]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Log I/Os longer than zio_delay_max (30s default)
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39
40 /*
41 * ==========================================================================
42 * I/O priority table
43 * ==========================================================================
44 */
45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
46 0, /* ZIO_PRIORITY_NOW */
47 0, /* ZIO_PRIORITY_SYNC_READ */
48 0, /* ZIO_PRIORITY_SYNC_WRITE */
49 0, /* ZIO_PRIORITY_LOG_WRITE */
50 1, /* ZIO_PRIORITY_CACHE_FILL */
51 1, /* ZIO_PRIORITY_AGG */
52 4, /* ZIO_PRIORITY_FREE */
53 4, /* ZIO_PRIORITY_ASYNC_WRITE */
54 6, /* ZIO_PRIORITY_ASYNC_READ */
55 10, /* ZIO_PRIORITY_RESILVER */
56 20, /* ZIO_PRIORITY_SCRUB */
57 2, /* ZIO_PRIORITY_DDT_PREFETCH */
58 };
59
60 /*
61 * ==========================================================================
62 * I/O type descriptions
63 * ==========================================================================
64 */
65 char *zio_type_name[ZIO_TYPES] = {
66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
67 };
68
69 /*
70 * ==========================================================================
71 * I/O kmem caches
72 * ==========================================================================
73 */
74 kmem_cache_t *zio_cache;
75 kmem_cache_t *zio_link_cache;
76 kmem_cache_t *zio_vdev_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 int zio_bulk_flags = 0;
80 int zio_delay_max = ZIO_DELAY_MAX;
81
82 #ifdef _KERNEL
83 extern vmem_t *zio_alloc_arena;
84 #endif
85 extern int zfs_mg_alloc_failures;
86
87 /*
88 * An allocating zio is one that either currently has the DVA allocate
89 * stage set or will have it later in its lifetime.
90 */
91 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
92
93 int zio_requeue_io_start_cut_in_line = 1;
94
95 #ifdef ZFS_DEBUG
96 int zio_buf_debug_limit = 16384;
97 #else
98 int zio_buf_debug_limit = 0;
99 #endif
100
101 static inline void __zio_execute(zio_t *zio);
102
103 static int
104 zio_cons(void *arg, void *unused, int kmflag)
105 {
106 zio_t *zio = arg;
107
108 bzero(zio, sizeof (zio_t));
109
110 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
111 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
112
113 list_create(&zio->io_parent_list, sizeof (zio_link_t),
114 offsetof(zio_link_t, zl_parent_node));
115 list_create(&zio->io_child_list, sizeof (zio_link_t),
116 offsetof(zio_link_t, zl_child_node));
117
118 return (0);
119 }
120
121 static void
122 zio_dest(void *arg, void *unused)
123 {
124 zio_t *zio = arg;
125
126 mutex_destroy(&zio->io_lock);
127 cv_destroy(&zio->io_cv);
128 list_destroy(&zio->io_parent_list);
129 list_destroy(&zio->io_child_list);
130 }
131
132 void
133 zio_init(void)
134 {
135 size_t c;
136 vmem_t *data_alloc_arena = NULL;
137
138 #ifdef _KERNEL
139 data_alloc_arena = zio_alloc_arena;
140 #endif
141 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0,
142 zio_cons, zio_dest, NULL, NULL, NULL, KMC_KMEM);
143 zio_link_cache = kmem_cache_create("zio_link_cache",
144 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, KMC_KMEM);
145 zio_vdev_cache = kmem_cache_create("zio_vdev_cache", sizeof(vdev_io_t),
146 PAGESIZE, NULL, NULL, NULL, NULL, NULL, KMC_VMEM);
147
148 /*
149 * For small buffers, we want a cache for each multiple of
150 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache
151 * for each quarter-power of 2. For large buffers, we want
152 * a cache for each multiple of PAGESIZE.
153 */
154 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
155 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
156 size_t p2 = size;
157 size_t align = 0;
158
159 while (p2 & (p2 - 1))
160 p2 &= p2 - 1;
161
162 if (size <= 4 * SPA_MINBLOCKSIZE) {
163 align = SPA_MINBLOCKSIZE;
164 } else if (P2PHASE(size, PAGESIZE) == 0) {
165 align = PAGESIZE;
166 } else if (P2PHASE(size, p2 >> 2) == 0) {
167 align = p2 >> 2;
168 }
169
170 if (align != 0) {
171 char name[36];
172 int flags = zio_bulk_flags;
173
174 /*
175 * The smallest buffers (512b) are heavily used and
176 * experience a lot of churn. The slabs allocated
177 * for them are also relatively small (32K). Thus
178 * in over to avoid expensive calls to vmalloc() we
179 * make an exception to the usual slab allocation
180 * policy and force these buffers to be kmem backed.
181 */
182 if (size == (1 << SPA_MINBLOCKSHIFT))
183 flags |= KMC_KMEM;
184
185 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
186 zio_buf_cache[c] = kmem_cache_create(name, size,
187 align, NULL, NULL, NULL, NULL, NULL, flags);
188
189 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
190 zio_data_buf_cache[c] = kmem_cache_create(name, size,
191 align, NULL, NULL, NULL, NULL,
192 data_alloc_arena, flags);
193 }
194 }
195
196 while (--c != 0) {
197 ASSERT(zio_buf_cache[c] != NULL);
198 if (zio_buf_cache[c - 1] == NULL)
199 zio_buf_cache[c - 1] = zio_buf_cache[c];
200
201 ASSERT(zio_data_buf_cache[c] != NULL);
202 if (zio_data_buf_cache[c - 1] == NULL)
203 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
204 }
205
206 /*
207 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
208 * to fail 3 times per txg or 8 failures, whichever is greater.
209 */
210 zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
211
212 zio_inject_init();
213 }
214
215 void
216 zio_fini(void)
217 {
218 size_t c;
219 kmem_cache_t *last_cache = NULL;
220 kmem_cache_t *last_data_cache = NULL;
221
222 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
223 if (zio_buf_cache[c] != last_cache) {
224 last_cache = zio_buf_cache[c];
225 kmem_cache_destroy(zio_buf_cache[c]);
226 }
227 zio_buf_cache[c] = NULL;
228
229 if (zio_data_buf_cache[c] != last_data_cache) {
230 last_data_cache = zio_data_buf_cache[c];
231 kmem_cache_destroy(zio_data_buf_cache[c]);
232 }
233 zio_data_buf_cache[c] = NULL;
234 }
235
236 kmem_cache_destroy(zio_vdev_cache);
237 kmem_cache_destroy(zio_link_cache);
238 kmem_cache_destroy(zio_cache);
239
240 zio_inject_fini();
241 }
242
243 /*
244 * ==========================================================================
245 * Allocate and free I/O buffers
246 * ==========================================================================
247 */
248
249 /*
250 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
251 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
252 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
253 * excess / transient data in-core during a crashdump.
254 */
255 void *
256 zio_buf_alloc(size_t size)
257 {
258 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
259
260 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
261
262 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE | KM_NODEBUG));
263 }
264
265 /*
266 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
267 * crashdump if the kernel panics. This exists so that we will limit the amount
268 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
269 * of kernel heap dumped to disk when the kernel panics)
270 */
271 void *
272 zio_data_buf_alloc(size_t size)
273 {
274 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
275
276 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
277
278 return (kmem_cache_alloc(zio_data_buf_cache[c],
279 KM_PUSHPAGE | KM_NODEBUG));
280 }
281
282 void
283 zio_buf_free(void *buf, size_t size)
284 {
285 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
286
287 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
288
289 kmem_cache_free(zio_buf_cache[c], buf);
290 }
291
292 void
293 zio_data_buf_free(void *buf, size_t size)
294 {
295 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
296
297 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
298
299 kmem_cache_free(zio_data_buf_cache[c], buf);
300 }
301
302 /*
303 * Dedicated I/O buffers to ensure that memory fragmentation never prevents
304 * or significantly delays the issuing of a zio. These buffers are used
305 * to aggregate I/O and could be used for raidz stripes.
306 */
307 void *
308 zio_vdev_alloc(void)
309 {
310 return (kmem_cache_alloc(zio_vdev_cache, KM_PUSHPAGE));
311 }
312
313 void
314 zio_vdev_free(void *buf)
315 {
316 kmem_cache_free(zio_vdev_cache, buf);
317
318 }
319
320 /*
321 * ==========================================================================
322 * Push and pop I/O transform buffers
323 * ==========================================================================
324 */
325 static void
326 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
327 zio_transform_func_t *transform)
328 {
329 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_PUSHPAGE);
330
331 zt->zt_orig_data = zio->io_data;
332 zt->zt_orig_size = zio->io_size;
333 zt->zt_bufsize = bufsize;
334 zt->zt_transform = transform;
335
336 zt->zt_next = zio->io_transform_stack;
337 zio->io_transform_stack = zt;
338
339 zio->io_data = data;
340 zio->io_size = size;
341 }
342
343 static void
344 zio_pop_transforms(zio_t *zio)
345 {
346 zio_transform_t *zt;
347
348 while ((zt = zio->io_transform_stack) != NULL) {
349 if (zt->zt_transform != NULL)
350 zt->zt_transform(zio,
351 zt->zt_orig_data, zt->zt_orig_size);
352
353 if (zt->zt_bufsize != 0)
354 zio_buf_free(zio->io_data, zt->zt_bufsize);
355
356 zio->io_data = zt->zt_orig_data;
357 zio->io_size = zt->zt_orig_size;
358 zio->io_transform_stack = zt->zt_next;
359
360 kmem_free(zt, sizeof (zio_transform_t));
361 }
362 }
363
364 /*
365 * ==========================================================================
366 * I/O transform callbacks for subblocks and decompression
367 * ==========================================================================
368 */
369 static void
370 zio_subblock(zio_t *zio, void *data, uint64_t size)
371 {
372 ASSERT(zio->io_size > size);
373
374 if (zio->io_type == ZIO_TYPE_READ)
375 bcopy(zio->io_data, data, size);
376 }
377
378 static void
379 zio_decompress(zio_t *zio, void *data, uint64_t size)
380 {
381 if (zio->io_error == 0 &&
382 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
383 zio->io_data, data, zio->io_size, size) != 0)
384 zio->io_error = EIO;
385 }
386
387 /*
388 * ==========================================================================
389 * I/O parent/child relationships and pipeline interlocks
390 * ==========================================================================
391 */
392 /*
393 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
394 * continue calling these functions until they return NULL.
395 * Otherwise, the next caller will pick up the list walk in
396 * some indeterminate state. (Otherwise every caller would
397 * have to pass in a cookie to keep the state represented by
398 * io_walk_link, which gets annoying.)
399 */
400 zio_t *
401 zio_walk_parents(zio_t *cio)
402 {
403 zio_link_t *zl = cio->io_walk_link;
404 list_t *pl = &cio->io_parent_list;
405
406 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
407 cio->io_walk_link = zl;
408
409 if (zl == NULL)
410 return (NULL);
411
412 ASSERT(zl->zl_child == cio);
413 return (zl->zl_parent);
414 }
415
416 zio_t *
417 zio_walk_children(zio_t *pio)
418 {
419 zio_link_t *zl = pio->io_walk_link;
420 list_t *cl = &pio->io_child_list;
421
422 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
423 pio->io_walk_link = zl;
424
425 if (zl == NULL)
426 return (NULL);
427
428 ASSERT(zl->zl_parent == pio);
429 return (zl->zl_child);
430 }
431
432 zio_t *
433 zio_unique_parent(zio_t *cio)
434 {
435 zio_t *pio = zio_walk_parents(cio);
436
437 VERIFY(zio_walk_parents(cio) == NULL);
438 return (pio);
439 }
440
441 void
442 zio_add_child(zio_t *pio, zio_t *cio)
443 {
444 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_PUSHPAGE);
445 int w;
446
447 /*
448 * Logical I/Os can have logical, gang, or vdev children.
449 * Gang I/Os can have gang or vdev children.
450 * Vdev I/Os can only have vdev children.
451 * The following ASSERT captures all of these constraints.
452 */
453 ASSERT(cio->io_child_type <= pio->io_child_type);
454
455 zl->zl_parent = pio;
456 zl->zl_child = cio;
457
458 mutex_enter(&cio->io_lock);
459 mutex_enter(&pio->io_lock);
460
461 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
462
463 for (w = 0; w < ZIO_WAIT_TYPES; w++)
464 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
465
466 list_insert_head(&pio->io_child_list, zl);
467 list_insert_head(&cio->io_parent_list, zl);
468
469 pio->io_child_count++;
470 cio->io_parent_count++;
471
472 mutex_exit(&pio->io_lock);
473 mutex_exit(&cio->io_lock);
474 }
475
476 static void
477 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
478 {
479 ASSERT(zl->zl_parent == pio);
480 ASSERT(zl->zl_child == cio);
481
482 mutex_enter(&cio->io_lock);
483 mutex_enter(&pio->io_lock);
484
485 list_remove(&pio->io_child_list, zl);
486 list_remove(&cio->io_parent_list, zl);
487
488 pio->io_child_count--;
489 cio->io_parent_count--;
490
491 mutex_exit(&pio->io_lock);
492 mutex_exit(&cio->io_lock);
493
494 kmem_cache_free(zio_link_cache, zl);
495 }
496
497 static boolean_t
498 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
499 {
500 uint64_t *countp = &zio->io_children[child][wait];
501 boolean_t waiting = B_FALSE;
502
503 mutex_enter(&zio->io_lock);
504 ASSERT(zio->io_stall == NULL);
505 if (*countp != 0) {
506 zio->io_stage >>= 1;
507 zio->io_stall = countp;
508 waiting = B_TRUE;
509 }
510 mutex_exit(&zio->io_lock);
511
512 return (waiting);
513 }
514
515 __attribute__((always_inline))
516 static inline void
517 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
518 {
519 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
520 int *errorp = &pio->io_child_error[zio->io_child_type];
521
522 mutex_enter(&pio->io_lock);
523 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
524 *errorp = zio_worst_error(*errorp, zio->io_error);
525 pio->io_reexecute |= zio->io_reexecute;
526 ASSERT3U(*countp, >, 0);
527 if (--*countp == 0 && pio->io_stall == countp) {
528 pio->io_stall = NULL;
529 mutex_exit(&pio->io_lock);
530 __zio_execute(pio);
531 } else {
532 mutex_exit(&pio->io_lock);
533 }
534 }
535
536 static void
537 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
538 {
539 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
540 zio->io_error = zio->io_child_error[c];
541 }
542
543 /*
544 * ==========================================================================
545 * Create the various types of I/O (read, write, free, etc)
546 * ==========================================================================
547 */
548 static zio_t *
549 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
550 void *data, uint64_t size, zio_done_func_t *done, void *private,
551 zio_type_t type, int priority, enum zio_flag flags,
552 vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
553 enum zio_stage stage, enum zio_stage pipeline)
554 {
555 zio_t *zio;
556
557 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
558 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
559 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
560
561 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
562 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
563 ASSERT(vd || stage == ZIO_STAGE_OPEN);
564
565 zio = kmem_cache_alloc(zio_cache, KM_PUSHPAGE);
566
567 if (vd != NULL)
568 zio->io_child_type = ZIO_CHILD_VDEV;
569 else if (flags & ZIO_FLAG_GANG_CHILD)
570 zio->io_child_type = ZIO_CHILD_GANG;
571 else if (flags & ZIO_FLAG_DDT_CHILD)
572 zio->io_child_type = ZIO_CHILD_DDT;
573 else
574 zio->io_child_type = ZIO_CHILD_LOGICAL;
575
576 if (bp != NULL) {
577 zio->io_logical = NULL;
578 zio->io_bp = (blkptr_t *)bp;
579 zio->io_bp_copy = *bp;
580 zio->io_bp_orig = *bp;
581 if (type != ZIO_TYPE_WRITE ||
582 zio->io_child_type == ZIO_CHILD_DDT)
583 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
584 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
585 zio->io_logical = zio;
586 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
587 pipeline |= ZIO_GANG_STAGES;
588 } else {
589 zio->io_logical = NULL;
590 zio->io_bp = NULL;
591 bzero(&zio->io_bp_copy, sizeof (blkptr_t));
592 bzero(&zio->io_bp_orig, sizeof (blkptr_t));
593 }
594
595 zio->io_spa = spa;
596 zio->io_txg = txg;
597 zio->io_ready = NULL;
598 zio->io_done = done;
599 zio->io_private = private;
600 zio->io_prev_space_delta = 0;
601 zio->io_type = type;
602 zio->io_priority = priority;
603 zio->io_vd = vd;
604 zio->io_vsd = NULL;
605 zio->io_vsd_ops = NULL;
606 zio->io_offset = offset;
607 zio->io_deadline = 0;
608 zio->io_orig_data = zio->io_data = data;
609 zio->io_orig_size = zio->io_size = size;
610 zio->io_orig_flags = zio->io_flags = flags;
611 zio->io_orig_stage = zio->io_stage = stage;
612 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
613 bzero(&zio->io_prop, sizeof (zio_prop_t));
614 zio->io_cmd = 0;
615 zio->io_reexecute = 0;
616 zio->io_bp_override = NULL;
617 zio->io_walk_link = NULL;
618 zio->io_transform_stack = NULL;
619 zio->io_delay = 0;
620 zio->io_error = 0;
621 zio->io_child_count = 0;
622 zio->io_parent_count = 0;
623 zio->io_stall = NULL;
624 zio->io_gang_leader = NULL;
625 zio->io_gang_tree = NULL;
626 zio->io_executor = NULL;
627 zio->io_waiter = NULL;
628 zio->io_cksum_report = NULL;
629 zio->io_ena = 0;
630 bzero(zio->io_child_error, sizeof (int) * ZIO_CHILD_TYPES);
631 bzero(zio->io_children,
632 sizeof (uint64_t) * ZIO_CHILD_TYPES * ZIO_WAIT_TYPES);
633 bzero(&zio->io_bookmark, sizeof (zbookmark_t));
634
635 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
636 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
637
638 if (zb != NULL)
639 zio->io_bookmark = *zb;
640
641 if (pio != NULL) {
642 if (zio->io_logical == NULL)
643 zio->io_logical = pio->io_logical;
644 if (zio->io_child_type == ZIO_CHILD_GANG)
645 zio->io_gang_leader = pio->io_gang_leader;
646 zio_add_child(pio, zio);
647 }
648
649 taskq_init_ent(&zio->io_tqent);
650
651 return (zio);
652 }
653
654 static void
655 zio_destroy(zio_t *zio)
656 {
657 kmem_cache_free(zio_cache, zio);
658 }
659
660 zio_t *
661 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
662 void *private, enum zio_flag flags)
663 {
664 zio_t *zio;
665
666 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
667 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
668 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
669
670 return (zio);
671 }
672
673 zio_t *
674 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
675 {
676 return (zio_null(NULL, spa, NULL, done, private, flags));
677 }
678
679 zio_t *
680 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
681 void *data, uint64_t size, zio_done_func_t *done, void *private,
682 int priority, enum zio_flag flags, const zbookmark_t *zb)
683 {
684 zio_t *zio;
685
686 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
687 data, size, done, private,
688 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
689 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
690 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
691
692 return (zio);
693 }
694
695 zio_t *
696 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
697 void *data, uint64_t size, const zio_prop_t *zp,
698 zio_done_func_t *ready, zio_done_func_t *done, void *private,
699 int priority, enum zio_flag flags, const zbookmark_t *zb)
700 {
701 zio_t *zio;
702
703 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
704 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
705 zp->zp_compress >= ZIO_COMPRESS_OFF &&
706 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
707 zp->zp_type < DMU_OT_NUMTYPES &&
708 zp->zp_level < 32 &&
709 zp->zp_copies > 0 &&
710 zp->zp_copies <= spa_max_replication(spa) &&
711 zp->zp_dedup <= 1 &&
712 zp->zp_dedup_verify <= 1);
713
714 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
715 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
716 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
717 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
718
719 zio->io_ready = ready;
720 zio->io_prop = *zp;
721
722 return (zio);
723 }
724
725 zio_t *
726 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
727 uint64_t size, zio_done_func_t *done, void *private, int priority,
728 enum zio_flag flags, zbookmark_t *zb)
729 {
730 zio_t *zio;
731
732 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
733 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
734 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
735
736 return (zio);
737 }
738
739 void
740 zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
741 {
742 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
743 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
744 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
745 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
746
747 zio->io_prop.zp_copies = copies;
748 zio->io_bp_override = bp;
749 }
750
751 void
752 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
753 {
754 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
755 }
756
757 zio_t *
758 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
759 enum zio_flag flags)
760 {
761 zio_t *zio;
762
763 dprintf_bp(bp, "freeing in txg %llu, pass %u",
764 (longlong_t)txg, spa->spa_sync_pass);
765
766 ASSERT(!BP_IS_HOLE(bp));
767 ASSERT(spa_syncing_txg(spa) == txg);
768 ASSERT(spa_sync_pass(spa) <= SYNC_PASS_DEFERRED_FREE);
769
770 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
771 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
772 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
773
774 return (zio);
775 }
776
777 zio_t *
778 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
779 zio_done_func_t *done, void *private, enum zio_flag flags)
780 {
781 zio_t *zio;
782
783 /*
784 * A claim is an allocation of a specific block. Claims are needed
785 * to support immediate writes in the intent log. The issue is that
786 * immediate writes contain committed data, but in a txg that was
787 * *not* committed. Upon opening the pool after an unclean shutdown,
788 * the intent log claims all blocks that contain immediate write data
789 * so that the SPA knows they're in use.
790 *
791 * All claims *must* be resolved in the first txg -- before the SPA
792 * starts allocating blocks -- so that nothing is allocated twice.
793 * If txg == 0 we just verify that the block is claimable.
794 */
795 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
796 ASSERT(txg == spa_first_txg(spa) || txg == 0);
797 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
798
799 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
800 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
801 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
802
803 return (zio);
804 }
805
806 zio_t *
807 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
808 zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
809 {
810 zio_t *zio;
811 int c;
812
813 if (vd->vdev_children == 0) {
814 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
815 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
816 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
817
818 zio->io_cmd = cmd;
819 } else {
820 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
821
822 for (c = 0; c < vd->vdev_children; c++)
823 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
824 done, private, priority, flags));
825 }
826
827 return (zio);
828 }
829
830 zio_t *
831 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
832 void *data, int checksum, zio_done_func_t *done, void *private,
833 int priority, enum zio_flag flags, boolean_t labels)
834 {
835 zio_t *zio;
836
837 ASSERT(vd->vdev_children == 0);
838 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
839 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
840 ASSERT3U(offset + size, <=, vd->vdev_psize);
841
842 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
843 ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
844 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
845
846 zio->io_prop.zp_checksum = checksum;
847
848 return (zio);
849 }
850
851 zio_t *
852 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
853 void *data, int checksum, zio_done_func_t *done, void *private,
854 int priority, enum zio_flag flags, boolean_t labels)
855 {
856 zio_t *zio;
857
858 ASSERT(vd->vdev_children == 0);
859 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
860 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
861 ASSERT3U(offset + size, <=, vd->vdev_psize);
862
863 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
864 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
865 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
866
867 zio->io_prop.zp_checksum = checksum;
868
869 if (zio_checksum_table[checksum].ci_eck) {
870 /*
871 * zec checksums are necessarily destructive -- they modify
872 * the end of the write buffer to hold the verifier/checksum.
873 * Therefore, we must make a local copy in case the data is
874 * being written to multiple places in parallel.
875 */
876 void *wbuf = zio_buf_alloc(size);
877 bcopy(data, wbuf, size);
878 zio_push_transform(zio, wbuf, size, size, NULL);
879 }
880
881 return (zio);
882 }
883
884 /*
885 * Create a child I/O to do some work for us.
886 */
887 zio_t *
888 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
889 void *data, uint64_t size, int type, int priority, enum zio_flag flags,
890 zio_done_func_t *done, void *private)
891 {
892 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
893 zio_t *zio;
894
895 ASSERT(vd->vdev_parent ==
896 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
897
898 if (type == ZIO_TYPE_READ && bp != NULL) {
899 /*
900 * If we have the bp, then the child should perform the
901 * checksum and the parent need not. This pushes error
902 * detection as close to the leaves as possible and
903 * eliminates redundant checksums in the interior nodes.
904 */
905 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
906 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
907 }
908
909 if (vd->vdev_children == 0)
910 offset += VDEV_LABEL_START_SIZE;
911
912 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
913
914 /*
915 * If we've decided to do a repair, the write is not speculative --
916 * even if the original read was.
917 */
918 if (flags & ZIO_FLAG_IO_REPAIR)
919 flags &= ~ZIO_FLAG_SPECULATIVE;
920
921 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
922 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
923 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
924
925 return (zio);
926 }
927
928 zio_t *
929 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
930 int type, int priority, enum zio_flag flags,
931 zio_done_func_t *done, void *private)
932 {
933 zio_t *zio;
934
935 ASSERT(vd->vdev_ops->vdev_op_leaf);
936
937 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
938 data, size, done, private, type, priority,
939 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
940 vd, offset, NULL,
941 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
942
943 return (zio);
944 }
945
946 void
947 zio_flush(zio_t *zio, vdev_t *vd)
948 {
949 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
950 NULL, NULL, ZIO_PRIORITY_NOW,
951 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
952 }
953
954 void
955 zio_shrink(zio_t *zio, uint64_t size)
956 {
957 ASSERT(zio->io_executor == NULL);
958 ASSERT(zio->io_orig_size == zio->io_size);
959 ASSERT(size <= zio->io_size);
960
961 /*
962 * We don't shrink for raidz because of problems with the
963 * reconstruction when reading back less than the block size.
964 * Note, BP_IS_RAIDZ() assumes no compression.
965 */
966 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
967 if (!BP_IS_RAIDZ(zio->io_bp))
968 zio->io_orig_size = zio->io_size = size;
969 }
970
971 /*
972 * ==========================================================================
973 * Prepare to read and write logical blocks
974 * ==========================================================================
975 */
976
977 static int
978 zio_read_bp_init(zio_t *zio)
979 {
980 blkptr_t *bp = zio->io_bp;
981
982 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
983 zio->io_child_type == ZIO_CHILD_LOGICAL &&
984 !(zio->io_flags & ZIO_FLAG_RAW)) {
985 uint64_t psize = BP_GET_PSIZE(bp);
986 void *cbuf = zio_buf_alloc(psize);
987
988 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
989 }
990
991 if (!dmu_ot[BP_GET_TYPE(bp)].ot_metadata && BP_GET_LEVEL(bp) == 0)
992 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
993
994 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
995 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
996
997 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
998 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
999
1000 return (ZIO_PIPELINE_CONTINUE);
1001 }
1002
1003 static int
1004 zio_write_bp_init(zio_t *zio)
1005 {
1006 spa_t *spa = zio->io_spa;
1007 zio_prop_t *zp = &zio->io_prop;
1008 enum zio_compress compress = zp->zp_compress;
1009 blkptr_t *bp = zio->io_bp;
1010 uint64_t lsize = zio->io_size;
1011 uint64_t psize = lsize;
1012 int pass = 1;
1013
1014 /*
1015 * If our children haven't all reached the ready stage,
1016 * wait for them and then repeat this pipeline stage.
1017 */
1018 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1019 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1020 return (ZIO_PIPELINE_STOP);
1021
1022 if (!IO_IS_ALLOCATING(zio))
1023 return (ZIO_PIPELINE_CONTINUE);
1024
1025 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1026
1027 if (zio->io_bp_override) {
1028 ASSERT(bp->blk_birth != zio->io_txg);
1029 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1030
1031 *bp = *zio->io_bp_override;
1032 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1033
1034 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1035 return (ZIO_PIPELINE_CONTINUE);
1036
1037 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1038 zp->zp_dedup_verify);
1039
1040 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1041 BP_SET_DEDUP(bp, 1);
1042 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1043 return (ZIO_PIPELINE_CONTINUE);
1044 }
1045 zio->io_bp_override = NULL;
1046 BP_ZERO(bp);
1047 }
1048
1049 if (bp->blk_birth == zio->io_txg) {
1050 /*
1051 * We're rewriting an existing block, which means we're
1052 * working on behalf of spa_sync(). For spa_sync() to
1053 * converge, it must eventually be the case that we don't
1054 * have to allocate new blocks. But compression changes
1055 * the blocksize, which forces a reallocate, and makes
1056 * convergence take longer. Therefore, after the first
1057 * few passes, stop compressing to ensure convergence.
1058 */
1059 pass = spa_sync_pass(spa);
1060
1061 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1062 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1063 ASSERT(!BP_GET_DEDUP(bp));
1064
1065 if (pass > SYNC_PASS_DONT_COMPRESS)
1066 compress = ZIO_COMPRESS_OFF;
1067
1068 /* Make sure someone doesn't change their mind on overwrites */
1069 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1070 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1071 }
1072
1073 if (compress != ZIO_COMPRESS_OFF) {
1074 void *cbuf = zio_buf_alloc(lsize);
1075 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1076 if (psize == 0 || psize == lsize) {
1077 compress = ZIO_COMPRESS_OFF;
1078 zio_buf_free(cbuf, lsize);
1079 } else {
1080 ASSERT(psize < lsize);
1081 zio_push_transform(zio, cbuf, psize, lsize, NULL);
1082 }
1083 }
1084
1085 /*
1086 * The final pass of spa_sync() must be all rewrites, but the first
1087 * few passes offer a trade-off: allocating blocks defers convergence,
1088 * but newly allocated blocks are sequential, so they can be written
1089 * to disk faster. Therefore, we allow the first few passes of
1090 * spa_sync() to allocate new blocks, but force rewrites after that.
1091 * There should only be a handful of blocks after pass 1 in any case.
1092 */
1093 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1094 pass > SYNC_PASS_REWRITE) {
1095 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1096 ASSERT(psize != 0);
1097 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1098 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1099 } else {
1100 BP_ZERO(bp);
1101 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1102 }
1103
1104 if (psize == 0) {
1105 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1106 } else {
1107 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1108 BP_SET_LSIZE(bp, lsize);
1109 BP_SET_PSIZE(bp, psize);
1110 BP_SET_COMPRESS(bp, compress);
1111 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1112 BP_SET_TYPE(bp, zp->zp_type);
1113 BP_SET_LEVEL(bp, zp->zp_level);
1114 BP_SET_DEDUP(bp, zp->zp_dedup);
1115 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1116 if (zp->zp_dedup) {
1117 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1118 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1119 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1120 }
1121 }
1122
1123 return (ZIO_PIPELINE_CONTINUE);
1124 }
1125
1126 static int
1127 zio_free_bp_init(zio_t *zio)
1128 {
1129 blkptr_t *bp = zio->io_bp;
1130
1131 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1132 if (BP_GET_DEDUP(bp))
1133 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1134 }
1135
1136 return (ZIO_PIPELINE_CONTINUE);
1137 }
1138
1139 /*
1140 * ==========================================================================
1141 * Execute the I/O pipeline
1142 * ==========================================================================
1143 */
1144
1145 static void
1146 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1147 {
1148 spa_t *spa = zio->io_spa;
1149 zio_type_t t = zio->io_type;
1150 int flags = (cutinline ? TQ_FRONT : 0);
1151
1152 /*
1153 * If we're a config writer or a probe, the normal issue and
1154 * interrupt threads may all be blocked waiting for the config lock.
1155 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1156 */
1157 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1158 t = ZIO_TYPE_NULL;
1159
1160 /*
1161 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1162 */
1163 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1164 t = ZIO_TYPE_NULL;
1165
1166 /*
1167 * If this is a high priority I/O, then use the high priority taskq.
1168 */
1169 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1170 spa->spa_zio_taskq[t][q + 1] != NULL)
1171 q++;
1172
1173 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1174
1175 /*
1176 * NB: We are assuming that the zio can only be dispatched
1177 * to a single taskq at a time. It would be a grievous error
1178 * to dispatch the zio to another taskq at the same time.
1179 */
1180 ASSERT(taskq_empty_ent(&zio->io_tqent));
1181 taskq_dispatch_ent(spa->spa_zio_taskq[t][q],
1182 (task_func_t *)zio_execute, zio, flags, &zio->io_tqent);
1183 }
1184
1185 static boolean_t
1186 zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1187 {
1188 kthread_t *executor = zio->io_executor;
1189 spa_t *spa = zio->io_spa;
1190 zio_type_t t;
1191
1192 for (t = 0; t < ZIO_TYPES; t++)
1193 if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1194 return (B_TRUE);
1195
1196 return (B_FALSE);
1197 }
1198
1199 static int
1200 zio_issue_async(zio_t *zio)
1201 {
1202 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1203
1204 return (ZIO_PIPELINE_STOP);
1205 }
1206
1207 void
1208 zio_interrupt(zio_t *zio)
1209 {
1210 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1211 }
1212
1213 /*
1214 * Execute the I/O pipeline until one of the following occurs:
1215 * (1) the I/O completes; (2) the pipeline stalls waiting for
1216 * dependent child I/Os; (3) the I/O issues, so we're waiting
1217 * for an I/O completion interrupt; (4) the I/O is delegated by
1218 * vdev-level caching or aggregation; (5) the I/O is deferred
1219 * due to vdev-level queueing; (6) the I/O is handed off to
1220 * another thread. In all cases, the pipeline stops whenever
1221 * there's no CPU work; it never burns a thread in cv_wait().
1222 *
1223 * There's no locking on io_stage because there's no legitimate way
1224 * for multiple threads to be attempting to process the same I/O.
1225 */
1226 static zio_pipe_stage_t *zio_pipeline[];
1227
1228 /*
1229 * zio_execute() is a wrapper around the static function
1230 * __zio_execute() so that we can force __zio_execute() to be
1231 * inlined. This reduces stack overhead which is important
1232 * because __zio_execute() is called recursively in several zio
1233 * code paths. zio_execute() itself cannot be inlined because
1234 * it is externally visible.
1235 */
1236 void
1237 zio_execute(zio_t *zio)
1238 {
1239 __zio_execute(zio);
1240 }
1241
1242 __attribute__((always_inline))
1243 static inline void
1244 __zio_execute(zio_t *zio)
1245 {
1246 zio->io_executor = curthread;
1247
1248 while (zio->io_stage < ZIO_STAGE_DONE) {
1249 enum zio_stage pipeline = zio->io_pipeline;
1250 enum zio_stage stage = zio->io_stage;
1251 dsl_pool_t *dsl;
1252 boolean_t cut;
1253 int rv;
1254
1255 ASSERT(!MUTEX_HELD(&zio->io_lock));
1256 ASSERT(ISP2(stage));
1257 ASSERT(zio->io_stall == NULL);
1258
1259 do {
1260 stage <<= 1;
1261 } while ((stage & pipeline) == 0);
1262
1263 ASSERT(stage <= ZIO_STAGE_DONE);
1264
1265 dsl = spa_get_dsl(zio->io_spa);
1266 cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1267 zio_requeue_io_start_cut_in_line : B_FALSE;
1268
1269 /*
1270 * If we are in interrupt context and this pipeline stage
1271 * will grab a config lock that is held across I/O,
1272 * or may wait for an I/O that needs an interrupt thread
1273 * to complete, issue async to avoid deadlock.
1274 *
1275 * If we are in the txg_sync_thread or being called
1276 * during pool init issue async to minimize stack depth.
1277 * Both of these call paths may be recursively called.
1278 *
1279 * For VDEV_IO_START, we cut in line so that the io will
1280 * be sent to disk promptly.
1281 */
1282 if (((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1283 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) ||
1284 (dsl != NULL && dsl_pool_sync_context(dsl))) {
1285 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1286 return;
1287 }
1288
1289 zio->io_stage = stage;
1290 rv = zio_pipeline[highbit(stage) - 1](zio);
1291
1292 if (rv == ZIO_PIPELINE_STOP)
1293 return;
1294
1295 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1296 }
1297 }
1298
1299
1300 /*
1301 * ==========================================================================
1302 * Initiate I/O, either sync or async
1303 * ==========================================================================
1304 */
1305 int
1306 zio_wait(zio_t *zio)
1307 {
1308 uint64_t timeout;
1309 int error;
1310
1311 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1312 ASSERT(zio->io_executor == NULL);
1313
1314 zio->io_waiter = curthread;
1315 timeout = ddi_get_lbolt() + (zio_delay_max / MILLISEC * hz);
1316
1317 __zio_execute(zio);
1318
1319 mutex_enter(&zio->io_lock);
1320 while (zio->io_executor != NULL) {
1321 /*
1322 * Wake up periodically to prevent the kernel from complaining
1323 * about a blocked task. However, check zio_delay_max to see
1324 * if the I/O has exceeded the timeout and post an ereport.
1325 */
1326 cv_timedwait_interruptible(&zio->io_cv, &zio->io_lock,
1327 ddi_get_lbolt() + hz);
1328
1329 if (timeout && (ddi_get_lbolt() > timeout)) {
1330 zio->io_delay = zio_delay_max;
1331 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
1332 zio->io_spa, zio->io_vd, zio, 0, 0);
1333 timeout = 0;
1334 }
1335 }
1336 mutex_exit(&zio->io_lock);
1337
1338 error = zio->io_error;
1339 zio_destroy(zio);
1340
1341 return (error);
1342 }
1343
1344 void
1345 zio_nowait(zio_t *zio)
1346 {
1347 ASSERT(zio->io_executor == NULL);
1348
1349 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1350 zio_unique_parent(zio) == NULL) {
1351 /*
1352 * This is a logical async I/O with no parent to wait for it.
1353 * We add it to the spa_async_root_zio "Godfather" I/O which
1354 * will ensure they complete prior to unloading the pool.
1355 */
1356 spa_t *spa = zio->io_spa;
1357
1358 zio_add_child(spa->spa_async_zio_root, zio);
1359 }
1360
1361 __zio_execute(zio);
1362 }
1363
1364 /*
1365 * ==========================================================================
1366 * Reexecute or suspend/resume failed I/O
1367 * ==========================================================================
1368 */
1369
1370 static void
1371 zio_reexecute(zio_t *pio)
1372 {
1373 zio_t *cio, *cio_next;
1374 int c, w;
1375
1376 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1377 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1378 ASSERT(pio->io_gang_leader == NULL);
1379 ASSERT(pio->io_gang_tree == NULL);
1380
1381 pio->io_flags = pio->io_orig_flags;
1382 pio->io_stage = pio->io_orig_stage;
1383 pio->io_pipeline = pio->io_orig_pipeline;
1384 pio->io_reexecute = 0;
1385 pio->io_error = 0;
1386 for (w = 0; w < ZIO_WAIT_TYPES; w++)
1387 pio->io_state[w] = 0;
1388 for (c = 0; c < ZIO_CHILD_TYPES; c++)
1389 pio->io_child_error[c] = 0;
1390
1391 if (IO_IS_ALLOCATING(pio))
1392 BP_ZERO(pio->io_bp);
1393
1394 /*
1395 * As we reexecute pio's children, new children could be created.
1396 * New children go to the head of pio's io_child_list, however,
1397 * so we will (correctly) not reexecute them. The key is that
1398 * the remainder of pio's io_child_list, from 'cio_next' onward,
1399 * cannot be affected by any side effects of reexecuting 'cio'.
1400 */
1401 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1402 cio_next = zio_walk_children(pio);
1403 mutex_enter(&pio->io_lock);
1404 for (w = 0; w < ZIO_WAIT_TYPES; w++)
1405 pio->io_children[cio->io_child_type][w]++;
1406 mutex_exit(&pio->io_lock);
1407 zio_reexecute(cio);
1408 }
1409
1410 /*
1411 * Now that all children have been reexecuted, execute the parent.
1412 * We don't reexecute "The Godfather" I/O here as it's the
1413 * responsibility of the caller to wait on him.
1414 */
1415 if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1416 __zio_execute(pio);
1417 }
1418
1419 void
1420 zio_suspend(spa_t *spa, zio_t *zio)
1421 {
1422 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1423 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1424 "failure and the failure mode property for this pool "
1425 "is set to panic.", spa_name(spa));
1426
1427 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1428
1429 mutex_enter(&spa->spa_suspend_lock);
1430
1431 if (spa->spa_suspend_zio_root == NULL)
1432 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1433 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1434 ZIO_FLAG_GODFATHER);
1435
1436 spa->spa_suspended = B_TRUE;
1437
1438 if (zio != NULL) {
1439 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1440 ASSERT(zio != spa->spa_suspend_zio_root);
1441 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1442 ASSERT(zio_unique_parent(zio) == NULL);
1443 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1444 zio_add_child(spa->spa_suspend_zio_root, zio);
1445 }
1446
1447 mutex_exit(&spa->spa_suspend_lock);
1448 }
1449
1450 int
1451 zio_resume(spa_t *spa)
1452 {
1453 zio_t *pio;
1454
1455 /*
1456 * Reexecute all previously suspended i/o.
1457 */
1458 mutex_enter(&spa->spa_suspend_lock);
1459 spa->spa_suspended = B_FALSE;
1460 cv_broadcast(&spa->spa_suspend_cv);
1461 pio = spa->spa_suspend_zio_root;
1462 spa->spa_suspend_zio_root = NULL;
1463 mutex_exit(&spa->spa_suspend_lock);
1464
1465 if (pio == NULL)
1466 return (0);
1467
1468 zio_reexecute(pio);
1469 return (zio_wait(pio));
1470 }
1471
1472 void
1473 zio_resume_wait(spa_t *spa)
1474 {
1475 mutex_enter(&spa->spa_suspend_lock);
1476 while (spa_suspended(spa))
1477 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1478 mutex_exit(&spa->spa_suspend_lock);
1479 }
1480
1481 /*
1482 * ==========================================================================
1483 * Gang blocks.
1484 *
1485 * A gang block is a collection of small blocks that looks to the DMU
1486 * like one large block. When zio_dva_allocate() cannot find a block
1487 * of the requested size, due to either severe fragmentation or the pool
1488 * being nearly full, it calls zio_write_gang_block() to construct the
1489 * block from smaller fragments.
1490 *
1491 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1492 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1493 * an indirect block: it's an array of block pointers. It consumes
1494 * only one sector and hence is allocatable regardless of fragmentation.
1495 * The gang header's bps point to its gang members, which hold the data.
1496 *
1497 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1498 * as the verifier to ensure uniqueness of the SHA256 checksum.
1499 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1500 * not the gang header. This ensures that data block signatures (needed for
1501 * deduplication) are independent of how the block is physically stored.
1502 *
1503 * Gang blocks can be nested: a gang member may itself be a gang block.
1504 * Thus every gang block is a tree in which root and all interior nodes are
1505 * gang headers, and the leaves are normal blocks that contain user data.
1506 * The root of the gang tree is called the gang leader.
1507 *
1508 * To perform any operation (read, rewrite, free, claim) on a gang block,
1509 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1510 * in the io_gang_tree field of the original logical i/o by recursively
1511 * reading the gang leader and all gang headers below it. This yields
1512 * an in-core tree containing the contents of every gang header and the
1513 * bps for every constituent of the gang block.
1514 *
1515 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1516 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1517 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1518 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1519 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1520 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1521 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1522 * of the gang header plus zio_checksum_compute() of the data to update the
1523 * gang header's blk_cksum as described above.
1524 *
1525 * The two-phase assemble/issue model solves the problem of partial failure --
1526 * what if you'd freed part of a gang block but then couldn't read the
1527 * gang header for another part? Assembling the entire gang tree first
1528 * ensures that all the necessary gang header I/O has succeeded before
1529 * starting the actual work of free, claim, or write. Once the gang tree
1530 * is assembled, free and claim are in-memory operations that cannot fail.
1531 *
1532 * In the event that a gang write fails, zio_dva_unallocate() walks the
1533 * gang tree to immediately free (i.e. insert back into the space map)
1534 * everything we've allocated. This ensures that we don't get ENOSPC
1535 * errors during repeated suspend/resume cycles due to a flaky device.
1536 *
1537 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1538 * the gang tree, we won't modify the block, so we can safely defer the free
1539 * (knowing that the block is still intact). If we *can* assemble the gang
1540 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1541 * each constituent bp and we can allocate a new block on the next sync pass.
1542 *
1543 * In all cases, the gang tree allows complete recovery from partial failure.
1544 * ==========================================================================
1545 */
1546
1547 static zio_t *
1548 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1549 {
1550 if (gn != NULL)
1551 return (pio);
1552
1553 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1554 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1555 &pio->io_bookmark));
1556 }
1557
1558 zio_t *
1559 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1560 {
1561 zio_t *zio;
1562
1563 if (gn != NULL) {
1564 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1565 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1566 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1567 /*
1568 * As we rewrite each gang header, the pipeline will compute
1569 * a new gang block header checksum for it; but no one will
1570 * compute a new data checksum, so we do that here. The one
1571 * exception is the gang leader: the pipeline already computed
1572 * its data checksum because that stage precedes gang assembly.
1573 * (Presently, nothing actually uses interior data checksums;
1574 * this is just good hygiene.)
1575 */
1576 if (gn != pio->io_gang_leader->io_gang_tree) {
1577 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1578 data, BP_GET_PSIZE(bp));
1579 }
1580 /*
1581 * If we are here to damage data for testing purposes,
1582 * leave the GBH alone so that we can detect the damage.
1583 */
1584 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1585 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1586 } else {
1587 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1588 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1589 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1590 }
1591
1592 return (zio);
1593 }
1594
1595 /* ARGSUSED */
1596 zio_t *
1597 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1598 {
1599 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1600 ZIO_GANG_CHILD_FLAGS(pio)));
1601 }
1602
1603 /* ARGSUSED */
1604 zio_t *
1605 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1606 {
1607 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1608 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1609 }
1610
1611 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1612 NULL,
1613 zio_read_gang,
1614 zio_rewrite_gang,
1615 zio_free_gang,
1616 zio_claim_gang,
1617 NULL
1618 };
1619
1620 static void zio_gang_tree_assemble_done(zio_t *zio);
1621
1622 static zio_gang_node_t *
1623 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1624 {
1625 zio_gang_node_t *gn;
1626
1627 ASSERT(*gnpp == NULL);
1628
1629 gn = kmem_zalloc(sizeof (*gn), KM_PUSHPAGE);
1630 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1631 *gnpp = gn;
1632
1633 return (gn);
1634 }
1635
1636 static void
1637 zio_gang_node_free(zio_gang_node_t **gnpp)
1638 {
1639 zio_gang_node_t *gn = *gnpp;
1640 int g;
1641
1642 for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
1643 ASSERT(gn->gn_child[g] == NULL);
1644
1645 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1646 kmem_free(gn, sizeof (*gn));
1647 *gnpp = NULL;
1648 }
1649
1650 static void
1651 zio_gang_tree_free(zio_gang_node_t **gnpp)
1652 {
1653 zio_gang_node_t *gn = *gnpp;
1654 int g;
1655
1656 if (gn == NULL)
1657 return;
1658
1659 for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
1660 zio_gang_tree_free(&gn->gn_child[g]);
1661
1662 zio_gang_node_free(gnpp);
1663 }
1664
1665 static void
1666 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1667 {
1668 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1669
1670 ASSERT(gio->io_gang_leader == gio);
1671 ASSERT(BP_IS_GANG(bp));
1672
1673 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1674 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1675 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1676 }
1677
1678 static void
1679 zio_gang_tree_assemble_done(zio_t *zio)
1680 {
1681 zio_t *gio = zio->io_gang_leader;
1682 zio_gang_node_t *gn = zio->io_private;
1683 blkptr_t *bp = zio->io_bp;
1684 int g;
1685
1686 ASSERT(gio == zio_unique_parent(zio));
1687 ASSERT(zio->io_child_count == 0);
1688
1689 if (zio->io_error)
1690 return;
1691
1692 if (BP_SHOULD_BYTESWAP(bp))
1693 byteswap_uint64_array(zio->io_data, zio->io_size);
1694
1695 ASSERT(zio->io_data == gn->gn_gbh);
1696 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1697 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1698
1699 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1700 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1701 if (!BP_IS_GANG(gbp))
1702 continue;
1703 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1704 }
1705 }
1706
1707 static void
1708 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1709 {
1710 zio_t *gio = pio->io_gang_leader;
1711 zio_t *zio;
1712 int g;
1713
1714 ASSERT(BP_IS_GANG(bp) == !!gn);
1715 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1716 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1717
1718 /*
1719 * If you're a gang header, your data is in gn->gn_gbh.
1720 * If you're a gang member, your data is in 'data' and gn == NULL.
1721 */
1722 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1723
1724 if (gn != NULL) {
1725 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1726
1727 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1728 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1729 if (BP_IS_HOLE(gbp))
1730 continue;
1731 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1732 data = (char *)data + BP_GET_PSIZE(gbp);
1733 }
1734 }
1735
1736 if (gn == gio->io_gang_tree)
1737 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1738
1739 if (zio != pio)
1740 zio_nowait(zio);
1741 }
1742
1743 static int
1744 zio_gang_assemble(zio_t *zio)
1745 {
1746 blkptr_t *bp = zio->io_bp;
1747
1748 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1749 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1750
1751 zio->io_gang_leader = zio;
1752
1753 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1754
1755 return (ZIO_PIPELINE_CONTINUE);
1756 }
1757
1758 static int
1759 zio_gang_issue(zio_t *zio)
1760 {
1761 blkptr_t *bp = zio->io_bp;
1762
1763 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1764 return (ZIO_PIPELINE_STOP);
1765
1766 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1767 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1768
1769 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1770 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1771 else
1772 zio_gang_tree_free(&zio->io_gang_tree);
1773
1774 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1775
1776 return (ZIO_PIPELINE_CONTINUE);
1777 }
1778
1779 static void
1780 zio_write_gang_member_ready(zio_t *zio)
1781 {
1782 zio_t *pio = zio_unique_parent(zio);
1783 ASSERTV(zio_t *gio = zio->io_gang_leader;)
1784 dva_t *cdva = zio->io_bp->blk_dva;
1785 dva_t *pdva = pio->io_bp->blk_dva;
1786 uint64_t asize;
1787 int d;
1788
1789 if (BP_IS_HOLE(zio->io_bp))
1790 return;
1791
1792 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1793
1794 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1795 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1796 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1797 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1798 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1799
1800 mutex_enter(&pio->io_lock);
1801 for (d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1802 ASSERT(DVA_GET_GANG(&pdva[d]));
1803 asize = DVA_GET_ASIZE(&pdva[d]);
1804 asize += DVA_GET_ASIZE(&cdva[d]);
1805 DVA_SET_ASIZE(&pdva[d], asize);
1806 }
1807 mutex_exit(&pio->io_lock);
1808 }
1809
1810 static int
1811 zio_write_gang_block(zio_t *pio)
1812 {
1813 spa_t *spa = pio->io_spa;
1814 blkptr_t *bp = pio->io_bp;
1815 zio_t *gio = pio->io_gang_leader;
1816 zio_t *zio;
1817 zio_gang_node_t *gn, **gnpp;
1818 zio_gbh_phys_t *gbh;
1819 uint64_t txg = pio->io_txg;
1820 uint64_t resid = pio->io_size;
1821 uint64_t lsize;
1822 int copies = gio->io_prop.zp_copies;
1823 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1824 zio_prop_t zp;
1825 int g, error;
1826
1827 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1828 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1829 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1830 if (error) {
1831 pio->io_error = error;
1832 return (ZIO_PIPELINE_CONTINUE);
1833 }
1834
1835 if (pio == gio) {
1836 gnpp = &gio->io_gang_tree;
1837 } else {
1838 gnpp = pio->io_private;
1839 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1840 }
1841
1842 gn = zio_gang_node_alloc(gnpp);
1843 gbh = gn->gn_gbh;
1844 bzero(gbh, SPA_GANGBLOCKSIZE);
1845
1846 /*
1847 * Create the gang header.
1848 */
1849 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1850 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1851
1852 /*
1853 * Create and nowait the gang children.
1854 */
1855 for (g = 0; resid != 0; resid -= lsize, g++) {
1856 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1857 SPA_MINBLOCKSIZE);
1858 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1859
1860 zp.zp_checksum = gio->io_prop.zp_checksum;
1861 zp.zp_compress = ZIO_COMPRESS_OFF;
1862 zp.zp_type = DMU_OT_NONE;
1863 zp.zp_level = 0;
1864 zp.zp_copies = gio->io_prop.zp_copies;
1865 zp.zp_dedup = 0;
1866 zp.zp_dedup_verify = 0;
1867
1868 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1869 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1870 zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1871 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1872 &pio->io_bookmark));
1873 }
1874
1875 /*
1876 * Set pio's pipeline to just wait for zio to finish.
1877 */
1878 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1879
1880 /*
1881 * We didn't allocate this bp, so make sure it doesn't get unmarked.
1882 */
1883 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
1884
1885 zio_nowait(zio);
1886
1887 return (ZIO_PIPELINE_CONTINUE);
1888 }
1889
1890 /*
1891 * ==========================================================================
1892 * Dedup
1893 * ==========================================================================
1894 */
1895 static void
1896 zio_ddt_child_read_done(zio_t *zio)
1897 {
1898 blkptr_t *bp = zio->io_bp;
1899 ddt_entry_t *dde = zio->io_private;
1900 ddt_phys_t *ddp;
1901 zio_t *pio = zio_unique_parent(zio);
1902
1903 mutex_enter(&pio->io_lock);
1904 ddp = ddt_phys_select(dde, bp);
1905 if (zio->io_error == 0)
1906 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
1907 if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1908 dde->dde_repair_data = zio->io_data;
1909 else
1910 zio_buf_free(zio->io_data, zio->io_size);
1911 mutex_exit(&pio->io_lock);
1912 }
1913
1914 static int
1915 zio_ddt_read_start(zio_t *zio)
1916 {
1917 blkptr_t *bp = zio->io_bp;
1918 int p;
1919
1920 ASSERT(BP_GET_DEDUP(bp));
1921 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1922 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1923
1924 if (zio->io_child_error[ZIO_CHILD_DDT]) {
1925 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1926 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1927 ddt_phys_t *ddp = dde->dde_phys;
1928 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1929 blkptr_t blk;
1930
1931 ASSERT(zio->io_vsd == NULL);
1932 zio->io_vsd = dde;
1933
1934 if (ddp_self == NULL)
1935 return (ZIO_PIPELINE_CONTINUE);
1936
1937 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1938 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1939 continue;
1940 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1941 &blk);
1942 zio_nowait(zio_read(zio, zio->io_spa, &blk,
1943 zio_buf_alloc(zio->io_size), zio->io_size,
1944 zio_ddt_child_read_done, dde, zio->io_priority,
1945 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1946 &zio->io_bookmark));
1947 }
1948 return (ZIO_PIPELINE_CONTINUE);
1949 }
1950
1951 zio_nowait(zio_read(zio, zio->io_spa, bp,
1952 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1953 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1954
1955 return (ZIO_PIPELINE_CONTINUE);
1956 }
1957
1958 static int
1959 zio_ddt_read_done(zio_t *zio)
1960 {
1961 blkptr_t *bp = zio->io_bp;
1962
1963 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1964 return (ZIO_PIPELINE_STOP);
1965
1966 ASSERT(BP_GET_DEDUP(bp));
1967 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1968 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1969
1970 if (zio->io_child_error[ZIO_CHILD_DDT]) {
1971 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1972 ddt_entry_t *dde = zio->io_vsd;
1973 if (ddt == NULL) {
1974 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1975 return (ZIO_PIPELINE_CONTINUE);
1976 }
1977 if (dde == NULL) {
1978 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1979 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1980 return (ZIO_PIPELINE_STOP);
1981 }
1982 if (dde->dde_repair_data != NULL) {
1983 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1984 zio->io_child_error[ZIO_CHILD_DDT] = 0;
1985 }
1986 ddt_repair_done(ddt, dde);
1987 zio->io_vsd = NULL;
1988 }
1989
1990 ASSERT(zio->io_vsd == NULL);
1991
1992 return (ZIO_PIPELINE_CONTINUE);
1993 }
1994
1995 static boolean_t
1996 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1997 {
1998 spa_t *spa = zio->io_spa;
1999 int p;
2000
2001 /*
2002 * Note: we compare the original data, not the transformed data,
2003 * because when zio->io_bp is an override bp, we will not have
2004 * pushed the I/O transforms. That's an important optimization
2005 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2006 */
2007 for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2008 zio_t *lio = dde->dde_lead_zio[p];
2009
2010 if (lio != NULL) {
2011 return (lio->io_orig_size != zio->io_orig_size ||
2012 bcmp(zio->io_orig_data, lio->io_orig_data,
2013 zio->io_orig_size) != 0);
2014 }
2015 }
2016
2017 for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2018 ddt_phys_t *ddp = &dde->dde_phys[p];
2019
2020 if (ddp->ddp_phys_birth != 0) {
2021 arc_buf_t *abuf = NULL;
2022 uint32_t aflags = ARC_WAIT;
2023 blkptr_t blk = *zio->io_bp;
2024 int error;
2025
2026 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2027
2028 ddt_exit(ddt);
2029
2030 error = arc_read_nolock(NULL, spa, &blk,
2031 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2032 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2033 &aflags, &zio->io_bookmark);
2034
2035 if (error == 0) {
2036 if (arc_buf_size(abuf) != zio->io_orig_size ||
2037 bcmp(abuf->b_data, zio->io_orig_data,
2038 zio->io_orig_size) != 0)
2039 error = EEXIST;
2040 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
2041 }
2042
2043 ddt_enter(ddt);
2044 return (error != 0);
2045 }
2046 }
2047
2048 return (B_FALSE);
2049 }
2050
2051 static void
2052 zio_ddt_child_write_ready(zio_t *zio)
2053 {
2054 int p = zio->io_prop.zp_copies;
2055 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2056 ddt_entry_t *dde = zio->io_private;
2057 ddt_phys_t *ddp = &dde->dde_phys[p];
2058 zio_t *pio;
2059
2060 if (zio->io_error)
2061 return;
2062
2063 ddt_enter(ddt);
2064
2065 ASSERT(dde->dde_lead_zio[p] == zio);
2066
2067 ddt_phys_fill(ddp, zio->io_bp);
2068
2069 while ((pio = zio_walk_parents(zio)) != NULL)
2070 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2071
2072 ddt_exit(ddt);
2073 }
2074
2075 static void
2076 zio_ddt_child_write_done(zio_t *zio)
2077 {
2078 int p = zio->io_prop.zp_copies;
2079 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2080 ddt_entry_t *dde = zio->io_private;
2081 ddt_phys_t *ddp = &dde->dde_phys[p];
2082
2083 ddt_enter(ddt);
2084
2085 ASSERT(ddp->ddp_refcnt == 0);
2086 ASSERT(dde->dde_lead_zio[p] == zio);
2087 dde->dde_lead_zio[p] = NULL;
2088
2089 if (zio->io_error == 0) {
2090 while (zio_walk_parents(zio) != NULL)
2091 ddt_phys_addref(ddp);
2092 } else {
2093 ddt_phys_clear(ddp);
2094 }
2095
2096 ddt_exit(ddt);
2097 }
2098
2099 static void
2100 zio_ddt_ditto_write_done(zio_t *zio)
2101 {
2102 int p = DDT_PHYS_DITTO;
2103 blkptr_t *bp = zio->io_bp;
2104 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2105 ddt_entry_t *dde = zio->io_private;
2106 ddt_phys_t *ddp = &dde->dde_phys[p];
2107 ddt_key_t *ddk = &dde->dde_key;
2108 ASSERTV(zio_prop_t *zp = &zio->io_prop);
2109
2110 ddt_enter(ddt);
2111
2112 ASSERT(ddp->ddp_refcnt == 0);
2113 ASSERT(dde->dde_lead_zio[p] == zio);
2114 dde->dde_lead_zio[p] = NULL;
2115
2116 if (zio->io_error == 0) {
2117 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2118 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2119 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2120 if (ddp->ddp_phys_birth != 0)
2121 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2122 ddt_phys_fill(ddp, bp);
2123 }
2124
2125 ddt_exit(ddt);
2126 }
2127
2128 static int
2129 zio_ddt_write(zio_t *zio)
2130 {
2131 spa_t *spa = zio->io_spa;
2132 blkptr_t *bp = zio->io_bp;
2133 uint64_t txg = zio->io_txg;
2134 zio_prop_t *zp = &zio->io_prop;
2135 int p = zp->zp_copies;
2136 int ditto_copies;
2137 zio_t *cio = NULL;
2138 zio_t *dio = NULL;
2139 ddt_t *ddt = ddt_select(spa, bp);
2140 ddt_entry_t *dde;
2141 ddt_phys_t *ddp;
2142
2143 ASSERT(BP_GET_DEDUP(bp));
2144 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2145 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2146
2147 ddt_enter(ddt);
2148 dde = ddt_lookup(ddt, bp, B_TRUE);
2149 ddp = &dde->dde_phys[p];
2150
2151 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2152 /*
2153 * If we're using a weak checksum, upgrade to a strong checksum
2154 * and try again. If we're already using a strong checksum,
2155 * we can't resolve it, so just convert to an ordinary write.
2156 * (And automatically e-mail a paper to Nature?)
2157 */
2158 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2159 zp->zp_checksum = spa_dedup_checksum(spa);
2160 zio_pop_transforms(zio);
2161 zio->io_stage = ZIO_STAGE_OPEN;
2162 BP_ZERO(bp);
2163 } else {
2164 zp->zp_dedup = 0;
2165 }
2166 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2167 ddt_exit(ddt);
2168 return (ZIO_PIPELINE_CONTINUE);
2169 }
2170
2171 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2172 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2173
2174 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2175 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2176 zio_prop_t czp = *zp;
2177
2178 czp.zp_copies = ditto_copies;
2179
2180 /*
2181 * If we arrived here with an override bp, we won't have run
2182 * the transform stack, so we won't have the data we need to
2183 * generate a child i/o. So, toss the override bp and restart.
2184 * This is safe, because using the override bp is just an
2185 * optimization; and it's rare, so the cost doesn't matter.
2186 */
2187 if (zio->io_bp_override) {
2188 zio_pop_transforms(zio);
2189 zio->io_stage = ZIO_STAGE_OPEN;
2190 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2191 zio->io_bp_override = NULL;
2192 BP_ZERO(bp);
2193 ddt_exit(ddt);
2194 return (ZIO_PIPELINE_CONTINUE);
2195 }
2196
2197 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2198 zio->io_orig_size, &czp, NULL,
2199 zio_ddt_ditto_write_done, dde, zio->io_priority,
2200 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2201
2202 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2203 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2204 }
2205
2206 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2207 if (ddp->ddp_phys_birth != 0)
2208 ddt_bp_fill(ddp, bp, txg);
2209 if (dde->dde_lead_zio[p] != NULL)
2210 zio_add_child(zio, dde->dde_lead_zio[p]);
2211 else
2212 ddt_phys_addref(ddp);
2213 } else if (zio->io_bp_override) {
2214 ASSERT(bp->blk_birth == txg);
2215 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2216 ddt_phys_fill(ddp, bp);
2217 ddt_phys_addref(ddp);
2218 } else {
2219 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2220 zio->io_orig_size, zp, zio_ddt_child_write_ready,
2221 zio_ddt_child_write_done, dde, zio->io_priority,
2222 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2223
2224 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2225 dde->dde_lead_zio[p] = cio;
2226 }
2227
2228 ddt_exit(ddt);
2229
2230 if (cio)
2231 zio_nowait(cio);
2232 if (dio)
2233 zio_nowait(dio);
2234
2235 return (ZIO_PIPELINE_CONTINUE);
2236 }
2237
2238 ddt_entry_t *freedde; /* for debugging */
2239
2240 static int
2241 zio_ddt_free(zio_t *zio)
2242 {
2243 spa_t *spa = zio->io_spa;
2244 blkptr_t *bp = zio->io_bp;
2245 ddt_t *ddt = ddt_select(spa, bp);
2246 ddt_entry_t *dde;
2247 ddt_phys_t *ddp;
2248
2249 ASSERT(BP_GET_DEDUP(bp));
2250 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2251
2252 ddt_enter(ddt);
2253 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2254 ddp = ddt_phys_select(dde, bp);
2255 ddt_phys_decref(ddp);
2256 ddt_exit(ddt);
2257
2258 return (ZIO_PIPELINE_CONTINUE);
2259 }
2260
2261 /*
2262 * ==========================================================================
2263 * Allocate and free blocks
2264 * ==========================================================================
2265 */
2266 static int
2267 zio_dva_allocate(zio_t *zio)
2268 {
2269 spa_t *spa = zio->io_spa;
2270 metaslab_class_t *mc = spa_normal_class(spa);
2271 blkptr_t *bp = zio->io_bp;
2272 int error;
2273 int flags = 0;
2274
2275 if (zio->io_gang_leader == NULL) {
2276 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2277 zio->io_gang_leader = zio;
2278 }
2279
2280 ASSERT(BP_IS_HOLE(bp));
2281 ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
2282 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2283 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2284 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2285
2286 /*
2287 * The dump device does not support gang blocks so allocation on
2288 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2289 * the "fast" gang feature.
2290 */
2291 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2292 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2293 METASLAB_GANG_CHILD : 0;
2294 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
2295 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2296 zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2297
2298 if (error) {
2299 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2300 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2301 error);
2302 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2303 return (zio_write_gang_block(zio));
2304 zio->io_error = error;
2305 }
2306
2307 return (ZIO_PIPELINE_CONTINUE);
2308 }
2309
2310 static int
2311 zio_dva_free(zio_t *zio)
2312 {
2313 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2314
2315 return (ZIO_PIPELINE_CONTINUE);
2316 }
2317
2318 static int
2319 zio_dva_claim(zio_t *zio)
2320 {
2321 int error;
2322
2323 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2324 if (error)
2325 zio->io_error = error;
2326
2327 return (ZIO_PIPELINE_CONTINUE);
2328 }
2329
2330 /*
2331 * Undo an allocation. This is used by zio_done() when an I/O fails
2332 * and we want to give back the block we just allocated.
2333 * This handles both normal blocks and gang blocks.
2334 */
2335 static void
2336 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2337 {
2338 int g;
2339
2340 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2341 ASSERT(zio->io_bp_override == NULL);
2342
2343 if (!BP_IS_HOLE(bp))
2344 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2345
2346 if (gn != NULL) {
2347 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2348 zio_dva_unallocate(zio, gn->gn_child[g],
2349 &gn->gn_gbh->zg_blkptr[g]);
2350 }
2351 }
2352 }
2353
2354 /*
2355 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2356 */
2357 int
2358 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, uint64_t size,
2359 boolean_t use_slog)
2360 {
2361 int error = 1;
2362
2363 ASSERT(txg > spa_syncing_txg(spa));
2364
2365 /*
2366 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2367 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2368 * when allocating them.
2369 */
2370 if (use_slog) {
2371 error = metaslab_alloc(spa, spa_log_class(spa), size,
2372 new_bp, 1, txg, NULL,
2373 METASLAB_FASTWRITE | METASLAB_GANG_AVOID);
2374 }
2375
2376 if (error) {
2377 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2378 new_bp, 1, txg, NULL,
2379 METASLAB_FASTWRITE | METASLAB_GANG_AVOID);
2380 }
2381
2382 if (error == 0) {
2383 BP_SET_LSIZE(new_bp, size);
2384 BP_SET_PSIZE(new_bp, size);
2385 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2386 BP_SET_CHECKSUM(new_bp,
2387 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2388 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2389 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2390 BP_SET_LEVEL(new_bp, 0);
2391 BP_SET_DEDUP(new_bp, 0);
2392 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2393 }
2394
2395 return (error);
2396 }
2397
2398 /*
2399 * Free an intent log block.
2400 */
2401 void
2402 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2403 {
2404 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2405 ASSERT(!BP_IS_GANG(bp));
2406
2407 zio_free(spa, txg, bp);
2408 }
2409
2410 /*
2411 * ==========================================================================
2412 * Read and write to physical devices
2413 * ==========================================================================
2414 */
2415 static int
2416 zio_vdev_io_start(zio_t *zio)
2417 {
2418 vdev_t *vd = zio->io_vd;
2419 uint64_t align;
2420 spa_t *spa = zio->io_spa;
2421
2422 ASSERT(zio->io_error == 0);
2423 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2424
2425 if (vd == NULL) {
2426 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2427 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2428
2429 /*
2430 * The mirror_ops handle multiple DVAs in a single BP.
2431 */
2432 return (vdev_mirror_ops.vdev_op_io_start(zio));
2433 }
2434
2435 /*
2436 * We keep track of time-sensitive I/Os so that the scan thread
2437 * can quickly react to certain workloads. In particular, we care
2438 * about non-scrubbing, top-level reads and writes with the following
2439 * characteristics:
2440 * - synchronous writes of user data to non-slog devices
2441 * - any reads of user data
2442 * When these conditions are met, adjust the timestamp of spa_last_io
2443 * which allows the scan thread to adjust its workload accordingly.
2444 */
2445 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2446 vd == vd->vdev_top && !vd->vdev_islog &&
2447 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2448 zio->io_txg != spa_syncing_txg(spa)) {
2449 uint64_t old = spa->spa_last_io;
2450 uint64_t new = ddi_get_lbolt64();
2451 if (old != new)
2452 (void) atomic_cas_64(&spa->spa_last_io, old, new);
2453 }
2454
2455 align = 1ULL << vd->vdev_top->vdev_ashift;
2456
2457 if (P2PHASE(zio->io_size, align) != 0) {
2458 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2459 char *abuf = zio_buf_alloc(asize);
2460 ASSERT(vd == vd->vdev_top);
2461 if (zio->io_type == ZIO_TYPE_WRITE) {
2462 bcopy(zio->io_data, abuf, zio->io_size);
2463 bzero(abuf + zio->io_size, asize - zio->io_size);
2464 }
2465 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2466 }
2467
2468 ASSERT(P2PHASE(zio->io_offset, align) == 0);
2469 ASSERT(P2PHASE(zio->io_size, align) == 0);
2470 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2471
2472 /*
2473 * If this is a repair I/O, and there's no self-healing involved --
2474 * that is, we're just resilvering what we expect to resilver --
2475 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2476 * This prevents spurious resilvering with nested replication.
2477 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2478 * A is out of date, we'll read from C+D, then use the data to
2479 * resilver A+B -- but we don't actually want to resilver B, just A.
2480 * The top-level mirror has no way to know this, so instead we just
2481 * discard unnecessary repairs as we work our way down the vdev tree.
2482 * The same logic applies to any form of nested replication:
2483 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
2484 */
2485 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2486 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2487 zio->io_txg != 0 && /* not a delegated i/o */
2488 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2489 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2490 zio_vdev_io_bypass(zio);
2491 return (ZIO_PIPELINE_CONTINUE);
2492 }
2493
2494 if (vd->vdev_ops->vdev_op_leaf &&
2495 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2496
2497 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2498 return (ZIO_PIPELINE_CONTINUE);
2499
2500 if ((zio = vdev_queue_io(zio)) == NULL)
2501 return (ZIO_PIPELINE_STOP);
2502
2503 if (!vdev_accessible(vd, zio)) {
2504 zio->io_error = ENXIO;
2505 zio_interrupt(zio);
2506 return (ZIO_PIPELINE_STOP);
2507 }
2508 }
2509
2510 return (vd->vdev_ops->vdev_op_io_start(zio));
2511 }
2512
2513 static int
2514 zio_vdev_io_done(zio_t *zio)
2515 {
2516 vdev_t *vd = zio->io_vd;
2517 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2518 boolean_t unexpected_error = B_FALSE;
2519
2520 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2521 return (ZIO_PIPELINE_STOP);
2522
2523 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2524
2525 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2526
2527 vdev_queue_io_done(zio);
2528
2529 if (zio->io_type == ZIO_TYPE_WRITE)
2530 vdev_cache_write(zio);
2531
2532 if (zio_injection_enabled && zio->io_error == 0)
2533 zio->io_error = zio_handle_device_injection(vd,
2534 zio, EIO);
2535
2536 if (zio_injection_enabled && zio->io_error == 0)
2537 zio->io_error = zio_handle_label_injection(zio, EIO);
2538
2539 if (zio->io_error) {
2540 if (!vdev_accessible(vd, zio)) {
2541 zio->io_error = ENXIO;
2542 } else {
2543 unexpected_error = B_TRUE;
2544 }
2545 }
2546 }
2547
2548 ops->vdev_op_io_done(zio);
2549
2550 if (unexpected_error)
2551 VERIFY(vdev_probe(vd, zio) == NULL);
2552
2553 return (ZIO_PIPELINE_CONTINUE);
2554 }
2555
2556 /*
2557 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2558 * disk, and use that to finish the checksum ereport later.
2559 */
2560 static void
2561 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2562 const void *good_buf)
2563 {
2564 /* no processing needed */
2565 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2566 }
2567
2568 /*ARGSUSED*/
2569 void
2570 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2571 {
2572 void *buf = zio_buf_alloc(zio->io_size);
2573
2574 bcopy(zio->io_data, buf, zio->io_size);
2575
2576 zcr->zcr_cbinfo = zio->io_size;
2577 zcr->zcr_cbdata = buf;
2578 zcr->zcr_finish = zio_vsd_default_cksum_finish;
2579 zcr->zcr_free = zio_buf_free;
2580 }
2581
2582 static int
2583 zio_vdev_io_assess(zio_t *zio)
2584 {
2585 vdev_t *vd = zio->io_vd;
2586
2587 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2588 return (ZIO_PIPELINE_STOP);
2589
2590 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2591 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2592
2593 if (zio->io_vsd != NULL) {
2594 zio->io_vsd_ops->vsd_free(zio);
2595 zio->io_vsd = NULL;
2596 }
2597
2598 if (zio_injection_enabled && zio->io_error == 0)
2599 zio->io_error = zio_handle_fault_injection(zio, EIO);
2600
2601 /*
2602 * If the I/O failed, determine whether we should attempt to retry it.
2603 *
2604 * On retry, we cut in line in the issue queue, since we don't want
2605 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2606 */
2607 if (zio->io_error && vd == NULL &&
2608 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2609 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
2610 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
2611 zio->io_error = 0;
2612 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2613 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2614 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2615 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2616 zio_requeue_io_start_cut_in_line);
2617 return (ZIO_PIPELINE_STOP);
2618 }
2619
2620 /*
2621 * If we got an error on a leaf device, convert it to ENXIO
2622 * if the device is not accessible at all.
2623 */
2624 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2625 !vdev_accessible(vd, zio))
2626 zio->io_error = ENXIO;
2627
2628 /*
2629 * If we can't write to an interior vdev (mirror or RAID-Z),
2630 * set vdev_cant_write so that we stop trying to allocate from it.
2631 */
2632 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2633 vd != NULL && !vd->vdev_ops->vdev_op_leaf)
2634 vd->vdev_cant_write = B_TRUE;
2635
2636 if (zio->io_error)
2637 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2638
2639 return (ZIO_PIPELINE_CONTINUE);
2640 }
2641
2642 void
2643 zio_vdev_io_reissue(zio_t *zio)
2644 {
2645 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2646 ASSERT(zio->io_error == 0);
2647
2648 zio->io_stage >>= 1;
2649 }
2650
2651 void
2652 zio_vdev_io_redone(zio_t *zio)
2653 {
2654 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2655
2656 zio->io_stage >>= 1;
2657 }
2658
2659 void
2660 zio_vdev_io_bypass(zio_t *zio)
2661 {
2662 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2663 ASSERT(zio->io_error == 0);
2664
2665 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2666 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2667 }
2668
2669 /*
2670 * ==========================================================================
2671 * Generate and verify checksums
2672 * ==========================================================================
2673 */
2674 static int
2675 zio_checksum_generate(zio_t *zio)
2676 {
2677 blkptr_t *bp = zio->io_bp;
2678 enum zio_checksum checksum;
2679
2680 if (bp == NULL) {
2681 /*
2682 * This is zio_write_phys().
2683 * We're either generating a label checksum, or none at all.
2684 */
2685 checksum = zio->io_prop.zp_checksum;
2686
2687 if (checksum == ZIO_CHECKSUM_OFF)
2688 return (ZIO_PIPELINE_CONTINUE);
2689
2690 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2691 } else {
2692 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2693 ASSERT(!IO_IS_ALLOCATING(zio));
2694 checksum = ZIO_CHECKSUM_GANG_HEADER;
2695 } else {
2696 checksum = BP_GET_CHECKSUM(bp);
2697 }
2698 }
2699
2700 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2701
2702 return (ZIO_PIPELINE_CONTINUE);
2703 }
2704
2705 static int
2706 zio_checksum_verify(zio_t *zio)
2707 {
2708 zio_bad_cksum_t info;
2709 blkptr_t *bp = zio->io_bp;
2710 int error;
2711
2712 ASSERT(zio->io_vd != NULL);
2713
2714 if (bp == NULL) {
2715 /*
2716 * This is zio_read_phys().
2717 * We're either verifying a label checksum, or nothing at all.
2718 */
2719 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2720 return (ZIO_PIPELINE_CONTINUE);
2721
2722 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2723 }
2724
2725 if ((error = zio_checksum_error(zio, &info)) != 0) {
2726 zio->io_error = error;
2727 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2728 zfs_ereport_start_checksum(zio->io_spa,
2729 zio->io_vd, zio, zio->io_offset,
2730 zio->io_size, NULL, &info);
2731 }
2732 }
2733
2734 return (ZIO_PIPELINE_CONTINUE);
2735 }
2736
2737 /*
2738 * Called by RAID-Z to ensure we don't compute the checksum twice.
2739 */
2740 void
2741 zio_checksum_verified(zio_t *zio)
2742 {
2743 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2744 }
2745
2746 /*
2747 * ==========================================================================
2748 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2749 * An error of 0 indictes success. ENXIO indicates whole-device failure,
2750 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
2751 * indicate errors that are specific to one I/O, and most likely permanent.
2752 * Any other error is presumed to be worse because we weren't expecting it.
2753 * ==========================================================================
2754 */
2755 int
2756 zio_worst_error(int e1, int e2)
2757 {
2758 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2759 int r1, r2;
2760
2761 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2762 if (e1 == zio_error_rank[r1])
2763 break;
2764
2765 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2766 if (e2 == zio_error_rank[r2])
2767 break;
2768
2769 return (r1 > r2 ? e1 : e2);
2770 }
2771
2772 /*
2773 * ==========================================================================
2774 * I/O completion
2775 * ==========================================================================
2776 */
2777 static int
2778 zio_ready(zio_t *zio)
2779 {
2780 blkptr_t *bp = zio->io_bp;
2781 zio_t *pio, *pio_next;
2782
2783 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2784 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2785 return (ZIO_PIPELINE_STOP);
2786
2787 if (zio->io_ready) {
2788 ASSERT(IO_IS_ALLOCATING(zio));
2789 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2790 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2791
2792 zio->io_ready(zio);
2793 }
2794
2795 if (bp != NULL && bp != &zio->io_bp_copy)
2796 zio->io_bp_copy = *bp;
2797
2798 if (zio->io_error)
2799 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2800
2801 mutex_enter(&zio->io_lock);
2802 zio->io_state[ZIO_WAIT_READY] = 1;
2803 pio = zio_walk_parents(zio);
2804 mutex_exit(&zio->io_lock);
2805
2806 /*
2807 * As we notify zio's parents, new parents could be added.
2808 * New parents go to the head of zio's io_parent_list, however,
2809 * so we will (correctly) not notify them. The remainder of zio's
2810 * io_parent_list, from 'pio_next' onward, cannot change because
2811 * all parents must wait for us to be done before they can be done.
2812 */
2813 for (; pio != NULL; pio = pio_next) {
2814 pio_next = zio_walk_parents(zio);
2815 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2816 }
2817
2818 if (zio->io_flags & ZIO_FLAG_NODATA) {
2819 if (BP_IS_GANG(bp)) {
2820 zio->io_flags &= ~ZIO_FLAG_NODATA;
2821 } else {
2822 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2823 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2824 }
2825 }
2826
2827 if (zio_injection_enabled &&
2828 zio->io_spa->spa_syncing_txg == zio->io_txg)
2829 zio_handle_ignored_writes(zio);
2830
2831 return (ZIO_PIPELINE_CONTINUE);
2832 }
2833
2834 static int
2835 zio_done(zio_t *zio)
2836 {
2837 zio_t *pio, *pio_next;
2838 int c, w;
2839
2840 /*
2841 * If our children haven't all completed,
2842 * wait for them and then repeat this pipeline stage.
2843 */
2844 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2845 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2846 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2847 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2848 return (ZIO_PIPELINE_STOP);
2849
2850 for (c = 0; c < ZIO_CHILD_TYPES; c++)
2851 for (w = 0; w < ZIO_WAIT_TYPES; w++)
2852 ASSERT(zio->io_children[c][w] == 0);
2853
2854 if (zio->io_bp != NULL) {
2855 ASSERT(zio->io_bp->blk_pad[0] == 0);
2856 ASSERT(zio->io_bp->blk_pad[1] == 0);
2857 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2858 (zio->io_bp == zio_unique_parent(zio)->io_bp));
2859 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
2860 zio->io_bp_override == NULL &&
2861 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2862 ASSERT(!BP_SHOULD_BYTESWAP(zio->io_bp));
2863 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2864 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
2865 (BP_COUNT_GANG(zio->io_bp) == BP_GET_NDVAS(zio->io_bp)));
2866 }
2867 }
2868
2869 /*
2870 * If there were child vdev/gang/ddt errors, they apply to us now.
2871 */
2872 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2873 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2874 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2875
2876 /*
2877 * If the I/O on the transformed data was successful, generate any
2878 * checksum reports now while we still have the transformed data.
2879 */
2880 if (zio->io_error == 0) {
2881 while (zio->io_cksum_report != NULL) {
2882 zio_cksum_report_t *zcr = zio->io_cksum_report;
2883 uint64_t align = zcr->zcr_align;
2884 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2885 char *abuf = zio->io_data;
2886
2887 if (asize != zio->io_size) {
2888 abuf = zio_buf_alloc(asize);
2889 bcopy(zio->io_data, abuf, zio->io_size);
2890 bzero(abuf + zio->io_size, asize - zio->io_size);
2891 }
2892
2893 zio->io_cksum_report = zcr->zcr_next;
2894 zcr->zcr_next = NULL;
2895 zcr->zcr_finish(zcr, abuf);
2896 zfs_ereport_free_checksum(zcr);
2897
2898 if (asize != zio->io_size)
2899 zio_buf_free(abuf, asize);
2900 }
2901 }
2902
2903 zio_pop_transforms(zio); /* note: may set zio->io_error */
2904
2905 vdev_stat_update(zio, zio->io_size);
2906
2907 /*
2908 * When an I/O completes but was slow post an ereport.
2909 */
2910 if (zio->io_delay >= zio_delay_max)
2911 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
2912 zio->io_vd, zio, 0, 0);
2913
2914 if (zio->io_error) {
2915 /*
2916 * If this I/O is attached to a particular vdev,
2917 * generate an error message describing the I/O failure
2918 * at the block level. We ignore these errors if the
2919 * device is currently unavailable.
2920 */
2921 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
2922 !vdev_is_dead(zio->io_vd))
2923 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
2924 zio->io_vd, zio, 0, 0);
2925
2926 if ((zio->io_error == EIO || !(zio->io_flags &
2927 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2928 zio == zio->io_logical) {
2929 /*
2930 * For logical I/O requests, tell the SPA to log the
2931 * error and generate a logical data ereport.
2932 */
2933 spa_log_error(zio->io_spa, zio);
2934 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa, NULL, zio,
2935 0, 0);
2936 }
2937 }
2938
2939 if (zio->io_error && zio == zio->io_logical) {
2940 /*
2941 * Determine whether zio should be reexecuted. This will
2942 * propagate all the way to the root via zio_notify_parent().
2943 */
2944 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
2945 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2946
2947 if (IO_IS_ALLOCATING(zio) &&
2948 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2949 if (zio->io_error != ENOSPC)
2950 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2951 else
2952 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2953 }
2954
2955 if ((zio->io_type == ZIO_TYPE_READ ||
2956 zio->io_type == ZIO_TYPE_FREE) &&
2957 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2958 zio->io_error == ENXIO &&
2959 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
2960 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
2961 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2962
2963 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2964 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2965
2966 /*
2967 * Here is a possibly good place to attempt to do
2968 * either combinatorial reconstruction or error correction
2969 * based on checksums. It also might be a good place
2970 * to send out preliminary ereports before we suspend
2971 * processing.
2972 */
2973 }
2974
2975 /*
2976 * If there were logical child errors, they apply to us now.
2977 * We defer this until now to avoid conflating logical child
2978 * errors with errors that happened to the zio itself when
2979 * updating vdev stats and reporting FMA events above.
2980 */
2981 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2982
2983 if ((zio->io_error || zio->io_reexecute) &&
2984 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2985 !(zio->io_flags & ZIO_FLAG_IO_REWRITE))
2986 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
2987
2988 zio_gang_tree_free(&zio->io_gang_tree);
2989
2990 /*
2991 * Godfather I/Os should never suspend.
2992 */
2993 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2994 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2995 zio->io_reexecute = 0;
2996
2997 if (zio->io_reexecute) {
2998 /*
2999 * This is a logical I/O that wants to reexecute.
3000 *
3001 * Reexecute is top-down. When an i/o fails, if it's not
3002 * the root, it simply notifies its parent and sticks around.
3003 * The parent, seeing that it still has children in zio_done(),
3004 * does the same. This percolates all the way up to the root.
3005 * The root i/o will reexecute or suspend the entire tree.
3006 *
3007 * This approach ensures that zio_reexecute() honors
3008 * all the original i/o dependency relationships, e.g.
3009 * parents not executing until children are ready.
3010 */
3011 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3012
3013 zio->io_gang_leader = NULL;
3014
3015 mutex_enter(&zio->io_lock);
3016 zio->io_state[ZIO_WAIT_DONE] = 1;
3017 mutex_exit(&zio->io_lock);
3018
3019 /*
3020 * "The Godfather" I/O monitors its children but is
3021 * not a true parent to them. It will track them through
3022 * the pipeline but severs its ties whenever they get into
3023 * trouble (e.g. suspended). This allows "The Godfather"
3024 * I/O to return status without blocking.
3025 */
3026 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3027 zio_link_t *zl = zio->io_walk_link;
3028 pio_next = zio_walk_parents(zio);
3029
3030 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3031 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3032 zio_remove_child(pio, zio, zl);
3033 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3034 }
3035 }
3036
3037 if ((pio = zio_unique_parent(zio)) != NULL) {
3038 /*
3039 * We're not a root i/o, so there's nothing to do
3040 * but notify our parent. Don't propagate errors
3041 * upward since we haven't permanently failed yet.
3042 */
3043 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3044 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3045 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3046 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3047 /*
3048 * We'd fail again if we reexecuted now, so suspend
3049 * until conditions improve (e.g. device comes online).
3050 */
3051 zio_suspend(zio->io_spa, zio);
3052 } else {
3053 /*
3054 * Reexecution is potentially a huge amount of work.
3055 * Hand it off to the otherwise-unused claim taskq.
3056 */
3057 ASSERT(taskq_empty_ent(&zio->io_tqent));
3058 (void) taskq_dispatch_ent(
3059 zio->io_spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3060 (task_func_t *)zio_reexecute, zio, 0,
3061 &zio->io_tqent);
3062 }
3063 return (ZIO_PIPELINE_STOP);
3064 }
3065
3066 ASSERT(zio->io_child_count == 0);
3067 ASSERT(zio->io_reexecute == 0);
3068 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3069
3070 /*
3071 * Report any checksum errors, since the I/O is complete.
3072 */
3073 while (zio->io_cksum_report != NULL) {
3074 zio_cksum_report_t *zcr = zio->io_cksum_report;
3075 zio->io_cksum_report = zcr->zcr_next;
3076 zcr->zcr_next = NULL;
3077 zcr->zcr_finish(zcr, NULL);
3078 zfs_ereport_free_checksum(zcr);
3079 }
3080
3081 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
3082 !BP_IS_HOLE(zio->io_bp)) {
3083 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
3084 }
3085
3086 /*
3087 * It is the responsibility of the done callback to ensure that this
3088 * particular zio is no longer discoverable for adoption, and as
3089 * such, cannot acquire any new parents.
3090 */
3091 if (zio->io_done)
3092 zio->io_done(zio);
3093
3094 mutex_enter(&zio->io_lock);
3095 zio->io_state[ZIO_WAIT_DONE] = 1;
3096 mutex_exit(&zio->io_lock);
3097
3098 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3099 zio_link_t *zl = zio->io_walk_link;
3100 pio_next = zio_walk_parents(zio);
3101 zio_remove_child(pio, zio, zl);
3102 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3103 }
3104
3105 if (zio->io_waiter != NULL) {
3106 mutex_enter(&zio->io_lock);
3107 zio->io_executor = NULL;
3108 cv_broadcast(&zio->io_cv);
3109 mutex_exit(&zio->io_lock);
3110 } else {
3111 zio_destroy(zio);
3112 }
3113
3114 return (ZIO_PIPELINE_STOP);
3115 }
3116
3117 /*
3118 * ==========================================================================
3119 * I/O pipeline definition
3120 * ==========================================================================
3121 */
3122 static zio_pipe_stage_t *zio_pipeline[] = {
3123 NULL,
3124 zio_read_bp_init,
3125 zio_free_bp_init,
3126 zio_issue_async,
3127 zio_write_bp_init,
3128 zio_checksum_generate,
3129 zio_ddt_read_start,
3130 zio_ddt_read_done,
3131 zio_ddt_write,
3132 zio_ddt_free,
3133 zio_gang_assemble,
3134 zio_gang_issue,
3135 zio_dva_allocate,
3136 zio_dva_free,
3137 zio_dva_claim,
3138 zio_ready,
3139 zio_vdev_io_start,
3140 zio_vdev_io_done,
3141 zio_vdev_io_assess,
3142 zio_checksum_verify,
3143 zio_done
3144 };
3145
3146 #if defined(_KERNEL) && defined(HAVE_SPL)
3147 /* Fault injection */
3148 EXPORT_SYMBOL(zio_injection_enabled);
3149 EXPORT_SYMBOL(zio_inject_fault);
3150 EXPORT_SYMBOL(zio_inject_list_next);
3151 EXPORT_SYMBOL(zio_clear_fault);
3152 EXPORT_SYMBOL(zio_handle_fault_injection);
3153 EXPORT_SYMBOL(zio_handle_device_injection);
3154 EXPORT_SYMBOL(zio_handle_label_injection);
3155 EXPORT_SYMBOL(zio_priority_table);
3156 EXPORT_SYMBOL(zio_type_name);
3157
3158 module_param(zio_bulk_flags, int, 0644);
3159 MODULE_PARM_DESC(zio_bulk_flags, "Additional flags to pass to bulk buffers");
3160
3161 module_param(zio_delay_max, int, 0644);
3162 MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
3163
3164 module_param(zio_requeue_io_start_cut_in_line, int, 0644);
3165 MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
3166 #endif