]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Bump checksum error counter before reporting to ZED
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
29 */
30
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
54
55 /*
56 * ==========================================================================
57 * I/O type descriptions
58 * ==========================================================================
59 */
60 const char *const zio_type_name[ZIO_TYPES] = {
61 /*
62 * Note: Linux kernel thread name length is limited
63 * so these names will differ from upstream open zfs.
64 */
65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
66 };
67
68 int zio_dva_throttle_enabled = B_TRUE;
69 static int zio_deadman_log_all = B_FALSE;
70
71 /*
72 * ==========================================================================
73 * I/O kmem caches
74 * ==========================================================================
75 */
76 static kmem_cache_t *zio_cache;
77 static kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
84
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 static uint_t zio_slow_io_ms = (30 * MILLISEC);
87
88 #define BP_SPANB(indblkshift, level) \
89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define COMPARE_META_LEVEL 0x80000000ul
91 /*
92 * The following actions directly effect the spa's sync-to-convergence logic.
93 * The values below define the sync pass when we start performing the action.
94 * Care should be taken when changing these values as they directly impact
95 * spa_sync() performance. Tuning these values may introduce subtle performance
96 * pathologies and should only be done in the context of performance analysis.
97 * These tunables will eventually be removed and replaced with #defines once
98 * enough analysis has been done to determine optimal values.
99 *
100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101 * regular blocks are not deferred.
102 *
103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104 * compression (including of metadata). In practice, we don't have this
105 * many sync passes, so this has no effect.
106 *
107 * The original intent was that disabling compression would help the sync
108 * passes to converge. However, in practice disabling compression increases
109 * the average number of sync passes, because when we turn compression off, a
110 * lot of block's size will change and thus we have to re-allocate (not
111 * overwrite) them. It also increases the number of 128KB allocations (e.g.
112 * for indirect blocks and spacemaps) because these will not be compressed.
113 * The 128K allocations are especially detrimental to performance on highly
114 * fragmented systems, which may have very few free segments of this size,
115 * and may need to load new metaslabs to satisfy 128K allocations.
116 */
117
118 /* defer frees starting in this pass */
119 uint_t zfs_sync_pass_deferred_free = 2;
120
121 /* don't compress starting in this pass */
122 static uint_t zfs_sync_pass_dont_compress = 8;
123
124 /* rewrite new bps starting in this pass */
125 static uint_t zfs_sync_pass_rewrite = 2;
126
127 /*
128 * An allocating zio is one that either currently has the DVA allocate
129 * stage set or will have it later in its lifetime.
130 */
131 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
132
133 /*
134 * Enable smaller cores by excluding metadata
135 * allocations as well.
136 */
137 int zio_exclude_metadata = 0;
138 static int zio_requeue_io_start_cut_in_line = 1;
139
140 #ifdef ZFS_DEBUG
141 static const int zio_buf_debug_limit = 16384;
142 #else
143 static const int zio_buf_debug_limit = 0;
144 #endif
145
146 static inline void __zio_execute(zio_t *zio);
147
148 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
149
150 void
151 zio_init(void)
152 {
153 size_t c;
154
155 zio_cache = kmem_cache_create("zio_cache",
156 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
157 zio_link_cache = kmem_cache_create("zio_link_cache",
158 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
159
160 /*
161 * For small buffers, we want a cache for each multiple of
162 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
163 * for each quarter-power of 2.
164 */
165 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
166 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
167 size_t p2 = size;
168 size_t align = 0;
169 size_t data_cflags, cflags;
170
171 data_cflags = KMC_NODEBUG;
172 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
173 KMC_NODEBUG : 0;
174
175 while (!ISP2(p2))
176 p2 &= p2 - 1;
177
178 #ifndef _KERNEL
179 /*
180 * If we are using watchpoints, put each buffer on its own page,
181 * to eliminate the performance overhead of trapping to the
182 * kernel when modifying a non-watched buffer that shares the
183 * page with a watched buffer.
184 */
185 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
186 continue;
187 /*
188 * Here's the problem - on 4K native devices in userland on
189 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
190 * will fail with EINVAL, causing zdb (and others) to coredump.
191 * Since userland probably doesn't need optimized buffer caches,
192 * we just force 4K alignment on everything.
193 */
194 align = 8 * SPA_MINBLOCKSIZE;
195 #else
196 if (size < PAGESIZE) {
197 align = SPA_MINBLOCKSIZE;
198 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
199 align = PAGESIZE;
200 }
201 #endif
202
203 if (align != 0) {
204 char name[36];
205 if (cflags == data_cflags) {
206 /*
207 * Resulting kmem caches would be identical.
208 * Save memory by creating only one.
209 */
210 (void) snprintf(name, sizeof (name),
211 "zio_buf_comb_%lu", (ulong_t)size);
212 zio_buf_cache[c] = kmem_cache_create(name,
213 size, align, NULL, NULL, NULL, NULL, NULL,
214 cflags);
215 zio_data_buf_cache[c] = zio_buf_cache[c];
216 continue;
217 }
218 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
219 (ulong_t)size);
220 zio_buf_cache[c] = kmem_cache_create(name, size,
221 align, NULL, NULL, NULL, NULL, NULL, cflags);
222
223 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
224 (ulong_t)size);
225 zio_data_buf_cache[c] = kmem_cache_create(name, size,
226 align, NULL, NULL, NULL, NULL, NULL, data_cflags);
227 }
228 }
229
230 while (--c != 0) {
231 ASSERT(zio_buf_cache[c] != NULL);
232 if (zio_buf_cache[c - 1] == NULL)
233 zio_buf_cache[c - 1] = zio_buf_cache[c];
234
235 ASSERT(zio_data_buf_cache[c] != NULL);
236 if (zio_data_buf_cache[c - 1] == NULL)
237 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
238 }
239
240 zio_inject_init();
241
242 lz4_init();
243 }
244
245 void
246 zio_fini(void)
247 {
248 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
249
250 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
251 for (size_t i = 0; i < n; i++) {
252 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
253 (void) printf("zio_fini: [%d] %llu != %llu\n",
254 (int)((i + 1) << SPA_MINBLOCKSHIFT),
255 (long long unsigned)zio_buf_cache_allocs[i],
256 (long long unsigned)zio_buf_cache_frees[i]);
257 }
258 #endif
259
260 /*
261 * The same kmem cache can show up multiple times in both zio_buf_cache
262 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
263 * sort it out.
264 */
265 for (size_t i = 0; i < n; i++) {
266 kmem_cache_t *cache = zio_buf_cache[i];
267 if (cache == NULL)
268 continue;
269 for (size_t j = i; j < n; j++) {
270 if (cache == zio_buf_cache[j])
271 zio_buf_cache[j] = NULL;
272 if (cache == zio_data_buf_cache[j])
273 zio_data_buf_cache[j] = NULL;
274 }
275 kmem_cache_destroy(cache);
276 }
277
278 for (size_t i = 0; i < n; i++) {
279 kmem_cache_t *cache = zio_data_buf_cache[i];
280 if (cache == NULL)
281 continue;
282 for (size_t j = i; j < n; j++) {
283 if (cache == zio_data_buf_cache[j])
284 zio_data_buf_cache[j] = NULL;
285 }
286 kmem_cache_destroy(cache);
287 }
288
289 for (size_t i = 0; i < n; i++) {
290 VERIFY3P(zio_buf_cache[i], ==, NULL);
291 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
292 }
293
294 kmem_cache_destroy(zio_link_cache);
295 kmem_cache_destroy(zio_cache);
296
297 zio_inject_fini();
298
299 lz4_fini();
300 }
301
302 /*
303 * ==========================================================================
304 * Allocate and free I/O buffers
305 * ==========================================================================
306 */
307
308 /*
309 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
310 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
311 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
312 * excess / transient data in-core during a crashdump.
313 */
314 void *
315 zio_buf_alloc(size_t size)
316 {
317 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
318
319 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
320 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
321 atomic_add_64(&zio_buf_cache_allocs[c], 1);
322 #endif
323
324 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
325 }
326
327 /*
328 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
329 * crashdump if the kernel panics. This exists so that we will limit the amount
330 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
331 * of kernel heap dumped to disk when the kernel panics)
332 */
333 void *
334 zio_data_buf_alloc(size_t size)
335 {
336 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
337
338 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
339
340 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
341 }
342
343 void
344 zio_buf_free(void *buf, size_t size)
345 {
346 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
347
348 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
349 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
350 atomic_add_64(&zio_buf_cache_frees[c], 1);
351 #endif
352
353 kmem_cache_free(zio_buf_cache[c], buf);
354 }
355
356 void
357 zio_data_buf_free(void *buf, size_t size)
358 {
359 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
360
361 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
362
363 kmem_cache_free(zio_data_buf_cache[c], buf);
364 }
365
366 static void
367 zio_abd_free(void *abd, size_t size)
368 {
369 (void) size;
370 abd_free((abd_t *)abd);
371 }
372
373 /*
374 * ==========================================================================
375 * Push and pop I/O transform buffers
376 * ==========================================================================
377 */
378 void
379 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
380 zio_transform_func_t *transform)
381 {
382 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
383
384 zt->zt_orig_abd = zio->io_abd;
385 zt->zt_orig_size = zio->io_size;
386 zt->zt_bufsize = bufsize;
387 zt->zt_transform = transform;
388
389 zt->zt_next = zio->io_transform_stack;
390 zio->io_transform_stack = zt;
391
392 zio->io_abd = data;
393 zio->io_size = size;
394 }
395
396 void
397 zio_pop_transforms(zio_t *zio)
398 {
399 zio_transform_t *zt;
400
401 while ((zt = zio->io_transform_stack) != NULL) {
402 if (zt->zt_transform != NULL)
403 zt->zt_transform(zio,
404 zt->zt_orig_abd, zt->zt_orig_size);
405
406 if (zt->zt_bufsize != 0)
407 abd_free(zio->io_abd);
408
409 zio->io_abd = zt->zt_orig_abd;
410 zio->io_size = zt->zt_orig_size;
411 zio->io_transform_stack = zt->zt_next;
412
413 kmem_free(zt, sizeof (zio_transform_t));
414 }
415 }
416
417 /*
418 * ==========================================================================
419 * I/O transform callbacks for subblocks, decompression, and decryption
420 * ==========================================================================
421 */
422 static void
423 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
424 {
425 ASSERT(zio->io_size > size);
426
427 if (zio->io_type == ZIO_TYPE_READ)
428 abd_copy(data, zio->io_abd, size);
429 }
430
431 static void
432 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
433 {
434 if (zio->io_error == 0) {
435 void *tmp = abd_borrow_buf(data, size);
436 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
437 zio->io_abd, tmp, zio->io_size, size,
438 &zio->io_prop.zp_complevel);
439 abd_return_buf_copy(data, tmp, size);
440
441 if (zio_injection_enabled && ret == 0)
442 ret = zio_handle_fault_injection(zio, EINVAL);
443
444 if (ret != 0)
445 zio->io_error = SET_ERROR(EIO);
446 }
447 }
448
449 static void
450 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
451 {
452 int ret;
453 void *tmp;
454 blkptr_t *bp = zio->io_bp;
455 spa_t *spa = zio->io_spa;
456 uint64_t dsobj = zio->io_bookmark.zb_objset;
457 uint64_t lsize = BP_GET_LSIZE(bp);
458 dmu_object_type_t ot = BP_GET_TYPE(bp);
459 uint8_t salt[ZIO_DATA_SALT_LEN];
460 uint8_t iv[ZIO_DATA_IV_LEN];
461 uint8_t mac[ZIO_DATA_MAC_LEN];
462 boolean_t no_crypt = B_FALSE;
463
464 ASSERT(BP_USES_CRYPT(bp));
465 ASSERT3U(size, !=, 0);
466
467 if (zio->io_error != 0)
468 return;
469
470 /*
471 * Verify the cksum of MACs stored in an indirect bp. It will always
472 * be possible to verify this since it does not require an encryption
473 * key.
474 */
475 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
476 zio_crypt_decode_mac_bp(bp, mac);
477
478 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
479 /*
480 * We haven't decompressed the data yet, but
481 * zio_crypt_do_indirect_mac_checksum() requires
482 * decompressed data to be able to parse out the MACs
483 * from the indirect block. We decompress it now and
484 * throw away the result after we are finished.
485 */
486 tmp = zio_buf_alloc(lsize);
487 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
488 zio->io_abd, tmp, zio->io_size, lsize,
489 &zio->io_prop.zp_complevel);
490 if (ret != 0) {
491 ret = SET_ERROR(EIO);
492 goto error;
493 }
494 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
495 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
496 zio_buf_free(tmp, lsize);
497 } else {
498 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
499 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
500 }
501 abd_copy(data, zio->io_abd, size);
502
503 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
504 ret = zio_handle_decrypt_injection(spa,
505 &zio->io_bookmark, ot, ECKSUM);
506 }
507 if (ret != 0)
508 goto error;
509
510 return;
511 }
512
513 /*
514 * If this is an authenticated block, just check the MAC. It would be
515 * nice to separate this out into its own flag, but when this was done,
516 * we had run out of bits in what is now zio_flag_t. Future cleanup
517 * could make this a flag bit.
518 */
519 if (BP_IS_AUTHENTICATED(bp)) {
520 if (ot == DMU_OT_OBJSET) {
521 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
522 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
523 } else {
524 zio_crypt_decode_mac_bp(bp, mac);
525 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
526 zio->io_abd, size, mac);
527 if (zio_injection_enabled && ret == 0) {
528 ret = zio_handle_decrypt_injection(spa,
529 &zio->io_bookmark, ot, ECKSUM);
530 }
531 }
532 abd_copy(data, zio->io_abd, size);
533
534 if (ret != 0)
535 goto error;
536
537 return;
538 }
539
540 zio_crypt_decode_params_bp(bp, salt, iv);
541
542 if (ot == DMU_OT_INTENT_LOG) {
543 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
544 zio_crypt_decode_mac_zil(tmp, mac);
545 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
546 } else {
547 zio_crypt_decode_mac_bp(bp, mac);
548 }
549
550 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
551 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
552 zio->io_abd, &no_crypt);
553 if (no_crypt)
554 abd_copy(data, zio->io_abd, size);
555
556 if (ret != 0)
557 goto error;
558
559 return;
560
561 error:
562 /* assert that the key was found unless this was speculative */
563 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
564
565 /*
566 * If there was a decryption / authentication error return EIO as
567 * the io_error. If this was not a speculative zio, create an ereport.
568 */
569 if (ret == ECKSUM) {
570 zio->io_error = SET_ERROR(EIO);
571 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
572 spa_log_error(spa, &zio->io_bookmark);
573 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
574 spa, NULL, &zio->io_bookmark, zio, 0);
575 }
576 } else {
577 zio->io_error = ret;
578 }
579 }
580
581 /*
582 * ==========================================================================
583 * I/O parent/child relationships and pipeline interlocks
584 * ==========================================================================
585 */
586 zio_t *
587 zio_walk_parents(zio_t *cio, zio_link_t **zl)
588 {
589 list_t *pl = &cio->io_parent_list;
590
591 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
592 if (*zl == NULL)
593 return (NULL);
594
595 ASSERT((*zl)->zl_child == cio);
596 return ((*zl)->zl_parent);
597 }
598
599 zio_t *
600 zio_walk_children(zio_t *pio, zio_link_t **zl)
601 {
602 list_t *cl = &pio->io_child_list;
603
604 ASSERT(MUTEX_HELD(&pio->io_lock));
605
606 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
607 if (*zl == NULL)
608 return (NULL);
609
610 ASSERT((*zl)->zl_parent == pio);
611 return ((*zl)->zl_child);
612 }
613
614 zio_t *
615 zio_unique_parent(zio_t *cio)
616 {
617 zio_link_t *zl = NULL;
618 zio_t *pio = zio_walk_parents(cio, &zl);
619
620 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
621 return (pio);
622 }
623
624 void
625 zio_add_child(zio_t *pio, zio_t *cio)
626 {
627 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
628
629 /*
630 * Logical I/Os can have logical, gang, or vdev children.
631 * Gang I/Os can have gang or vdev children.
632 * Vdev I/Os can only have vdev children.
633 * The following ASSERT captures all of these constraints.
634 */
635 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
636
637 zl->zl_parent = pio;
638 zl->zl_child = cio;
639
640 mutex_enter(&pio->io_lock);
641 mutex_enter(&cio->io_lock);
642
643 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
644
645 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
646 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
647
648 list_insert_head(&pio->io_child_list, zl);
649 list_insert_head(&cio->io_parent_list, zl);
650
651 pio->io_child_count++;
652 cio->io_parent_count++;
653
654 mutex_exit(&cio->io_lock);
655 mutex_exit(&pio->io_lock);
656 }
657
658 static void
659 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
660 {
661 ASSERT(zl->zl_parent == pio);
662 ASSERT(zl->zl_child == cio);
663
664 mutex_enter(&pio->io_lock);
665 mutex_enter(&cio->io_lock);
666
667 list_remove(&pio->io_child_list, zl);
668 list_remove(&cio->io_parent_list, zl);
669
670 pio->io_child_count--;
671 cio->io_parent_count--;
672
673 mutex_exit(&cio->io_lock);
674 mutex_exit(&pio->io_lock);
675 kmem_cache_free(zio_link_cache, zl);
676 }
677
678 static boolean_t
679 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
680 {
681 boolean_t waiting = B_FALSE;
682
683 mutex_enter(&zio->io_lock);
684 ASSERT(zio->io_stall == NULL);
685 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
686 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
687 continue;
688
689 uint64_t *countp = &zio->io_children[c][wait];
690 if (*countp != 0) {
691 zio->io_stage >>= 1;
692 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
693 zio->io_stall = countp;
694 waiting = B_TRUE;
695 break;
696 }
697 }
698 mutex_exit(&zio->io_lock);
699 return (waiting);
700 }
701
702 __attribute__((always_inline))
703 static inline void
704 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
705 zio_t **next_to_executep)
706 {
707 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
708 int *errorp = &pio->io_child_error[zio->io_child_type];
709
710 mutex_enter(&pio->io_lock);
711 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
712 *errorp = zio_worst_error(*errorp, zio->io_error);
713 pio->io_reexecute |= zio->io_reexecute;
714 ASSERT3U(*countp, >, 0);
715
716 (*countp)--;
717
718 if (*countp == 0 && pio->io_stall == countp) {
719 zio_taskq_type_t type =
720 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
721 ZIO_TASKQ_INTERRUPT;
722 pio->io_stall = NULL;
723 mutex_exit(&pio->io_lock);
724
725 /*
726 * If we can tell the caller to execute this parent next, do
727 * so. Otherwise dispatch the parent zio as its own task.
728 *
729 * Having the caller execute the parent when possible reduces
730 * locking on the zio taskq's, reduces context switch
731 * overhead, and has no recursion penalty. Note that one
732 * read from disk typically causes at least 3 zio's: a
733 * zio_null(), the logical zio_read(), and then a physical
734 * zio. When the physical ZIO completes, we are able to call
735 * zio_done() on all 3 of these zio's from one invocation of
736 * zio_execute() by returning the parent back to
737 * zio_execute(). Since the parent isn't executed until this
738 * thread returns back to zio_execute(), the caller should do
739 * so promptly.
740 *
741 * In other cases, dispatching the parent prevents
742 * overflowing the stack when we have deeply nested
743 * parent-child relationships, as we do with the "mega zio"
744 * of writes for spa_sync(), and the chain of ZIL blocks.
745 */
746 if (next_to_executep != NULL && *next_to_executep == NULL) {
747 *next_to_executep = pio;
748 } else {
749 zio_taskq_dispatch(pio, type, B_FALSE);
750 }
751 } else {
752 mutex_exit(&pio->io_lock);
753 }
754 }
755
756 static void
757 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
758 {
759 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
760 zio->io_error = zio->io_child_error[c];
761 }
762
763 int
764 zio_bookmark_compare(const void *x1, const void *x2)
765 {
766 const zio_t *z1 = x1;
767 const zio_t *z2 = x2;
768
769 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
770 return (-1);
771 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
772 return (1);
773
774 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
775 return (-1);
776 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
777 return (1);
778
779 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
780 return (-1);
781 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
782 return (1);
783
784 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
785 return (-1);
786 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
787 return (1);
788
789 if (z1 < z2)
790 return (-1);
791 if (z1 > z2)
792 return (1);
793
794 return (0);
795 }
796
797 /*
798 * ==========================================================================
799 * Create the various types of I/O (read, write, free, etc)
800 * ==========================================================================
801 */
802 static zio_t *
803 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
804 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
805 void *private, zio_type_t type, zio_priority_t priority,
806 zio_flag_t flags, vdev_t *vd, uint64_t offset,
807 const zbookmark_phys_t *zb, enum zio_stage stage,
808 enum zio_stage pipeline)
809 {
810 zio_t *zio;
811
812 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
813 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
814 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
815
816 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
817 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
818 ASSERT(vd || stage == ZIO_STAGE_OPEN);
819
820 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
821
822 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
823 memset(zio, 0, sizeof (zio_t));
824
825 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
826 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
827
828 list_create(&zio->io_parent_list, sizeof (zio_link_t),
829 offsetof(zio_link_t, zl_parent_node));
830 list_create(&zio->io_child_list, sizeof (zio_link_t),
831 offsetof(zio_link_t, zl_child_node));
832 metaslab_trace_init(&zio->io_alloc_list);
833
834 if (vd != NULL)
835 zio->io_child_type = ZIO_CHILD_VDEV;
836 else if (flags & ZIO_FLAG_GANG_CHILD)
837 zio->io_child_type = ZIO_CHILD_GANG;
838 else if (flags & ZIO_FLAG_DDT_CHILD)
839 zio->io_child_type = ZIO_CHILD_DDT;
840 else
841 zio->io_child_type = ZIO_CHILD_LOGICAL;
842
843 if (bp != NULL) {
844 zio->io_bp = (blkptr_t *)bp;
845 zio->io_bp_copy = *bp;
846 zio->io_bp_orig = *bp;
847 if (type != ZIO_TYPE_WRITE ||
848 zio->io_child_type == ZIO_CHILD_DDT)
849 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
850 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
851 zio->io_logical = zio;
852 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
853 pipeline |= ZIO_GANG_STAGES;
854 }
855
856 zio->io_spa = spa;
857 zio->io_txg = txg;
858 zio->io_done = done;
859 zio->io_private = private;
860 zio->io_type = type;
861 zio->io_priority = priority;
862 zio->io_vd = vd;
863 zio->io_offset = offset;
864 zio->io_orig_abd = zio->io_abd = data;
865 zio->io_orig_size = zio->io_size = psize;
866 zio->io_lsize = lsize;
867 zio->io_orig_flags = zio->io_flags = flags;
868 zio->io_orig_stage = zio->io_stage = stage;
869 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
870 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
871
872 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
873 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
874
875 if (zb != NULL)
876 zio->io_bookmark = *zb;
877
878 if (pio != NULL) {
879 zio->io_metaslab_class = pio->io_metaslab_class;
880 if (zio->io_logical == NULL)
881 zio->io_logical = pio->io_logical;
882 if (zio->io_child_type == ZIO_CHILD_GANG)
883 zio->io_gang_leader = pio->io_gang_leader;
884 zio_add_child(pio, zio);
885 }
886
887 taskq_init_ent(&zio->io_tqent);
888
889 return (zio);
890 }
891
892 void
893 zio_destroy(zio_t *zio)
894 {
895 metaslab_trace_fini(&zio->io_alloc_list);
896 list_destroy(&zio->io_parent_list);
897 list_destroy(&zio->io_child_list);
898 mutex_destroy(&zio->io_lock);
899 cv_destroy(&zio->io_cv);
900 kmem_cache_free(zio_cache, zio);
901 }
902
903 zio_t *
904 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
905 void *private, zio_flag_t flags)
906 {
907 zio_t *zio;
908
909 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
910 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
911 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
912
913 return (zio);
914 }
915
916 zio_t *
917 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
918 {
919 return (zio_null(NULL, spa, NULL, done, private, flags));
920 }
921
922 static int
923 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
924 enum blk_verify_flag blk_verify, const char *fmt, ...)
925 {
926 va_list adx;
927 char buf[256];
928
929 va_start(adx, fmt);
930 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
931 va_end(adx);
932
933 switch (blk_verify) {
934 case BLK_VERIFY_HALT:
935 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
936 zfs_panic_recover("%s: %s", spa_name(spa), buf);
937 break;
938 case BLK_VERIFY_LOG:
939 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
940 break;
941 case BLK_VERIFY_ONLY:
942 break;
943 }
944
945 return (1);
946 }
947
948 /*
949 * Verify the block pointer fields contain reasonable values. This means
950 * it only contains known object types, checksum/compression identifiers,
951 * block sizes within the maximum allowed limits, valid DVAs, etc.
952 *
953 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
954 * argument controls the behavior when an invalid field is detected.
955 *
956 * Modes for zfs_blkptr_verify:
957 * 1) BLK_VERIFY_ONLY (evaluate the block)
958 * 2) BLK_VERIFY_LOG (evaluate the block and log problems)
959 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
960 */
961 boolean_t
962 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
963 enum blk_verify_flag blk_verify)
964 {
965 int errors = 0;
966
967 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
968 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
969 "blkptr at %p has invalid TYPE %llu",
970 bp, (longlong_t)BP_GET_TYPE(bp));
971 }
972 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
973 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
974 "blkptr at %p has invalid CHECKSUM %llu",
975 bp, (longlong_t)BP_GET_CHECKSUM(bp));
976 }
977 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
978 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
979 "blkptr at %p has invalid COMPRESS %llu",
980 bp, (longlong_t)BP_GET_COMPRESS(bp));
981 }
982 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
983 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
984 "blkptr at %p has invalid LSIZE %llu",
985 bp, (longlong_t)BP_GET_LSIZE(bp));
986 }
987 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
988 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
989 "blkptr at %p has invalid PSIZE %llu",
990 bp, (longlong_t)BP_GET_PSIZE(bp));
991 }
992
993 if (BP_IS_EMBEDDED(bp)) {
994 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
995 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
996 "blkptr at %p has invalid ETYPE %llu",
997 bp, (longlong_t)BPE_GET_ETYPE(bp));
998 }
999 }
1000
1001 /*
1002 * Do not verify individual DVAs if the config is not trusted. This
1003 * will be done once the zio is executed in vdev_mirror_map_alloc.
1004 */
1005 if (!spa->spa_trust_config)
1006 return (errors == 0);
1007
1008 if (!config_held)
1009 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1010 else
1011 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1012 /*
1013 * Pool-specific checks.
1014 *
1015 * Note: it would be nice to verify that the blk_birth and
1016 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1017 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1018 * that are in the log) to be arbitrarily large.
1019 */
1020 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1021 const dva_t *dva = &bp->blk_dva[i];
1022 uint64_t vdevid = DVA_GET_VDEV(dva);
1023
1024 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1025 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1026 "blkptr at %p DVA %u has invalid VDEV %llu",
1027 bp, i, (longlong_t)vdevid);
1028 continue;
1029 }
1030 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1031 if (vd == NULL) {
1032 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1033 "blkptr at %p DVA %u has invalid VDEV %llu",
1034 bp, i, (longlong_t)vdevid);
1035 continue;
1036 }
1037 if (vd->vdev_ops == &vdev_hole_ops) {
1038 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1039 "blkptr at %p DVA %u has hole VDEV %llu",
1040 bp, i, (longlong_t)vdevid);
1041 continue;
1042 }
1043 if (vd->vdev_ops == &vdev_missing_ops) {
1044 /*
1045 * "missing" vdevs are valid during import, but we
1046 * don't have their detailed info (e.g. asize), so
1047 * we can't perform any more checks on them.
1048 */
1049 continue;
1050 }
1051 uint64_t offset = DVA_GET_OFFSET(dva);
1052 uint64_t asize = DVA_GET_ASIZE(dva);
1053 if (DVA_GET_GANG(dva))
1054 asize = vdev_gang_header_asize(vd);
1055 if (offset + asize > vd->vdev_asize) {
1056 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1057 "blkptr at %p DVA %u has invalid OFFSET %llu",
1058 bp, i, (longlong_t)offset);
1059 }
1060 }
1061 if (errors > 0)
1062 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1063 if (!config_held)
1064 spa_config_exit(spa, SCL_VDEV, bp);
1065
1066 return (errors == 0);
1067 }
1068
1069 boolean_t
1070 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1071 {
1072 (void) bp;
1073 uint64_t vdevid = DVA_GET_VDEV(dva);
1074
1075 if (vdevid >= spa->spa_root_vdev->vdev_children)
1076 return (B_FALSE);
1077
1078 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1079 if (vd == NULL)
1080 return (B_FALSE);
1081
1082 if (vd->vdev_ops == &vdev_hole_ops)
1083 return (B_FALSE);
1084
1085 if (vd->vdev_ops == &vdev_missing_ops) {
1086 return (B_FALSE);
1087 }
1088
1089 uint64_t offset = DVA_GET_OFFSET(dva);
1090 uint64_t asize = DVA_GET_ASIZE(dva);
1091
1092 if (DVA_GET_GANG(dva))
1093 asize = vdev_gang_header_asize(vd);
1094 if (offset + asize > vd->vdev_asize)
1095 return (B_FALSE);
1096
1097 return (B_TRUE);
1098 }
1099
1100 zio_t *
1101 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1102 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1103 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1104 {
1105 zio_t *zio;
1106
1107 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1108 data, size, size, done, private,
1109 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1110 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1111 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1112
1113 return (zio);
1114 }
1115
1116 zio_t *
1117 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1118 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1119 zio_done_func_t *ready, zio_done_func_t *children_ready,
1120 zio_done_func_t *physdone, zio_done_func_t *done,
1121 void *private, zio_priority_t priority, zio_flag_t flags,
1122 const zbookmark_phys_t *zb)
1123 {
1124 zio_t *zio;
1125
1126 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1127 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1128 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1129 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1130 DMU_OT_IS_VALID(zp->zp_type) &&
1131 zp->zp_level < 32 &&
1132 zp->zp_copies > 0 &&
1133 zp->zp_copies <= spa_max_replication(spa));
1134
1135 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1136 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1137 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1138 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1139
1140 zio->io_ready = ready;
1141 zio->io_children_ready = children_ready;
1142 zio->io_physdone = physdone;
1143 zio->io_prop = *zp;
1144
1145 /*
1146 * Data can be NULL if we are going to call zio_write_override() to
1147 * provide the already-allocated BP. But we may need the data to
1148 * verify a dedup hit (if requested). In this case, don't try to
1149 * dedup (just take the already-allocated BP verbatim). Encrypted
1150 * dedup blocks need data as well so we also disable dedup in this
1151 * case.
1152 */
1153 if (data == NULL &&
1154 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1155 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1156 }
1157
1158 return (zio);
1159 }
1160
1161 zio_t *
1162 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1163 uint64_t size, zio_done_func_t *done, void *private,
1164 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1165 {
1166 zio_t *zio;
1167
1168 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1169 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1170 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1171
1172 return (zio);
1173 }
1174
1175 void
1176 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1177 {
1178 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1179 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1180 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1181 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1182
1183 /*
1184 * We must reset the io_prop to match the values that existed
1185 * when the bp was first written by dmu_sync() keeping in mind
1186 * that nopwrite and dedup are mutually exclusive.
1187 */
1188 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1189 zio->io_prop.zp_nopwrite = nopwrite;
1190 zio->io_prop.zp_copies = copies;
1191 zio->io_bp_override = bp;
1192 }
1193
1194 void
1195 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1196 {
1197
1198 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1199
1200 /*
1201 * The check for EMBEDDED is a performance optimization. We
1202 * process the free here (by ignoring it) rather than
1203 * putting it on the list and then processing it in zio_free_sync().
1204 */
1205 if (BP_IS_EMBEDDED(bp))
1206 return;
1207
1208 /*
1209 * Frees that are for the currently-syncing txg, are not going to be
1210 * deferred, and which will not need to do a read (i.e. not GANG or
1211 * DEDUP), can be processed immediately. Otherwise, put them on the
1212 * in-memory list for later processing.
1213 *
1214 * Note that we only defer frees after zfs_sync_pass_deferred_free
1215 * when the log space map feature is disabled. [see relevant comment
1216 * in spa_sync_iterate_to_convergence()]
1217 */
1218 if (BP_IS_GANG(bp) ||
1219 BP_GET_DEDUP(bp) ||
1220 txg != spa->spa_syncing_txg ||
1221 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1222 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1223 metaslab_check_free(spa, bp);
1224 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1225 } else {
1226 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1227 }
1228 }
1229
1230 /*
1231 * To improve performance, this function may return NULL if we were able
1232 * to do the free immediately. This avoids the cost of creating a zio
1233 * (and linking it to the parent, etc).
1234 */
1235 zio_t *
1236 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1237 zio_flag_t flags)
1238 {
1239 ASSERT(!BP_IS_HOLE(bp));
1240 ASSERT(spa_syncing_txg(spa) == txg);
1241
1242 if (BP_IS_EMBEDDED(bp))
1243 return (NULL);
1244
1245 metaslab_check_free(spa, bp);
1246 arc_freed(spa, bp);
1247 dsl_scan_freed(spa, bp);
1248
1249 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1250 /*
1251 * GANG and DEDUP blocks can induce a read (for the gang block
1252 * header, or the DDT), so issue them asynchronously so that
1253 * this thread is not tied up.
1254 */
1255 enum zio_stage stage =
1256 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1257
1258 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1259 BP_GET_PSIZE(bp), NULL, NULL,
1260 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1261 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1262 } else {
1263 metaslab_free(spa, bp, txg, B_FALSE);
1264 return (NULL);
1265 }
1266 }
1267
1268 zio_t *
1269 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1270 zio_done_func_t *done, void *private, zio_flag_t flags)
1271 {
1272 zio_t *zio;
1273
1274 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1275 BLK_VERIFY_HALT);
1276
1277 if (BP_IS_EMBEDDED(bp))
1278 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1279
1280 /*
1281 * A claim is an allocation of a specific block. Claims are needed
1282 * to support immediate writes in the intent log. The issue is that
1283 * immediate writes contain committed data, but in a txg that was
1284 * *not* committed. Upon opening the pool after an unclean shutdown,
1285 * the intent log claims all blocks that contain immediate write data
1286 * so that the SPA knows they're in use.
1287 *
1288 * All claims *must* be resolved in the first txg -- before the SPA
1289 * starts allocating blocks -- so that nothing is allocated twice.
1290 * If txg == 0 we just verify that the block is claimable.
1291 */
1292 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1293 spa_min_claim_txg(spa));
1294 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1295 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1296
1297 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1298 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1299 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1300 ASSERT0(zio->io_queued_timestamp);
1301
1302 return (zio);
1303 }
1304
1305 zio_t *
1306 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1307 zio_done_func_t *done, void *private, zio_flag_t flags)
1308 {
1309 zio_t *zio;
1310 int c;
1311
1312 if (vd->vdev_children == 0) {
1313 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1314 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1315 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1316
1317 zio->io_cmd = cmd;
1318 } else {
1319 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1320
1321 for (c = 0; c < vd->vdev_children; c++)
1322 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1323 done, private, flags));
1324 }
1325
1326 return (zio);
1327 }
1328
1329 zio_t *
1330 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1331 zio_done_func_t *done, void *private, zio_priority_t priority,
1332 zio_flag_t flags, enum trim_flag trim_flags)
1333 {
1334 zio_t *zio;
1335
1336 ASSERT0(vd->vdev_children);
1337 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1338 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1339 ASSERT3U(size, !=, 0);
1340
1341 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1342 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1343 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1344 zio->io_trim_flags = trim_flags;
1345
1346 return (zio);
1347 }
1348
1349 zio_t *
1350 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1351 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1352 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1353 {
1354 zio_t *zio;
1355
1356 ASSERT(vd->vdev_children == 0);
1357 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1358 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1359 ASSERT3U(offset + size, <=, vd->vdev_psize);
1360
1361 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1362 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1363 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1364
1365 zio->io_prop.zp_checksum = checksum;
1366
1367 return (zio);
1368 }
1369
1370 zio_t *
1371 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1372 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1373 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1374 {
1375 zio_t *zio;
1376
1377 ASSERT(vd->vdev_children == 0);
1378 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1379 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1380 ASSERT3U(offset + size, <=, vd->vdev_psize);
1381
1382 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1383 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1384 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1385
1386 zio->io_prop.zp_checksum = checksum;
1387
1388 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1389 /*
1390 * zec checksums are necessarily destructive -- they modify
1391 * the end of the write buffer to hold the verifier/checksum.
1392 * Therefore, we must make a local copy in case the data is
1393 * being written to multiple places in parallel.
1394 */
1395 abd_t *wbuf = abd_alloc_sametype(data, size);
1396 abd_copy(wbuf, data, size);
1397
1398 zio_push_transform(zio, wbuf, size, size, NULL);
1399 }
1400
1401 return (zio);
1402 }
1403
1404 /*
1405 * Create a child I/O to do some work for us.
1406 */
1407 zio_t *
1408 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1409 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1410 zio_flag_t flags, zio_done_func_t *done, void *private)
1411 {
1412 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1413 zio_t *zio;
1414
1415 /*
1416 * vdev child I/Os do not propagate their error to the parent.
1417 * Therefore, for correct operation the caller *must* check for
1418 * and handle the error in the child i/o's done callback.
1419 * The only exceptions are i/os that we don't care about
1420 * (OPTIONAL or REPAIR).
1421 */
1422 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1423 done != NULL);
1424
1425 if (type == ZIO_TYPE_READ && bp != NULL) {
1426 /*
1427 * If we have the bp, then the child should perform the
1428 * checksum and the parent need not. This pushes error
1429 * detection as close to the leaves as possible and
1430 * eliminates redundant checksums in the interior nodes.
1431 */
1432 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1433 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1434 }
1435
1436 if (vd->vdev_ops->vdev_op_leaf) {
1437 ASSERT0(vd->vdev_children);
1438 offset += VDEV_LABEL_START_SIZE;
1439 }
1440
1441 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1442
1443 /*
1444 * If we've decided to do a repair, the write is not speculative --
1445 * even if the original read was.
1446 */
1447 if (flags & ZIO_FLAG_IO_REPAIR)
1448 flags &= ~ZIO_FLAG_SPECULATIVE;
1449
1450 /*
1451 * If we're creating a child I/O that is not associated with a
1452 * top-level vdev, then the child zio is not an allocating I/O.
1453 * If this is a retried I/O then we ignore it since we will
1454 * have already processed the original allocating I/O.
1455 */
1456 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1457 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1458 ASSERT(pio->io_metaslab_class != NULL);
1459 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1460 ASSERT(type == ZIO_TYPE_WRITE);
1461 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1462 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1463 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1464 pio->io_child_type == ZIO_CHILD_GANG);
1465
1466 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1467 }
1468
1469
1470 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1471 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1472 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1473 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1474
1475 zio->io_physdone = pio->io_physdone;
1476 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1477 zio->io_logical->io_phys_children++;
1478
1479 return (zio);
1480 }
1481
1482 zio_t *
1483 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1484 zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1485 zio_done_func_t *done, void *private)
1486 {
1487 zio_t *zio;
1488
1489 ASSERT(vd->vdev_ops->vdev_op_leaf);
1490
1491 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1492 data, size, size, done, private, type, priority,
1493 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1494 vd, offset, NULL,
1495 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1496
1497 return (zio);
1498 }
1499
1500 void
1501 zio_flush(zio_t *zio, vdev_t *vd)
1502 {
1503 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1504 NULL, NULL,
1505 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1506 }
1507
1508 void
1509 zio_shrink(zio_t *zio, uint64_t size)
1510 {
1511 ASSERT3P(zio->io_executor, ==, NULL);
1512 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1513 ASSERT3U(size, <=, zio->io_size);
1514
1515 /*
1516 * We don't shrink for raidz because of problems with the
1517 * reconstruction when reading back less than the block size.
1518 * Note, BP_IS_RAIDZ() assumes no compression.
1519 */
1520 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1521 if (!BP_IS_RAIDZ(zio->io_bp)) {
1522 /* we are not doing a raw write */
1523 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1524 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1525 }
1526 }
1527
1528 /*
1529 * ==========================================================================
1530 * Prepare to read and write logical blocks
1531 * ==========================================================================
1532 */
1533
1534 static zio_t *
1535 zio_read_bp_init(zio_t *zio)
1536 {
1537 blkptr_t *bp = zio->io_bp;
1538 uint64_t psize =
1539 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1540
1541 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1542
1543 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1544 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1545 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1546 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1547 psize, psize, zio_decompress);
1548 }
1549
1550 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1551 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1552 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1553 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1554 psize, psize, zio_decrypt);
1555 }
1556
1557 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1558 int psize = BPE_GET_PSIZE(bp);
1559 void *data = abd_borrow_buf(zio->io_abd, psize);
1560
1561 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1562 decode_embedded_bp_compressed(bp, data);
1563 abd_return_buf_copy(zio->io_abd, data, psize);
1564 } else {
1565 ASSERT(!BP_IS_EMBEDDED(bp));
1566 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1567 }
1568
1569 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1570 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1571
1572 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1573 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1574
1575 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1576 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1577
1578 return (zio);
1579 }
1580
1581 static zio_t *
1582 zio_write_bp_init(zio_t *zio)
1583 {
1584 if (!IO_IS_ALLOCATING(zio))
1585 return (zio);
1586
1587 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1588
1589 if (zio->io_bp_override) {
1590 blkptr_t *bp = zio->io_bp;
1591 zio_prop_t *zp = &zio->io_prop;
1592
1593 ASSERT(bp->blk_birth != zio->io_txg);
1594 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1595
1596 *bp = *zio->io_bp_override;
1597 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1598
1599 if (BP_IS_EMBEDDED(bp))
1600 return (zio);
1601
1602 /*
1603 * If we've been overridden and nopwrite is set then
1604 * set the flag accordingly to indicate that a nopwrite
1605 * has already occurred.
1606 */
1607 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1608 ASSERT(!zp->zp_dedup);
1609 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1610 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1611 return (zio);
1612 }
1613
1614 ASSERT(!zp->zp_nopwrite);
1615
1616 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1617 return (zio);
1618
1619 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1620 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1621
1622 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1623 !zp->zp_encrypt) {
1624 BP_SET_DEDUP(bp, 1);
1625 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1626 return (zio);
1627 }
1628
1629 /*
1630 * We were unable to handle this as an override bp, treat
1631 * it as a regular write I/O.
1632 */
1633 zio->io_bp_override = NULL;
1634 *bp = zio->io_bp_orig;
1635 zio->io_pipeline = zio->io_orig_pipeline;
1636 }
1637
1638 return (zio);
1639 }
1640
1641 static zio_t *
1642 zio_write_compress(zio_t *zio)
1643 {
1644 spa_t *spa = zio->io_spa;
1645 zio_prop_t *zp = &zio->io_prop;
1646 enum zio_compress compress = zp->zp_compress;
1647 blkptr_t *bp = zio->io_bp;
1648 uint64_t lsize = zio->io_lsize;
1649 uint64_t psize = zio->io_size;
1650 uint32_t pass = 1;
1651
1652 /*
1653 * If our children haven't all reached the ready stage,
1654 * wait for them and then repeat this pipeline stage.
1655 */
1656 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1657 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1658 return (NULL);
1659 }
1660
1661 if (!IO_IS_ALLOCATING(zio))
1662 return (zio);
1663
1664 if (zio->io_children_ready != NULL) {
1665 /*
1666 * Now that all our children are ready, run the callback
1667 * associated with this zio in case it wants to modify the
1668 * data to be written.
1669 */
1670 ASSERT3U(zp->zp_level, >, 0);
1671 zio->io_children_ready(zio);
1672 }
1673
1674 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1675 ASSERT(zio->io_bp_override == NULL);
1676
1677 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1678 /*
1679 * We're rewriting an existing block, which means we're
1680 * working on behalf of spa_sync(). For spa_sync() to
1681 * converge, it must eventually be the case that we don't
1682 * have to allocate new blocks. But compression changes
1683 * the blocksize, which forces a reallocate, and makes
1684 * convergence take longer. Therefore, after the first
1685 * few passes, stop compressing to ensure convergence.
1686 */
1687 pass = spa_sync_pass(spa);
1688
1689 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1690 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1691 ASSERT(!BP_GET_DEDUP(bp));
1692
1693 if (pass >= zfs_sync_pass_dont_compress)
1694 compress = ZIO_COMPRESS_OFF;
1695
1696 /* Make sure someone doesn't change their mind on overwrites */
1697 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1698 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1699 }
1700
1701 /* If it's a compressed write that is not raw, compress the buffer. */
1702 if (compress != ZIO_COMPRESS_OFF &&
1703 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1704 void *cbuf = zio_buf_alloc(lsize);
1705 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1706 zp->zp_complevel);
1707 if (psize == 0 || psize >= lsize) {
1708 compress = ZIO_COMPRESS_OFF;
1709 zio_buf_free(cbuf, lsize);
1710 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1711 psize <= BPE_PAYLOAD_SIZE &&
1712 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1713 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1714 encode_embedded_bp_compressed(bp,
1715 cbuf, compress, lsize, psize);
1716 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1717 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1718 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1719 zio_buf_free(cbuf, lsize);
1720 bp->blk_birth = zio->io_txg;
1721 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1722 ASSERT(spa_feature_is_active(spa,
1723 SPA_FEATURE_EMBEDDED_DATA));
1724 return (zio);
1725 } else {
1726 /*
1727 * Round compressed size up to the minimum allocation
1728 * size of the smallest-ashift device, and zero the
1729 * tail. This ensures that the compressed size of the
1730 * BP (and thus compressratio property) are correct,
1731 * in that we charge for the padding used to fill out
1732 * the last sector.
1733 */
1734 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1735 size_t rounded = (size_t)roundup(psize,
1736 spa->spa_min_alloc);
1737 if (rounded >= lsize) {
1738 compress = ZIO_COMPRESS_OFF;
1739 zio_buf_free(cbuf, lsize);
1740 psize = lsize;
1741 } else {
1742 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1743 abd_take_ownership_of_buf(cdata, B_TRUE);
1744 abd_zero_off(cdata, psize, rounded - psize);
1745 psize = rounded;
1746 zio_push_transform(zio, cdata,
1747 psize, lsize, NULL);
1748 }
1749 }
1750
1751 /*
1752 * We were unable to handle this as an override bp, treat
1753 * it as a regular write I/O.
1754 */
1755 zio->io_bp_override = NULL;
1756 *bp = zio->io_bp_orig;
1757 zio->io_pipeline = zio->io_orig_pipeline;
1758
1759 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1760 zp->zp_type == DMU_OT_DNODE) {
1761 /*
1762 * The DMU actually relies on the zio layer's compression
1763 * to free metadnode blocks that have had all contained
1764 * dnodes freed. As a result, even when doing a raw
1765 * receive, we must check whether the block can be compressed
1766 * to a hole.
1767 */
1768 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1769 zio->io_abd, NULL, lsize, zp->zp_complevel);
1770 if (psize == 0 || psize >= lsize)
1771 compress = ZIO_COMPRESS_OFF;
1772 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1773 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1774 /*
1775 * If we are raw receiving an encrypted dataset we should not
1776 * take this codepath because it will change the on-disk block
1777 * and decryption will fail.
1778 */
1779 size_t rounded = MIN((size_t)roundup(psize,
1780 spa->spa_min_alloc), lsize);
1781
1782 if (rounded != psize) {
1783 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1784 abd_zero_off(cdata, psize, rounded - psize);
1785 abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1786 psize = rounded;
1787 zio_push_transform(zio, cdata,
1788 psize, rounded, NULL);
1789 }
1790 } else {
1791 ASSERT3U(psize, !=, 0);
1792 }
1793
1794 /*
1795 * The final pass of spa_sync() must be all rewrites, but the first
1796 * few passes offer a trade-off: allocating blocks defers convergence,
1797 * but newly allocated blocks are sequential, so they can be written
1798 * to disk faster. Therefore, we allow the first few passes of
1799 * spa_sync() to allocate new blocks, but force rewrites after that.
1800 * There should only be a handful of blocks after pass 1 in any case.
1801 */
1802 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1803 BP_GET_PSIZE(bp) == psize &&
1804 pass >= zfs_sync_pass_rewrite) {
1805 VERIFY3U(psize, !=, 0);
1806 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1807
1808 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1809 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1810 } else {
1811 BP_ZERO(bp);
1812 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1813 }
1814
1815 if (psize == 0) {
1816 if (zio->io_bp_orig.blk_birth != 0 &&
1817 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1818 BP_SET_LSIZE(bp, lsize);
1819 BP_SET_TYPE(bp, zp->zp_type);
1820 BP_SET_LEVEL(bp, zp->zp_level);
1821 BP_SET_BIRTH(bp, zio->io_txg, 0);
1822 }
1823 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1824 } else {
1825 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1826 BP_SET_LSIZE(bp, lsize);
1827 BP_SET_TYPE(bp, zp->zp_type);
1828 BP_SET_LEVEL(bp, zp->zp_level);
1829 BP_SET_PSIZE(bp, psize);
1830 BP_SET_COMPRESS(bp, compress);
1831 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1832 BP_SET_DEDUP(bp, zp->zp_dedup);
1833 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1834 if (zp->zp_dedup) {
1835 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1836 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1837 ASSERT(!zp->zp_encrypt ||
1838 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1839 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1840 }
1841 if (zp->zp_nopwrite) {
1842 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1843 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1844 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1845 }
1846 }
1847 return (zio);
1848 }
1849
1850 static zio_t *
1851 zio_free_bp_init(zio_t *zio)
1852 {
1853 blkptr_t *bp = zio->io_bp;
1854
1855 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1856 if (BP_GET_DEDUP(bp))
1857 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1858 }
1859
1860 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1861
1862 return (zio);
1863 }
1864
1865 /*
1866 * ==========================================================================
1867 * Execute the I/O pipeline
1868 * ==========================================================================
1869 */
1870
1871 static void
1872 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1873 {
1874 spa_t *spa = zio->io_spa;
1875 zio_type_t t = zio->io_type;
1876 int flags = (cutinline ? TQ_FRONT : 0);
1877
1878 /*
1879 * If we're a config writer or a probe, the normal issue and
1880 * interrupt threads may all be blocked waiting for the config lock.
1881 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1882 */
1883 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1884 t = ZIO_TYPE_NULL;
1885
1886 /*
1887 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1888 */
1889 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1890 t = ZIO_TYPE_NULL;
1891
1892 /*
1893 * If this is a high priority I/O, then use the high priority taskq if
1894 * available.
1895 */
1896 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1897 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1898 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1899 q++;
1900
1901 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1902
1903 /*
1904 * NB: We are assuming that the zio can only be dispatched
1905 * to a single taskq at a time. It would be a grievous error
1906 * to dispatch the zio to another taskq at the same time.
1907 */
1908 ASSERT(taskq_empty_ent(&zio->io_tqent));
1909 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1910 &zio->io_tqent);
1911 }
1912
1913 static boolean_t
1914 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1915 {
1916 spa_t *spa = zio->io_spa;
1917
1918 taskq_t *tq = taskq_of_curthread();
1919
1920 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1921 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1922 uint_t i;
1923 for (i = 0; i < tqs->stqs_count; i++) {
1924 if (tqs->stqs_taskq[i] == tq)
1925 return (B_TRUE);
1926 }
1927 }
1928
1929 return (B_FALSE);
1930 }
1931
1932 static zio_t *
1933 zio_issue_async(zio_t *zio)
1934 {
1935 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1936
1937 return (NULL);
1938 }
1939
1940 void
1941 zio_interrupt(void *zio)
1942 {
1943 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1944 }
1945
1946 void
1947 zio_delay_interrupt(zio_t *zio)
1948 {
1949 /*
1950 * The timeout_generic() function isn't defined in userspace, so
1951 * rather than trying to implement the function, the zio delay
1952 * functionality has been disabled for userspace builds.
1953 */
1954
1955 #ifdef _KERNEL
1956 /*
1957 * If io_target_timestamp is zero, then no delay has been registered
1958 * for this IO, thus jump to the end of this function and "skip" the
1959 * delay; issuing it directly to the zio layer.
1960 */
1961 if (zio->io_target_timestamp != 0) {
1962 hrtime_t now = gethrtime();
1963
1964 if (now >= zio->io_target_timestamp) {
1965 /*
1966 * This IO has already taken longer than the target
1967 * delay to complete, so we don't want to delay it
1968 * any longer; we "miss" the delay and issue it
1969 * directly to the zio layer. This is likely due to
1970 * the target latency being set to a value less than
1971 * the underlying hardware can satisfy (e.g. delay
1972 * set to 1ms, but the disks take 10ms to complete an
1973 * IO request).
1974 */
1975
1976 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1977 hrtime_t, now);
1978
1979 zio_interrupt(zio);
1980 } else {
1981 taskqid_t tid;
1982 hrtime_t diff = zio->io_target_timestamp - now;
1983 clock_t expire_at_tick = ddi_get_lbolt() +
1984 NSEC_TO_TICK(diff);
1985
1986 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1987 hrtime_t, now, hrtime_t, diff);
1988
1989 if (NSEC_TO_TICK(diff) == 0) {
1990 /* Our delay is less than a jiffy - just spin */
1991 zfs_sleep_until(zio->io_target_timestamp);
1992 zio_interrupt(zio);
1993 } else {
1994 /*
1995 * Use taskq_dispatch_delay() in the place of
1996 * OpenZFS's timeout_generic().
1997 */
1998 tid = taskq_dispatch_delay(system_taskq,
1999 zio_interrupt, zio, TQ_NOSLEEP,
2000 expire_at_tick);
2001 if (tid == TASKQID_INVALID) {
2002 /*
2003 * Couldn't allocate a task. Just
2004 * finish the zio without a delay.
2005 */
2006 zio_interrupt(zio);
2007 }
2008 }
2009 }
2010 return;
2011 }
2012 #endif
2013 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2014 zio_interrupt(zio);
2015 }
2016
2017 static void
2018 zio_deadman_impl(zio_t *pio, int ziodepth)
2019 {
2020 zio_t *cio, *cio_next;
2021 zio_link_t *zl = NULL;
2022 vdev_t *vd = pio->io_vd;
2023
2024 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2025 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2026 zbookmark_phys_t *zb = &pio->io_bookmark;
2027 uint64_t delta = gethrtime() - pio->io_timestamp;
2028 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2029
2030 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2031 "delta=%llu queued=%llu io=%llu "
2032 "path=%s "
2033 "last=%llu type=%d "
2034 "priority=%d flags=0x%llx stage=0x%x "
2035 "pipeline=0x%x pipeline-trace=0x%x "
2036 "objset=%llu object=%llu "
2037 "level=%llu blkid=%llu "
2038 "offset=%llu size=%llu "
2039 "error=%d",
2040 ziodepth, pio, pio->io_timestamp,
2041 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2042 vd ? vd->vdev_path : "NULL",
2043 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2044 pio->io_priority, (u_longlong_t)pio->io_flags,
2045 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2046 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2047 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2048 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2049 pio->io_error);
2050 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2051 pio->io_spa, vd, zb, pio, 0);
2052
2053 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2054 taskq_empty_ent(&pio->io_tqent)) {
2055 zio_interrupt(pio);
2056 }
2057 }
2058
2059 mutex_enter(&pio->io_lock);
2060 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2061 cio_next = zio_walk_children(pio, &zl);
2062 zio_deadman_impl(cio, ziodepth + 1);
2063 }
2064 mutex_exit(&pio->io_lock);
2065 }
2066
2067 /*
2068 * Log the critical information describing this zio and all of its children
2069 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2070 */
2071 void
2072 zio_deadman(zio_t *pio, const char *tag)
2073 {
2074 spa_t *spa = pio->io_spa;
2075 char *name = spa_name(spa);
2076
2077 if (!zfs_deadman_enabled || spa_suspended(spa))
2078 return;
2079
2080 zio_deadman_impl(pio, 0);
2081
2082 switch (spa_get_deadman_failmode(spa)) {
2083 case ZIO_FAILURE_MODE_WAIT:
2084 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2085 break;
2086
2087 case ZIO_FAILURE_MODE_CONTINUE:
2088 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2089 break;
2090
2091 case ZIO_FAILURE_MODE_PANIC:
2092 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2093 break;
2094 }
2095 }
2096
2097 /*
2098 * Execute the I/O pipeline until one of the following occurs:
2099 * (1) the I/O completes; (2) the pipeline stalls waiting for
2100 * dependent child I/Os; (3) the I/O issues, so we're waiting
2101 * for an I/O completion interrupt; (4) the I/O is delegated by
2102 * vdev-level caching or aggregation; (5) the I/O is deferred
2103 * due to vdev-level queueing; (6) the I/O is handed off to
2104 * another thread. In all cases, the pipeline stops whenever
2105 * there's no CPU work; it never burns a thread in cv_wait_io().
2106 *
2107 * There's no locking on io_stage because there's no legitimate way
2108 * for multiple threads to be attempting to process the same I/O.
2109 */
2110 static zio_pipe_stage_t *zio_pipeline[];
2111
2112 /*
2113 * zio_execute() is a wrapper around the static function
2114 * __zio_execute() so that we can force __zio_execute() to be
2115 * inlined. This reduces stack overhead which is important
2116 * because __zio_execute() is called recursively in several zio
2117 * code paths. zio_execute() itself cannot be inlined because
2118 * it is externally visible.
2119 */
2120 void
2121 zio_execute(void *zio)
2122 {
2123 fstrans_cookie_t cookie;
2124
2125 cookie = spl_fstrans_mark();
2126 __zio_execute(zio);
2127 spl_fstrans_unmark(cookie);
2128 }
2129
2130 /*
2131 * Used to determine if in the current context the stack is sized large
2132 * enough to allow zio_execute() to be called recursively. A minimum
2133 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2134 */
2135 static boolean_t
2136 zio_execute_stack_check(zio_t *zio)
2137 {
2138 #if !defined(HAVE_LARGE_STACKS)
2139 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2140
2141 /* Executing in txg_sync_thread() context. */
2142 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2143 return (B_TRUE);
2144
2145 /* Pool initialization outside of zio_taskq context. */
2146 if (dp && spa_is_initializing(dp->dp_spa) &&
2147 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2148 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2149 return (B_TRUE);
2150 #else
2151 (void) zio;
2152 #endif /* HAVE_LARGE_STACKS */
2153
2154 return (B_FALSE);
2155 }
2156
2157 __attribute__((always_inline))
2158 static inline void
2159 __zio_execute(zio_t *zio)
2160 {
2161 ASSERT3U(zio->io_queued_timestamp, >, 0);
2162
2163 while (zio->io_stage < ZIO_STAGE_DONE) {
2164 enum zio_stage pipeline = zio->io_pipeline;
2165 enum zio_stage stage = zio->io_stage;
2166
2167 zio->io_executor = curthread;
2168
2169 ASSERT(!MUTEX_HELD(&zio->io_lock));
2170 ASSERT(ISP2(stage));
2171 ASSERT(zio->io_stall == NULL);
2172
2173 do {
2174 stage <<= 1;
2175 } while ((stage & pipeline) == 0);
2176
2177 ASSERT(stage <= ZIO_STAGE_DONE);
2178
2179 /*
2180 * If we are in interrupt context and this pipeline stage
2181 * will grab a config lock that is held across I/O,
2182 * or may wait for an I/O that needs an interrupt thread
2183 * to complete, issue async to avoid deadlock.
2184 *
2185 * For VDEV_IO_START, we cut in line so that the io will
2186 * be sent to disk promptly.
2187 */
2188 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2189 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2190 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2191 zio_requeue_io_start_cut_in_line : B_FALSE;
2192 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2193 return;
2194 }
2195
2196 /*
2197 * If the current context doesn't have large enough stacks
2198 * the zio must be issued asynchronously to prevent overflow.
2199 */
2200 if (zio_execute_stack_check(zio)) {
2201 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2202 zio_requeue_io_start_cut_in_line : B_FALSE;
2203 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2204 return;
2205 }
2206
2207 zio->io_stage = stage;
2208 zio->io_pipeline_trace |= zio->io_stage;
2209
2210 /*
2211 * The zio pipeline stage returns the next zio to execute
2212 * (typically the same as this one), or NULL if we should
2213 * stop.
2214 */
2215 zio = zio_pipeline[highbit64(stage) - 1](zio);
2216
2217 if (zio == NULL)
2218 return;
2219 }
2220 }
2221
2222
2223 /*
2224 * ==========================================================================
2225 * Initiate I/O, either sync or async
2226 * ==========================================================================
2227 */
2228 int
2229 zio_wait(zio_t *zio)
2230 {
2231 /*
2232 * Some routines, like zio_free_sync(), may return a NULL zio
2233 * to avoid the performance overhead of creating and then destroying
2234 * an unneeded zio. For the callers' simplicity, we accept a NULL
2235 * zio and ignore it.
2236 */
2237 if (zio == NULL)
2238 return (0);
2239
2240 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2241 int error;
2242
2243 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2244 ASSERT3P(zio->io_executor, ==, NULL);
2245
2246 zio->io_waiter = curthread;
2247 ASSERT0(zio->io_queued_timestamp);
2248 zio->io_queued_timestamp = gethrtime();
2249
2250 __zio_execute(zio);
2251
2252 mutex_enter(&zio->io_lock);
2253 while (zio->io_executor != NULL) {
2254 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2255 ddi_get_lbolt() + timeout);
2256
2257 if (zfs_deadman_enabled && error == -1 &&
2258 gethrtime() - zio->io_queued_timestamp >
2259 spa_deadman_ziotime(zio->io_spa)) {
2260 mutex_exit(&zio->io_lock);
2261 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2262 zio_deadman(zio, FTAG);
2263 mutex_enter(&zio->io_lock);
2264 }
2265 }
2266 mutex_exit(&zio->io_lock);
2267
2268 error = zio->io_error;
2269 zio_destroy(zio);
2270
2271 return (error);
2272 }
2273
2274 void
2275 zio_nowait(zio_t *zio)
2276 {
2277 /*
2278 * See comment in zio_wait().
2279 */
2280 if (zio == NULL)
2281 return;
2282
2283 ASSERT3P(zio->io_executor, ==, NULL);
2284
2285 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2286 zio_unique_parent(zio) == NULL) {
2287 zio_t *pio;
2288
2289 /*
2290 * This is a logical async I/O with no parent to wait for it.
2291 * We add it to the spa_async_root_zio "Godfather" I/O which
2292 * will ensure they complete prior to unloading the pool.
2293 */
2294 spa_t *spa = zio->io_spa;
2295 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2296
2297 zio_add_child(pio, zio);
2298 }
2299
2300 ASSERT0(zio->io_queued_timestamp);
2301 zio->io_queued_timestamp = gethrtime();
2302 __zio_execute(zio);
2303 }
2304
2305 /*
2306 * ==========================================================================
2307 * Reexecute, cancel, or suspend/resume failed I/O
2308 * ==========================================================================
2309 */
2310
2311 static void
2312 zio_reexecute(void *arg)
2313 {
2314 zio_t *pio = arg;
2315 zio_t *cio, *cio_next;
2316
2317 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2318 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2319 ASSERT(pio->io_gang_leader == NULL);
2320 ASSERT(pio->io_gang_tree == NULL);
2321
2322 pio->io_flags = pio->io_orig_flags;
2323 pio->io_stage = pio->io_orig_stage;
2324 pio->io_pipeline = pio->io_orig_pipeline;
2325 pio->io_reexecute = 0;
2326 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2327 pio->io_pipeline_trace = 0;
2328 pio->io_error = 0;
2329 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2330 pio->io_state[w] = 0;
2331 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2332 pio->io_child_error[c] = 0;
2333
2334 if (IO_IS_ALLOCATING(pio))
2335 BP_ZERO(pio->io_bp);
2336
2337 /*
2338 * As we reexecute pio's children, new children could be created.
2339 * New children go to the head of pio's io_child_list, however,
2340 * so we will (correctly) not reexecute them. The key is that
2341 * the remainder of pio's io_child_list, from 'cio_next' onward,
2342 * cannot be affected by any side effects of reexecuting 'cio'.
2343 */
2344 zio_link_t *zl = NULL;
2345 mutex_enter(&pio->io_lock);
2346 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2347 cio_next = zio_walk_children(pio, &zl);
2348 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2349 pio->io_children[cio->io_child_type][w]++;
2350 mutex_exit(&pio->io_lock);
2351 zio_reexecute(cio);
2352 mutex_enter(&pio->io_lock);
2353 }
2354 mutex_exit(&pio->io_lock);
2355
2356 /*
2357 * Now that all children have been reexecuted, execute the parent.
2358 * We don't reexecute "The Godfather" I/O here as it's the
2359 * responsibility of the caller to wait on it.
2360 */
2361 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2362 pio->io_queued_timestamp = gethrtime();
2363 __zio_execute(pio);
2364 }
2365 }
2366
2367 void
2368 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2369 {
2370 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2371 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2372 "failure and the failure mode property for this pool "
2373 "is set to panic.", spa_name(spa));
2374
2375 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2376 "failure and has been suspended.\n", spa_name(spa));
2377
2378 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2379 NULL, NULL, 0);
2380
2381 mutex_enter(&spa->spa_suspend_lock);
2382
2383 if (spa->spa_suspend_zio_root == NULL)
2384 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2385 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2386 ZIO_FLAG_GODFATHER);
2387
2388 spa->spa_suspended = reason;
2389
2390 if (zio != NULL) {
2391 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2392 ASSERT(zio != spa->spa_suspend_zio_root);
2393 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2394 ASSERT(zio_unique_parent(zio) == NULL);
2395 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2396 zio_add_child(spa->spa_suspend_zio_root, zio);
2397 }
2398
2399 mutex_exit(&spa->spa_suspend_lock);
2400 }
2401
2402 int
2403 zio_resume(spa_t *spa)
2404 {
2405 zio_t *pio;
2406
2407 /*
2408 * Reexecute all previously suspended i/o.
2409 */
2410 mutex_enter(&spa->spa_suspend_lock);
2411 spa->spa_suspended = ZIO_SUSPEND_NONE;
2412 cv_broadcast(&spa->spa_suspend_cv);
2413 pio = spa->spa_suspend_zio_root;
2414 spa->spa_suspend_zio_root = NULL;
2415 mutex_exit(&spa->spa_suspend_lock);
2416
2417 if (pio == NULL)
2418 return (0);
2419
2420 zio_reexecute(pio);
2421 return (zio_wait(pio));
2422 }
2423
2424 void
2425 zio_resume_wait(spa_t *spa)
2426 {
2427 mutex_enter(&spa->spa_suspend_lock);
2428 while (spa_suspended(spa))
2429 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2430 mutex_exit(&spa->spa_suspend_lock);
2431 }
2432
2433 /*
2434 * ==========================================================================
2435 * Gang blocks.
2436 *
2437 * A gang block is a collection of small blocks that looks to the DMU
2438 * like one large block. When zio_dva_allocate() cannot find a block
2439 * of the requested size, due to either severe fragmentation or the pool
2440 * being nearly full, it calls zio_write_gang_block() to construct the
2441 * block from smaller fragments.
2442 *
2443 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2444 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2445 * an indirect block: it's an array of block pointers. It consumes
2446 * only one sector and hence is allocatable regardless of fragmentation.
2447 * The gang header's bps point to its gang members, which hold the data.
2448 *
2449 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2450 * as the verifier to ensure uniqueness of the SHA256 checksum.
2451 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2452 * not the gang header. This ensures that data block signatures (needed for
2453 * deduplication) are independent of how the block is physically stored.
2454 *
2455 * Gang blocks can be nested: a gang member may itself be a gang block.
2456 * Thus every gang block is a tree in which root and all interior nodes are
2457 * gang headers, and the leaves are normal blocks that contain user data.
2458 * The root of the gang tree is called the gang leader.
2459 *
2460 * To perform any operation (read, rewrite, free, claim) on a gang block,
2461 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2462 * in the io_gang_tree field of the original logical i/o by recursively
2463 * reading the gang leader and all gang headers below it. This yields
2464 * an in-core tree containing the contents of every gang header and the
2465 * bps for every constituent of the gang block.
2466 *
2467 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2468 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2469 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2470 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2471 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2472 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2473 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2474 * of the gang header plus zio_checksum_compute() of the data to update the
2475 * gang header's blk_cksum as described above.
2476 *
2477 * The two-phase assemble/issue model solves the problem of partial failure --
2478 * what if you'd freed part of a gang block but then couldn't read the
2479 * gang header for another part? Assembling the entire gang tree first
2480 * ensures that all the necessary gang header I/O has succeeded before
2481 * starting the actual work of free, claim, or write. Once the gang tree
2482 * is assembled, free and claim are in-memory operations that cannot fail.
2483 *
2484 * In the event that a gang write fails, zio_dva_unallocate() walks the
2485 * gang tree to immediately free (i.e. insert back into the space map)
2486 * everything we've allocated. This ensures that we don't get ENOSPC
2487 * errors during repeated suspend/resume cycles due to a flaky device.
2488 *
2489 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2490 * the gang tree, we won't modify the block, so we can safely defer the free
2491 * (knowing that the block is still intact). If we *can* assemble the gang
2492 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2493 * each constituent bp and we can allocate a new block on the next sync pass.
2494 *
2495 * In all cases, the gang tree allows complete recovery from partial failure.
2496 * ==========================================================================
2497 */
2498
2499 static void
2500 zio_gang_issue_func_done(zio_t *zio)
2501 {
2502 abd_free(zio->io_abd);
2503 }
2504
2505 static zio_t *
2506 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2507 uint64_t offset)
2508 {
2509 if (gn != NULL)
2510 return (pio);
2511
2512 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2513 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2514 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2515 &pio->io_bookmark));
2516 }
2517
2518 static zio_t *
2519 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2520 uint64_t offset)
2521 {
2522 zio_t *zio;
2523
2524 if (gn != NULL) {
2525 abd_t *gbh_abd =
2526 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2527 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2528 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2529 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2530 &pio->io_bookmark);
2531 /*
2532 * As we rewrite each gang header, the pipeline will compute
2533 * a new gang block header checksum for it; but no one will
2534 * compute a new data checksum, so we do that here. The one
2535 * exception is the gang leader: the pipeline already computed
2536 * its data checksum because that stage precedes gang assembly.
2537 * (Presently, nothing actually uses interior data checksums;
2538 * this is just good hygiene.)
2539 */
2540 if (gn != pio->io_gang_leader->io_gang_tree) {
2541 abd_t *buf = abd_get_offset(data, offset);
2542
2543 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2544 buf, BP_GET_PSIZE(bp));
2545
2546 abd_free(buf);
2547 }
2548 /*
2549 * If we are here to damage data for testing purposes,
2550 * leave the GBH alone so that we can detect the damage.
2551 */
2552 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2553 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2554 } else {
2555 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2556 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2557 zio_gang_issue_func_done, NULL, pio->io_priority,
2558 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2559 }
2560
2561 return (zio);
2562 }
2563
2564 static zio_t *
2565 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2566 uint64_t offset)
2567 {
2568 (void) gn, (void) data, (void) offset;
2569
2570 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2571 ZIO_GANG_CHILD_FLAGS(pio));
2572 if (zio == NULL) {
2573 zio = zio_null(pio, pio->io_spa,
2574 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2575 }
2576 return (zio);
2577 }
2578
2579 static zio_t *
2580 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2581 uint64_t offset)
2582 {
2583 (void) gn, (void) data, (void) offset;
2584 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2585 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2586 }
2587
2588 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2589 NULL,
2590 zio_read_gang,
2591 zio_rewrite_gang,
2592 zio_free_gang,
2593 zio_claim_gang,
2594 NULL
2595 };
2596
2597 static void zio_gang_tree_assemble_done(zio_t *zio);
2598
2599 static zio_gang_node_t *
2600 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2601 {
2602 zio_gang_node_t *gn;
2603
2604 ASSERT(*gnpp == NULL);
2605
2606 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2607 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2608 *gnpp = gn;
2609
2610 return (gn);
2611 }
2612
2613 static void
2614 zio_gang_node_free(zio_gang_node_t **gnpp)
2615 {
2616 zio_gang_node_t *gn = *gnpp;
2617
2618 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2619 ASSERT(gn->gn_child[g] == NULL);
2620
2621 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2622 kmem_free(gn, sizeof (*gn));
2623 *gnpp = NULL;
2624 }
2625
2626 static void
2627 zio_gang_tree_free(zio_gang_node_t **gnpp)
2628 {
2629 zio_gang_node_t *gn = *gnpp;
2630
2631 if (gn == NULL)
2632 return;
2633
2634 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2635 zio_gang_tree_free(&gn->gn_child[g]);
2636
2637 zio_gang_node_free(gnpp);
2638 }
2639
2640 static void
2641 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2642 {
2643 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2644 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2645
2646 ASSERT(gio->io_gang_leader == gio);
2647 ASSERT(BP_IS_GANG(bp));
2648
2649 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2650 zio_gang_tree_assemble_done, gn, gio->io_priority,
2651 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2652 }
2653
2654 static void
2655 zio_gang_tree_assemble_done(zio_t *zio)
2656 {
2657 zio_t *gio = zio->io_gang_leader;
2658 zio_gang_node_t *gn = zio->io_private;
2659 blkptr_t *bp = zio->io_bp;
2660
2661 ASSERT(gio == zio_unique_parent(zio));
2662 ASSERT(zio->io_child_count == 0);
2663
2664 if (zio->io_error)
2665 return;
2666
2667 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2668 if (BP_SHOULD_BYTESWAP(bp))
2669 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2670
2671 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2672 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2673 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2674
2675 abd_free(zio->io_abd);
2676
2677 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2678 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2679 if (!BP_IS_GANG(gbp))
2680 continue;
2681 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2682 }
2683 }
2684
2685 static void
2686 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2687 uint64_t offset)
2688 {
2689 zio_t *gio = pio->io_gang_leader;
2690 zio_t *zio;
2691
2692 ASSERT(BP_IS_GANG(bp) == !!gn);
2693 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2694 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2695
2696 /*
2697 * If you're a gang header, your data is in gn->gn_gbh.
2698 * If you're a gang member, your data is in 'data' and gn == NULL.
2699 */
2700 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2701
2702 if (gn != NULL) {
2703 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2704
2705 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2706 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2707 if (BP_IS_HOLE(gbp))
2708 continue;
2709 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2710 offset);
2711 offset += BP_GET_PSIZE(gbp);
2712 }
2713 }
2714
2715 if (gn == gio->io_gang_tree)
2716 ASSERT3U(gio->io_size, ==, offset);
2717
2718 if (zio != pio)
2719 zio_nowait(zio);
2720 }
2721
2722 static zio_t *
2723 zio_gang_assemble(zio_t *zio)
2724 {
2725 blkptr_t *bp = zio->io_bp;
2726
2727 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2728 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2729
2730 zio->io_gang_leader = zio;
2731
2732 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2733
2734 return (zio);
2735 }
2736
2737 static zio_t *
2738 zio_gang_issue(zio_t *zio)
2739 {
2740 blkptr_t *bp = zio->io_bp;
2741
2742 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2743 return (NULL);
2744 }
2745
2746 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2747 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2748
2749 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2750 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2751 0);
2752 else
2753 zio_gang_tree_free(&zio->io_gang_tree);
2754
2755 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2756
2757 return (zio);
2758 }
2759
2760 static void
2761 zio_write_gang_member_ready(zio_t *zio)
2762 {
2763 zio_t *pio = zio_unique_parent(zio);
2764 dva_t *cdva = zio->io_bp->blk_dva;
2765 dva_t *pdva = pio->io_bp->blk_dva;
2766 uint64_t asize;
2767 zio_t *gio __maybe_unused = zio->io_gang_leader;
2768
2769 if (BP_IS_HOLE(zio->io_bp))
2770 return;
2771
2772 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2773
2774 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2775 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2776 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2777 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2778 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2779
2780 mutex_enter(&pio->io_lock);
2781 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2782 ASSERT(DVA_GET_GANG(&pdva[d]));
2783 asize = DVA_GET_ASIZE(&pdva[d]);
2784 asize += DVA_GET_ASIZE(&cdva[d]);
2785 DVA_SET_ASIZE(&pdva[d], asize);
2786 }
2787 mutex_exit(&pio->io_lock);
2788 }
2789
2790 static void
2791 zio_write_gang_done(zio_t *zio)
2792 {
2793 /*
2794 * The io_abd field will be NULL for a zio with no data. The io_flags
2795 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2796 * check for it here as it is cleared in zio_ready.
2797 */
2798 if (zio->io_abd != NULL)
2799 abd_free(zio->io_abd);
2800 }
2801
2802 static zio_t *
2803 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2804 {
2805 spa_t *spa = pio->io_spa;
2806 blkptr_t *bp = pio->io_bp;
2807 zio_t *gio = pio->io_gang_leader;
2808 zio_t *zio;
2809 zio_gang_node_t *gn, **gnpp;
2810 zio_gbh_phys_t *gbh;
2811 abd_t *gbh_abd;
2812 uint64_t txg = pio->io_txg;
2813 uint64_t resid = pio->io_size;
2814 uint64_t lsize;
2815 int copies = gio->io_prop.zp_copies;
2816 int gbh_copies;
2817 zio_prop_t zp;
2818 int error;
2819 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2820
2821 /*
2822 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2823 * have a third copy.
2824 */
2825 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2826 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2827 gbh_copies = SPA_DVAS_PER_BP - 1;
2828
2829 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2830 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2831 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2832 ASSERT(has_data);
2833
2834 flags |= METASLAB_ASYNC_ALLOC;
2835 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2836 mca_alloc_slots, pio));
2837
2838 /*
2839 * The logical zio has already placed a reservation for
2840 * 'copies' allocation slots but gang blocks may require
2841 * additional copies. These additional copies
2842 * (i.e. gbh_copies - copies) are guaranteed to succeed
2843 * since metaslab_class_throttle_reserve() always allows
2844 * additional reservations for gang blocks.
2845 */
2846 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2847 pio->io_allocator, pio, flags));
2848 }
2849
2850 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2851 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2852 &pio->io_alloc_list, pio, pio->io_allocator);
2853 if (error) {
2854 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2855 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2856 ASSERT(has_data);
2857
2858 /*
2859 * If we failed to allocate the gang block header then
2860 * we remove any additional allocation reservations that
2861 * we placed here. The original reservation will
2862 * be removed when the logical I/O goes to the ready
2863 * stage.
2864 */
2865 metaslab_class_throttle_unreserve(mc,
2866 gbh_copies - copies, pio->io_allocator, pio);
2867 }
2868
2869 pio->io_error = error;
2870 return (pio);
2871 }
2872
2873 if (pio == gio) {
2874 gnpp = &gio->io_gang_tree;
2875 } else {
2876 gnpp = pio->io_private;
2877 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2878 }
2879
2880 gn = zio_gang_node_alloc(gnpp);
2881 gbh = gn->gn_gbh;
2882 memset(gbh, 0, SPA_GANGBLOCKSIZE);
2883 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2884
2885 /*
2886 * Create the gang header.
2887 */
2888 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2889 zio_write_gang_done, NULL, pio->io_priority,
2890 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2891
2892 /*
2893 * Create and nowait the gang children.
2894 */
2895 for (int g = 0; resid != 0; resid -= lsize, g++) {
2896 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2897 SPA_MINBLOCKSIZE);
2898 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2899
2900 zp.zp_checksum = gio->io_prop.zp_checksum;
2901 zp.zp_compress = ZIO_COMPRESS_OFF;
2902 zp.zp_complevel = gio->io_prop.zp_complevel;
2903 zp.zp_type = DMU_OT_NONE;
2904 zp.zp_level = 0;
2905 zp.zp_copies = gio->io_prop.zp_copies;
2906 zp.zp_dedup = B_FALSE;
2907 zp.zp_dedup_verify = B_FALSE;
2908 zp.zp_nopwrite = B_FALSE;
2909 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2910 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2911 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2912 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2913 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2914
2915 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2916 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2917 resid) : NULL, lsize, lsize, &zp,
2918 zio_write_gang_member_ready, NULL, NULL,
2919 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2920 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2921
2922 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2923 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2924 ASSERT(has_data);
2925
2926 /*
2927 * Gang children won't throttle but we should
2928 * account for their work, so reserve an allocation
2929 * slot for them here.
2930 */
2931 VERIFY(metaslab_class_throttle_reserve(mc,
2932 zp.zp_copies, cio->io_allocator, cio, flags));
2933 }
2934 zio_nowait(cio);
2935 }
2936
2937 /*
2938 * Set pio's pipeline to just wait for zio to finish.
2939 */
2940 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2941
2942 /*
2943 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2944 */
2945 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2946
2947 zio_nowait(zio);
2948
2949 return (pio);
2950 }
2951
2952 /*
2953 * The zio_nop_write stage in the pipeline determines if allocating a
2954 * new bp is necessary. The nopwrite feature can handle writes in
2955 * either syncing or open context (i.e. zil writes) and as a result is
2956 * mutually exclusive with dedup.
2957 *
2958 * By leveraging a cryptographically secure checksum, such as SHA256, we
2959 * can compare the checksums of the new data and the old to determine if
2960 * allocating a new block is required. Note that our requirements for
2961 * cryptographic strength are fairly weak: there can't be any accidental
2962 * hash collisions, but we don't need to be secure against intentional
2963 * (malicious) collisions. To trigger a nopwrite, you have to be able
2964 * to write the file to begin with, and triggering an incorrect (hash
2965 * collision) nopwrite is no worse than simply writing to the file.
2966 * That said, there are no known attacks against the checksum algorithms
2967 * used for nopwrite, assuming that the salt and the checksums
2968 * themselves remain secret.
2969 */
2970 static zio_t *
2971 zio_nop_write(zio_t *zio)
2972 {
2973 blkptr_t *bp = zio->io_bp;
2974 blkptr_t *bp_orig = &zio->io_bp_orig;
2975 zio_prop_t *zp = &zio->io_prop;
2976
2977 ASSERT(BP_GET_LEVEL(bp) == 0);
2978 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2979 ASSERT(zp->zp_nopwrite);
2980 ASSERT(!zp->zp_dedup);
2981 ASSERT(zio->io_bp_override == NULL);
2982 ASSERT(IO_IS_ALLOCATING(zio));
2983
2984 /*
2985 * Check to see if the original bp and the new bp have matching
2986 * characteristics (i.e. same checksum, compression algorithms, etc).
2987 * If they don't then just continue with the pipeline which will
2988 * allocate a new bp.
2989 */
2990 if (BP_IS_HOLE(bp_orig) ||
2991 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2992 ZCHECKSUM_FLAG_NOPWRITE) ||
2993 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2994 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2995 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2996 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2997 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2998 return (zio);
2999
3000 /*
3001 * If the checksums match then reset the pipeline so that we
3002 * avoid allocating a new bp and issuing any I/O.
3003 */
3004 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3005 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3006 ZCHECKSUM_FLAG_NOPWRITE);
3007 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3008 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3009 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3010 ASSERT(memcmp(&bp->blk_prop, &bp_orig->blk_prop,
3011 sizeof (uint64_t)) == 0);
3012
3013 /*
3014 * If we're overwriting a block that is currently on an
3015 * indirect vdev, then ignore the nopwrite request and
3016 * allow a new block to be allocated on a concrete vdev.
3017 */
3018 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3019 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3020 DVA_GET_VDEV(&bp->blk_dva[0]));
3021 if (tvd->vdev_ops == &vdev_indirect_ops) {
3022 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3023 return (zio);
3024 }
3025 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3026
3027 *bp = *bp_orig;
3028 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3029 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3030 }
3031
3032 return (zio);
3033 }
3034
3035 /*
3036 * ==========================================================================
3037 * Dedup
3038 * ==========================================================================
3039 */
3040 static void
3041 zio_ddt_child_read_done(zio_t *zio)
3042 {
3043 blkptr_t *bp = zio->io_bp;
3044 ddt_entry_t *dde = zio->io_private;
3045 ddt_phys_t *ddp;
3046 zio_t *pio = zio_unique_parent(zio);
3047
3048 mutex_enter(&pio->io_lock);
3049 ddp = ddt_phys_select(dde, bp);
3050 if (zio->io_error == 0)
3051 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3052
3053 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3054 dde->dde_repair_abd = zio->io_abd;
3055 else
3056 abd_free(zio->io_abd);
3057 mutex_exit(&pio->io_lock);
3058 }
3059
3060 static zio_t *
3061 zio_ddt_read_start(zio_t *zio)
3062 {
3063 blkptr_t *bp = zio->io_bp;
3064
3065 ASSERT(BP_GET_DEDUP(bp));
3066 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3067 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3068
3069 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3070 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3071 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3072 ddt_phys_t *ddp = dde->dde_phys;
3073 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3074 blkptr_t blk;
3075
3076 ASSERT(zio->io_vsd == NULL);
3077 zio->io_vsd = dde;
3078
3079 if (ddp_self == NULL)
3080 return (zio);
3081
3082 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3083 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3084 continue;
3085 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3086 &blk);
3087 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3088 abd_alloc_for_io(zio->io_size, B_TRUE),
3089 zio->io_size, zio_ddt_child_read_done, dde,
3090 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3091 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3092 }
3093 return (zio);
3094 }
3095
3096 zio_nowait(zio_read(zio, zio->io_spa, bp,
3097 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3098 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3099
3100 return (zio);
3101 }
3102
3103 static zio_t *
3104 zio_ddt_read_done(zio_t *zio)
3105 {
3106 blkptr_t *bp = zio->io_bp;
3107
3108 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3109 return (NULL);
3110 }
3111
3112 ASSERT(BP_GET_DEDUP(bp));
3113 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3114 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3115
3116 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3117 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3118 ddt_entry_t *dde = zio->io_vsd;
3119 if (ddt == NULL) {
3120 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3121 return (zio);
3122 }
3123 if (dde == NULL) {
3124 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3125 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3126 return (NULL);
3127 }
3128 if (dde->dde_repair_abd != NULL) {
3129 abd_copy(zio->io_abd, dde->dde_repair_abd,
3130 zio->io_size);
3131 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3132 }
3133 ddt_repair_done(ddt, dde);
3134 zio->io_vsd = NULL;
3135 }
3136
3137 ASSERT(zio->io_vsd == NULL);
3138
3139 return (zio);
3140 }
3141
3142 static boolean_t
3143 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3144 {
3145 spa_t *spa = zio->io_spa;
3146 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3147
3148 ASSERT(!(zio->io_bp_override && do_raw));
3149
3150 /*
3151 * Note: we compare the original data, not the transformed data,
3152 * because when zio->io_bp is an override bp, we will not have
3153 * pushed the I/O transforms. That's an important optimization
3154 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3155 * However, we should never get a raw, override zio so in these
3156 * cases we can compare the io_abd directly. This is useful because
3157 * it allows us to do dedup verification even if we don't have access
3158 * to the original data (for instance, if the encryption keys aren't
3159 * loaded).
3160 */
3161
3162 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3163 zio_t *lio = dde->dde_lead_zio[p];
3164
3165 if (lio != NULL && do_raw) {
3166 return (lio->io_size != zio->io_size ||
3167 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3168 } else if (lio != NULL) {
3169 return (lio->io_orig_size != zio->io_orig_size ||
3170 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3171 }
3172 }
3173
3174 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3175 ddt_phys_t *ddp = &dde->dde_phys[p];
3176
3177 if (ddp->ddp_phys_birth != 0 && do_raw) {
3178 blkptr_t blk = *zio->io_bp;
3179 uint64_t psize;
3180 abd_t *tmpabd;
3181 int error;
3182
3183 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3184 psize = BP_GET_PSIZE(&blk);
3185
3186 if (psize != zio->io_size)
3187 return (B_TRUE);
3188
3189 ddt_exit(ddt);
3190
3191 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3192
3193 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3194 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3195 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3196 ZIO_FLAG_RAW, &zio->io_bookmark));
3197
3198 if (error == 0) {
3199 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3200 error = SET_ERROR(ENOENT);
3201 }
3202
3203 abd_free(tmpabd);
3204 ddt_enter(ddt);
3205 return (error != 0);
3206 } else if (ddp->ddp_phys_birth != 0) {
3207 arc_buf_t *abuf = NULL;
3208 arc_flags_t aflags = ARC_FLAG_WAIT;
3209 blkptr_t blk = *zio->io_bp;
3210 int error;
3211
3212 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3213
3214 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3215 return (B_TRUE);
3216
3217 ddt_exit(ddt);
3218
3219 error = arc_read(NULL, spa, &blk,
3220 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3221 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3222 &aflags, &zio->io_bookmark);
3223
3224 if (error == 0) {
3225 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3226 zio->io_orig_size) != 0)
3227 error = SET_ERROR(ENOENT);
3228 arc_buf_destroy(abuf, &abuf);
3229 }
3230
3231 ddt_enter(ddt);
3232 return (error != 0);
3233 }
3234 }
3235
3236 return (B_FALSE);
3237 }
3238
3239 static void
3240 zio_ddt_child_write_ready(zio_t *zio)
3241 {
3242 int p = zio->io_prop.zp_copies;
3243 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3244 ddt_entry_t *dde = zio->io_private;
3245 ddt_phys_t *ddp = &dde->dde_phys[p];
3246 zio_t *pio;
3247
3248 if (zio->io_error)
3249 return;
3250
3251 ddt_enter(ddt);
3252
3253 ASSERT(dde->dde_lead_zio[p] == zio);
3254
3255 ddt_phys_fill(ddp, zio->io_bp);
3256
3257 zio_link_t *zl = NULL;
3258 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3259 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3260
3261 ddt_exit(ddt);
3262 }
3263
3264 static void
3265 zio_ddt_child_write_done(zio_t *zio)
3266 {
3267 int p = zio->io_prop.zp_copies;
3268 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3269 ddt_entry_t *dde = zio->io_private;
3270 ddt_phys_t *ddp = &dde->dde_phys[p];
3271
3272 ddt_enter(ddt);
3273
3274 ASSERT(ddp->ddp_refcnt == 0);
3275 ASSERT(dde->dde_lead_zio[p] == zio);
3276 dde->dde_lead_zio[p] = NULL;
3277
3278 if (zio->io_error == 0) {
3279 zio_link_t *zl = NULL;
3280 while (zio_walk_parents(zio, &zl) != NULL)
3281 ddt_phys_addref(ddp);
3282 } else {
3283 ddt_phys_clear(ddp);
3284 }
3285
3286 ddt_exit(ddt);
3287 }
3288
3289 static zio_t *
3290 zio_ddt_write(zio_t *zio)
3291 {
3292 spa_t *spa = zio->io_spa;
3293 blkptr_t *bp = zio->io_bp;
3294 uint64_t txg = zio->io_txg;
3295 zio_prop_t *zp = &zio->io_prop;
3296 int p = zp->zp_copies;
3297 zio_t *cio = NULL;
3298 ddt_t *ddt = ddt_select(spa, bp);
3299 ddt_entry_t *dde;
3300 ddt_phys_t *ddp;
3301
3302 ASSERT(BP_GET_DEDUP(bp));
3303 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3304 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3305 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3306
3307 ddt_enter(ddt);
3308 dde = ddt_lookup(ddt, bp, B_TRUE);
3309 ddp = &dde->dde_phys[p];
3310
3311 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3312 /*
3313 * If we're using a weak checksum, upgrade to a strong checksum
3314 * and try again. If we're already using a strong checksum,
3315 * we can't resolve it, so just convert to an ordinary write.
3316 * (And automatically e-mail a paper to Nature?)
3317 */
3318 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3319 ZCHECKSUM_FLAG_DEDUP)) {
3320 zp->zp_checksum = spa_dedup_checksum(spa);
3321 zio_pop_transforms(zio);
3322 zio->io_stage = ZIO_STAGE_OPEN;
3323 BP_ZERO(bp);
3324 } else {
3325 zp->zp_dedup = B_FALSE;
3326 BP_SET_DEDUP(bp, B_FALSE);
3327 }
3328 ASSERT(!BP_GET_DEDUP(bp));
3329 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3330 ddt_exit(ddt);
3331 return (zio);
3332 }
3333
3334 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3335 if (ddp->ddp_phys_birth != 0)
3336 ddt_bp_fill(ddp, bp, txg);
3337 if (dde->dde_lead_zio[p] != NULL)
3338 zio_add_child(zio, dde->dde_lead_zio[p]);
3339 else
3340 ddt_phys_addref(ddp);
3341 } else if (zio->io_bp_override) {
3342 ASSERT(bp->blk_birth == txg);
3343 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3344 ddt_phys_fill(ddp, bp);
3345 ddt_phys_addref(ddp);
3346 } else {
3347 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3348 zio->io_orig_size, zio->io_orig_size, zp,
3349 zio_ddt_child_write_ready, NULL, NULL,
3350 zio_ddt_child_write_done, dde, zio->io_priority,
3351 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3352
3353 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3354 dde->dde_lead_zio[p] = cio;
3355 }
3356
3357 ddt_exit(ddt);
3358
3359 zio_nowait(cio);
3360
3361 return (zio);
3362 }
3363
3364 static ddt_entry_t *freedde; /* for debugging */
3365
3366 static zio_t *
3367 zio_ddt_free(zio_t *zio)
3368 {
3369 spa_t *spa = zio->io_spa;
3370 blkptr_t *bp = zio->io_bp;
3371 ddt_t *ddt = ddt_select(spa, bp);
3372 ddt_entry_t *dde;
3373 ddt_phys_t *ddp;
3374
3375 ASSERT(BP_GET_DEDUP(bp));
3376 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3377
3378 ddt_enter(ddt);
3379 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3380 if (dde) {
3381 ddp = ddt_phys_select(dde, bp);
3382 if (ddp)
3383 ddt_phys_decref(ddp);
3384 }
3385 ddt_exit(ddt);
3386
3387 return (zio);
3388 }
3389
3390 /*
3391 * ==========================================================================
3392 * Allocate and free blocks
3393 * ==========================================================================
3394 */
3395
3396 static zio_t *
3397 zio_io_to_allocate(spa_t *spa, int allocator)
3398 {
3399 zio_t *zio;
3400
3401 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3402
3403 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3404 if (zio == NULL)
3405 return (NULL);
3406
3407 ASSERT(IO_IS_ALLOCATING(zio));
3408
3409 /*
3410 * Try to place a reservation for this zio. If we're unable to
3411 * reserve then we throttle.
3412 */
3413 ASSERT3U(zio->io_allocator, ==, allocator);
3414 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3415 zio->io_prop.zp_copies, allocator, zio, 0)) {
3416 return (NULL);
3417 }
3418
3419 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3420 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3421
3422 return (zio);
3423 }
3424
3425 static zio_t *
3426 zio_dva_throttle(zio_t *zio)
3427 {
3428 spa_t *spa = zio->io_spa;
3429 zio_t *nio;
3430 metaslab_class_t *mc;
3431
3432 /* locate an appropriate allocation class */
3433 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3434 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3435
3436 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3437 !mc->mc_alloc_throttle_enabled ||
3438 zio->io_child_type == ZIO_CHILD_GANG ||
3439 zio->io_flags & ZIO_FLAG_NODATA) {
3440 return (zio);
3441 }
3442
3443 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3444 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3445 ASSERT3U(zio->io_queued_timestamp, >, 0);
3446 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3447
3448 zbookmark_phys_t *bm = &zio->io_bookmark;
3449 /*
3450 * We want to try to use as many allocators as possible to help improve
3451 * performance, but we also want logically adjacent IOs to be physically
3452 * adjacent to improve sequential read performance. We chunk each object
3453 * into 2^20 block regions, and then hash based on the objset, object,
3454 * level, and region to accomplish both of these goals.
3455 */
3456 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3457 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3458 zio->io_allocator = allocator;
3459 zio->io_metaslab_class = mc;
3460 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3461 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3462 nio = zio_io_to_allocate(spa, allocator);
3463 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3464 return (nio);
3465 }
3466
3467 static void
3468 zio_allocate_dispatch(spa_t *spa, int allocator)
3469 {
3470 zio_t *zio;
3471
3472 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3473 zio = zio_io_to_allocate(spa, allocator);
3474 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3475 if (zio == NULL)
3476 return;
3477
3478 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3479 ASSERT0(zio->io_error);
3480 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3481 }
3482
3483 static zio_t *
3484 zio_dva_allocate(zio_t *zio)
3485 {
3486 spa_t *spa = zio->io_spa;
3487 metaslab_class_t *mc;
3488 blkptr_t *bp = zio->io_bp;
3489 int error;
3490 int flags = 0;
3491
3492 if (zio->io_gang_leader == NULL) {
3493 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3494 zio->io_gang_leader = zio;
3495 }
3496
3497 ASSERT(BP_IS_HOLE(bp));
3498 ASSERT0(BP_GET_NDVAS(bp));
3499 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3500 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3501 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3502
3503 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3504 if (zio->io_flags & ZIO_FLAG_NODATA)
3505 flags |= METASLAB_DONT_THROTTLE;
3506 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3507 flags |= METASLAB_GANG_CHILD;
3508 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3509 flags |= METASLAB_ASYNC_ALLOC;
3510
3511 /*
3512 * if not already chosen, locate an appropriate allocation class
3513 */
3514 mc = zio->io_metaslab_class;
3515 if (mc == NULL) {
3516 mc = spa_preferred_class(spa, zio->io_size,
3517 zio->io_prop.zp_type, zio->io_prop.zp_level,
3518 zio->io_prop.zp_zpl_smallblk);
3519 zio->io_metaslab_class = mc;
3520 }
3521
3522 /*
3523 * Try allocating the block in the usual metaslab class.
3524 * If that's full, allocate it in the normal class.
3525 * If that's full, allocate as a gang block,
3526 * and if all are full, the allocation fails (which shouldn't happen).
3527 *
3528 * Note that we do not fall back on embedded slog (ZIL) space, to
3529 * preserve unfragmented slog space, which is critical for decent
3530 * sync write performance. If a log allocation fails, we will fall
3531 * back to spa_sync() which is abysmal for performance.
3532 */
3533 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3534 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3535 &zio->io_alloc_list, zio, zio->io_allocator);
3536
3537 /*
3538 * Fallback to normal class when an alloc class is full
3539 */
3540 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3541 /*
3542 * If throttling, transfer reservation over to normal class.
3543 * The io_allocator slot can remain the same even though we
3544 * are switching classes.
3545 */
3546 if (mc->mc_alloc_throttle_enabled &&
3547 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3548 metaslab_class_throttle_unreserve(mc,
3549 zio->io_prop.zp_copies, zio->io_allocator, zio);
3550 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3551
3552 VERIFY(metaslab_class_throttle_reserve(
3553 spa_normal_class(spa),
3554 zio->io_prop.zp_copies, zio->io_allocator, zio,
3555 flags | METASLAB_MUST_RESERVE));
3556 }
3557 zio->io_metaslab_class = mc = spa_normal_class(spa);
3558 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3559 zfs_dbgmsg("%s: metaslab allocation failure, "
3560 "trying normal class: zio %px, size %llu, error %d",
3561 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3562 error);
3563 }
3564
3565 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3566 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3567 &zio->io_alloc_list, zio, zio->io_allocator);
3568 }
3569
3570 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3571 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3572 zfs_dbgmsg("%s: metaslab allocation failure, "
3573 "trying ganging: zio %px, size %llu, error %d",
3574 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3575 error);
3576 }
3577 return (zio_write_gang_block(zio, mc));
3578 }
3579 if (error != 0) {
3580 if (error != ENOSPC ||
3581 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3582 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3583 "size %llu, error %d",
3584 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3585 error);
3586 }
3587 zio->io_error = error;
3588 }
3589
3590 return (zio);
3591 }
3592
3593 static zio_t *
3594 zio_dva_free(zio_t *zio)
3595 {
3596 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3597
3598 return (zio);
3599 }
3600
3601 static zio_t *
3602 zio_dva_claim(zio_t *zio)
3603 {
3604 int error;
3605
3606 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3607 if (error)
3608 zio->io_error = error;
3609
3610 return (zio);
3611 }
3612
3613 /*
3614 * Undo an allocation. This is used by zio_done() when an I/O fails
3615 * and we want to give back the block we just allocated.
3616 * This handles both normal blocks and gang blocks.
3617 */
3618 static void
3619 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3620 {
3621 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3622 ASSERT(zio->io_bp_override == NULL);
3623
3624 if (!BP_IS_HOLE(bp))
3625 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3626
3627 if (gn != NULL) {
3628 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3629 zio_dva_unallocate(zio, gn->gn_child[g],
3630 &gn->gn_gbh->zg_blkptr[g]);
3631 }
3632 }
3633 }
3634
3635 /*
3636 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3637 */
3638 int
3639 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3640 uint64_t size, boolean_t *slog)
3641 {
3642 int error = 1;
3643 zio_alloc_list_t io_alloc_list;
3644
3645 ASSERT(txg > spa_syncing_txg(spa));
3646
3647 metaslab_trace_init(&io_alloc_list);
3648
3649 /*
3650 * Block pointer fields are useful to metaslabs for stats and debugging.
3651 * Fill in the obvious ones before calling into metaslab_alloc().
3652 */
3653 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3654 BP_SET_PSIZE(new_bp, size);
3655 BP_SET_LEVEL(new_bp, 0);
3656
3657 /*
3658 * When allocating a zil block, we don't have information about
3659 * the final destination of the block except the objset it's part
3660 * of, so we just hash the objset ID to pick the allocator to get
3661 * some parallelism.
3662 */
3663 int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3664 int allocator = (uint_t)cityhash4(0, 0, 0,
3665 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3666 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3667 txg, NULL, flags, &io_alloc_list, NULL, allocator);
3668 *slog = (error == 0);
3669 if (error != 0) {
3670 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3671 new_bp, 1, txg, NULL, flags,
3672 &io_alloc_list, NULL, allocator);
3673 }
3674 if (error != 0) {
3675 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3676 new_bp, 1, txg, NULL, flags,
3677 &io_alloc_list, NULL, allocator);
3678 }
3679 metaslab_trace_fini(&io_alloc_list);
3680
3681 if (error == 0) {
3682 BP_SET_LSIZE(new_bp, size);
3683 BP_SET_PSIZE(new_bp, size);
3684 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3685 BP_SET_CHECKSUM(new_bp,
3686 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3687 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3688 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3689 BP_SET_LEVEL(new_bp, 0);
3690 BP_SET_DEDUP(new_bp, 0);
3691 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3692
3693 /*
3694 * encrypted blocks will require an IV and salt. We generate
3695 * these now since we will not be rewriting the bp at
3696 * rewrite time.
3697 */
3698 if (os->os_encrypted) {
3699 uint8_t iv[ZIO_DATA_IV_LEN];
3700 uint8_t salt[ZIO_DATA_SALT_LEN];
3701
3702 BP_SET_CRYPT(new_bp, B_TRUE);
3703 VERIFY0(spa_crypt_get_salt(spa,
3704 dmu_objset_id(os), salt));
3705 VERIFY0(zio_crypt_generate_iv(iv));
3706
3707 zio_crypt_encode_params_bp(new_bp, salt, iv);
3708 }
3709 } else {
3710 zfs_dbgmsg("%s: zil block allocation failure: "
3711 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3712 error);
3713 }
3714
3715 return (error);
3716 }
3717
3718 /*
3719 * ==========================================================================
3720 * Read and write to physical devices
3721 * ==========================================================================
3722 */
3723
3724 /*
3725 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3726 * stops after this stage and will resume upon I/O completion.
3727 * However, there are instances where the vdev layer may need to
3728 * continue the pipeline when an I/O was not issued. Since the I/O
3729 * that was sent to the vdev layer might be different than the one
3730 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3731 * force the underlying vdev layers to call either zio_execute() or
3732 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3733 */
3734 static zio_t *
3735 zio_vdev_io_start(zio_t *zio)
3736 {
3737 vdev_t *vd = zio->io_vd;
3738 uint64_t align;
3739 spa_t *spa = zio->io_spa;
3740
3741 zio->io_delay = 0;
3742
3743 ASSERT(zio->io_error == 0);
3744 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3745
3746 if (vd == NULL) {
3747 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3748 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3749
3750 /*
3751 * The mirror_ops handle multiple DVAs in a single BP.
3752 */
3753 vdev_mirror_ops.vdev_op_io_start(zio);
3754 return (NULL);
3755 }
3756
3757 ASSERT3P(zio->io_logical, !=, zio);
3758 if (zio->io_type == ZIO_TYPE_WRITE) {
3759 ASSERT(spa->spa_trust_config);
3760
3761 /*
3762 * Note: the code can handle other kinds of writes,
3763 * but we don't expect them.
3764 */
3765 if (zio->io_vd->vdev_noalloc) {
3766 ASSERT(zio->io_flags &
3767 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3768 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3769 }
3770 }
3771
3772 align = 1ULL << vd->vdev_top->vdev_ashift;
3773
3774 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3775 P2PHASE(zio->io_size, align) != 0) {
3776 /* Transform logical writes to be a full physical block size. */
3777 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3778 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3779 ASSERT(vd == vd->vdev_top);
3780 if (zio->io_type == ZIO_TYPE_WRITE) {
3781 abd_copy(abuf, zio->io_abd, zio->io_size);
3782 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3783 }
3784 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3785 }
3786
3787 /*
3788 * If this is not a physical io, make sure that it is properly aligned
3789 * before proceeding.
3790 */
3791 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3792 ASSERT0(P2PHASE(zio->io_offset, align));
3793 ASSERT0(P2PHASE(zio->io_size, align));
3794 } else {
3795 /*
3796 * For physical writes, we allow 512b aligned writes and assume
3797 * the device will perform a read-modify-write as necessary.
3798 */
3799 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3800 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3801 }
3802
3803 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3804
3805 /*
3806 * If this is a repair I/O, and there's no self-healing involved --
3807 * that is, we're just resilvering what we expect to resilver --
3808 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3809 * This prevents spurious resilvering.
3810 *
3811 * There are a few ways that we can end up creating these spurious
3812 * resilver i/os:
3813 *
3814 * 1. A resilver i/o will be issued if any DVA in the BP has a
3815 * dirty DTL. The mirror code will issue resilver writes to
3816 * each DVA, including the one(s) that are not on vdevs with dirty
3817 * DTLs.
3818 *
3819 * 2. With nested replication, which happens when we have a
3820 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3821 * For example, given mirror(replacing(A+B), C), it's likely that
3822 * only A is out of date (it's the new device). In this case, we'll
3823 * read from C, then use the data to resilver A+B -- but we don't
3824 * actually want to resilver B, just A. The top-level mirror has no
3825 * way to know this, so instead we just discard unnecessary repairs
3826 * as we work our way down the vdev tree.
3827 *
3828 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3829 * The same logic applies to any form of nested replication: ditto
3830 * + mirror, RAID-Z + replacing, etc.
3831 *
3832 * However, indirect vdevs point off to other vdevs which may have
3833 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3834 * will be properly bypassed instead.
3835 *
3836 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3837 * a dRAID spare vdev. For example, when a dRAID spare is first
3838 * used, its spare blocks need to be written to but the leaf vdev's
3839 * of such blocks can have empty DTL_PARTIAL.
3840 *
3841 * There seemed no clean way to allow such writes while bypassing
3842 * spurious ones. At this point, just avoid all bypassing for dRAID
3843 * for correctness.
3844 */
3845 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3846 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3847 zio->io_txg != 0 && /* not a delegated i/o */
3848 vd->vdev_ops != &vdev_indirect_ops &&
3849 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3850 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3851 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3852 zio_vdev_io_bypass(zio);
3853 return (zio);
3854 }
3855
3856 /*
3857 * Select the next best leaf I/O to process. Distributed spares are
3858 * excluded since they dispatch the I/O directly to a leaf vdev after
3859 * applying the dRAID mapping.
3860 */
3861 if (vd->vdev_ops->vdev_op_leaf &&
3862 vd->vdev_ops != &vdev_draid_spare_ops &&
3863 (zio->io_type == ZIO_TYPE_READ ||
3864 zio->io_type == ZIO_TYPE_WRITE ||
3865 zio->io_type == ZIO_TYPE_TRIM)) {
3866
3867 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3868 return (zio);
3869
3870 if ((zio = vdev_queue_io(zio)) == NULL)
3871 return (NULL);
3872
3873 if (!vdev_accessible(vd, zio)) {
3874 zio->io_error = SET_ERROR(ENXIO);
3875 zio_interrupt(zio);
3876 return (NULL);
3877 }
3878 zio->io_delay = gethrtime();
3879 }
3880
3881 vd->vdev_ops->vdev_op_io_start(zio);
3882 return (NULL);
3883 }
3884
3885 static zio_t *
3886 zio_vdev_io_done(zio_t *zio)
3887 {
3888 vdev_t *vd = zio->io_vd;
3889 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3890 boolean_t unexpected_error = B_FALSE;
3891
3892 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3893 return (NULL);
3894 }
3895
3896 ASSERT(zio->io_type == ZIO_TYPE_READ ||
3897 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3898
3899 if (zio->io_delay)
3900 zio->io_delay = gethrtime() - zio->io_delay;
3901
3902 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3903 vd->vdev_ops != &vdev_draid_spare_ops) {
3904 vdev_queue_io_done(zio);
3905
3906 if (zio->io_type == ZIO_TYPE_WRITE)
3907 vdev_cache_write(zio);
3908
3909 if (zio_injection_enabled && zio->io_error == 0)
3910 zio->io_error = zio_handle_device_injections(vd, zio,
3911 EIO, EILSEQ);
3912
3913 if (zio_injection_enabled && zio->io_error == 0)
3914 zio->io_error = zio_handle_label_injection(zio, EIO);
3915
3916 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3917 if (!vdev_accessible(vd, zio)) {
3918 zio->io_error = SET_ERROR(ENXIO);
3919 } else {
3920 unexpected_error = B_TRUE;
3921 }
3922 }
3923 }
3924
3925 ops->vdev_op_io_done(zio);
3926
3927 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
3928 VERIFY(vdev_probe(vd, zio) == NULL);
3929
3930 return (zio);
3931 }
3932
3933 /*
3934 * This function is used to change the priority of an existing zio that is
3935 * currently in-flight. This is used by the arc to upgrade priority in the
3936 * event that a demand read is made for a block that is currently queued
3937 * as a scrub or async read IO. Otherwise, the high priority read request
3938 * would end up having to wait for the lower priority IO.
3939 */
3940 void
3941 zio_change_priority(zio_t *pio, zio_priority_t priority)
3942 {
3943 zio_t *cio, *cio_next;
3944 zio_link_t *zl = NULL;
3945
3946 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3947
3948 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3949 vdev_queue_change_io_priority(pio, priority);
3950 } else {
3951 pio->io_priority = priority;
3952 }
3953
3954 mutex_enter(&pio->io_lock);
3955 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3956 cio_next = zio_walk_children(pio, &zl);
3957 zio_change_priority(cio, priority);
3958 }
3959 mutex_exit(&pio->io_lock);
3960 }
3961
3962 /*
3963 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3964 * disk, and use that to finish the checksum ereport later.
3965 */
3966 static void
3967 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3968 const abd_t *good_buf)
3969 {
3970 /* no processing needed */
3971 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3972 }
3973
3974 void
3975 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3976 {
3977 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3978
3979 abd_copy(abd, zio->io_abd, zio->io_size);
3980
3981 zcr->zcr_cbinfo = zio->io_size;
3982 zcr->zcr_cbdata = abd;
3983 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3984 zcr->zcr_free = zio_abd_free;
3985 }
3986
3987 static zio_t *
3988 zio_vdev_io_assess(zio_t *zio)
3989 {
3990 vdev_t *vd = zio->io_vd;
3991
3992 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3993 return (NULL);
3994 }
3995
3996 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3997 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3998
3999 if (zio->io_vsd != NULL) {
4000 zio->io_vsd_ops->vsd_free(zio);
4001 zio->io_vsd = NULL;
4002 }
4003
4004 if (zio_injection_enabled && zio->io_error == 0)
4005 zio->io_error = zio_handle_fault_injection(zio, EIO);
4006
4007 /*
4008 * If the I/O failed, determine whether we should attempt to retry it.
4009 *
4010 * On retry, we cut in line in the issue queue, since we don't want
4011 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4012 */
4013 if (zio->io_error && vd == NULL &&
4014 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4015 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
4016 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
4017 zio->io_error = 0;
4018 zio->io_flags |= ZIO_FLAG_IO_RETRY |
4019 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4020 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4021 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4022 zio_requeue_io_start_cut_in_line);
4023 return (NULL);
4024 }
4025
4026 /*
4027 * If we got an error on a leaf device, convert it to ENXIO
4028 * if the device is not accessible at all.
4029 */
4030 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4031 !vdev_accessible(vd, zio))
4032 zio->io_error = SET_ERROR(ENXIO);
4033
4034 /*
4035 * If we can't write to an interior vdev (mirror or RAID-Z),
4036 * set vdev_cant_write so that we stop trying to allocate from it.
4037 */
4038 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4039 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4040 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4041 "cant_write=TRUE due to write failure with ENXIO",
4042 zio);
4043 vd->vdev_cant_write = B_TRUE;
4044 }
4045
4046 /*
4047 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4048 * attempts will ever succeed. In this case we set a persistent
4049 * boolean flag so that we don't bother with it in the future.
4050 */
4051 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4052 zio->io_type == ZIO_TYPE_IOCTL &&
4053 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4054 vd->vdev_nowritecache = B_TRUE;
4055
4056 if (zio->io_error)
4057 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4058
4059 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4060 zio->io_physdone != NULL) {
4061 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4062 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4063 zio->io_physdone(zio->io_logical);
4064 }
4065
4066 return (zio);
4067 }
4068
4069 void
4070 zio_vdev_io_reissue(zio_t *zio)
4071 {
4072 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4073 ASSERT(zio->io_error == 0);
4074
4075 zio->io_stage >>= 1;
4076 }
4077
4078 void
4079 zio_vdev_io_redone(zio_t *zio)
4080 {
4081 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4082
4083 zio->io_stage >>= 1;
4084 }
4085
4086 void
4087 zio_vdev_io_bypass(zio_t *zio)
4088 {
4089 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4090 ASSERT(zio->io_error == 0);
4091
4092 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4093 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4094 }
4095
4096 /*
4097 * ==========================================================================
4098 * Encrypt and store encryption parameters
4099 * ==========================================================================
4100 */
4101
4102
4103 /*
4104 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4105 * managing the storage of encryption parameters and passing them to the
4106 * lower-level encryption functions.
4107 */
4108 static zio_t *
4109 zio_encrypt(zio_t *zio)
4110 {
4111 zio_prop_t *zp = &zio->io_prop;
4112 spa_t *spa = zio->io_spa;
4113 blkptr_t *bp = zio->io_bp;
4114 uint64_t psize = BP_GET_PSIZE(bp);
4115 uint64_t dsobj = zio->io_bookmark.zb_objset;
4116 dmu_object_type_t ot = BP_GET_TYPE(bp);
4117 void *enc_buf = NULL;
4118 abd_t *eabd = NULL;
4119 uint8_t salt[ZIO_DATA_SALT_LEN];
4120 uint8_t iv[ZIO_DATA_IV_LEN];
4121 uint8_t mac[ZIO_DATA_MAC_LEN];
4122 boolean_t no_crypt = B_FALSE;
4123
4124 /* the root zio already encrypted the data */
4125 if (zio->io_child_type == ZIO_CHILD_GANG)
4126 return (zio);
4127
4128 /* only ZIL blocks are re-encrypted on rewrite */
4129 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4130 return (zio);
4131
4132 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4133 BP_SET_CRYPT(bp, B_FALSE);
4134 return (zio);
4135 }
4136
4137 /* if we are doing raw encryption set the provided encryption params */
4138 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4139 ASSERT0(BP_GET_LEVEL(bp));
4140 BP_SET_CRYPT(bp, B_TRUE);
4141 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4142 if (ot != DMU_OT_OBJSET)
4143 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4144
4145 /* dnode blocks must be written out in the provided byteorder */
4146 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4147 ot == DMU_OT_DNODE) {
4148 void *bswap_buf = zio_buf_alloc(psize);
4149 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4150
4151 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4152 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4153 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4154 psize);
4155
4156 abd_take_ownership_of_buf(babd, B_TRUE);
4157 zio_push_transform(zio, babd, psize, psize, NULL);
4158 }
4159
4160 if (DMU_OT_IS_ENCRYPTED(ot))
4161 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4162 return (zio);
4163 }
4164
4165 /* indirect blocks only maintain a cksum of the lower level MACs */
4166 if (BP_GET_LEVEL(bp) > 0) {
4167 BP_SET_CRYPT(bp, B_TRUE);
4168 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4169 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4170 mac));
4171 zio_crypt_encode_mac_bp(bp, mac);
4172 return (zio);
4173 }
4174
4175 /*
4176 * Objset blocks are a special case since they have 2 256-bit MACs
4177 * embedded within them.
4178 */
4179 if (ot == DMU_OT_OBJSET) {
4180 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4181 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4182 BP_SET_CRYPT(bp, B_TRUE);
4183 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4184 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4185 return (zio);
4186 }
4187
4188 /* unencrypted object types are only authenticated with a MAC */
4189 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4190 BP_SET_CRYPT(bp, B_TRUE);
4191 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4192 zio->io_abd, psize, mac));
4193 zio_crypt_encode_mac_bp(bp, mac);
4194 return (zio);
4195 }
4196
4197 /*
4198 * Later passes of sync-to-convergence may decide to rewrite data
4199 * in place to avoid more disk reallocations. This presents a problem
4200 * for encryption because this constitutes rewriting the new data with
4201 * the same encryption key and IV. However, this only applies to blocks
4202 * in the MOS (particularly the spacemaps) and we do not encrypt the
4203 * MOS. We assert that the zio is allocating or an intent log write
4204 * to enforce this.
4205 */
4206 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4207 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4208 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4209 ASSERT3U(psize, !=, 0);
4210
4211 enc_buf = zio_buf_alloc(psize);
4212 eabd = abd_get_from_buf(enc_buf, psize);
4213 abd_take_ownership_of_buf(eabd, B_TRUE);
4214
4215 /*
4216 * For an explanation of what encryption parameters are stored
4217 * where, see the block comment in zio_crypt.c.
4218 */
4219 if (ot == DMU_OT_INTENT_LOG) {
4220 zio_crypt_decode_params_bp(bp, salt, iv);
4221 } else {
4222 BP_SET_CRYPT(bp, B_TRUE);
4223 }
4224
4225 /* Perform the encryption. This should not fail */
4226 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4227 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4228 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4229
4230 /* encode encryption metadata into the bp */
4231 if (ot == DMU_OT_INTENT_LOG) {
4232 /*
4233 * ZIL blocks store the MAC in the embedded checksum, so the
4234 * transform must always be applied.
4235 */
4236 zio_crypt_encode_mac_zil(enc_buf, mac);
4237 zio_push_transform(zio, eabd, psize, psize, NULL);
4238 } else {
4239 BP_SET_CRYPT(bp, B_TRUE);
4240 zio_crypt_encode_params_bp(bp, salt, iv);
4241 zio_crypt_encode_mac_bp(bp, mac);
4242
4243 if (no_crypt) {
4244 ASSERT3U(ot, ==, DMU_OT_DNODE);
4245 abd_free(eabd);
4246 } else {
4247 zio_push_transform(zio, eabd, psize, psize, NULL);
4248 }
4249 }
4250
4251 return (zio);
4252 }
4253
4254 /*
4255 * ==========================================================================
4256 * Generate and verify checksums
4257 * ==========================================================================
4258 */
4259 static zio_t *
4260 zio_checksum_generate(zio_t *zio)
4261 {
4262 blkptr_t *bp = zio->io_bp;
4263 enum zio_checksum checksum;
4264
4265 if (bp == NULL) {
4266 /*
4267 * This is zio_write_phys().
4268 * We're either generating a label checksum, or none at all.
4269 */
4270 checksum = zio->io_prop.zp_checksum;
4271
4272 if (checksum == ZIO_CHECKSUM_OFF)
4273 return (zio);
4274
4275 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4276 } else {
4277 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4278 ASSERT(!IO_IS_ALLOCATING(zio));
4279 checksum = ZIO_CHECKSUM_GANG_HEADER;
4280 } else {
4281 checksum = BP_GET_CHECKSUM(bp);
4282 }
4283 }
4284
4285 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4286
4287 return (zio);
4288 }
4289
4290 static zio_t *
4291 zio_checksum_verify(zio_t *zio)
4292 {
4293 zio_bad_cksum_t info;
4294 blkptr_t *bp = zio->io_bp;
4295 int error;
4296
4297 ASSERT(zio->io_vd != NULL);
4298
4299 if (bp == NULL) {
4300 /*
4301 * This is zio_read_phys().
4302 * We're either verifying a label checksum, or nothing at all.
4303 */
4304 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4305 return (zio);
4306
4307 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4308 }
4309
4310 if ((error = zio_checksum_error(zio, &info)) != 0) {
4311 zio->io_error = error;
4312 if (error == ECKSUM &&
4313 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4314 mutex_enter(&zio->io_vd->vdev_stat_lock);
4315 zio->io_vd->vdev_stat.vs_checksum_errors++;
4316 mutex_exit(&zio->io_vd->vdev_stat_lock);
4317 (void) zfs_ereport_start_checksum(zio->io_spa,
4318 zio->io_vd, &zio->io_bookmark, zio,
4319 zio->io_offset, zio->io_size, &info);
4320 }
4321 }
4322
4323 return (zio);
4324 }
4325
4326 /*
4327 * Called by RAID-Z to ensure we don't compute the checksum twice.
4328 */
4329 void
4330 zio_checksum_verified(zio_t *zio)
4331 {
4332 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4333 }
4334
4335 /*
4336 * ==========================================================================
4337 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4338 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4339 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4340 * indicate errors that are specific to one I/O, and most likely permanent.
4341 * Any other error is presumed to be worse because we weren't expecting it.
4342 * ==========================================================================
4343 */
4344 int
4345 zio_worst_error(int e1, int e2)
4346 {
4347 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4348 int r1, r2;
4349
4350 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4351 if (e1 == zio_error_rank[r1])
4352 break;
4353
4354 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4355 if (e2 == zio_error_rank[r2])
4356 break;
4357
4358 return (r1 > r2 ? e1 : e2);
4359 }
4360
4361 /*
4362 * ==========================================================================
4363 * I/O completion
4364 * ==========================================================================
4365 */
4366 static zio_t *
4367 zio_ready(zio_t *zio)
4368 {
4369 blkptr_t *bp = zio->io_bp;
4370 zio_t *pio, *pio_next;
4371 zio_link_t *zl = NULL;
4372
4373 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4374 ZIO_WAIT_READY)) {
4375 return (NULL);
4376 }
4377
4378 if (zio->io_ready) {
4379 ASSERT(IO_IS_ALLOCATING(zio));
4380 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4381 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4382 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4383
4384 zio->io_ready(zio);
4385 }
4386
4387 if (bp != NULL && bp != &zio->io_bp_copy)
4388 zio->io_bp_copy = *bp;
4389
4390 if (zio->io_error != 0) {
4391 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4392
4393 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4394 ASSERT(IO_IS_ALLOCATING(zio));
4395 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4396 ASSERT(zio->io_metaslab_class != NULL);
4397
4398 /*
4399 * We were unable to allocate anything, unreserve and
4400 * issue the next I/O to allocate.
4401 */
4402 metaslab_class_throttle_unreserve(
4403 zio->io_metaslab_class, zio->io_prop.zp_copies,
4404 zio->io_allocator, zio);
4405 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4406 }
4407 }
4408
4409 mutex_enter(&zio->io_lock);
4410 zio->io_state[ZIO_WAIT_READY] = 1;
4411 pio = zio_walk_parents(zio, &zl);
4412 mutex_exit(&zio->io_lock);
4413
4414 /*
4415 * As we notify zio's parents, new parents could be added.
4416 * New parents go to the head of zio's io_parent_list, however,
4417 * so we will (correctly) not notify them. The remainder of zio's
4418 * io_parent_list, from 'pio_next' onward, cannot change because
4419 * all parents must wait for us to be done before they can be done.
4420 */
4421 for (; pio != NULL; pio = pio_next) {
4422 pio_next = zio_walk_parents(zio, &zl);
4423 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4424 }
4425
4426 if (zio->io_flags & ZIO_FLAG_NODATA) {
4427 if (BP_IS_GANG(bp)) {
4428 zio->io_flags &= ~ZIO_FLAG_NODATA;
4429 } else {
4430 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4431 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4432 }
4433 }
4434
4435 if (zio_injection_enabled &&
4436 zio->io_spa->spa_syncing_txg == zio->io_txg)
4437 zio_handle_ignored_writes(zio);
4438
4439 return (zio);
4440 }
4441
4442 /*
4443 * Update the allocation throttle accounting.
4444 */
4445 static void
4446 zio_dva_throttle_done(zio_t *zio)
4447 {
4448 zio_t *lio __maybe_unused = zio->io_logical;
4449 zio_t *pio = zio_unique_parent(zio);
4450 vdev_t *vd = zio->io_vd;
4451 int flags = METASLAB_ASYNC_ALLOC;
4452
4453 ASSERT3P(zio->io_bp, !=, NULL);
4454 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4455 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4456 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4457 ASSERT(vd != NULL);
4458 ASSERT3P(vd, ==, vd->vdev_top);
4459 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4460 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4461 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4462 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4463 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4464
4465 /*
4466 * Parents of gang children can have two flavors -- ones that
4467 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4468 * and ones that allocated the constituent blocks. The allocation
4469 * throttle needs to know the allocating parent zio so we must find
4470 * it here.
4471 */
4472 if (pio->io_child_type == ZIO_CHILD_GANG) {
4473 /*
4474 * If our parent is a rewrite gang child then our grandparent
4475 * would have been the one that performed the allocation.
4476 */
4477 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4478 pio = zio_unique_parent(pio);
4479 flags |= METASLAB_GANG_CHILD;
4480 }
4481
4482 ASSERT(IO_IS_ALLOCATING(pio));
4483 ASSERT3P(zio, !=, zio->io_logical);
4484 ASSERT(zio->io_logical != NULL);
4485 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4486 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4487 ASSERT(zio->io_metaslab_class != NULL);
4488
4489 mutex_enter(&pio->io_lock);
4490 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4491 pio->io_allocator, B_TRUE);
4492 mutex_exit(&pio->io_lock);
4493
4494 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4495 pio->io_allocator, pio);
4496
4497 /*
4498 * Call into the pipeline to see if there is more work that
4499 * needs to be done. If there is work to be done it will be
4500 * dispatched to another taskq thread.
4501 */
4502 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4503 }
4504
4505 static zio_t *
4506 zio_done(zio_t *zio)
4507 {
4508 /*
4509 * Always attempt to keep stack usage minimal here since
4510 * we can be called recursively up to 19 levels deep.
4511 */
4512 const uint64_t psize = zio->io_size;
4513 zio_t *pio, *pio_next;
4514 zio_link_t *zl = NULL;
4515
4516 /*
4517 * If our children haven't all completed,
4518 * wait for them and then repeat this pipeline stage.
4519 */
4520 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4521 return (NULL);
4522 }
4523
4524 /*
4525 * If the allocation throttle is enabled, then update the accounting.
4526 * We only track child I/Os that are part of an allocating async
4527 * write. We must do this since the allocation is performed
4528 * by the logical I/O but the actual write is done by child I/Os.
4529 */
4530 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4531 zio->io_child_type == ZIO_CHILD_VDEV) {
4532 ASSERT(zio->io_metaslab_class != NULL);
4533 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4534 zio_dva_throttle_done(zio);
4535 }
4536
4537 /*
4538 * If the allocation throttle is enabled, verify that
4539 * we have decremented the refcounts for every I/O that was throttled.
4540 */
4541 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4542 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4543 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4544 ASSERT(zio->io_bp != NULL);
4545
4546 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4547 zio->io_allocator);
4548 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4549 mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4550 }
4551
4552
4553 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4554 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4555 ASSERT(zio->io_children[c][w] == 0);
4556
4557 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4558 ASSERT(zio->io_bp->blk_pad[0] == 0);
4559 ASSERT(zio->io_bp->blk_pad[1] == 0);
4560 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4561 sizeof (blkptr_t)) == 0 ||
4562 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4563 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4564 zio->io_bp_override == NULL &&
4565 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4566 ASSERT3U(zio->io_prop.zp_copies, <=,
4567 BP_GET_NDVAS(zio->io_bp));
4568 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4569 (BP_COUNT_GANG(zio->io_bp) ==
4570 BP_GET_NDVAS(zio->io_bp)));
4571 }
4572 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4573 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4574 }
4575
4576 /*
4577 * If there were child vdev/gang/ddt errors, they apply to us now.
4578 */
4579 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4580 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4581 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4582
4583 /*
4584 * If the I/O on the transformed data was successful, generate any
4585 * checksum reports now while we still have the transformed data.
4586 */
4587 if (zio->io_error == 0) {
4588 while (zio->io_cksum_report != NULL) {
4589 zio_cksum_report_t *zcr = zio->io_cksum_report;
4590 uint64_t align = zcr->zcr_align;
4591 uint64_t asize = P2ROUNDUP(psize, align);
4592 abd_t *adata = zio->io_abd;
4593
4594 if (adata != NULL && asize != psize) {
4595 adata = abd_alloc(asize, B_TRUE);
4596 abd_copy(adata, zio->io_abd, psize);
4597 abd_zero_off(adata, psize, asize - psize);
4598 }
4599
4600 zio->io_cksum_report = zcr->zcr_next;
4601 zcr->zcr_next = NULL;
4602 zcr->zcr_finish(zcr, adata);
4603 zfs_ereport_free_checksum(zcr);
4604
4605 if (adata != NULL && asize != psize)
4606 abd_free(adata);
4607 }
4608 }
4609
4610 zio_pop_transforms(zio); /* note: may set zio->io_error */
4611
4612 vdev_stat_update(zio, psize);
4613
4614 /*
4615 * If this I/O is attached to a particular vdev is slow, exceeding
4616 * 30 seconds to complete, post an error described the I/O delay.
4617 * We ignore these errors if the device is currently unavailable.
4618 */
4619 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4620 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4621 /*
4622 * We want to only increment our slow IO counters if
4623 * the IO is valid (i.e. not if the drive is removed).
4624 *
4625 * zfs_ereport_post() will also do these checks, but
4626 * it can also ratelimit and have other failures, so we
4627 * need to increment the slow_io counters independent
4628 * of it.
4629 */
4630 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4631 zio->io_spa, zio->io_vd, zio)) {
4632 mutex_enter(&zio->io_vd->vdev_stat_lock);
4633 zio->io_vd->vdev_stat.vs_slow_ios++;
4634 mutex_exit(&zio->io_vd->vdev_stat_lock);
4635
4636 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4637 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4638 zio, 0);
4639 }
4640 }
4641 }
4642
4643 if (zio->io_error) {
4644 /*
4645 * If this I/O is attached to a particular vdev,
4646 * generate an error message describing the I/O failure
4647 * at the block level. We ignore these errors if the
4648 * device is currently unavailable.
4649 */
4650 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4651 !vdev_is_dead(zio->io_vd)) {
4652 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4653 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4654 if (ret != EALREADY) {
4655 mutex_enter(&zio->io_vd->vdev_stat_lock);
4656 if (zio->io_type == ZIO_TYPE_READ)
4657 zio->io_vd->vdev_stat.vs_read_errors++;
4658 else if (zio->io_type == ZIO_TYPE_WRITE)
4659 zio->io_vd->vdev_stat.vs_write_errors++;
4660 mutex_exit(&zio->io_vd->vdev_stat_lock);
4661 }
4662 }
4663
4664 if ((zio->io_error == EIO || !(zio->io_flags &
4665 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4666 zio == zio->io_logical) {
4667 /*
4668 * For logical I/O requests, tell the SPA to log the
4669 * error and generate a logical data ereport.
4670 */
4671 spa_log_error(zio->io_spa, &zio->io_bookmark);
4672 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4673 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4674 }
4675 }
4676
4677 if (zio->io_error && zio == zio->io_logical) {
4678 /*
4679 * Determine whether zio should be reexecuted. This will
4680 * propagate all the way to the root via zio_notify_parent().
4681 */
4682 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4683 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4684
4685 if (IO_IS_ALLOCATING(zio) &&
4686 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4687 if (zio->io_error != ENOSPC)
4688 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4689 else
4690 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4691 }
4692
4693 if ((zio->io_type == ZIO_TYPE_READ ||
4694 zio->io_type == ZIO_TYPE_FREE) &&
4695 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4696 zio->io_error == ENXIO &&
4697 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4698 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4699 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4700
4701 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4702 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4703
4704 /*
4705 * Here is a possibly good place to attempt to do
4706 * either combinatorial reconstruction or error correction
4707 * based on checksums. It also might be a good place
4708 * to send out preliminary ereports before we suspend
4709 * processing.
4710 */
4711 }
4712
4713 /*
4714 * If there were logical child errors, they apply to us now.
4715 * We defer this until now to avoid conflating logical child
4716 * errors with errors that happened to the zio itself when
4717 * updating vdev stats and reporting FMA events above.
4718 */
4719 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4720
4721 if ((zio->io_error || zio->io_reexecute) &&
4722 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4723 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4724 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4725
4726 zio_gang_tree_free(&zio->io_gang_tree);
4727
4728 /*
4729 * Godfather I/Os should never suspend.
4730 */
4731 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4732 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4733 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4734
4735 if (zio->io_reexecute) {
4736 /*
4737 * This is a logical I/O that wants to reexecute.
4738 *
4739 * Reexecute is top-down. When an i/o fails, if it's not
4740 * the root, it simply notifies its parent and sticks around.
4741 * The parent, seeing that it still has children in zio_done(),
4742 * does the same. This percolates all the way up to the root.
4743 * The root i/o will reexecute or suspend the entire tree.
4744 *
4745 * This approach ensures that zio_reexecute() honors
4746 * all the original i/o dependency relationships, e.g.
4747 * parents not executing until children are ready.
4748 */
4749 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4750
4751 zio->io_gang_leader = NULL;
4752
4753 mutex_enter(&zio->io_lock);
4754 zio->io_state[ZIO_WAIT_DONE] = 1;
4755 mutex_exit(&zio->io_lock);
4756
4757 /*
4758 * "The Godfather" I/O monitors its children but is
4759 * not a true parent to them. It will track them through
4760 * the pipeline but severs its ties whenever they get into
4761 * trouble (e.g. suspended). This allows "The Godfather"
4762 * I/O to return status without blocking.
4763 */
4764 zl = NULL;
4765 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4766 pio = pio_next) {
4767 zio_link_t *remove_zl = zl;
4768 pio_next = zio_walk_parents(zio, &zl);
4769
4770 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4771 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4772 zio_remove_child(pio, zio, remove_zl);
4773 /*
4774 * This is a rare code path, so we don't
4775 * bother with "next_to_execute".
4776 */
4777 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4778 NULL);
4779 }
4780 }
4781
4782 if ((pio = zio_unique_parent(zio)) != NULL) {
4783 /*
4784 * We're not a root i/o, so there's nothing to do
4785 * but notify our parent. Don't propagate errors
4786 * upward since we haven't permanently failed yet.
4787 */
4788 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4789 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4790 /*
4791 * This is a rare code path, so we don't bother with
4792 * "next_to_execute".
4793 */
4794 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4795 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4796 /*
4797 * We'd fail again if we reexecuted now, so suspend
4798 * until conditions improve (e.g. device comes online).
4799 */
4800 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4801 } else {
4802 /*
4803 * Reexecution is potentially a huge amount of work.
4804 * Hand it off to the otherwise-unused claim taskq.
4805 */
4806 ASSERT(taskq_empty_ent(&zio->io_tqent));
4807 spa_taskq_dispatch_ent(zio->io_spa,
4808 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4809 zio_reexecute, zio, 0, &zio->io_tqent);
4810 }
4811 return (NULL);
4812 }
4813
4814 ASSERT(zio->io_child_count == 0);
4815 ASSERT(zio->io_reexecute == 0);
4816 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4817
4818 /*
4819 * Report any checksum errors, since the I/O is complete.
4820 */
4821 while (zio->io_cksum_report != NULL) {
4822 zio_cksum_report_t *zcr = zio->io_cksum_report;
4823 zio->io_cksum_report = zcr->zcr_next;
4824 zcr->zcr_next = NULL;
4825 zcr->zcr_finish(zcr, NULL);
4826 zfs_ereport_free_checksum(zcr);
4827 }
4828
4829 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4830 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4831 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4832 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4833 }
4834
4835 /*
4836 * It is the responsibility of the done callback to ensure that this
4837 * particular zio is no longer discoverable for adoption, and as
4838 * such, cannot acquire any new parents.
4839 */
4840 if (zio->io_done)
4841 zio->io_done(zio);
4842
4843 mutex_enter(&zio->io_lock);
4844 zio->io_state[ZIO_WAIT_DONE] = 1;
4845 mutex_exit(&zio->io_lock);
4846
4847 /*
4848 * We are done executing this zio. We may want to execute a parent
4849 * next. See the comment in zio_notify_parent().
4850 */
4851 zio_t *next_to_execute = NULL;
4852 zl = NULL;
4853 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4854 zio_link_t *remove_zl = zl;
4855 pio_next = zio_walk_parents(zio, &zl);
4856 zio_remove_child(pio, zio, remove_zl);
4857 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4858 }
4859
4860 if (zio->io_waiter != NULL) {
4861 mutex_enter(&zio->io_lock);
4862 zio->io_executor = NULL;
4863 cv_broadcast(&zio->io_cv);
4864 mutex_exit(&zio->io_lock);
4865 } else {
4866 zio_destroy(zio);
4867 }
4868
4869 return (next_to_execute);
4870 }
4871
4872 /*
4873 * ==========================================================================
4874 * I/O pipeline definition
4875 * ==========================================================================
4876 */
4877 static zio_pipe_stage_t *zio_pipeline[] = {
4878 NULL,
4879 zio_read_bp_init,
4880 zio_write_bp_init,
4881 zio_free_bp_init,
4882 zio_issue_async,
4883 zio_write_compress,
4884 zio_encrypt,
4885 zio_checksum_generate,
4886 zio_nop_write,
4887 zio_ddt_read_start,
4888 zio_ddt_read_done,
4889 zio_ddt_write,
4890 zio_ddt_free,
4891 zio_gang_assemble,
4892 zio_gang_issue,
4893 zio_dva_throttle,
4894 zio_dva_allocate,
4895 zio_dva_free,
4896 zio_dva_claim,
4897 zio_ready,
4898 zio_vdev_io_start,
4899 zio_vdev_io_done,
4900 zio_vdev_io_assess,
4901 zio_checksum_verify,
4902 zio_done
4903 };
4904
4905
4906
4907
4908 /*
4909 * Compare two zbookmark_phys_t's to see which we would reach first in a
4910 * pre-order traversal of the object tree.
4911 *
4912 * This is simple in every case aside from the meta-dnode object. For all other
4913 * objects, we traverse them in order (object 1 before object 2, and so on).
4914 * However, all of these objects are traversed while traversing object 0, since
4915 * the data it points to is the list of objects. Thus, we need to convert to a
4916 * canonical representation so we can compare meta-dnode bookmarks to
4917 * non-meta-dnode bookmarks.
4918 *
4919 * We do this by calculating "equivalents" for each field of the zbookmark.
4920 * zbookmarks outside of the meta-dnode use their own object and level, and
4921 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4922 * blocks this bookmark refers to) by multiplying their blkid by their span
4923 * (the number of L0 blocks contained within one block at their level).
4924 * zbookmarks inside the meta-dnode calculate their object equivalent
4925 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4926 * level + 1<<31 (any value larger than a level could ever be) for their level.
4927 * This causes them to always compare before a bookmark in their object
4928 * equivalent, compare appropriately to bookmarks in other objects, and to
4929 * compare appropriately to other bookmarks in the meta-dnode.
4930 */
4931 int
4932 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4933 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4934 {
4935 /*
4936 * These variables represent the "equivalent" values for the zbookmark,
4937 * after converting zbookmarks inside the meta dnode to their
4938 * normal-object equivalents.
4939 */
4940 uint64_t zb1obj, zb2obj;
4941 uint64_t zb1L0, zb2L0;
4942 uint64_t zb1level, zb2level;
4943
4944 if (zb1->zb_object == zb2->zb_object &&
4945 zb1->zb_level == zb2->zb_level &&
4946 zb1->zb_blkid == zb2->zb_blkid)
4947 return (0);
4948
4949 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4950 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4951
4952 /*
4953 * BP_SPANB calculates the span in blocks.
4954 */
4955 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4956 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4957
4958 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4959 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4960 zb1L0 = 0;
4961 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4962 } else {
4963 zb1obj = zb1->zb_object;
4964 zb1level = zb1->zb_level;
4965 }
4966
4967 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4968 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4969 zb2L0 = 0;
4970 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4971 } else {
4972 zb2obj = zb2->zb_object;
4973 zb2level = zb2->zb_level;
4974 }
4975
4976 /* Now that we have a canonical representation, do the comparison. */
4977 if (zb1obj != zb2obj)
4978 return (zb1obj < zb2obj ? -1 : 1);
4979 else if (zb1L0 != zb2L0)
4980 return (zb1L0 < zb2L0 ? -1 : 1);
4981 else if (zb1level != zb2level)
4982 return (zb1level > zb2level ? -1 : 1);
4983 /*
4984 * This can (theoretically) happen if the bookmarks have the same object
4985 * and level, but different blkids, if the block sizes are not the same.
4986 * There is presently no way to change the indirect block sizes
4987 */
4988 return (0);
4989 }
4990
4991 /*
4992 * This function checks the following: given that last_block is the place that
4993 * our traversal stopped last time, does that guarantee that we've visited
4994 * every node under subtree_root? Therefore, we can't just use the raw output
4995 * of zbookmark_compare. We have to pass in a modified version of
4996 * subtree_root; by incrementing the block id, and then checking whether
4997 * last_block is before or equal to that, we can tell whether or not having
4998 * visited last_block implies that all of subtree_root's children have been
4999 * visited.
5000 */
5001 boolean_t
5002 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5003 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5004 {
5005 zbookmark_phys_t mod_zb = *subtree_root;
5006 mod_zb.zb_blkid++;
5007 ASSERT0(last_block->zb_level);
5008
5009 /* The objset_phys_t isn't before anything. */
5010 if (dnp == NULL)
5011 return (B_FALSE);
5012
5013 /*
5014 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5015 * data block size in sectors, because that variable is only used if
5016 * the bookmark refers to a block in the meta-dnode. Since we don't
5017 * know without examining it what object it refers to, and there's no
5018 * harm in passing in this value in other cases, we always pass it in.
5019 *
5020 * We pass in 0 for the indirect block size shift because zb2 must be
5021 * level 0. The indirect block size is only used to calculate the span
5022 * of the bookmark, but since the bookmark must be level 0, the span is
5023 * always 1, so the math works out.
5024 *
5025 * If you make changes to how the zbookmark_compare code works, be sure
5026 * to make sure that this code still works afterwards.
5027 */
5028 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5029 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5030 last_block) <= 0);
5031 }
5032
5033 /*
5034 * This function is similar to zbookmark_subtree_completed(), but returns true
5035 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5036 */
5037 boolean_t
5038 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5039 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5040 {
5041 ASSERT0(last_block->zb_level);
5042 if (dnp == NULL)
5043 return (B_FALSE);
5044 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5045 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5046 last_block) >= 0);
5047 }
5048
5049 EXPORT_SYMBOL(zio_type_name);
5050 EXPORT_SYMBOL(zio_buf_alloc);
5051 EXPORT_SYMBOL(zio_data_buf_alloc);
5052 EXPORT_SYMBOL(zio_buf_free);
5053 EXPORT_SYMBOL(zio_data_buf_free);
5054
5055 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5056 "Max I/O completion time (milliseconds) before marking it as slow");
5057
5058 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5059 "Prioritize requeued I/O");
5060
5061 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW,
5062 "Defer frees starting in this pass");
5063
5064 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5065 "Don't compress starting in this pass");
5066
5067 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5068 "Rewrite new bps starting in this pass");
5069
5070 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5071 "Throttle block allocations in the ZIO pipeline");
5072
5073 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5074 "Log all slow ZIOs, not just those with vdevs");