007 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3008 &aflags, &zio->io_bookmark);
3009
3010 if (error == 0) {
3011 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3012 zio->io_orig_size) != 0)
3013 error = SET_ERROR(ENOENT);
3014 arc_buf_destroy(abuf, &abuf);
3015 }
3016
3017 ddt_enter(ddt);
3018 return (error != 0);
3019 }
3020 }
3021
3022 return (B_FALSE);
3023 }
3024
3025 static void
3026 zio_ddt_child_write_ready(zio_t *zio)
3027 {
3028 int p = zio->io_prop.zp_copies;
3029 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3030 ddt_entry_t *dde = zio->io_private;
3031 ddt_phys_t *ddp = &dde->dde_phys[p];
3032 zio_t *pio;
3033
3034 if (zio->io_error)
3035 return;
3036
3037 ddt_enter(ddt);
3038
3039 ASSERT(dde->dde_lead_zio[p] == zio);
3040
3041 ddt_phys_fill(ddp, zio->io_bp);
3042
3043 zio_link_t *zl = NULL;
3044 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3045 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3046
3047 ddt_exit(ddt);
3048 }
3049
3050 static void
3051 zio_ddt_child_write_done(zio_t *zio)
3052 {
3053 int p = zio->io_prop.zp_copies;
3054 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3055 ddt_entry_t *dde = zio->io_private;
3056 ddt_phys_t *ddp = &dde->dde_phys[p];
3057
3058 ddt_enter(ddt);
3059
3060 ASSERT(ddp->ddp_refcnt == 0);
3061 ASSERT(dde->dde_lead_zio[p] == zio);
3062 dde->dde_lead_zio[p] = NULL;
3063
3064 if (zio->io_error == 0) {
3065 zio_link_t *zl = NULL;
3066 while (zio_walk_parents(zio, &zl) != NULL)
3067 ddt_phys_addref(ddp);
3068 } else {
3069 ddt_phys_clear(ddp);
3070 }
3071
3072 ddt_exit(ddt);
3073 }
3074
3075 static zio_t *
3076 zio_ddt_write(zio_t *zio)
3077 {
3078 spa_t *spa = zio->io_spa;
3079 blkptr_t *bp = zio->io_bp;
3080 uint64_t txg = zio->io_txg;
3081 zio_prop_t *zp = &zio->io_prop;
3082 int p = zp->zp_copies;
3083 zio_t *cio = NULL;
3084 ddt_t *ddt = ddt_select(spa, bp);
3085 ddt_entry_t *dde;
3086 ddt_phys_t *ddp;
3087
3088 ASSERT(BP_GET_DEDUP(bp));
3089 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3090 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3091 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3092
3093 ddt_enter(ddt);
3094 dde = ddt_lookup(ddt, bp, B_TRUE);
3095 ddp = &dde->dde_phys[p];
3096
3097 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3098 /*
3099 * If we're using a weak checksum, upgrade to a strong checksum
3100 * and try again. If we're already using a strong checksum,
3101 * we can't resolve it, so just convert to an ordinary write.
3102 * (And automatically e-mail a paper to Nature?)
3103 */
3104 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3105 ZCHECKSUM_FLAG_DEDUP)) {
3106 zp->zp_checksum = spa_dedup_checksum(spa);
3107 zio_pop_transforms(zio);
3108 zio->io_stage = ZIO_STAGE_OPEN;
3109 BP_ZERO(bp);
3110 } else {
3111 zp->zp_dedup = B_FALSE;
3112 BP_SET_DEDUP(bp, B_FALSE);
3113 }
3114 ASSERT(!BP_GET_DEDUP(bp));
3115 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3116 ddt_exit(ddt);
3117 return (zio);
3118 }
3119
3120 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3121 if (ddp->ddp_phys_birth != 0)
3122 ddt_bp_fill(ddp, bp, txg);
3123 if (dde->dde_lead_zio[p] != NULL)
3124 zio_add_child(zio, dde->dde_lead_zio[p]);
3125 else
3126 ddt_phys_addref(ddp);
3127 } else if (zio->io_bp_override) {
3128 ASSERT(bp->blk_birth == txg);
3129 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3130 ddt_phys_fill(ddp, bp);
3131 ddt_phys_addref(ddp);
3132 } else {
3133 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3134 zio->io_orig_size, zio->io_orig_size, zp,
3135 zio_ddt_child_write_ready, NULL, NULL,
3136 zio_ddt_child_write_done, dde, zio->io_priority,
3137 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3138
3139 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3140 dde->dde_lead_zio[p] = cio;
3141 }
3142
3143 ddt_exit(ddt);
3144
3145 if (cio)
3146 zio_nowait(cio);
3147
3148 return (zio);
3149 }
3150
3151 ddt_entry_t *freedde; /* for debugging */
3152
3153 static zio_t *
3154 zio_ddt_free(zio_t *zio)
3155 {
3156 spa_t *spa = zio->io_spa;
3157 blkptr_t *bp = zio->io_bp;
3158 ddt_t *ddt = ddt_select(spa, bp);
3159 ddt_entry_t *dde;
3160 ddt_phys_t *ddp;
3161
3162 ASSERT(BP_GET_DEDUP(bp));
3163 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3164
3165 ddt_enter(ddt);
3166 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3167 if (dde) {
3168 ddp = ddt_phys_select(dde, bp);
3169 if (ddp)
3170 ddt_phys_decref(ddp);
3171 }
3172 ddt_exit(ddt);
3173
3174 return (zio);
3175 }
3176
3177 /*
3178 * ==========================================================================
3179 * Allocate and free blocks
3180 * ==========================================================================
3181 */
3182
3183 static zio_t *
3184 zio_io_to_allocate(spa_t *spa, int allocator)
3185 {
3186 zio_t *zio;
3187
3188 ASSERT(MUTEX_HELD(&spa->spa_alloc_locks[allocator]));
3189
3190 zio = avl_first(&spa->spa_alloc_trees[allocator]);
3191 if (zio == NULL)
3192 return (NULL);
3193
3194 ASSERT(IO_IS_ALLOCATING(zio));
3195
3196 /*
3197 * Try to place a reservation for this zio. If we're unable to
3198 * reserve then we throttle.
3199 */
3200 ASSERT3U(zio->io_allocator, ==, allocator);
3201 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3202 zio->io_prop.zp_copies, zio->io_allocator, zio, 0)) {
3203 return (NULL);
3204 }
3205
3206 avl_remove(&spa->spa_alloc_trees[allocator], zio);
3207 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3208
3209 return (zio);
3210 }
3211
3212 static zio_t *
3213 zio_dva_throttle(zio_t *zio)
3214 {
3215 spa_t *spa = zio->io_spa;
3216 zio_t *nio;
3217 metaslab_class_t *mc;
3218
3219 /* locate an appropriate allocation class */
3220 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3221 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3222
3223 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3224 !mc->mc_alloc_throttle_enabled ||
3225 zio->io_child_type == ZIO_CHILD_GANG ||
3226 zio->io_flags & ZIO_FLAG_NODATA) {
3227 return (zio);
3228 }
3229
3230 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3231
3232 ASSERT3U(zio->io_queued_timestamp, >, 0);
3233 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3234
3235 zbookmark_phys_t *bm = &zio->io_bookmark;
3236 /*
3237 * We want to try to use as many allocators as possible to help improve
3238 * performance, but we also want logically adjacent IOs to be physically
3239 * adjacent to improve sequential read performance. We chunk each object
3240 * into 2^20 block regions, and then hash based on the objset, object,
3241 * level, and region to accomplish both of these goals.
3242 */
3243 zio->io_allocator = cityhash4(bm->zb_objset, bm->zb_object,
3244 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3245 mutex_enter(&spa->spa_alloc_locks[zio->io_allocator]);
3246 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3247 zio->io_metaslab_class = mc;
3248 avl_add(&spa->spa_alloc_trees[zio->io_allocator], zio);
3249 nio = zio_io_to_allocate(spa, zio->io_allocator);
3250 mutex_exit(&spa->spa_alloc_locks[zio->io_allocator]);
3251 return (nio);
3252 }
3253
3254 static void
3255 zio_allocate_dispatch(spa_t *spa, int allocator)
3256 {
3257 zio_t *zio;
3258
3259 mutex_enter(&spa->spa_alloc_locks[allocator]);
3260 zio = zio_io_to_allocate(spa, allocator);
3261 mutex_exit(&spa->spa_alloc_locks[allocator]);
3262 if (zio == NULL)
3263 return;
3264
3265 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3266 ASSERT0(zio->io_error);
3267 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3268 }
3269
3270 static zio_t *
3271 zio_dva_allocate(zio_t *zio)
3272 {
3273 spa_t *spa = zio->io_spa;
3274 metaslab_class_t *mc;
3275 blkptr_t *bp = zio->io_bp;
3276 int error;
3277 int flags = 0;
3278
3279 if (zio->io_gang_leader == NULL) {
3280 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3281 zio->io_gang_leader = zio;
3282 }
3283
3284 ASSERT(BP_IS_HOLE(bp));
3285 ASSERT0(BP_GET_NDVAS(bp));
3286 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3287 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3288 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3289
3290 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3291 if (zio->io_flags & ZIO_FLAG_NODATA)
3292 flags |= METASLAB_DONT_THROTTLE;
3293 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3294 flags |= METASLAB_GANG_CHILD;
3295 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3296 flags |= METASLAB_ASYNC_ALLOC;
3297
3298 /*
3299 * if not already chosen, locate an appropriate allocation class
3300 */
3301 mc = zio->io_metaslab_class;
3302 if (mc == NULL) {
3303 mc = spa_preferred_class(spa, zio->io_size,
3304 zio->io_prop.zp_type, zio->io_prop.zp_level,
3305 zio->io_prop.zp_zpl_smallblk);
3306 zio->io_metaslab_class = mc;
3307 }
3308
3309 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3310 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3311 &zio->io_alloc_list, zio, zio->io_allocator);
3312
3313 /*
3314 * Fallback to normal class when an alloc class is full
3315 */
3316 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3317 /*
3318 * If throttling, transfer reservation over to normal class.
3319 * The io_allocator slot can remain the same even though we
3320 * are switching classes.
3321 */
3322 if (mc->mc_alloc_throttle_enabled &&
3323 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3324 metaslab_class_throttle_unreserve(mc,
3325 zio->io_prop.zp_copies, zio->io_allocator, zio);
3326 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3327
3328 mc = spa_normal_class(spa);
3329 VERIFY(metaslab_class_throttle_reserve(mc,
3330 zio->io_prop.zp_copies, zio->io_allocator, zio,
3331 flags | METASLAB_MUST_RESERVE));
3332 } else {
3333 mc = spa_normal_class(spa);
3334 }
3335 zio->io_metaslab_class = mc;
3336
3337 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3338 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3339 &zio->io_alloc_list, zio, zio->io_allocator);
3340 }
3341
3342 if (error != 0) {
3343 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3344 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3345 error);
3346 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3347 return (zio_write_gang_block(zio));
3348 zio->io_error = error;
3349 }
3350
3351 return (zio);
3352 }
3353
3354 static zio_t *
3355 zio_dva_free(zio_t *zio)
3356 {
3357 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3358
3359 return (zio);
3360 }
3361
3362 static zio_t *
3363 zio_dva_claim(zio_t *zio)
3364 {
3365 int error;
3366
3367 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3368 if (error)
3369 zio->io_error = error;
3370
3371 return (zio);
3372 }
3373
3374 /*
3375 * Undo an allocation. This is used by zio_done() when an I/O fails
3376 * and we want to give back the block we just allocated.
3377 * This handles both normal blocks and gang blocks.
3378 */
3379 static void
3380 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3381 {
3382 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3383 ASSERT(zio->io_bp_override == NULL);
3384
3385 if (!BP_IS_HOLE(bp))
3386 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3387
3388 if (gn != NULL) {
3389 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3390 zio_dva_unallocate(zio, gn->gn_child[g],
3391 &gn->gn_gbh->zg_blkptr[g]);
3392 }
3393 }
3394 }
3395
3396 /*
3397 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3398 */
3399 int
3400 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3401 uint64_t size, boolean_t *slog)
3402 {
3403 int error = 1;
3404 zio_alloc_list_t io_alloc_list;
3405
3406 ASSERT(txg > spa_syncing_txg(spa));
3407
3408 metaslab_trace_init(&io_alloc_list);
3409
3410 /*
3411 * Block pointer fields are useful to metaslabs for stats and debugging.
3412 * Fill in the obvious ones before calling into metaslab_alloc().
3413 */
3414 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3415 BP_SET_PSIZE(new_bp, size);
3416 BP_SET_LEVEL(new_bp, 0);
3417
3418 /*
3419 * When allocating a zil block, we don't have information about
3420 * the final destination of the block except the objset it's part
3421 * of, so we just hash the objset ID to pick the allocator to get
3422 * some parallelism.
3423 */
3424 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3425 txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL,
3426 cityhash4(0, 0, 0, os->os_dsl_dataset->ds_object) %
3427 spa->spa_alloc_count);
3428 if (error == 0) {
3429 *slog = TRUE;
3430 } else {
3431 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3432 new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
3433 &io_alloc_list, NULL, cityhash4(0, 0, 0,
3434 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count);
3435 if (error == 0)
3436 *slog = FALSE;
3437 }
3438 metaslab_trace_fini(&io_alloc_list);
3439
3440 if (error == 0) {
3441 BP_SET_LSIZE(new_bp, size);
3442 BP_SET_PSIZE(new_bp, size);
3443 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3444 BP_SET_CHECKSUM(new_bp,
3445 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3446 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3447 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3448 BP_SET_LEVEL(new_bp, 0);
3449 BP_SET_DEDUP(new_bp, 0);
3450 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3451
3452 /*
3453 * encrypted blocks will require an IV and salt. We generate
3454 * these now since we will not be rewriting the bp at
3455 * rewrite time.
3456 */
3457 if (os->os_encrypted) {
3458 uint8_t iv[ZIO_DATA_IV_LEN];
3459 uint8_t salt[ZIO_DATA_SALT_LEN];
3460
3461 BP_SET_CRYPT(new_bp, B_TRUE);
3462 VERIFY0(spa_crypt_get_salt(spa,
3463 dmu_objset_id(os), salt));
3464 VERIFY0(zio_crypt_generate_iv(iv));
3465
3466 zio_crypt_encode_params_bp(new_bp, salt, iv);
3467 }
3468 } else {
3469 zfs_dbgmsg("%s: zil block allocation failure: "
3470 "size %llu, error %d", spa_name(spa), size, error);
3471 }
3472
3473 return (error);
3474 }
3475
3476 /*
3477 * ==========================================================================
3478 * Read and write to physical devices
3479 * ==========================================================================
3480 */
3481
3482 /*
3483 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3484 * stops after this stage and will resume upon I/O completion.
3485 * However, there are instances where the vdev layer may need to
3486 * continue the pipeline when an I/O was not issued. Since the I/O
3487 * that was sent to the vdev layer might be different than the one
3488 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3489 * force the underlying vdev layers to call either zio_execute() or
3490 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3491 */
3492 static zio_t *
3493 zio_vdev_io_start(zio_t *zio)
3494 {
3495 vdev_t *vd = zio->io_vd;
3496 uint64_t align;
3497 spa_t *spa = zio->io_spa;
3498
3499 zio->io_delay = 0;
3500
3501 ASSERT(zio->io_error == 0);
3502 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3503
3504 if (vd == NULL) {
3505 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3506 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3507
3508 /*
3509 * The mirror_ops handle multiple DVAs in a single BP.
3510 */
3511 vdev_mirror_ops.vdev_op_io_start(zio);
3512 return (NULL);
3513 }
3514
3515 ASSERT3P(zio->io_logical, !=, zio);
3516 if (zio->io_type == ZIO_TYPE_WRITE) {
3517 ASSERT(spa->spa_trust_config);
3518
3519 /*
3520 * Note: the code can handle other kinds of writes,
3521 * but we don't expect them.
3522 */
3523 if (zio->io_vd->vdev_removing) {
3524 ASSERT(zio->io_flags &
3525 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3526 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3527 }
3528 }
3529
3530 align = 1ULL << vd->vdev_top->vdev_ashift;
3531
3532 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3533 P2PHASE(zio->io_size, align) != 0) {
3534 /* Transform logical writes to be a full physical block size. */
3535 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3536 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3537 ASSERT(vd == vd->vdev_top);
3538 if (zio->io_type == ZIO_TYPE_WRITE) {
3539 abd_copy(abuf, zio->io_abd, zio->io_size);
3540 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3541 }
3542 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3543 }
3544
3545 /*
3546 * If this is not a physical io, make sure that it is properly aligned
3547 * before proceeding.
3548 */
3549 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3550 ASSERT0(P2PHASE(zio->io_offset, align));
3551 ASSERT0(P2PHASE(zio->io_size, align));
3552 } else {
3553 /*
3554 * For physical writes, we allow 512b aligned writes and assume
3555 * the device will perform a read-modify-write as necessary.
3556 */
3557 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3558 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3559 }
3560
3561 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3562
3563 /*
3564 * If this is a repair I/O, and there's no self-healing involved --
3565 * that is, we're just resilvering what we expect to resilver --
3566 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3567 * This prevents spurious resilvering.
3568 *
3569 * There are a few ways that we can end up creating these spurious
3570 * resilver i/os:
3571 *
3572 * 1. A resilver i/o will be issued if any DVA in the BP has a
3573 * dirty DTL. The mirror code will issue resilver writes to
3574 * each DVA, including the one(s) that are not on vdevs with dirty
3575 * DTLs.
3576 *
3577 * 2. With nested replication, which happens when we have a
3578 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3579 * For example, given mirror(replacing(A+B), C), it's likely that
3580 * only A is out of date (it's the new device). In this case, we'll
3581 * read from C, then use the data to resilver A+B -- but we don't
3582 * actually want to resilver B, just A. The top-level mirror has no
3583 * way to know this, so instead we just discard unnecessary repairs
3584 * as we work our way down the vdev tree.
3585 *
3586 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3587 * The same logic applies to any form of nested replication: ditto
3588 * + mirror, RAID-Z + replacing, etc.
3589 *
3590 * However, indirect vdevs point off to other vdevs which may have
3591 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3592 * will be properly bypassed instead.
3593 */
3594 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3595 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3596 zio->io_txg != 0 && /* not a delegated i/o */
3597 vd->vdev_ops != &vdev_indirect_ops &&
3598 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3599 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3600 zio_vdev_io_bypass(zio);
3601 return (zio);
3602 }
3603
3604 if (vd->vdev_ops->vdev_op_leaf && (zio->io_type == ZIO_TYPE_READ ||
3605 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM)) {
3606
3607 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3608 return (zio);
3609
3610 if ((zio = vdev_queue_io(zio)) == NULL)
3611 return (NULL);
3612
3613 if (!vdev_accessible(vd, zio)) {
3614 zio->io_error = SET_ERROR(ENXIO);
3615 zio_interrupt(zio);
3616 return (NULL);
3617 }
3618 zio->io_delay = gethrtime();
3619 }
3620
3621 vd->vdev_ops->vdev_op_io_start(zio);
3622 return (NULL);
3623 }
3624
3625 static zio_t *
3626 zio_vdev_io_done(zio_t *zio)
3627 {
3628 vdev_t *vd = zio->io_vd;
3629 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3630 boolean_t unexpected_error = B_FALSE;
3631
3632 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3633 return (NULL);
3634 }
3635
3636 ASSERT(zio->io_type == ZIO_TYPE_READ ||
3637 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3638
3639 if (zio->io_delay)
3640 zio->io_delay = gethrtime() - zio->io_delay;
3641
3642 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3643
3644 vdev_queue_io_done(zio);
3645
3646 if (zio->io_type == ZIO_TYPE_WRITE)
3647 vdev_cache_write(zio);
3648
3649 if (zio_injection_enabled && zio->io_error == 0)
3650 zio->io_error = zio_handle_device_injections(vd, zio,
3651 EIO, EILSEQ);
3652
3653 if (zio_injection_enabled && zio->io_error == 0)
3654 zio->io_error = zio_handle_label_injection(zio, EIO);
3655
3656 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3657 if (!vdev_accessible(vd, zio)) {
3658 zio->io_error = SET_ERROR(ENXIO);
3659 } else {
3660 unexpected_error = B_TRUE;
3661 }
3662 }
3663 }
3664
3665 ops->vdev_op_io_done(zio);
3666
3667 if (unexpected_error)
3668 VERIFY(vdev_probe(vd, zio) == NULL);
3669
3670 return (zio);
3671 }
3672
3673 /*
3674 * This function is used to change the priority of an existing zio that is
3675 * currently in-flight. This is used by the arc to upgrade priority in the
3676 * event that a demand read is made for a block that is currently queued
3677 * as a scrub or async read IO. Otherwise, the high priority read request
3678 * would end up having to wait for the lower priority IO.
3679 */
3680 void
3681 zio_change_priority(zio_t *pio, zio_priority_t priority)
3682 {
3683 zio_t *cio, *cio_next;
3684 zio_link_t *zl = NULL;
3685
3686 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3687
3688 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3689 vdev_queue_change_io_priority(pio, priority);
3690 } else {
3691 pio->io_priority = priority;
3692 }
3693
3694 mutex_enter(&pio->io_lock);
3695 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3696 cio_next = zio_walk_children(pio, &zl);
3697 zio_change_priority(cio, priority);
3698 }
3699 mutex_exit(&pio->io_lock);
3700 }
3701
3702 /*
3703 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3704 * disk, and use that to finish the checksum ereport later.
3705 */
3706 static void
3707 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3708 const abd_t *good_buf)
3709 {
3710 /* no processing needed */
3711 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3712 }
3713
3714 /*ARGSUSED*/
3715 void
3716 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3717 {
3718 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3719
3720 abd_copy(abd, zio->io_abd, zio->io_size);
3721
3722 zcr->zcr_cbinfo = zio->io_size;
3723 zcr->zcr_cbdata = abd;
3724 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3725 zcr->zcr_free = zio_abd_free;
3726 }
3727
3728 static zio_t *
3729 zio_vdev_io_assess(zio_t *zio)
3730 {
3731 vdev_t *vd = zio->io_vd;
3732
3733 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3734 return (NULL);
3735 }
3736
3737 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3738 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3739
3740 if (zio->io_vsd != NULL) {
3741 zio->io_vsd_ops->vsd_free(zio);
3742 zio->io_vsd = NULL;
3743 }
3744
3745 if (zio_injection_enabled && zio->io_error == 0)
3746 zio->io_error = zio_handle_fault_injection(zio, EIO);
3747
3748 /*
3749 * If the I/O failed, determine whether we should attempt to retry it.
3750 *
3751 * On retry, we cut in line in the issue queue, since we don't want
3752 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3753 */
3754 if (zio->io_error && vd == NULL &&
3755 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3756 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3757 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3758 zio->io_error = 0;
3759 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3760 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3761 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3762 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3763 zio_requeue_io_start_cut_in_line);
3764 return (NULL);
3765 }
3766
3767 /*
3768 * If we got an error on a leaf device, convert it to ENXIO
3769 * if the device is not accessible at all.
3770 */
3771 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3772 !vdev_accessible(vd, zio))
3773 zio->io_error = SET_ERROR(ENXIO);
3774
3775 /*
3776 * If we can't write to an interior vdev (mirror or RAID-Z),
3777 * set vdev_cant_write so that we stop trying to allocate from it.
3778 */
3779 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3780 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3781 vd->vdev_cant_write = B_TRUE;
3782 }
3783
3784 /*
3785 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3786 * attempts will ever succeed. In this case we set a persistent
3787 * boolean flag so that we don't bother with it in the future.
3788 */
3789 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3790 zio->io_type == ZIO_TYPE_IOCTL &&
3791 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3792 vd->vdev_nowritecache = B_TRUE;
3793
3794 if (zio->io_error)
3795 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3796
3797 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3798 zio->io_physdone != NULL) {
3799 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3800 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3801 zio->io_physdone(zio->io_logical);
3802 }
3803
3804 return (zio);
3805 }
3806
3807 void
3808 zio_vdev_io_reissue(zio_t *zio)
3809 {
3810 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3811 ASSERT(zio->io_error == 0);
3812
3813 zio->io_stage >>= 1;
3814 }
3815
3816 void
3817 zio_vdev_io_redone(zio_t *zio)
3818 {
3819 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3820
3821 zio->io_stage >>= 1;
3822 }
3823
3824 void
3825 zio_vdev_io_bypass(zio_t *zio)
3826 {
3827 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3828 ASSERT(zio->io_error == 0);
3829
3830 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3831 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3832 }
3833
3834 /*
3835 * ==========================================================================
3836 * Encrypt and store encryption parameters
3837 * ==========================================================================
3838 */
3839
3840
3841 /*
3842 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3843 * managing the storage of encryption parameters and passing them to the
3844 * lower-level encryption functions.
3845 */
3846 static zio_t *
3847 zio_encrypt(zio_t *zio)
3848 {
3849 zio_prop_t *zp = &zio->io_prop;
3850 spa_t *spa = zio->io_spa;
3851 blkptr_t *bp = zio->io_bp;
3852 uint64_t psize = BP_GET_PSIZE(bp);
3853 uint64_t dsobj = zio->io_bookmark.zb_objset;
3854 dmu_object_type_t ot = BP_GET_TYPE(bp);
3855 void *enc_buf = NULL;
3856 abd_t *eabd = NULL;
3857 uint8_t salt[ZIO_DATA_SALT_LEN];
3858 uint8_t iv[ZIO_DATA_IV_LEN];
3859 uint8_t mac[ZIO_DATA_MAC_LEN];
3860 boolean_t no_crypt = B_FALSE;
3861
3862 /* the root zio already encrypted the data */
3863 if (zio->io_child_type == ZIO_CHILD_GANG)
3864 return (zio);
3865
3866 /* only ZIL blocks are re-encrypted on rewrite */
3867 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3868 return (zio);
3869
3870 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3871 BP_SET_CRYPT(bp, B_FALSE);
3872 return (zio);
3873 }
3874
3875 /* if we are doing raw encryption set the provided encryption params */
3876 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3877 ASSERT0(BP_GET_LEVEL(bp));
3878 BP_SET_CRYPT(bp, B_TRUE);
3879 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3880 if (ot != DMU_OT_OBJSET)
3881 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3882
3883 /* dnode blocks must be written out in the provided byteorder */
3884 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
3885 ot == DMU_OT_DNODE) {
3886 void *bswap_buf = zio_buf_alloc(psize);
3887 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
3888
3889 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3890 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
3891 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
3892 psize);
3893
3894 abd_take_ownership_of_buf(babd, B_TRUE);
3895 zio_push_transform(zio, babd, psize, psize, NULL);
3896 }
3897
3898 if (DMU_OT_IS_ENCRYPTED(ot))
3899 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3900 return (zio);
3901 }
3902
3903 /* indirect blocks only maintain a cksum of the lower level MACs */
3904 if (BP_GET_LEVEL(bp) > 0) {
3905 BP_SET_CRYPT(bp, B_TRUE);
3906 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3907 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3908 mac));
3909 zio_crypt_encode_mac_bp(bp, mac);
3910 return (zio);
3911 }
3912
3913 /*
3914 * Objset blocks are a special case since they have 2 256-bit MACs
3915 * embedded within them.
3916 */
3917 if (ot == DMU_OT_OBJSET) {
3918 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3919 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3920 BP_SET_CRYPT(bp, B_TRUE);
3921 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
3922 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
3923 return (zio);
3924 }
3925
3926 /* unencrypted object types are only authenticated with a MAC */
3927 if (!DMU_OT_IS_ENCRYPTED(ot)) {
3928 BP_SET_CRYPT(bp, B_TRUE);
3929 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
3930 zio->io_abd, psize, mac));
3931 zio_crypt_encode_mac_bp(bp, mac);
3932 return (zio);
3933 }
3934
3935 /*
3936 * Later passes of sync-to-convergence may decide to rewrite data
3937 * in place to avoid more disk reallocations. This presents a problem
3938 * for encryption because this constitutes rewriting the new data with
3939 * the same encryption key and IV. However, this only applies to blocks
3940 * in the MOS (particularly the spacemaps) and we do not encrypt the
3941 * MOS. We assert that the zio is allocating or an intent log write
3942 * to enforce this.
3943 */
3944 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3945 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3946 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3947 ASSERT3U(psize, !=, 0);
3948
3949 enc_buf = zio_buf_alloc(psize);
3950 eabd = abd_get_from_buf(enc_buf, psize);
3951 abd_take_ownership_of_buf(eabd, B_TRUE);
3952
3953 /*
3954 * For an explanation of what encryption parameters are stored
3955 * where, see the block comment in zio_crypt.c.
3956 */
3957 if (ot == DMU_OT_INTENT_LOG) {
3958 zio_crypt_decode_params_bp(bp, salt, iv);
3959 } else {
3960 BP_SET_CRYPT(bp, B_TRUE);
3961 }
3962
3963 /* Perform the encryption. This should not fail */
3964 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
3965 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
3966 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
3967
3968 /* encode encryption metadata into the bp */
3969 if (ot == DMU_OT_INTENT_LOG) {
3970 /*
3971 * ZIL blocks store the MAC in the embedded checksum, so the
3972 * transform must always be applied.
3973 */
3974 zio_crypt_encode_mac_zil(enc_buf, mac);
3975 zio_push_transform(zio, eabd, psize, psize, NULL);
3976 } else {
3977 BP_SET_CRYPT(bp, B_TRUE);
3978 zio_crypt_encode_params_bp(bp, salt, iv);
3979 zio_crypt_encode_mac_bp(bp, mac);
3980
3981 if (no_crypt) {
3982 ASSERT3U(ot, ==, DMU_OT_DNODE);
3983 abd_free(eabd);
3984 } else {
3985 zio_push_transform(zio, eabd, psize, psize, NULL);
3986 }
3987 }
3988
3989 return (zio);
3990 }
3991
3992 /*
3993 * ==========================================================================
3994 * Generate and verify checksums
3995 * ==========================================================================
3996 */
3997 static zio_t *
3998 zio_checksum_generate(zio_t *zio)
3999 {
4000 blkptr_t *bp = zio->io_bp;
4001 enum zio_checksum checksum;
4002
4003 if (bp == NULL) {
4004 /*
4005 * This is zio_write_phys().
4006 * We're either generating a label checksum, or none at all.
4007 */
4008 checksum = zio->io_prop.zp_checksum;
4009
4010 if (checksum == ZIO_CHECKSUM_OFF)
4011 return (zio);
4012
4013 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4014 } else {
4015 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4016 ASSERT(!IO_IS_ALLOCATING(zio));
4017 checksum = ZIO_CHECKSUM_GANG_HEADER;
4018 } else {
4019 checksum = BP_GET_CHECKSUM(bp);
4020 }
4021 }
4022
4023 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4024
4025 return (zio);
4026 }
4027
4028 static zio_t *
4029 zio_checksum_verify(zio_t *zio)
4030 {
4031 zio_bad_cksum_t info;
4032 blkptr_t *bp = zio->io_bp;
4033 int error;
4034
4035 ASSERT(zio->io_vd != NULL);
4036
4037 if (bp == NULL) {
4038 /*
4039 * This is zio_read_phys().
4040 * We're either verifying a label checksum, or nothing at all.
4041 */
4042 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4043 return (zio);
4044
4045 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
4046 }
4047
4048 if ((error = zio_checksum_error(zio, &info)) != 0) {
4049 zio->io_error = error;
4050 if (error == ECKSUM &&
4051 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4052 mutex_enter(&zio->io_vd->vdev_stat_lock);
4053 zio->io_vd->vdev_stat.vs_checksum_errors++;
4054 mutex_exit(&zio->io_vd->vdev_stat_lock);
4055
4056 zfs_ereport_start_checksum(zio->io_spa,
4057 zio->io_vd, &zio->io_bookmark, zio,
4058 zio->io_offset, zio->io_size, NULL, &info);
4059 }
4060 }
4061
4062 return (zio);
4063 }
4064
4065 /*
4066 * Called by RAID-Z to ensure we don't compute the checksum twice.
4067 */
4068 void
4069 zio_checksum_verified(zio_t *zio)
4070 {
4071 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4072 }
4073
4074 /*
4075 * ==========================================================================
4076 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4077 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4078 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4079 * indicate errors that are specific to one I/O, and most likely permanent.
4080 * Any other error is presumed to be worse because we weren't expecting it.
4081 * ==========================================================================
4082 */
4083 int
4084 zio_worst_error(int e1, int e2)
4085 {
4086 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4087 int r1, r2;
4088
4089 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4090 if (e1 == zio_error_rank[r1])
4091 break;
4092
4093 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4094 if (e2 == zio_error_rank[r2])
4095 break;
4096
4097 return (r1 > r2 ? e1 : e2);
4098 }
4099
4100 /*
4101 * ==========================================================================
4102 * I/O completion
4103 * ==========================================================================
4104 */
4105 static zio_t *
4106 zio_ready(zio_t *zio)
4107 {
4108 blkptr_t *bp = zio->io_bp;
4109 zio_t *pio, *pio_next;
4110 zio_link_t *zl = NULL;
4111
4112 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4113 ZIO_WAIT_READY)) {
4114 return (NULL);
4115 }
4116
4117 if (zio->io_ready) {
4118 ASSERT(IO_IS_ALLOCATING(zio));
4119 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4120 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4121 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4122
4123 zio->io_ready(zio);
4124 }
4125
4126 if (bp != NULL && bp != &zio->io_bp_copy)
4127 zio->io_bp_copy = *bp;
4128
4129 if (zio->io_error != 0) {
4130 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4131
4132 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4133 ASSERT(IO_IS_ALLOCATING(zio));
4134 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4135 ASSERT(zio->io_metaslab_class != NULL);
4136
4137 /*
4138 * We were unable to allocate anything, unreserve and
4139 * issue the next I/O to allocate.
4140 */
4141 metaslab_class_throttle_unreserve(
4142 zio->io_metaslab_class, zio->io_prop.zp_copies,
4143 zio->io_allocator, zio);
4144 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4145 }
4146 }
4147
4148 mutex_enter(&zio->io_lock);
4149 zio->io_state[ZIO_WAIT_READY] = 1;
4150 pio = zio_walk_parents(zio, &zl);
4151 mutex_exit(&zio->io_lock);
4152
4153 /*
4154 * As we notify zio's parents, new parents could be added.
4155 * New parents go to the head of zio's io_parent_list, however,
4156 * so we will (correctly) not notify them. The remainder of zio's
4157 * io_parent_list, from 'pio_next' onward, cannot change because
4158 * all parents must wait for us to be done before they can be done.
4159 */
4160 for (; pio != NULL; pio = pio_next) {
4161 pio_next = zio_walk_parents(zio, &zl);
4162 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4163 }
4164
4165 if (zio->io_flags & ZIO_FLAG_NODATA) {
4166 if (BP_IS_GANG(bp)) {
4167 zio->io_flags &= ~ZIO_FLAG_NODATA;
4168 } else {
4169 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4170 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4171 }
4172 }
4173
4174 if (zio_injection_enabled &&
4175 zio->io_spa->spa_syncing_txg == zio->io_txg)
4176 zio_handle_ignored_writes(zio);
4177
4178 return (zio);
4179 }
4180
4181 /*
4182 * Update the allocation throttle accounting.
4183 */
4184 static void
4185 zio_dva_throttle_done(zio_t *zio)
4186 {
4187 zio_t *lio __maybe_unused = zio->io_logical;
4188 zio_t *pio = zio_unique_parent(zio);
4189 vdev_t *vd = zio->io_vd;
4190 int flags = METASLAB_ASYNC_ALLOC;
4191
4192 ASSERT3P(zio->io_bp, !=, NULL);
4193 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4194 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4195 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4196 ASSERT(vd != NULL);
4197 ASSERT3P(vd, ==, vd->vdev_top);
4198 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4199 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4200 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4201 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4202 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4203
4204 /*
4205 * Parents of gang children can have two flavors -- ones that
4206 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4207 * and ones that allocated the constituent blocks. The allocation
4208 * throttle needs to know the allocating parent zio so we must find
4209 * it here.
4210 */
4211 if (pio->io_child_type == ZIO_CHILD_GANG) {
4212 /*
4213 * If our parent is a rewrite gang child then our grandparent
4214 * would have been the one that performed the allocation.
4215 */
4216 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4217 pio = zio_unique_parent(pio);
4218 flags |= METASLAB_GANG_CHILD;
4219 }
4220
4221 ASSERT(IO_IS_ALLOCATING(pio));
4222 ASSERT3P(zio, !=, zio->io_logical);
4223 ASSERT(zio->io_logical != NULL);
4224 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4225 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4226 ASSERT(zio->io_metaslab_class != NULL);
4227
4228 mutex_enter(&pio->io_lock);
4229 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4230 pio->io_allocator, B_TRUE);
4231 mutex_exit(&pio->io_lock);
4232
4233 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4234 pio->io_allocator, pio);
4235
4236 /*
4237 * Call into the pipeline to see if there is more work that
4238 * needs to be done. If there is work to be done it will be
4239 * dispatched to another taskq thread.
4240 */
4241 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4242 }
4243
4244 static zio_t *
4245 zio_done(zio_t *zio)
4246 {
4247 /*
4248 * Always attempt to keep stack usage minimal here since
4249 * we can be called recursively up to 19 levels deep.
4250 */
4251 const uint64_t psize = zio->io_size;
4252 zio_t *pio, *pio_next;
4253 zio_link_t *zl = NULL;
4254
4255 /*
4256 * If our children haven't all completed,
4257 * wait for them and then repeat this pipeline stage.
4258 */
4259 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4260 return (NULL);
4261 }
4262
4263 /*
4264 * If the allocation throttle is enabled, then update the accounting.
4265 * We only track child I/Os that are part of an allocating async
4266 * write. We must do this since the allocation is performed
4267 * by the logical I/O but the actual write is done by child I/Os.
4268 */
4269 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4270 zio->io_child_type == ZIO_CHILD_VDEV) {
4271 ASSERT(zio->io_metaslab_class != NULL);
4272 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4273 zio_dva_throttle_done(zio);
4274 }
4275
4276 /*
4277 * If the allocation throttle is enabled, verify that
4278 * we have decremented the refcounts for every I/O that was throttled.
4279 */
4280 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4281 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4282 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4283 ASSERT(zio->io_bp != NULL);
4284
4285 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4286 zio->io_allocator);
4287 VERIFY(zfs_refcount_not_held(
4288 &zio->io_metaslab_class->mc_alloc_slots[zio->io_allocator],
4289 zio));
4290 }
4291
4292
4293 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4294 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4295 ASSERT(zio->io_children[c][w] == 0);
4296
4297 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4298 ASSERT(zio->io_bp->blk_pad[0] == 0);
4299 ASSERT(zio->io_bp->blk_pad[1] == 0);
4300 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4301 sizeof (blkptr_t)) == 0 ||
4302 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4303 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4304 zio->io_bp_override == NULL &&
4305 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4306 ASSERT3U(zio->io_prop.zp_copies, <=,
4307 BP_GET_NDVAS(zio->io_bp));
4308 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4309 (BP_COUNT_GANG(zio->io_bp) ==
4310 BP_GET_NDVAS(zio->io_bp)));
4311 }
4312 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4313 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4314 }
4315
4316 /*
4317 * If there were child vdev/gang/ddt errors, they apply to us now.
4318 */
4319 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4320 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4321 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4322
4323 /*
4324 * If the I/O on the transformed data was successful, generate any
4325 * checksum reports now while we still have the transformed data.
4326 */
4327 if (zio->io_error == 0) {
4328 while (zio->io_cksum_report != NULL) {
4329 zio_cksum_report_t *zcr = zio->io_cksum_report;
4330 uint64_t align = zcr->zcr_align;
4331 uint64_t asize = P2ROUNDUP(psize, align);
4332 abd_t *adata = zio->io_abd;
4333
4334 if (asize != psize) {
4335 adata = abd_alloc(asize, B_TRUE);
4336 abd_copy(adata, zio->io_abd, psize);
4337 abd_zero_off(adata, psize, asize - psize);
4338 }
4339
4340 zio->io_cksum_report = zcr->zcr_next;
4341 zcr->zcr_next = NULL;
4342 zcr->zcr_finish(zcr, adata);
4343 zfs_ereport_free_checksum(zcr);
4344
4345 if (asize != psize)
4346 abd_free(adata);
4347 }
4348 }
4349
4350 zio_pop_transforms(zio); /* note: may set zio->io_error */
4351
4352 vdev_stat_update(zio, psize);
4353
4354 /*
4355 * If this I/O is attached to a particular vdev is slow, exceeding
4356 * 30 seconds to complete, post an error described the I/O delay.
4357 * We ignore these errors if the device is currently unavailable.
4358 */
4359 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4360 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4361 /*
4362 * We want to only increment our slow IO counters if
4363 * the IO is valid (i.e. not if the drive is removed).
4364 *
4365 * zfs_ereport_post() will also do these checks, but
4366 * it can also ratelimit and have other failures, so we
4367 * need to increment the slow_io counters independent
4368 * of it.
4369 */
4370 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4371 zio->io_spa, zio->io_vd, zio)) {
4372 mutex_enter(&zio->io_vd->vdev_stat_lock);
4373 zio->io_vd->vdev_stat.vs_slow_ios++;
4374 mutex_exit(&zio->io_vd->vdev_stat_lock);
4375
4376 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4377 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4378 zio, 0, 0);
4379 }
4380 }
4381 }
4382
4383 if (zio->io_error) {
4384 /*
4385 * If this I/O is attached to a particular vdev,
4386 * generate an error message describing the I/O failure
4387 * at the block level. We ignore these errors if the
4388 * device is currently unavailable.
4389 */
4390 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4391 !vdev_is_dead(zio->io_vd)) {
4392 mutex_enter(&zio->io_vd->vdev_stat_lock);
4393 if (zio->io_type == ZIO_TYPE_READ) {
4394 zio->io_vd->vdev_stat.vs_read_errors++;
4395 } else if (zio->io_type == ZIO_TYPE_WRITE) {
4396 zio->io_vd->vdev_stat.vs_write_errors++;
4397 }
4398 mutex_exit(&zio->io_vd->vdev_stat_lock);
4399
4400 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
4401 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4402 }
4403
4404 if ((zio->io_error == EIO || !(zio->io_flags &
4405 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4406 zio == zio->io_logical) {
4407 /*
4408 * For logical I/O requests, tell the SPA to log the
4409 * error and generate a logical data ereport.
4410 */
4411 spa_log_error(zio->io_spa, &zio->io_bookmark);
4412 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa,
4413 NULL, &zio->io_bookmark, zio, 0, 0);
4414 }
4415 }
4416
4417 if (zio->io_error && zio == zio->io_logical) {
4418 /*
4419 * Determine whether zio should be reexecuted. This will
4420 * propagate all the way to the root via zio_notify_parent().
4421 */
4422 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4423 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4424
4425 if (IO_IS_ALLOCATING(zio) &&
4426 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4427 if (zio->io_error != ENOSPC)
4428 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4429 else
4430 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4431 }
4432
4433 if ((zio->io_type == ZIO_TYPE_READ ||
4434 zio->io_type == ZIO_TYPE_FREE) &&
4435 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4436 zio->io_error == ENXIO &&
4437 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4438 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4439 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4440
4441 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4442 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4443
4444 /*
4445 * Here is a possibly good place to attempt to do
4446 * either combinatorial reconstruction or error correction
4447 * based on checksums. It also might be a good place
4448 * to send out preliminary ereports before we suspend
4449 * processing.
4450 */
4451 }
4452
4453 /*
4454 * If there were logical child errors, they apply to us now.
4455 * We defer this until now to avoid conflating logical child
4456 * errors with errors that happened to the zio itself when
4457 * updating vdev stats and reporting FMA events above.
4458 */
4459 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4460
4461 if ((zio->io_error || zio->io_reexecute) &&
4462 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4463 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4464 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4465
4466 zio_gang_tree_free(&zio->io_gang_tree);
4467
4468 /*
4469 * Godfather I/Os should never suspend.
4470 */
4471 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4472 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4473 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4474
4475 if (zio->io_reexecute) {
4476 /*
4477 * This is a logical I/O that wants to reexecute.
4478 *
4479 * Reexecute is top-down. When an i/o fails, if it's not
4480 * the root, it simply notifies its parent and sticks around.
4481 * The parent, seeing that it still has children in zio_done(),
4482 * does the same. This percolates all the way up to the root.
4483 * The root i/o will reexecute or suspend the entire tree.
4484 *
4485 * This approach ensures that zio_reexecute() honors
4486 * all the original i/o dependency relationships, e.g.
4487 * parents not executing until children are ready.
4488 */
4489 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4490
4491 zio->io_gang_leader = NULL;
4492
4493 mutex_enter(&zio->io_lock);
4494 zio->io_state[ZIO_WAIT_DONE] = 1;
4495 mutex_exit(&zio->io_lock);
4496
4497 /*
4498 * "The Godfather" I/O monitors its children but is
4499 * not a true parent to them. It will track them through
4500 * the pipeline but severs its ties whenever they get into
4501 * trouble (e.g. suspended). This allows "The Godfather"
4502 * I/O to return status without blocking.
4503 */
4504 zl = NULL;
4505 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4506 pio = pio_next) {
4507 zio_link_t *remove_zl = zl;
4508 pio_next = zio_walk_parents(zio, &zl);
4509
4510 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4511 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4512 zio_remove_child(pio, zio, remove_zl);
4513 /*
4514 * This is a rare code path, so we don't
4515 * bother with "next_to_execute".
4516 */
4517 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4518 NULL);
4519 }
4520 }
4521
4522 if ((pio = zio_unique_parent(zio)) != NULL) {
4523 /*
4524 * We're not a root i/o, so there's nothing to do
4525 * but notify our parent. Don't propagate errors
4526 * upward since we haven't permanently failed yet.
4527 */
4528 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4529 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4530 /*
4531 * This is a rare code path, so we don't bother with
4532 * "next_to_execute".
4533 */
4534 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4535 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4536 /*
4537 * We'd fail again if we reexecuted now, so suspend
4538 * until conditions improve (e.g. device comes online).
4539 */
4540 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4541 } else {
4542 /*
4543 * Reexecution is potentially a huge amount of work.
4544 * Hand it off to the otherwise-unused claim taskq.
4545 */
4546 ASSERT(taskq_empty_ent(&zio->io_tqent));
4547 spa_taskq_dispatch_ent(zio->io_spa,
4548 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4549 (task_func_t *)zio_reexecute, zio, 0,
4550 &zio->io_tqent);
4551 }
4552 return (NULL);
4553 }
4554
4555 ASSERT(zio->io_child_count == 0);
4556 ASSERT(zio->io_reexecute == 0);
4557 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4558
4559 /*
4560 * Report any checksum errors, since the I/O is complete.
4561 */
4562 while (zio->io_cksum_report != NULL) {
4563 zio_cksum_report_t *zcr = zio->io_cksum_report;
4564 zio->io_cksum_report = zcr->zcr_next;
4565 zcr->zcr_next = NULL;
4566 zcr->zcr_finish(zcr, NULL);
4567 zfs_ereport_free_checksum(zcr);
4568 }
4569
4570 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4571 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4572 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4573 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4574 }
4575
4576 /*
4577 * It is the responsibility of the done callback to ensure that this
4578 * particular zio is no longer discoverable for adoption, and as
4579 * such, cannot acquire any new parents.
4580 */
4581 if (zio->io_done)
4582 zio->io_done(zio);
4583
4584 mutex_enter(&zio->io_lock);
4585 zio->io_state[ZIO_WAIT_DONE] = 1;
4586 mutex_exit(&zio->io_lock);
4587
4588 /*
4589 * We are done executing this zio. We may want to execute a parent
4590 * next. See the comment in zio_notify_parent().
4591 */
4592 zio_t *next_to_execute = NULL;
4593 zl = NULL;
4594 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4595 zio_link_t *remove_zl = zl;
4596 pio_next = zio_walk_parents(zio, &zl);
4597 zio_remove_child(pio, zio, remove_zl);
4598 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4599 }
4600
4601 if (zio->io_waiter != NULL) {
4602 mutex_enter(&zio->io_lock);
4603 zio->io_executor = NULL;
4604 cv_broadcast(&zio->io_cv);
4605 mutex_exit(&zio->io_lock);
4606 } else {
4607 zio_destroy(zio);
4608 }
4609
4610 return (next_to_execute);
4611 }
4612
4613 /*
4614 * ==========================================================================
4615 * I/O pipeline definition
4616 * ==========================================================================
4617 */
4618 static zio_pipe_stage_t *zio_pipeline[] = {
4619 NULL,
4620 zio_read_bp_init,
4621 zio_write_bp_init,
4622 zio_free_bp_init,
4623 zio_issue_async,
4624 zio_write_compress,
4625 zio_encrypt,
4626 zio_checksum_generate,
4627 zio_nop_write,
4628 zio_ddt_read_start,
4629 zio_ddt_read_done,
4630 zio_ddt_write,
4631 zio_ddt_free,
4632 zio_gang_assemble,
4633 zio_gang_issue,
4634 zio_dva_throttle,
4635 zio_dva_allocate,
4636 zio_dva_free,
4637 zio_dva_claim,
4638 zio_ready,
4639 zio_vdev_io_start,
4640 zio_vdev_io_done,
4641 zio_vdev_io_assess,
4642 zio_checksum_verify,
4643 zio_done
4644 };
4645
4646
4647
4648
4649 /*
4650 * Compare two zbookmark_phys_t's to see which we would reach first in a
4651 * pre-order traversal of the object tree.
4652 *
4653 * This is simple in every case aside from the meta-dnode object. For all other
4654 * objects, we traverse them in order (object 1 before object 2, and so on).
4655 * However, all of these objects are traversed while traversing object 0, since
4656 * the data it points to is the list of objects. Thus, we need to convert to a
4657 * canonical representation so we can compare meta-dnode bookmarks to
4658 * non-meta-dnode bookmarks.
4659 *
4660 * We do this by calculating "equivalents" for each field of the zbookmark.
4661 * zbookmarks outside of the meta-dnode use their own object and level, and
4662 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4663 * blocks this bookmark refers to) by multiplying their blkid by their span
4664 * (the number of L0 blocks contained within one block at their level).
4665 * zbookmarks inside the meta-dnode calculate their object equivalent
4666 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4667 * level + 1<<31 (any value larger than a level could ever be) for their level.
4668 * This causes them to always compare before a bookmark in their object
4669 * equivalent, compare appropriately to bookmarks in other objects, and to
4670 * compare appropriately to other bookmarks in the meta-dnode.
4671 */
4672 int
4673 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4674 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4675 {
4676 /*
4677 * These variables represent the "equivalent" values for the zbookmark,
4678 * after converting zbookmarks inside the meta dnode to their
4679 * normal-object equivalents.
4680 */
4681 uint64_t zb1obj, zb2obj;
4682 uint64_t zb1L0, zb2L0;
4683 uint64_t zb1level, zb2level;
4684
4685 if (zb1->zb_object == zb2->zb_object &&
4686 zb1->zb_level == zb2->zb_level &&
4687 zb1->zb_blkid == zb2->zb_blkid)
4688 return (0);
4689
4690 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4691 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4692
4693 /*
4694 * BP_SPANB calculates the span in blocks.
4695 */
4696 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4697 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4698
4699 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4700 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4701 zb1L0 = 0;
4702 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4703 } else {
4704 zb1obj = zb1->zb_object;
4705 zb1level = zb1->zb_level;
4706 }
4707
4708 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4709 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4710 zb2L0 = 0;
4711 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4712 } else {
4713 zb2obj = zb2->zb_object;
4714 zb2level = zb2->zb_level;
4715 }
4716
4717 /* Now that we have a canonical representation, do the comparison. */
4718 if (zb1obj != zb2obj)
4719 return (zb1obj < zb2obj ? -1 : 1);
4720 else if (zb1L0 != zb2L0)
4721 return (zb1L0 < zb2L0 ? -1 : 1);
4722 else if (zb1level != zb2level)
4723 return (zb1level > zb2level ? -1 : 1);
4724 /*
4725 * This can (theoretically) happen if the bookmarks have the same object
4726 * and level, but different blkids, if the block sizes are not the same.
4727 * There is presently no way to change the indirect block sizes
4728 */
4729 return (0);
4730 }
4731
4732 /*
4733 * This function checks the following: given that last_block is the place that
4734 * our traversal stopped last time, does that guarantee that we've visited
4735 * every node under subtree_root? Therefore, we can't just use the raw output
4736 * of zbookmark_compare. We have to pass in a modified version of
4737 * subtree_root; by incrementing the block id, and then checking whether
4738 * last_block is before or equal to that, we can tell whether or not having
4739 * visited last_block implies that all of subtree_root's children have been
4740 * visited.
4741 */
4742 boolean_t
4743 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4744 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4745 {
4746 zbookmark_phys_t mod_zb = *subtree_root;
4747 mod_zb.zb_blkid++;
4748 ASSERT(last_block->zb_level == 0);
4749
4750 /* The objset_phys_t isn't before anything. */
4751 if (dnp == NULL)
4752 return (B_FALSE);
4753
4754 /*
4755 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4756 * data block size in sectors, because that variable is only used if
4757 * the bookmark refers to a block in the meta-dnode. Since we don't
4758 * know without examining it what object it refers to, and there's no
4759 * harm in passing in this value in other cases, we always pass it in.
4760 *
4761 * We pass in 0 for the indirect block size shift because zb2 must be
4762 * level 0. The indirect block size is only used to calculate the span
4763 * of the bookmark, but since the bookmark must be level 0, the span is
4764 * always 1, so the math works out.
4765 *
4766 * If you make changes to how the zbookmark_compare code works, be sure
4767 * to make sure that this code still works afterwards.
4768 */
4769 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4770 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4771 last_block) <= 0);
4772 }
4773
4774 EXPORT_SYMBOL(zio_type_name);
4775 EXPORT_SYMBOL(zio_buf_alloc);
4776 EXPORT_SYMBOL(zio_data_buf_alloc);
4777 EXPORT_SYMBOL(zio_buf_free);
4778 EXPORT_SYMBOL(zio_data_buf_free);
4779
4780 /* BEGIN CSTYLED */
4781 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
4782 "Max I/O completion time (milliseconds) before marking it as slow");
4783
4784 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
4785 "Prioritize requeued I/O");
4786
4787 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW,
4788 "Defer frees starting in this pass");
4789
4790 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
4791 "Don't compress starting in this pass");
4792
4793 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
4794 "Rewrite new bps starting in this pass");
4795
4796 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
4797 "Throttle block allocations in the ZIO pipeline");
4798
4799 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
4800 "Log all slow ZIOs, not just those with vdevs");
4801 /* END CSTYLED */