]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Support re-prioritizing asynchronous prefetches
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/sysmacros.h>
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/txg.h>
32 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio_impl.h>
35 #include <sys/zio_compress.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/arc.h>
39 #include <sys/ddt.h>
40 #include <sys/blkptr.h>
41 #include <sys/zfeature.h>
42 #include <sys/dsl_scan.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/time.h>
45 #include <sys/trace_zio.h>
46 #include <sys/abd.h>
47 #include <sys/dsl_crypt.h>
48
49 /*
50 * ==========================================================================
51 * I/O type descriptions
52 * ==========================================================================
53 */
54 const char *zio_type_name[ZIO_TYPES] = {
55 /*
56 * Note: Linux kernel thread name length is limited
57 * so these names will differ from upstream open zfs.
58 */
59 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
60 };
61
62 int zio_dva_throttle_enabled = B_TRUE;
63
64 /*
65 * ==========================================================================
66 * I/O kmem caches
67 * ==========================================================================
68 */
69 kmem_cache_t *zio_cache;
70 kmem_cache_t *zio_link_cache;
71 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
72 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
73 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
74 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
75 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
76 #endif
77
78 int zio_delay_max = ZIO_DELAY_MAX;
79
80 #define ZIO_PIPELINE_CONTINUE 0x100
81 #define ZIO_PIPELINE_STOP 0x101
82
83 #define BP_SPANB(indblkshift, level) \
84 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
85 #define COMPARE_META_LEVEL 0x80000000ul
86 /*
87 * The following actions directly effect the spa's sync-to-convergence logic.
88 * The values below define the sync pass when we start performing the action.
89 * Care should be taken when changing these values as they directly impact
90 * spa_sync() performance. Tuning these values may introduce subtle performance
91 * pathologies and should only be done in the context of performance analysis.
92 * These tunables will eventually be removed and replaced with #defines once
93 * enough analysis has been done to determine optimal values.
94 *
95 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
96 * regular blocks are not deferred.
97 */
98 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
99 int zfs_sync_pass_dont_compress = 5; /* don't compress starting in this pass */
100 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
101
102 /*
103 * An allocating zio is one that either currently has the DVA allocate
104 * stage set or will have it later in its lifetime.
105 */
106 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
107
108 int zio_requeue_io_start_cut_in_line = 1;
109
110 #ifdef ZFS_DEBUG
111 int zio_buf_debug_limit = 16384;
112 #else
113 int zio_buf_debug_limit = 0;
114 #endif
115
116 static inline void __zio_execute(zio_t *zio);
117
118 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
119
120 void
121 zio_init(void)
122 {
123 size_t c;
124 vmem_t *data_alloc_arena = NULL;
125
126 zio_cache = kmem_cache_create("zio_cache",
127 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
128 zio_link_cache = kmem_cache_create("zio_link_cache",
129 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
130
131 /*
132 * For small buffers, we want a cache for each multiple of
133 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
134 * for each quarter-power of 2.
135 */
136 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
137 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
138 size_t p2 = size;
139 size_t align = 0;
140 size_t cflags = (size > zio_buf_debug_limit) ? KMC_NODEBUG : 0;
141
142 #if defined(_ILP32) && defined(_KERNEL)
143 /*
144 * Cache size limited to 1M on 32-bit platforms until ARC
145 * buffers no longer require virtual address space.
146 */
147 if (size > zfs_max_recordsize)
148 break;
149 #endif
150
151 while (!ISP2(p2))
152 p2 &= p2 - 1;
153
154 #ifndef _KERNEL
155 /*
156 * If we are using watchpoints, put each buffer on its own page,
157 * to eliminate the performance overhead of trapping to the
158 * kernel when modifying a non-watched buffer that shares the
159 * page with a watched buffer.
160 */
161 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
162 continue;
163 /*
164 * Here's the problem - on 4K native devices in userland on
165 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
166 * will fail with EINVAL, causing zdb (and others) to coredump.
167 * Since userland probably doesn't need optimized buffer caches,
168 * we just force 4K alignment on everything.
169 */
170 align = 8 * SPA_MINBLOCKSIZE;
171 #else
172 if (size < PAGESIZE) {
173 align = SPA_MINBLOCKSIZE;
174 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
175 align = PAGESIZE;
176 }
177 #endif
178
179 if (align != 0) {
180 char name[36];
181 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
182 zio_buf_cache[c] = kmem_cache_create(name, size,
183 align, NULL, NULL, NULL, NULL, NULL, cflags);
184
185 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
186 zio_data_buf_cache[c] = kmem_cache_create(name, size,
187 align, NULL, NULL, NULL, NULL,
188 data_alloc_arena, cflags);
189 }
190 }
191
192 while (--c != 0) {
193 ASSERT(zio_buf_cache[c] != NULL);
194 if (zio_buf_cache[c - 1] == NULL)
195 zio_buf_cache[c - 1] = zio_buf_cache[c];
196
197 ASSERT(zio_data_buf_cache[c] != NULL);
198 if (zio_data_buf_cache[c - 1] == NULL)
199 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
200 }
201
202 zio_inject_init();
203
204 lz4_init();
205 }
206
207 void
208 zio_fini(void)
209 {
210 size_t c;
211 kmem_cache_t *last_cache = NULL;
212 kmem_cache_t *last_data_cache = NULL;
213
214 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
215 #ifdef _ILP32
216 /*
217 * Cache size limited to 1M on 32-bit platforms until ARC
218 * buffers no longer require virtual address space.
219 */
220 if (((c + 1) << SPA_MINBLOCKSHIFT) > zfs_max_recordsize)
221 break;
222 #endif
223 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
224 if (zio_buf_cache_allocs[c] != zio_buf_cache_frees[c])
225 (void) printf("zio_fini: [%d] %llu != %llu\n",
226 (int)((c + 1) << SPA_MINBLOCKSHIFT),
227 (long long unsigned)zio_buf_cache_allocs[c],
228 (long long unsigned)zio_buf_cache_frees[c]);
229 #endif
230 if (zio_buf_cache[c] != last_cache) {
231 last_cache = zio_buf_cache[c];
232 kmem_cache_destroy(zio_buf_cache[c]);
233 }
234 zio_buf_cache[c] = NULL;
235
236 if (zio_data_buf_cache[c] != last_data_cache) {
237 last_data_cache = zio_data_buf_cache[c];
238 kmem_cache_destroy(zio_data_buf_cache[c]);
239 }
240 zio_data_buf_cache[c] = NULL;
241 }
242
243 kmem_cache_destroy(zio_link_cache);
244 kmem_cache_destroy(zio_cache);
245
246 zio_inject_fini();
247
248 lz4_fini();
249 }
250
251 /*
252 * ==========================================================================
253 * Allocate and free I/O buffers
254 * ==========================================================================
255 */
256
257 /*
258 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
259 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
260 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
261 * excess / transient data in-core during a crashdump.
262 */
263 void *
264 zio_buf_alloc(size_t size)
265 {
266 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
267
268 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
269 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
270 atomic_add_64(&zio_buf_cache_allocs[c], 1);
271 #endif
272
273 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
274 }
275
276 /*
277 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
278 * crashdump if the kernel panics. This exists so that we will limit the amount
279 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
280 * of kernel heap dumped to disk when the kernel panics)
281 */
282 void *
283 zio_data_buf_alloc(size_t size)
284 {
285 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
286
287 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
288
289 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
290 }
291
292 void
293 zio_buf_free(void *buf, size_t size)
294 {
295 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
296
297 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
298 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
299 atomic_add_64(&zio_buf_cache_frees[c], 1);
300 #endif
301
302 kmem_cache_free(zio_buf_cache[c], buf);
303 }
304
305 void
306 zio_data_buf_free(void *buf, size_t size)
307 {
308 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
309
310 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
311
312 kmem_cache_free(zio_data_buf_cache[c], buf);
313 }
314
315 static void
316 zio_abd_free(void *abd, size_t size)
317 {
318 abd_free((abd_t *)abd);
319 }
320
321 /*
322 * ==========================================================================
323 * Push and pop I/O transform buffers
324 * ==========================================================================
325 */
326 void
327 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
328 zio_transform_func_t *transform)
329 {
330 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
331
332 /*
333 * Ensure that anyone expecting this zio to contain a linear ABD isn't
334 * going to get a nasty surprise when they try to access the data.
335 */
336 IMPLY(abd_is_linear(zio->io_abd), abd_is_linear(data));
337
338 zt->zt_orig_abd = zio->io_abd;
339 zt->zt_orig_size = zio->io_size;
340 zt->zt_bufsize = bufsize;
341 zt->zt_transform = transform;
342
343 zt->zt_next = zio->io_transform_stack;
344 zio->io_transform_stack = zt;
345
346 zio->io_abd = data;
347 zio->io_size = size;
348 }
349
350 void
351 zio_pop_transforms(zio_t *zio)
352 {
353 zio_transform_t *zt;
354
355 while ((zt = zio->io_transform_stack) != NULL) {
356 if (zt->zt_transform != NULL)
357 zt->zt_transform(zio,
358 zt->zt_orig_abd, zt->zt_orig_size);
359
360 if (zt->zt_bufsize != 0)
361 abd_free(zio->io_abd);
362
363 zio->io_abd = zt->zt_orig_abd;
364 zio->io_size = zt->zt_orig_size;
365 zio->io_transform_stack = zt->zt_next;
366
367 kmem_free(zt, sizeof (zio_transform_t));
368 }
369 }
370
371 /*
372 * ==========================================================================
373 * I/O transform callbacks for subblocks, decompression, and decryption
374 * ==========================================================================
375 */
376 static void
377 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
378 {
379 ASSERT(zio->io_size > size);
380
381 if (zio->io_type == ZIO_TYPE_READ)
382 abd_copy(data, zio->io_abd, size);
383 }
384
385 static void
386 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
387 {
388 if (zio->io_error == 0) {
389 void *tmp = abd_borrow_buf(data, size);
390 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
391 zio->io_abd, tmp, zio->io_size, size);
392 abd_return_buf_copy(data, tmp, size);
393
394 if (ret != 0)
395 zio->io_error = SET_ERROR(EIO);
396 }
397 }
398
399 static void
400 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
401 {
402 int ret;
403 void *tmp;
404 blkptr_t *bp = zio->io_bp;
405 uint64_t lsize = BP_GET_LSIZE(bp);
406 dmu_object_type_t ot = BP_GET_TYPE(bp);
407 uint8_t salt[ZIO_DATA_SALT_LEN];
408 uint8_t iv[ZIO_DATA_IV_LEN];
409 uint8_t mac[ZIO_DATA_MAC_LEN];
410 boolean_t no_crypt = B_FALSE;
411
412 ASSERT(BP_USES_CRYPT(bp));
413 ASSERT3U(size, !=, 0);
414
415 if (zio->io_error != 0)
416 return;
417
418 /*
419 * Verify the cksum of MACs stored in an indirect bp. It will always
420 * be possible to verify this since it does not require an encryption
421 * key.
422 */
423 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
424 zio_crypt_decode_mac_bp(bp, mac);
425
426 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
427 /*
428 * We haven't decompressed the data yet, but
429 * zio_crypt_do_indirect_mac_checksum() requires
430 * decompressed data to be able to parse out the MACs
431 * from the indirect block. We decompress it now and
432 * throw away the result after we are finished.
433 */
434 tmp = zio_buf_alloc(lsize);
435 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
436 zio->io_abd, tmp, zio->io_size, lsize);
437 if (ret != 0) {
438 ret = SET_ERROR(EIO);
439 goto error;
440 }
441 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
442 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
443 zio_buf_free(tmp, lsize);
444 } else {
445 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
446 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
447 }
448 abd_copy(data, zio->io_abd, size);
449
450 if (ret != 0)
451 goto error;
452
453 return;
454 }
455
456 /*
457 * If this is an authenticated block, just check the MAC. It would be
458 * nice to separate this out into its own flag, but for the moment
459 * enum zio_flag is out of bits.
460 */
461 if (BP_IS_AUTHENTICATED(bp)) {
462 if (ot == DMU_OT_OBJSET) {
463 ret = spa_do_crypt_objset_mac_abd(B_FALSE, zio->io_spa,
464 zio->io_bookmark.zb_objset, zio->io_abd, size,
465 BP_SHOULD_BYTESWAP(bp));
466 } else {
467 zio_crypt_decode_mac_bp(bp, mac);
468 ret = spa_do_crypt_mac_abd(B_FALSE, zio->io_spa,
469 zio->io_bookmark.zb_objset, zio->io_abd, size, mac);
470 }
471 abd_copy(data, zio->io_abd, size);
472
473 if (ret != 0)
474 goto error;
475
476 return;
477 }
478
479 zio_crypt_decode_params_bp(bp, salt, iv);
480
481 if (ot == DMU_OT_INTENT_LOG) {
482 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
483 zio_crypt_decode_mac_zil(tmp, mac);
484 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
485 } else {
486 zio_crypt_decode_mac_bp(bp, mac);
487 }
488
489 ret = spa_do_crypt_abd(B_FALSE, zio->io_spa, zio->io_bookmark.zb_objset,
490 bp, bp->blk_birth, size, data, zio->io_abd, iv, mac, salt,
491 &no_crypt);
492 if (no_crypt)
493 abd_copy(data, zio->io_abd, size);
494
495 if (ret != 0)
496 goto error;
497
498 return;
499
500 error:
501 /* assert that the key was found unless this was speculative */
502 ASSERT(ret != ENOENT || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
503
504 /*
505 * If there was a decryption / authentication error return EIO as
506 * the io_error. If this was not a speculative zio, create an ereport.
507 */
508 if (ret == ECKSUM) {
509 ret = SET_ERROR(EIO);
510 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
511 zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
512 zio->io_spa, NULL, &zio->io_bookmark, zio, 0, 0);
513 }
514 } else {
515 zio->io_error = ret;
516 }
517 }
518
519 /*
520 * ==========================================================================
521 * I/O parent/child relationships and pipeline interlocks
522 * ==========================================================================
523 */
524 zio_t *
525 zio_walk_parents(zio_t *cio, zio_link_t **zl)
526 {
527 list_t *pl = &cio->io_parent_list;
528
529 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
530 if (*zl == NULL)
531 return (NULL);
532
533 ASSERT((*zl)->zl_child == cio);
534 return ((*zl)->zl_parent);
535 }
536
537 zio_t *
538 zio_walk_children(zio_t *pio, zio_link_t **zl)
539 {
540 list_t *cl = &pio->io_child_list;
541
542 ASSERT(MUTEX_HELD(&pio->io_lock));
543
544 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
545 if (*zl == NULL)
546 return (NULL);
547
548 ASSERT((*zl)->zl_parent == pio);
549 return ((*zl)->zl_child);
550 }
551
552 zio_t *
553 zio_unique_parent(zio_t *cio)
554 {
555 zio_link_t *zl = NULL;
556 zio_t *pio = zio_walk_parents(cio, &zl);
557
558 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
559 return (pio);
560 }
561
562 void
563 zio_add_child(zio_t *pio, zio_t *cio)
564 {
565 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
566
567 /*
568 * Logical I/Os can have logical, gang, or vdev children.
569 * Gang I/Os can have gang or vdev children.
570 * Vdev I/Os can only have vdev children.
571 * The following ASSERT captures all of these constraints.
572 */
573 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
574
575 zl->zl_parent = pio;
576 zl->zl_child = cio;
577
578 mutex_enter(&pio->io_lock);
579 mutex_enter(&cio->io_lock);
580
581 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
582
583 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
584 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
585
586 list_insert_head(&pio->io_child_list, zl);
587 list_insert_head(&cio->io_parent_list, zl);
588
589 pio->io_child_count++;
590 cio->io_parent_count++;
591
592 mutex_exit(&cio->io_lock);
593 mutex_exit(&pio->io_lock);
594 }
595
596 static void
597 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
598 {
599 ASSERT(zl->zl_parent == pio);
600 ASSERT(zl->zl_child == cio);
601
602 mutex_enter(&pio->io_lock);
603 mutex_enter(&cio->io_lock);
604
605 list_remove(&pio->io_child_list, zl);
606 list_remove(&cio->io_parent_list, zl);
607
608 pio->io_child_count--;
609 cio->io_parent_count--;
610
611 mutex_exit(&cio->io_lock);
612 mutex_exit(&pio->io_lock);
613 kmem_cache_free(zio_link_cache, zl);
614 }
615
616 static boolean_t
617 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
618 {
619 uint64_t *countp = &zio->io_children[child][wait];
620 boolean_t waiting = B_FALSE;
621
622 mutex_enter(&zio->io_lock);
623 ASSERT(zio->io_stall == NULL);
624 if (*countp != 0) {
625 zio->io_stage >>= 1;
626 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
627 zio->io_stall = countp;
628 waiting = B_TRUE;
629 }
630 mutex_exit(&zio->io_lock);
631
632 return (waiting);
633 }
634
635 __attribute__((always_inline))
636 static inline void
637 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
638 {
639 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
640 int *errorp = &pio->io_child_error[zio->io_child_type];
641
642 mutex_enter(&pio->io_lock);
643 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
644 *errorp = zio_worst_error(*errorp, zio->io_error);
645 pio->io_reexecute |= zio->io_reexecute;
646 ASSERT3U(*countp, >, 0);
647
648 (*countp)--;
649
650 if (*countp == 0 && pio->io_stall == countp) {
651 zio_taskq_type_t type =
652 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
653 ZIO_TASKQ_INTERRUPT;
654 pio->io_stall = NULL;
655 mutex_exit(&pio->io_lock);
656 /*
657 * Dispatch the parent zio in its own taskq so that
658 * the child can continue to make progress. This also
659 * prevents overflowing the stack when we have deeply nested
660 * parent-child relationships.
661 */
662 zio_taskq_dispatch(pio, type, B_FALSE);
663 } else {
664 mutex_exit(&pio->io_lock);
665 }
666 }
667
668 static void
669 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
670 {
671 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
672 zio->io_error = zio->io_child_error[c];
673 }
674
675 int
676 zio_bookmark_compare(const void *x1, const void *x2)
677 {
678 const zio_t *z1 = x1;
679 const zio_t *z2 = x2;
680
681 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
682 return (-1);
683 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
684 return (1);
685
686 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
687 return (-1);
688 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
689 return (1);
690
691 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
692 return (-1);
693 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
694 return (1);
695
696 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
697 return (-1);
698 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
699 return (1);
700
701 if (z1 < z2)
702 return (-1);
703 if (z1 > z2)
704 return (1);
705
706 return (0);
707 }
708
709 /*
710 * ==========================================================================
711 * Create the various types of I/O (read, write, free, etc)
712 * ==========================================================================
713 */
714 static zio_t *
715 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
716 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
717 void *private, zio_type_t type, zio_priority_t priority,
718 enum zio_flag flags, vdev_t *vd, uint64_t offset,
719 const zbookmark_phys_t *zb, enum zio_stage stage,
720 enum zio_stage pipeline)
721 {
722 zio_t *zio;
723
724 ASSERT3U(psize, <=, SPA_MAXBLOCKSIZE);
725 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
726 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
727
728 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
729 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
730 ASSERT(vd || stage == ZIO_STAGE_OPEN);
731
732 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
733
734 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
735 bzero(zio, sizeof (zio_t));
736
737 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
738 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
739
740 list_create(&zio->io_parent_list, sizeof (zio_link_t),
741 offsetof(zio_link_t, zl_parent_node));
742 list_create(&zio->io_child_list, sizeof (zio_link_t),
743 offsetof(zio_link_t, zl_child_node));
744 metaslab_trace_init(&zio->io_alloc_list);
745
746 if (vd != NULL)
747 zio->io_child_type = ZIO_CHILD_VDEV;
748 else if (flags & ZIO_FLAG_GANG_CHILD)
749 zio->io_child_type = ZIO_CHILD_GANG;
750 else if (flags & ZIO_FLAG_DDT_CHILD)
751 zio->io_child_type = ZIO_CHILD_DDT;
752 else
753 zio->io_child_type = ZIO_CHILD_LOGICAL;
754
755 if (bp != NULL) {
756 zio->io_bp = (blkptr_t *)bp;
757 zio->io_bp_copy = *bp;
758 zio->io_bp_orig = *bp;
759 if (type != ZIO_TYPE_WRITE ||
760 zio->io_child_type == ZIO_CHILD_DDT)
761 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
762 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
763 zio->io_logical = zio;
764 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
765 pipeline |= ZIO_GANG_STAGES;
766 }
767
768 zio->io_spa = spa;
769 zio->io_txg = txg;
770 zio->io_done = done;
771 zio->io_private = private;
772 zio->io_type = type;
773 zio->io_priority = priority;
774 zio->io_vd = vd;
775 zio->io_offset = offset;
776 zio->io_orig_abd = zio->io_abd = data;
777 zio->io_orig_size = zio->io_size = psize;
778 zio->io_lsize = lsize;
779 zio->io_orig_flags = zio->io_flags = flags;
780 zio->io_orig_stage = zio->io_stage = stage;
781 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
782 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
783
784 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
785 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
786
787 if (zb != NULL)
788 zio->io_bookmark = *zb;
789
790 if (pio != NULL) {
791 if (zio->io_logical == NULL)
792 zio->io_logical = pio->io_logical;
793 if (zio->io_child_type == ZIO_CHILD_GANG)
794 zio->io_gang_leader = pio->io_gang_leader;
795 zio_add_child(pio, zio);
796 }
797
798 taskq_init_ent(&zio->io_tqent);
799
800 return (zio);
801 }
802
803 static void
804 zio_destroy(zio_t *zio)
805 {
806 metaslab_trace_fini(&zio->io_alloc_list);
807 list_destroy(&zio->io_parent_list);
808 list_destroy(&zio->io_child_list);
809 mutex_destroy(&zio->io_lock);
810 cv_destroy(&zio->io_cv);
811 kmem_cache_free(zio_cache, zio);
812 }
813
814 zio_t *
815 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
816 void *private, enum zio_flag flags)
817 {
818 zio_t *zio;
819
820 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
821 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
822 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
823
824 return (zio);
825 }
826
827 zio_t *
828 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
829 {
830 return (zio_null(NULL, spa, NULL, done, private, flags));
831 }
832
833 void
834 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp)
835 {
836 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
837 zfs_panic_recover("blkptr at %p has invalid TYPE %llu",
838 bp, (longlong_t)BP_GET_TYPE(bp));
839 }
840 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
841 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
842 zfs_panic_recover("blkptr at %p has invalid CHECKSUM %llu",
843 bp, (longlong_t)BP_GET_CHECKSUM(bp));
844 }
845 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
846 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
847 zfs_panic_recover("blkptr at %p has invalid COMPRESS %llu",
848 bp, (longlong_t)BP_GET_COMPRESS(bp));
849 }
850 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
851 zfs_panic_recover("blkptr at %p has invalid LSIZE %llu",
852 bp, (longlong_t)BP_GET_LSIZE(bp));
853 }
854 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
855 zfs_panic_recover("blkptr at %p has invalid PSIZE %llu",
856 bp, (longlong_t)BP_GET_PSIZE(bp));
857 }
858
859 if (BP_IS_EMBEDDED(bp)) {
860 if (BPE_GET_ETYPE(bp) > NUM_BP_EMBEDDED_TYPES) {
861 zfs_panic_recover("blkptr at %p has invalid ETYPE %llu",
862 bp, (longlong_t)BPE_GET_ETYPE(bp));
863 }
864 }
865
866 /*
867 * Pool-specific checks.
868 *
869 * Note: it would be nice to verify that the blk_birth and
870 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
871 * allows the birth time of log blocks (and dmu_sync()-ed blocks
872 * that are in the log) to be arbitrarily large.
873 */
874 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
875 uint64_t vdevid = DVA_GET_VDEV(&bp->blk_dva[i]);
876
877 if (vdevid >= spa->spa_root_vdev->vdev_children) {
878 zfs_panic_recover("blkptr at %p DVA %u has invalid "
879 "VDEV %llu",
880 bp, i, (longlong_t)vdevid);
881 continue;
882 }
883 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
884 if (vd == NULL) {
885 zfs_panic_recover("blkptr at %p DVA %u has invalid "
886 "VDEV %llu",
887 bp, i, (longlong_t)vdevid);
888 continue;
889 }
890 if (vd->vdev_ops == &vdev_hole_ops) {
891 zfs_panic_recover("blkptr at %p DVA %u has hole "
892 "VDEV %llu",
893 bp, i, (longlong_t)vdevid);
894 continue;
895 }
896 if (vd->vdev_ops == &vdev_missing_ops) {
897 /*
898 * "missing" vdevs are valid during import, but we
899 * don't have their detailed info (e.g. asize), so
900 * we can't perform any more checks on them.
901 */
902 continue;
903 }
904 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
905 uint64_t asize = DVA_GET_ASIZE(&bp->blk_dva[i]);
906 if (BP_IS_GANG(bp))
907 asize = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
908 if (offset + asize > vd->vdev_asize) {
909 zfs_panic_recover("blkptr at %p DVA %u has invalid "
910 "OFFSET %llu",
911 bp, i, (longlong_t)offset);
912 }
913 }
914 }
915
916 zio_t *
917 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
918 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
919 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
920 {
921 zio_t *zio;
922
923 zfs_blkptr_verify(spa, bp);
924
925 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
926 data, size, size, done, private,
927 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
928 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
929 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
930
931 return (zio);
932 }
933
934 zio_t *
935 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
936 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
937 zio_done_func_t *ready, zio_done_func_t *children_ready,
938 zio_done_func_t *physdone, zio_done_func_t *done,
939 void *private, zio_priority_t priority, enum zio_flag flags,
940 const zbookmark_phys_t *zb)
941 {
942 zio_t *zio;
943
944 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
945 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
946 zp->zp_compress >= ZIO_COMPRESS_OFF &&
947 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
948 DMU_OT_IS_VALID(zp->zp_type) &&
949 zp->zp_level < 32 &&
950 zp->zp_copies > 0 &&
951 zp->zp_copies <= spa_max_replication(spa));
952
953 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
954 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
955 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
956 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
957
958 zio->io_ready = ready;
959 zio->io_children_ready = children_ready;
960 zio->io_physdone = physdone;
961 zio->io_prop = *zp;
962
963 /*
964 * Data can be NULL if we are going to call zio_write_override() to
965 * provide the already-allocated BP. But we may need the data to
966 * verify a dedup hit (if requested). In this case, don't try to
967 * dedup (just take the already-allocated BP verbatim). Encrypted
968 * dedup blocks need data as well so we also disable dedup in this
969 * case.
970 */
971 if (data == NULL &&
972 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
973 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
974 }
975
976 return (zio);
977 }
978
979 zio_t *
980 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
981 uint64_t size, zio_done_func_t *done, void *private,
982 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
983 {
984 zio_t *zio;
985
986 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
987 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
988 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
989
990 return (zio);
991 }
992
993 void
994 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
995 {
996 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
997 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
998 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
999 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1000
1001 /*
1002 * We must reset the io_prop to match the values that existed
1003 * when the bp was first written by dmu_sync() keeping in mind
1004 * that nopwrite and dedup are mutually exclusive.
1005 */
1006 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1007 zio->io_prop.zp_nopwrite = nopwrite;
1008 zio->io_prop.zp_copies = copies;
1009 zio->io_bp_override = bp;
1010 }
1011
1012 void
1013 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1014 {
1015
1016 /*
1017 * The check for EMBEDDED is a performance optimization. We
1018 * process the free here (by ignoring it) rather than
1019 * putting it on the list and then processing it in zio_free_sync().
1020 */
1021 if (BP_IS_EMBEDDED(bp))
1022 return;
1023 metaslab_check_free(spa, bp);
1024
1025 /*
1026 * Frees that are for the currently-syncing txg, are not going to be
1027 * deferred, and which will not need to do a read (i.e. not GANG or
1028 * DEDUP), can be processed immediately. Otherwise, put them on the
1029 * in-memory list for later processing.
1030 */
1031 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp) ||
1032 txg != spa->spa_syncing_txg ||
1033 spa_sync_pass(spa) >= zfs_sync_pass_deferred_free) {
1034 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1035 } else {
1036 VERIFY0(zio_wait(zio_free_sync(NULL, spa, txg, bp, 0)));
1037 }
1038 }
1039
1040 zio_t *
1041 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1042 enum zio_flag flags)
1043 {
1044 zio_t *zio;
1045 enum zio_stage stage = ZIO_FREE_PIPELINE;
1046
1047 ASSERT(!BP_IS_HOLE(bp));
1048 ASSERT(spa_syncing_txg(spa) == txg);
1049 ASSERT(spa_sync_pass(spa) < zfs_sync_pass_deferred_free);
1050
1051 if (BP_IS_EMBEDDED(bp))
1052 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1053
1054 metaslab_check_free(spa, bp);
1055 arc_freed(spa, bp);
1056 dsl_scan_freed(spa, bp);
1057
1058 /*
1059 * GANG and DEDUP blocks can induce a read (for the gang block header,
1060 * or the DDT), so issue them asynchronously so that this thread is
1061 * not tied up.
1062 */
1063 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp))
1064 stage |= ZIO_STAGE_ISSUE_ASYNC;
1065
1066 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1067 BP_GET_PSIZE(bp), NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1068 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage);
1069
1070 return (zio);
1071 }
1072
1073 zio_t *
1074 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1075 zio_done_func_t *done, void *private, enum zio_flag flags)
1076 {
1077 zio_t *zio;
1078
1079 dprintf_bp(bp, "claiming in txg %llu", txg);
1080
1081 if (BP_IS_EMBEDDED(bp))
1082 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1083
1084 /*
1085 * A claim is an allocation of a specific block. Claims are needed
1086 * to support immediate writes in the intent log. The issue is that
1087 * immediate writes contain committed data, but in a txg that was
1088 * *not* committed. Upon opening the pool after an unclean shutdown,
1089 * the intent log claims all blocks that contain immediate write data
1090 * so that the SPA knows they're in use.
1091 *
1092 * All claims *must* be resolved in the first txg -- before the SPA
1093 * starts allocating blocks -- so that nothing is allocated twice.
1094 * If txg == 0 we just verify that the block is claimable.
1095 */
1096 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
1097 ASSERT(txg == spa_first_txg(spa) || txg == 0);
1098 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
1099
1100 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1101 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1102 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1103 ASSERT0(zio->io_queued_timestamp);
1104
1105 return (zio);
1106 }
1107
1108 zio_t *
1109 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1110 zio_done_func_t *done, void *private, enum zio_flag flags)
1111 {
1112 zio_t *zio;
1113 int c;
1114
1115 if (vd->vdev_children == 0) {
1116 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1117 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1118 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1119
1120 zio->io_cmd = cmd;
1121 } else {
1122 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1123
1124 for (c = 0; c < vd->vdev_children; c++)
1125 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1126 done, private, flags));
1127 }
1128
1129 return (zio);
1130 }
1131
1132 zio_t *
1133 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1134 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1135 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1136 {
1137 zio_t *zio;
1138
1139 ASSERT(vd->vdev_children == 0);
1140 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1141 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1142 ASSERT3U(offset + size, <=, vd->vdev_psize);
1143
1144 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1145 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1146 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1147
1148 zio->io_prop.zp_checksum = checksum;
1149
1150 return (zio);
1151 }
1152
1153 zio_t *
1154 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1155 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1156 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1157 {
1158 zio_t *zio;
1159
1160 ASSERT(vd->vdev_children == 0);
1161 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1162 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1163 ASSERT3U(offset + size, <=, vd->vdev_psize);
1164
1165 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1166 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1167 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1168
1169 zio->io_prop.zp_checksum = checksum;
1170
1171 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1172 /*
1173 * zec checksums are necessarily destructive -- they modify
1174 * the end of the write buffer to hold the verifier/checksum.
1175 * Therefore, we must make a local copy in case the data is
1176 * being written to multiple places in parallel.
1177 */
1178 abd_t *wbuf = abd_alloc_sametype(data, size);
1179 abd_copy(wbuf, data, size);
1180
1181 zio_push_transform(zio, wbuf, size, size, NULL);
1182 }
1183
1184 return (zio);
1185 }
1186
1187 /*
1188 * Create a child I/O to do some work for us.
1189 */
1190 zio_t *
1191 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1192 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1193 enum zio_flag flags, zio_done_func_t *done, void *private)
1194 {
1195 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1196 zio_t *zio;
1197
1198 ASSERT(vd->vdev_parent ==
1199 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
1200
1201 if (type == ZIO_TYPE_READ && bp != NULL) {
1202 /*
1203 * If we have the bp, then the child should perform the
1204 * checksum and the parent need not. This pushes error
1205 * detection as close to the leaves as possible and
1206 * eliminates redundant checksums in the interior nodes.
1207 */
1208 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1209 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1210 }
1211
1212 if (vd->vdev_children == 0)
1213 offset += VDEV_LABEL_START_SIZE;
1214
1215 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
1216
1217 /*
1218 * If we've decided to do a repair, the write is not speculative --
1219 * even if the original read was.
1220 */
1221 if (flags & ZIO_FLAG_IO_REPAIR)
1222 flags &= ~ZIO_FLAG_SPECULATIVE;
1223
1224 /*
1225 * If we're creating a child I/O that is not associated with a
1226 * top-level vdev, then the child zio is not an allocating I/O.
1227 * If this is a retried I/O then we ignore it since we will
1228 * have already processed the original allocating I/O.
1229 */
1230 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1231 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1232 ASSERTV(metaslab_class_t *mc = spa_normal_class(pio->io_spa));
1233
1234 ASSERT(mc->mc_alloc_throttle_enabled);
1235 ASSERT(type == ZIO_TYPE_WRITE);
1236 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1237 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1238 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1239 pio->io_child_type == ZIO_CHILD_GANG);
1240
1241 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1242 }
1243
1244
1245 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1246 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1247 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1248 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1249
1250 zio->io_physdone = pio->io_physdone;
1251 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1252 zio->io_logical->io_phys_children++;
1253
1254 return (zio);
1255 }
1256
1257 zio_t *
1258 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1259 int type, zio_priority_t priority, enum zio_flag flags,
1260 zio_done_func_t *done, void *private)
1261 {
1262 zio_t *zio;
1263
1264 ASSERT(vd->vdev_ops->vdev_op_leaf);
1265
1266 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1267 data, size, size, done, private, type, priority,
1268 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1269 vd, offset, NULL,
1270 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1271
1272 return (zio);
1273 }
1274
1275 void
1276 zio_flush(zio_t *zio, vdev_t *vd)
1277 {
1278 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1279 NULL, NULL,
1280 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1281 }
1282
1283 void
1284 zio_shrink(zio_t *zio, uint64_t size)
1285 {
1286 ASSERT3P(zio->io_executor, ==, NULL);
1287 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1288 ASSERT3U(size, <=, zio->io_size);
1289
1290 /*
1291 * We don't shrink for raidz because of problems with the
1292 * reconstruction when reading back less than the block size.
1293 * Note, BP_IS_RAIDZ() assumes no compression.
1294 */
1295 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1296 if (!BP_IS_RAIDZ(zio->io_bp)) {
1297 /* we are not doing a raw write */
1298 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1299 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1300 }
1301 }
1302
1303 /*
1304 * ==========================================================================
1305 * Prepare to read and write logical blocks
1306 * ==========================================================================
1307 */
1308
1309 static int
1310 zio_read_bp_init(zio_t *zio)
1311 {
1312 blkptr_t *bp = zio->io_bp;
1313 uint64_t psize =
1314 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1315
1316 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1317 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1318 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1319 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1320 psize, psize, zio_decompress);
1321 }
1322
1323 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1324 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1325 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1326 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1327 psize, psize, zio_decrypt);
1328 }
1329
1330 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1331 int psize = BPE_GET_PSIZE(bp);
1332 void *data = abd_borrow_buf(zio->io_abd, psize);
1333
1334 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1335 decode_embedded_bp_compressed(bp, data);
1336 abd_return_buf_copy(zio->io_abd, data, psize);
1337 } else {
1338 ASSERT(!BP_IS_EMBEDDED(bp));
1339 }
1340
1341 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1342 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1343
1344 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1345 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1346
1347 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1348 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1349
1350 return (ZIO_PIPELINE_CONTINUE);
1351 }
1352
1353 static int
1354 zio_write_bp_init(zio_t *zio)
1355 {
1356 if (!IO_IS_ALLOCATING(zio))
1357 return (ZIO_PIPELINE_CONTINUE);
1358
1359 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1360
1361 if (zio->io_bp_override) {
1362 blkptr_t *bp = zio->io_bp;
1363 zio_prop_t *zp = &zio->io_prop;
1364
1365 ASSERT(bp->blk_birth != zio->io_txg);
1366 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1367
1368 *bp = *zio->io_bp_override;
1369 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1370
1371 if (BP_IS_EMBEDDED(bp))
1372 return (ZIO_PIPELINE_CONTINUE);
1373
1374 /*
1375 * If we've been overridden and nopwrite is set then
1376 * set the flag accordingly to indicate that a nopwrite
1377 * has already occurred.
1378 */
1379 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1380 ASSERT(!zp->zp_dedup);
1381 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1382 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1383 return (ZIO_PIPELINE_CONTINUE);
1384 }
1385
1386 ASSERT(!zp->zp_nopwrite);
1387
1388 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1389 return (ZIO_PIPELINE_CONTINUE);
1390
1391 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1392 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1393
1394 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1395 !zp->zp_encrypt) {
1396 BP_SET_DEDUP(bp, 1);
1397 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1398 return (ZIO_PIPELINE_CONTINUE);
1399 }
1400
1401 /*
1402 * We were unable to handle this as an override bp, treat
1403 * it as a regular write I/O.
1404 */
1405 zio->io_bp_override = NULL;
1406 *bp = zio->io_bp_orig;
1407 zio->io_pipeline = zio->io_orig_pipeline;
1408 }
1409
1410 return (ZIO_PIPELINE_CONTINUE);
1411 }
1412
1413 static int
1414 zio_write_compress(zio_t *zio)
1415 {
1416 spa_t *spa = zio->io_spa;
1417 zio_prop_t *zp = &zio->io_prop;
1418 enum zio_compress compress = zp->zp_compress;
1419 blkptr_t *bp = zio->io_bp;
1420 uint64_t lsize = zio->io_lsize;
1421 uint64_t psize = zio->io_size;
1422 int pass = 1;
1423
1424 /*
1425 * If our children haven't all reached the ready stage,
1426 * wait for them and then repeat this pipeline stage.
1427 */
1428 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1429 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1430 return (ZIO_PIPELINE_STOP);
1431
1432 if (!IO_IS_ALLOCATING(zio))
1433 return (ZIO_PIPELINE_CONTINUE);
1434
1435 if (zio->io_children_ready != NULL) {
1436 /*
1437 * Now that all our children are ready, run the callback
1438 * associated with this zio in case it wants to modify the
1439 * data to be written.
1440 */
1441 ASSERT3U(zp->zp_level, >, 0);
1442 zio->io_children_ready(zio);
1443 }
1444
1445 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1446 ASSERT(zio->io_bp_override == NULL);
1447
1448 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1449 /*
1450 * We're rewriting an existing block, which means we're
1451 * working on behalf of spa_sync(). For spa_sync() to
1452 * converge, it must eventually be the case that we don't
1453 * have to allocate new blocks. But compression changes
1454 * the blocksize, which forces a reallocate, and makes
1455 * convergence take longer. Therefore, after the first
1456 * few passes, stop compressing to ensure convergence.
1457 */
1458 pass = spa_sync_pass(spa);
1459
1460 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1461 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1462 ASSERT(!BP_GET_DEDUP(bp));
1463
1464 if (pass >= zfs_sync_pass_dont_compress)
1465 compress = ZIO_COMPRESS_OFF;
1466
1467 /* Make sure someone doesn't change their mind on overwrites */
1468 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1469 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1470 }
1471
1472 /* If it's a compressed write that is not raw, compress the buffer. */
1473 if (compress != ZIO_COMPRESS_OFF &&
1474 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1475 void *cbuf = zio_buf_alloc(lsize);
1476 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1477 if (psize == 0 || psize == lsize) {
1478 compress = ZIO_COMPRESS_OFF;
1479 zio_buf_free(cbuf, lsize);
1480 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1481 psize <= BPE_PAYLOAD_SIZE &&
1482 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1483 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1484 encode_embedded_bp_compressed(bp,
1485 cbuf, compress, lsize, psize);
1486 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1487 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1488 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1489 zio_buf_free(cbuf, lsize);
1490 bp->blk_birth = zio->io_txg;
1491 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1492 ASSERT(spa_feature_is_active(spa,
1493 SPA_FEATURE_EMBEDDED_DATA));
1494 return (ZIO_PIPELINE_CONTINUE);
1495 } else {
1496 /*
1497 * Round up compressed size up to the ashift
1498 * of the smallest-ashift device, and zero the tail.
1499 * This ensures that the compressed size of the BP
1500 * (and thus compressratio property) are correct,
1501 * in that we charge for the padding used to fill out
1502 * the last sector.
1503 */
1504 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
1505 size_t rounded = (size_t)P2ROUNDUP(psize,
1506 1ULL << spa->spa_min_ashift);
1507 if (rounded >= lsize) {
1508 compress = ZIO_COMPRESS_OFF;
1509 zio_buf_free(cbuf, lsize);
1510 psize = lsize;
1511 } else {
1512 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1513 abd_take_ownership_of_buf(cdata, B_TRUE);
1514 abd_zero_off(cdata, psize, rounded - psize);
1515 psize = rounded;
1516 zio_push_transform(zio, cdata,
1517 psize, lsize, NULL);
1518 }
1519 }
1520
1521 /*
1522 * We were unable to handle this as an override bp, treat
1523 * it as a regular write I/O.
1524 */
1525 zio->io_bp_override = NULL;
1526 *bp = zio->io_bp_orig;
1527 zio->io_pipeline = zio->io_orig_pipeline;
1528
1529 } else {
1530 ASSERT3U(psize, !=, 0);
1531
1532 }
1533
1534 /*
1535 * The final pass of spa_sync() must be all rewrites, but the first
1536 * few passes offer a trade-off: allocating blocks defers convergence,
1537 * but newly allocated blocks are sequential, so they can be written
1538 * to disk faster. Therefore, we allow the first few passes of
1539 * spa_sync() to allocate new blocks, but force rewrites after that.
1540 * There should only be a handful of blocks after pass 1 in any case.
1541 */
1542 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1543 BP_GET_PSIZE(bp) == psize &&
1544 pass >= zfs_sync_pass_rewrite) {
1545 ASSERT(psize != 0);
1546 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1547 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1548 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1549 } else {
1550 BP_ZERO(bp);
1551 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1552 }
1553
1554 if (psize == 0) {
1555 if (zio->io_bp_orig.blk_birth != 0 &&
1556 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1557 BP_SET_LSIZE(bp, lsize);
1558 BP_SET_TYPE(bp, zp->zp_type);
1559 BP_SET_LEVEL(bp, zp->zp_level);
1560 BP_SET_BIRTH(bp, zio->io_txg, 0);
1561 }
1562 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1563 } else {
1564 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1565 BP_SET_LSIZE(bp, lsize);
1566 BP_SET_TYPE(bp, zp->zp_type);
1567 BP_SET_LEVEL(bp, zp->zp_level);
1568 BP_SET_PSIZE(bp, psize);
1569 BP_SET_COMPRESS(bp, compress);
1570 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1571 BP_SET_DEDUP(bp, zp->zp_dedup);
1572 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1573 if (zp->zp_dedup) {
1574 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1575 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1576 ASSERT(!zp->zp_encrypt ||
1577 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1578 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1579 }
1580 if (zp->zp_nopwrite) {
1581 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1582 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1583 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1584 }
1585 }
1586 return (ZIO_PIPELINE_CONTINUE);
1587 }
1588
1589 static int
1590 zio_free_bp_init(zio_t *zio)
1591 {
1592 blkptr_t *bp = zio->io_bp;
1593
1594 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1595 if (BP_GET_DEDUP(bp))
1596 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1597 }
1598
1599 return (ZIO_PIPELINE_CONTINUE);
1600 }
1601
1602 /*
1603 * ==========================================================================
1604 * Execute the I/O pipeline
1605 * ==========================================================================
1606 */
1607
1608 static void
1609 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1610 {
1611 spa_t *spa = zio->io_spa;
1612 zio_type_t t = zio->io_type;
1613 int flags = (cutinline ? TQ_FRONT : 0);
1614
1615 /*
1616 * If we're a config writer or a probe, the normal issue and
1617 * interrupt threads may all be blocked waiting for the config lock.
1618 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1619 */
1620 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1621 t = ZIO_TYPE_NULL;
1622
1623 /*
1624 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1625 */
1626 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1627 t = ZIO_TYPE_NULL;
1628
1629 /*
1630 * If this is a high priority I/O, then use the high priority taskq if
1631 * available.
1632 */
1633 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1634 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1635 q++;
1636
1637 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1638
1639 /*
1640 * NB: We are assuming that the zio can only be dispatched
1641 * to a single taskq at a time. It would be a grievous error
1642 * to dispatch the zio to another taskq at the same time.
1643 */
1644 ASSERT(taskq_empty_ent(&zio->io_tqent));
1645 spa_taskq_dispatch_ent(spa, t, q, (task_func_t *)zio_execute, zio,
1646 flags, &zio->io_tqent);
1647 }
1648
1649 static boolean_t
1650 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1651 {
1652 kthread_t *executor = zio->io_executor;
1653 spa_t *spa = zio->io_spa;
1654
1655 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1656 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1657 uint_t i;
1658 for (i = 0; i < tqs->stqs_count; i++) {
1659 if (taskq_member(tqs->stqs_taskq[i], executor))
1660 return (B_TRUE);
1661 }
1662 }
1663
1664 return (B_FALSE);
1665 }
1666
1667 static int
1668 zio_issue_async(zio_t *zio)
1669 {
1670 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1671
1672 return (ZIO_PIPELINE_STOP);
1673 }
1674
1675 void
1676 zio_interrupt(zio_t *zio)
1677 {
1678 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1679 }
1680
1681 void
1682 zio_delay_interrupt(zio_t *zio)
1683 {
1684 /*
1685 * The timeout_generic() function isn't defined in userspace, so
1686 * rather than trying to implement the function, the zio delay
1687 * functionality has been disabled for userspace builds.
1688 */
1689
1690 #ifdef _KERNEL
1691 /*
1692 * If io_target_timestamp is zero, then no delay has been registered
1693 * for this IO, thus jump to the end of this function and "skip" the
1694 * delay; issuing it directly to the zio layer.
1695 */
1696 if (zio->io_target_timestamp != 0) {
1697 hrtime_t now = gethrtime();
1698
1699 if (now >= zio->io_target_timestamp) {
1700 /*
1701 * This IO has already taken longer than the target
1702 * delay to complete, so we don't want to delay it
1703 * any longer; we "miss" the delay and issue it
1704 * directly to the zio layer. This is likely due to
1705 * the target latency being set to a value less than
1706 * the underlying hardware can satisfy (e.g. delay
1707 * set to 1ms, but the disks take 10ms to complete an
1708 * IO request).
1709 */
1710
1711 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1712 hrtime_t, now);
1713
1714 zio_interrupt(zio);
1715 } else {
1716 taskqid_t tid;
1717 hrtime_t diff = zio->io_target_timestamp - now;
1718 clock_t expire_at_tick = ddi_get_lbolt() +
1719 NSEC_TO_TICK(diff);
1720
1721 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1722 hrtime_t, now, hrtime_t, diff);
1723
1724 if (NSEC_TO_TICK(diff) == 0) {
1725 /* Our delay is less than a jiffy - just spin */
1726 zfs_sleep_until(zio->io_target_timestamp);
1727 } else {
1728 /*
1729 * Use taskq_dispatch_delay() in the place of
1730 * OpenZFS's timeout_generic().
1731 */
1732 tid = taskq_dispatch_delay(system_taskq,
1733 (task_func_t *)zio_interrupt,
1734 zio, TQ_NOSLEEP, expire_at_tick);
1735 if (tid == TASKQID_INVALID) {
1736 /*
1737 * Couldn't allocate a task. Just
1738 * finish the zio without a delay.
1739 */
1740 zio_interrupt(zio);
1741 }
1742 }
1743 }
1744 return;
1745 }
1746 #endif
1747 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1748 zio_interrupt(zio);
1749 }
1750
1751 /*
1752 * Execute the I/O pipeline until one of the following occurs:
1753 * (1) the I/O completes; (2) the pipeline stalls waiting for
1754 * dependent child I/Os; (3) the I/O issues, so we're waiting
1755 * for an I/O completion interrupt; (4) the I/O is delegated by
1756 * vdev-level caching or aggregation; (5) the I/O is deferred
1757 * due to vdev-level queueing; (6) the I/O is handed off to
1758 * another thread. In all cases, the pipeline stops whenever
1759 * there's no CPU work; it never burns a thread in cv_wait_io().
1760 *
1761 * There's no locking on io_stage because there's no legitimate way
1762 * for multiple threads to be attempting to process the same I/O.
1763 */
1764 static zio_pipe_stage_t *zio_pipeline[];
1765
1766 /*
1767 * zio_execute() is a wrapper around the static function
1768 * __zio_execute() so that we can force __zio_execute() to be
1769 * inlined. This reduces stack overhead which is important
1770 * because __zio_execute() is called recursively in several zio
1771 * code paths. zio_execute() itself cannot be inlined because
1772 * it is externally visible.
1773 */
1774 void
1775 zio_execute(zio_t *zio)
1776 {
1777 fstrans_cookie_t cookie;
1778
1779 cookie = spl_fstrans_mark();
1780 __zio_execute(zio);
1781 spl_fstrans_unmark(cookie);
1782 }
1783
1784 /*
1785 * Used to determine if in the current context the stack is sized large
1786 * enough to allow zio_execute() to be called recursively. A minimum
1787 * stack size of 16K is required to avoid needing to re-dispatch the zio.
1788 */
1789 boolean_t
1790 zio_execute_stack_check(zio_t *zio)
1791 {
1792 #if !defined(HAVE_LARGE_STACKS)
1793 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
1794
1795 /* Executing in txg_sync_thread() context. */
1796 if (dp && curthread == dp->dp_tx.tx_sync_thread)
1797 return (B_TRUE);
1798
1799 /* Pool initialization outside of zio_taskq context. */
1800 if (dp && spa_is_initializing(dp->dp_spa) &&
1801 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
1802 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
1803 return (B_TRUE);
1804 #endif /* HAVE_LARGE_STACKS */
1805
1806 return (B_FALSE);
1807 }
1808
1809 __attribute__((always_inline))
1810 static inline void
1811 __zio_execute(zio_t *zio)
1812 {
1813 zio->io_executor = curthread;
1814
1815 ASSERT3U(zio->io_queued_timestamp, >, 0);
1816
1817 while (zio->io_stage < ZIO_STAGE_DONE) {
1818 enum zio_stage pipeline = zio->io_pipeline;
1819 enum zio_stage stage = zio->io_stage;
1820 int rv;
1821
1822 ASSERT(!MUTEX_HELD(&zio->io_lock));
1823 ASSERT(ISP2(stage));
1824 ASSERT(zio->io_stall == NULL);
1825
1826 do {
1827 stage <<= 1;
1828 } while ((stage & pipeline) == 0);
1829
1830 ASSERT(stage <= ZIO_STAGE_DONE);
1831
1832 /*
1833 * If we are in interrupt context and this pipeline stage
1834 * will grab a config lock that is held across I/O,
1835 * or may wait for an I/O that needs an interrupt thread
1836 * to complete, issue async to avoid deadlock.
1837 *
1838 * For VDEV_IO_START, we cut in line so that the io will
1839 * be sent to disk promptly.
1840 */
1841 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1842 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1843 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1844 zio_requeue_io_start_cut_in_line : B_FALSE;
1845 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1846 return;
1847 }
1848
1849 /*
1850 * If the current context doesn't have large enough stacks
1851 * the zio must be issued asynchronously to prevent overflow.
1852 */
1853 if (zio_execute_stack_check(zio)) {
1854 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1855 zio_requeue_io_start_cut_in_line : B_FALSE;
1856 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1857 return;
1858 }
1859
1860 zio->io_stage = stage;
1861 zio->io_pipeline_trace |= zio->io_stage;
1862 rv = zio_pipeline[highbit64(stage) - 1](zio);
1863
1864 if (rv == ZIO_PIPELINE_STOP)
1865 return;
1866
1867 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1868 }
1869 }
1870
1871
1872 /*
1873 * ==========================================================================
1874 * Initiate I/O, either sync or async
1875 * ==========================================================================
1876 */
1877 int
1878 zio_wait(zio_t *zio)
1879 {
1880 int error;
1881
1882 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
1883 ASSERT3P(zio->io_executor, ==, NULL);
1884
1885 zio->io_waiter = curthread;
1886 ASSERT0(zio->io_queued_timestamp);
1887 zio->io_queued_timestamp = gethrtime();
1888
1889 __zio_execute(zio);
1890
1891 mutex_enter(&zio->io_lock);
1892 while (zio->io_executor != NULL)
1893 cv_wait_io(&zio->io_cv, &zio->io_lock);
1894 mutex_exit(&zio->io_lock);
1895
1896 error = zio->io_error;
1897 zio_destroy(zio);
1898
1899 return (error);
1900 }
1901
1902 void
1903 zio_nowait(zio_t *zio)
1904 {
1905 ASSERT3P(zio->io_executor, ==, NULL);
1906
1907 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1908 zio_unique_parent(zio) == NULL) {
1909 zio_t *pio;
1910
1911 /*
1912 * This is a logical async I/O with no parent to wait for it.
1913 * We add it to the spa_async_root_zio "Godfather" I/O which
1914 * will ensure they complete prior to unloading the pool.
1915 */
1916 spa_t *spa = zio->io_spa;
1917 kpreempt_disable();
1918 pio = spa->spa_async_zio_root[CPU_SEQID];
1919 kpreempt_enable();
1920
1921 zio_add_child(pio, zio);
1922 }
1923
1924 ASSERT0(zio->io_queued_timestamp);
1925 zio->io_queued_timestamp = gethrtime();
1926 __zio_execute(zio);
1927 }
1928
1929 /*
1930 * ==========================================================================
1931 * Reexecute, cancel, or suspend/resume failed I/O
1932 * ==========================================================================
1933 */
1934
1935 static void
1936 zio_reexecute(zio_t *pio)
1937 {
1938 zio_t *cio, *cio_next;
1939
1940 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1941 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1942 ASSERT(pio->io_gang_leader == NULL);
1943 ASSERT(pio->io_gang_tree == NULL);
1944
1945 pio->io_flags = pio->io_orig_flags;
1946 pio->io_stage = pio->io_orig_stage;
1947 pio->io_pipeline = pio->io_orig_pipeline;
1948 pio->io_reexecute = 0;
1949 pio->io_flags |= ZIO_FLAG_REEXECUTED;
1950 pio->io_pipeline_trace = 0;
1951 pio->io_error = 0;
1952 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1953 pio->io_state[w] = 0;
1954 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
1955 pio->io_child_error[c] = 0;
1956
1957 if (IO_IS_ALLOCATING(pio))
1958 BP_ZERO(pio->io_bp);
1959
1960 /*
1961 * As we reexecute pio's children, new children could be created.
1962 * New children go to the head of pio's io_child_list, however,
1963 * so we will (correctly) not reexecute them. The key is that
1964 * the remainder of pio's io_child_list, from 'cio_next' onward,
1965 * cannot be affected by any side effects of reexecuting 'cio'.
1966 */
1967 zio_link_t *zl = NULL;
1968 mutex_enter(&pio->io_lock);
1969 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
1970 cio_next = zio_walk_children(pio, &zl);
1971 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
1972 pio->io_children[cio->io_child_type][w]++;
1973 mutex_exit(&pio->io_lock);
1974 zio_reexecute(cio);
1975 mutex_enter(&pio->io_lock);
1976 }
1977 mutex_exit(&pio->io_lock);
1978
1979 /*
1980 * Now that all children have been reexecuted, execute the parent.
1981 * We don't reexecute "The Godfather" I/O here as it's the
1982 * responsibility of the caller to wait on it.
1983 */
1984 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
1985 pio->io_queued_timestamp = gethrtime();
1986 __zio_execute(pio);
1987 }
1988 }
1989
1990 void
1991 zio_cancel(zio_t *zio)
1992 {
1993 /*
1994 * Disallow cancellation of a zio that's already been issued.
1995 */
1996 VERIFY3P(zio->io_executor, ==, NULL);
1997
1998 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1999 zio->io_done = NULL;
2000
2001 zio_nowait(zio);
2002 }
2003
2004 void
2005 zio_suspend(spa_t *spa, zio_t *zio)
2006 {
2007 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2008 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2009 "failure and the failure mode property for this pool "
2010 "is set to panic.", spa_name(spa));
2011
2012 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2013 "failure and has been suspended.\n", spa_name(spa));
2014
2015 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2016 NULL, NULL, 0, 0);
2017
2018 mutex_enter(&spa->spa_suspend_lock);
2019
2020 if (spa->spa_suspend_zio_root == NULL)
2021 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2022 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2023 ZIO_FLAG_GODFATHER);
2024
2025 spa->spa_suspended = B_TRUE;
2026
2027 if (zio != NULL) {
2028 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2029 ASSERT(zio != spa->spa_suspend_zio_root);
2030 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2031 ASSERT(zio_unique_parent(zio) == NULL);
2032 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2033 zio_add_child(spa->spa_suspend_zio_root, zio);
2034 }
2035
2036 mutex_exit(&spa->spa_suspend_lock);
2037 }
2038
2039 int
2040 zio_resume(spa_t *spa)
2041 {
2042 zio_t *pio;
2043
2044 /*
2045 * Reexecute all previously suspended i/o.
2046 */
2047 mutex_enter(&spa->spa_suspend_lock);
2048 spa->spa_suspended = B_FALSE;
2049 cv_broadcast(&spa->spa_suspend_cv);
2050 pio = spa->spa_suspend_zio_root;
2051 spa->spa_suspend_zio_root = NULL;
2052 mutex_exit(&spa->spa_suspend_lock);
2053
2054 if (pio == NULL)
2055 return (0);
2056
2057 zio_reexecute(pio);
2058 return (zio_wait(pio));
2059 }
2060
2061 void
2062 zio_resume_wait(spa_t *spa)
2063 {
2064 mutex_enter(&spa->spa_suspend_lock);
2065 while (spa_suspended(spa))
2066 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2067 mutex_exit(&spa->spa_suspend_lock);
2068 }
2069
2070 /*
2071 * ==========================================================================
2072 * Gang blocks.
2073 *
2074 * A gang block is a collection of small blocks that looks to the DMU
2075 * like one large block. When zio_dva_allocate() cannot find a block
2076 * of the requested size, due to either severe fragmentation or the pool
2077 * being nearly full, it calls zio_write_gang_block() to construct the
2078 * block from smaller fragments.
2079 *
2080 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2081 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2082 * an indirect block: it's an array of block pointers. It consumes
2083 * only one sector and hence is allocatable regardless of fragmentation.
2084 * The gang header's bps point to its gang members, which hold the data.
2085 *
2086 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2087 * as the verifier to ensure uniqueness of the SHA256 checksum.
2088 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2089 * not the gang header. This ensures that data block signatures (needed for
2090 * deduplication) are independent of how the block is physically stored.
2091 *
2092 * Gang blocks can be nested: a gang member may itself be a gang block.
2093 * Thus every gang block is a tree in which root and all interior nodes are
2094 * gang headers, and the leaves are normal blocks that contain user data.
2095 * The root of the gang tree is called the gang leader.
2096 *
2097 * To perform any operation (read, rewrite, free, claim) on a gang block,
2098 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2099 * in the io_gang_tree field of the original logical i/o by recursively
2100 * reading the gang leader and all gang headers below it. This yields
2101 * an in-core tree containing the contents of every gang header and the
2102 * bps for every constituent of the gang block.
2103 *
2104 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2105 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2106 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2107 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2108 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2109 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2110 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2111 * of the gang header plus zio_checksum_compute() of the data to update the
2112 * gang header's blk_cksum as described above.
2113 *
2114 * The two-phase assemble/issue model solves the problem of partial failure --
2115 * what if you'd freed part of a gang block but then couldn't read the
2116 * gang header for another part? Assembling the entire gang tree first
2117 * ensures that all the necessary gang header I/O has succeeded before
2118 * starting the actual work of free, claim, or write. Once the gang tree
2119 * is assembled, free and claim are in-memory operations that cannot fail.
2120 *
2121 * In the event that a gang write fails, zio_dva_unallocate() walks the
2122 * gang tree to immediately free (i.e. insert back into the space map)
2123 * everything we've allocated. This ensures that we don't get ENOSPC
2124 * errors during repeated suspend/resume cycles due to a flaky device.
2125 *
2126 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2127 * the gang tree, we won't modify the block, so we can safely defer the free
2128 * (knowing that the block is still intact). If we *can* assemble the gang
2129 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2130 * each constituent bp and we can allocate a new block on the next sync pass.
2131 *
2132 * In all cases, the gang tree allows complete recovery from partial failure.
2133 * ==========================================================================
2134 */
2135
2136 static void
2137 zio_gang_issue_func_done(zio_t *zio)
2138 {
2139 abd_put(zio->io_abd);
2140 }
2141
2142 static zio_t *
2143 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2144 uint64_t offset)
2145 {
2146 if (gn != NULL)
2147 return (pio);
2148
2149 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2150 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2151 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2152 &pio->io_bookmark));
2153 }
2154
2155 static zio_t *
2156 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2157 uint64_t offset)
2158 {
2159 zio_t *zio;
2160
2161 if (gn != NULL) {
2162 abd_t *gbh_abd =
2163 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2164 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2165 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2166 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2167 &pio->io_bookmark);
2168 /*
2169 * As we rewrite each gang header, the pipeline will compute
2170 * a new gang block header checksum for it; but no one will
2171 * compute a new data checksum, so we do that here. The one
2172 * exception is the gang leader: the pipeline already computed
2173 * its data checksum because that stage precedes gang assembly.
2174 * (Presently, nothing actually uses interior data checksums;
2175 * this is just good hygiene.)
2176 */
2177 if (gn != pio->io_gang_leader->io_gang_tree) {
2178 abd_t *buf = abd_get_offset(data, offset);
2179
2180 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2181 buf, BP_GET_PSIZE(bp));
2182
2183 abd_put(buf);
2184 }
2185 /*
2186 * If we are here to damage data for testing purposes,
2187 * leave the GBH alone so that we can detect the damage.
2188 */
2189 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2190 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2191 } else {
2192 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2193 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2194 zio_gang_issue_func_done, NULL, pio->io_priority,
2195 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2196 }
2197
2198 return (zio);
2199 }
2200
2201 /* ARGSUSED */
2202 static zio_t *
2203 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2204 uint64_t offset)
2205 {
2206 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2207 ZIO_GANG_CHILD_FLAGS(pio)));
2208 }
2209
2210 /* ARGSUSED */
2211 static zio_t *
2212 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2213 uint64_t offset)
2214 {
2215 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2216 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2217 }
2218
2219 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2220 NULL,
2221 zio_read_gang,
2222 zio_rewrite_gang,
2223 zio_free_gang,
2224 zio_claim_gang,
2225 NULL
2226 };
2227
2228 static void zio_gang_tree_assemble_done(zio_t *zio);
2229
2230 static zio_gang_node_t *
2231 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2232 {
2233 zio_gang_node_t *gn;
2234
2235 ASSERT(*gnpp == NULL);
2236
2237 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2238 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2239 *gnpp = gn;
2240
2241 return (gn);
2242 }
2243
2244 static void
2245 zio_gang_node_free(zio_gang_node_t **gnpp)
2246 {
2247 zio_gang_node_t *gn = *gnpp;
2248
2249 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2250 ASSERT(gn->gn_child[g] == NULL);
2251
2252 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2253 kmem_free(gn, sizeof (*gn));
2254 *gnpp = NULL;
2255 }
2256
2257 static void
2258 zio_gang_tree_free(zio_gang_node_t **gnpp)
2259 {
2260 zio_gang_node_t *gn = *gnpp;
2261
2262 if (gn == NULL)
2263 return;
2264
2265 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2266 zio_gang_tree_free(&gn->gn_child[g]);
2267
2268 zio_gang_node_free(gnpp);
2269 }
2270
2271 static void
2272 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2273 {
2274 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2275 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2276
2277 ASSERT(gio->io_gang_leader == gio);
2278 ASSERT(BP_IS_GANG(bp));
2279
2280 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2281 zio_gang_tree_assemble_done, gn, gio->io_priority,
2282 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2283 }
2284
2285 static void
2286 zio_gang_tree_assemble_done(zio_t *zio)
2287 {
2288 zio_t *gio = zio->io_gang_leader;
2289 zio_gang_node_t *gn = zio->io_private;
2290 blkptr_t *bp = zio->io_bp;
2291
2292 ASSERT(gio == zio_unique_parent(zio));
2293 ASSERT(zio->io_child_count == 0);
2294
2295 if (zio->io_error)
2296 return;
2297
2298 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2299 if (BP_SHOULD_BYTESWAP(bp))
2300 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2301
2302 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2303 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2304 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2305
2306 abd_put(zio->io_abd);
2307
2308 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2309 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2310 if (!BP_IS_GANG(gbp))
2311 continue;
2312 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2313 }
2314 }
2315
2316 static void
2317 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2318 uint64_t offset)
2319 {
2320 zio_t *gio = pio->io_gang_leader;
2321 zio_t *zio;
2322
2323 ASSERT(BP_IS_GANG(bp) == !!gn);
2324 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2325 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2326
2327 /*
2328 * If you're a gang header, your data is in gn->gn_gbh.
2329 * If you're a gang member, your data is in 'data' and gn == NULL.
2330 */
2331 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2332
2333 if (gn != NULL) {
2334 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2335
2336 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2337 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2338 if (BP_IS_HOLE(gbp))
2339 continue;
2340 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2341 offset);
2342 offset += BP_GET_PSIZE(gbp);
2343 }
2344 }
2345
2346 if (gn == gio->io_gang_tree)
2347 ASSERT3U(gio->io_size, ==, offset);
2348
2349 if (zio != pio)
2350 zio_nowait(zio);
2351 }
2352
2353 static int
2354 zio_gang_assemble(zio_t *zio)
2355 {
2356 blkptr_t *bp = zio->io_bp;
2357
2358 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2359 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2360
2361 zio->io_gang_leader = zio;
2362
2363 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2364
2365 return (ZIO_PIPELINE_CONTINUE);
2366 }
2367
2368 static int
2369 zio_gang_issue(zio_t *zio)
2370 {
2371 blkptr_t *bp = zio->io_bp;
2372
2373 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
2374 return (ZIO_PIPELINE_STOP);
2375
2376 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2377 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2378
2379 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2380 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2381 0);
2382 else
2383 zio_gang_tree_free(&zio->io_gang_tree);
2384
2385 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2386
2387 return (ZIO_PIPELINE_CONTINUE);
2388 }
2389
2390 static void
2391 zio_write_gang_member_ready(zio_t *zio)
2392 {
2393 zio_t *pio = zio_unique_parent(zio);
2394 dva_t *cdva = zio->io_bp->blk_dva;
2395 dva_t *pdva = pio->io_bp->blk_dva;
2396 uint64_t asize;
2397 ASSERTV(zio_t *gio = zio->io_gang_leader);
2398
2399 if (BP_IS_HOLE(zio->io_bp))
2400 return;
2401
2402 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2403
2404 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2405 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2406 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2407 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2408 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2409
2410 mutex_enter(&pio->io_lock);
2411 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2412 ASSERT(DVA_GET_GANG(&pdva[d]));
2413 asize = DVA_GET_ASIZE(&pdva[d]);
2414 asize += DVA_GET_ASIZE(&cdva[d]);
2415 DVA_SET_ASIZE(&pdva[d], asize);
2416 }
2417 mutex_exit(&pio->io_lock);
2418 }
2419
2420 static void
2421 zio_write_gang_done(zio_t *zio)
2422 {
2423 abd_put(zio->io_abd);
2424 }
2425
2426 static int
2427 zio_write_gang_block(zio_t *pio)
2428 {
2429 spa_t *spa = pio->io_spa;
2430 metaslab_class_t *mc = spa_normal_class(spa);
2431 blkptr_t *bp = pio->io_bp;
2432 zio_t *gio = pio->io_gang_leader;
2433 zio_t *zio;
2434 zio_gang_node_t *gn, **gnpp;
2435 zio_gbh_phys_t *gbh;
2436 abd_t *gbh_abd;
2437 uint64_t txg = pio->io_txg;
2438 uint64_t resid = pio->io_size;
2439 uint64_t lsize;
2440 int copies = gio->io_prop.zp_copies;
2441 int gbh_copies;
2442 zio_prop_t zp;
2443 int error;
2444
2445 /*
2446 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2447 * have a third copy.
2448 */
2449 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2450 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2451 gbh_copies = SPA_DVAS_PER_BP - 1;
2452
2453 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2454 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2455 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2456 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2457
2458 flags |= METASLAB_ASYNC_ALLOC;
2459 VERIFY(refcount_held(&mc->mc_alloc_slots, pio));
2460
2461 /*
2462 * The logical zio has already placed a reservation for
2463 * 'copies' allocation slots but gang blocks may require
2464 * additional copies. These additional copies
2465 * (i.e. gbh_copies - copies) are guaranteed to succeed
2466 * since metaslab_class_throttle_reserve() always allows
2467 * additional reservations for gang blocks.
2468 */
2469 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2470 pio, flags));
2471 }
2472
2473 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2474 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2475 &pio->io_alloc_list, pio);
2476 if (error) {
2477 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2478 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2479 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2480
2481 /*
2482 * If we failed to allocate the gang block header then
2483 * we remove any additional allocation reservations that
2484 * we placed here. The original reservation will
2485 * be removed when the logical I/O goes to the ready
2486 * stage.
2487 */
2488 metaslab_class_throttle_unreserve(mc,
2489 gbh_copies - copies, pio);
2490 }
2491
2492 pio->io_error = error;
2493 return (ZIO_PIPELINE_CONTINUE);
2494 }
2495
2496 if (pio == gio) {
2497 gnpp = &gio->io_gang_tree;
2498 } else {
2499 gnpp = pio->io_private;
2500 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2501 }
2502
2503 gn = zio_gang_node_alloc(gnpp);
2504 gbh = gn->gn_gbh;
2505 bzero(gbh, SPA_GANGBLOCKSIZE);
2506 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2507
2508 /*
2509 * Create the gang header.
2510 */
2511 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2512 zio_write_gang_done, NULL, pio->io_priority,
2513 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2514
2515 /*
2516 * Create and nowait the gang children.
2517 */
2518 for (int g = 0; resid != 0; resid -= lsize, g++) {
2519 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2520 SPA_MINBLOCKSIZE);
2521 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2522
2523 zp.zp_checksum = gio->io_prop.zp_checksum;
2524 zp.zp_compress = ZIO_COMPRESS_OFF;
2525 zp.zp_type = DMU_OT_NONE;
2526 zp.zp_level = 0;
2527 zp.zp_copies = gio->io_prop.zp_copies;
2528 zp.zp_dedup = B_FALSE;
2529 zp.zp_dedup_verify = B_FALSE;
2530 zp.zp_nopwrite = B_FALSE;
2531 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2532 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2533 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2534 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2535 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2536
2537 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2538 abd_get_offset(pio->io_abd, pio->io_size - resid), lsize,
2539 lsize, &zp, zio_write_gang_member_ready, NULL, NULL,
2540 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2541 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2542
2543 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2544 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2545 ASSERT(!(pio->io_flags & ZIO_FLAG_NODATA));
2546
2547 /*
2548 * Gang children won't throttle but we should
2549 * account for their work, so reserve an allocation
2550 * slot for them here.
2551 */
2552 VERIFY(metaslab_class_throttle_reserve(mc,
2553 zp.zp_copies, cio, flags));
2554 }
2555 zio_nowait(cio);
2556 }
2557
2558 /*
2559 * Set pio's pipeline to just wait for zio to finish.
2560 */
2561 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2562
2563 /*
2564 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2565 */
2566 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2567
2568 zio_nowait(zio);
2569
2570 return (ZIO_PIPELINE_CONTINUE);
2571 }
2572
2573 /*
2574 * The zio_nop_write stage in the pipeline determines if allocating a
2575 * new bp is necessary. The nopwrite feature can handle writes in
2576 * either syncing or open context (i.e. zil writes) and as a result is
2577 * mutually exclusive with dedup.
2578 *
2579 * By leveraging a cryptographically secure checksum, such as SHA256, we
2580 * can compare the checksums of the new data and the old to determine if
2581 * allocating a new block is required. Note that our requirements for
2582 * cryptographic strength are fairly weak: there can't be any accidental
2583 * hash collisions, but we don't need to be secure against intentional
2584 * (malicious) collisions. To trigger a nopwrite, you have to be able
2585 * to write the file to begin with, and triggering an incorrect (hash
2586 * collision) nopwrite is no worse than simply writing to the file.
2587 * That said, there are no known attacks against the checksum algorithms
2588 * used for nopwrite, assuming that the salt and the checksums
2589 * themselves remain secret.
2590 */
2591 static int
2592 zio_nop_write(zio_t *zio)
2593 {
2594 blkptr_t *bp = zio->io_bp;
2595 blkptr_t *bp_orig = &zio->io_bp_orig;
2596 zio_prop_t *zp = &zio->io_prop;
2597
2598 ASSERT(BP_GET_LEVEL(bp) == 0);
2599 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2600 ASSERT(zp->zp_nopwrite);
2601 ASSERT(!zp->zp_dedup);
2602 ASSERT(zio->io_bp_override == NULL);
2603 ASSERT(IO_IS_ALLOCATING(zio));
2604
2605 /*
2606 * Check to see if the original bp and the new bp have matching
2607 * characteristics (i.e. same checksum, compression algorithms, etc).
2608 * If they don't then just continue with the pipeline which will
2609 * allocate a new bp.
2610 */
2611 if (BP_IS_HOLE(bp_orig) ||
2612 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2613 ZCHECKSUM_FLAG_NOPWRITE) ||
2614 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2615 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2616 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2617 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2618 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2619 return (ZIO_PIPELINE_CONTINUE);
2620
2621 /*
2622 * If the checksums match then reset the pipeline so that we
2623 * avoid allocating a new bp and issuing any I/O.
2624 */
2625 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2626 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2627 ZCHECKSUM_FLAG_NOPWRITE);
2628 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2629 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2630 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2631 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2632 sizeof (uint64_t)) == 0);
2633
2634 *bp = *bp_orig;
2635 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2636 zio->io_flags |= ZIO_FLAG_NOPWRITE;
2637 }
2638
2639 return (ZIO_PIPELINE_CONTINUE);
2640 }
2641
2642 /*
2643 * ==========================================================================
2644 * Dedup
2645 * ==========================================================================
2646 */
2647 static void
2648 zio_ddt_child_read_done(zio_t *zio)
2649 {
2650 blkptr_t *bp = zio->io_bp;
2651 ddt_entry_t *dde = zio->io_private;
2652 ddt_phys_t *ddp;
2653 zio_t *pio = zio_unique_parent(zio);
2654
2655 mutex_enter(&pio->io_lock);
2656 ddp = ddt_phys_select(dde, bp);
2657 if (zio->io_error == 0)
2658 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
2659
2660 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
2661 dde->dde_repair_abd = zio->io_abd;
2662 else
2663 abd_free(zio->io_abd);
2664 mutex_exit(&pio->io_lock);
2665 }
2666
2667 static int
2668 zio_ddt_read_start(zio_t *zio)
2669 {
2670 blkptr_t *bp = zio->io_bp;
2671
2672 ASSERT(BP_GET_DEDUP(bp));
2673 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2674 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2675
2676 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2677 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2678 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
2679 ddt_phys_t *ddp = dde->dde_phys;
2680 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
2681 blkptr_t blk;
2682
2683 ASSERT(zio->io_vsd == NULL);
2684 zio->io_vsd = dde;
2685
2686 if (ddp_self == NULL)
2687 return (ZIO_PIPELINE_CONTINUE);
2688
2689 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
2690 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
2691 continue;
2692 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
2693 &blk);
2694 zio_nowait(zio_read(zio, zio->io_spa, &blk,
2695 abd_alloc_for_io(zio->io_size, B_TRUE),
2696 zio->io_size, zio_ddt_child_read_done, dde,
2697 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
2698 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
2699 }
2700 return (ZIO_PIPELINE_CONTINUE);
2701 }
2702
2703 zio_nowait(zio_read(zio, zio->io_spa, bp,
2704 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
2705 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
2706
2707 return (ZIO_PIPELINE_CONTINUE);
2708 }
2709
2710 static int
2711 zio_ddt_read_done(zio_t *zio)
2712 {
2713 blkptr_t *bp = zio->io_bp;
2714
2715 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
2716 return (ZIO_PIPELINE_STOP);
2717
2718 ASSERT(BP_GET_DEDUP(bp));
2719 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
2720 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2721
2722 if (zio->io_child_error[ZIO_CHILD_DDT]) {
2723 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2724 ddt_entry_t *dde = zio->io_vsd;
2725 if (ddt == NULL) {
2726 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
2727 return (ZIO_PIPELINE_CONTINUE);
2728 }
2729 if (dde == NULL) {
2730 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
2731 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2732 return (ZIO_PIPELINE_STOP);
2733 }
2734 if (dde->dde_repair_abd != NULL) {
2735 abd_copy(zio->io_abd, dde->dde_repair_abd,
2736 zio->io_size);
2737 zio->io_child_error[ZIO_CHILD_DDT] = 0;
2738 }
2739 ddt_repair_done(ddt, dde);
2740 zio->io_vsd = NULL;
2741 }
2742
2743 ASSERT(zio->io_vsd == NULL);
2744
2745 return (ZIO_PIPELINE_CONTINUE);
2746 }
2747
2748 static boolean_t
2749 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
2750 {
2751 spa_t *spa = zio->io_spa;
2752 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
2753
2754 ASSERT(!(zio->io_bp_override && do_raw));
2755
2756 /*
2757 * Note: we compare the original data, not the transformed data,
2758 * because when zio->io_bp is an override bp, we will not have
2759 * pushed the I/O transforms. That's an important optimization
2760 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
2761 * However, we should never get a raw, override zio so in these
2762 * cases we can compare the io_abd directly. This is useful because
2763 * it allows us to do dedup verification even if we don't have access
2764 * to the original data (for instance, if the encryption keys aren't
2765 * loaded).
2766 */
2767
2768 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2769 zio_t *lio = dde->dde_lead_zio[p];
2770
2771 if (lio != NULL && do_raw) {
2772 return (lio->io_size != zio->io_size ||
2773 abd_cmp(zio->io_abd, lio->io_abd) != 0);
2774 } else if (lio != NULL) {
2775 return (lio->io_orig_size != zio->io_orig_size ||
2776 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
2777 }
2778 }
2779
2780 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2781 ddt_phys_t *ddp = &dde->dde_phys[p];
2782
2783 if (ddp->ddp_phys_birth != 0 && do_raw) {
2784 blkptr_t blk = *zio->io_bp;
2785 uint64_t psize;
2786 abd_t *tmpabd;
2787 int error;
2788
2789 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2790 psize = BP_GET_PSIZE(&blk);
2791
2792 if (psize != zio->io_size)
2793 return (B_TRUE);
2794
2795 ddt_exit(ddt);
2796
2797 tmpabd = abd_alloc_for_io(psize, B_TRUE);
2798
2799 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
2800 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
2801 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2802 ZIO_FLAG_RAW, &zio->io_bookmark));
2803
2804 if (error == 0) {
2805 if (abd_cmp(tmpabd, zio->io_abd) != 0)
2806 error = SET_ERROR(ENOENT);
2807 }
2808
2809 abd_free(tmpabd);
2810 ddt_enter(ddt);
2811 return (error != 0);
2812 } else if (ddp->ddp_phys_birth != 0) {
2813 arc_buf_t *abuf = NULL;
2814 arc_flags_t aflags = ARC_FLAG_WAIT;
2815 blkptr_t blk = *zio->io_bp;
2816 int error;
2817
2818 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2819
2820 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
2821 return (B_TRUE);
2822
2823 ddt_exit(ddt);
2824
2825 error = arc_read(NULL, spa, &blk,
2826 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2827 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2828 &aflags, &zio->io_bookmark);
2829
2830 if (error == 0) {
2831 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
2832 zio->io_orig_size) != 0)
2833 error = SET_ERROR(ENOENT);
2834 arc_buf_destroy(abuf, &abuf);
2835 }
2836
2837 ddt_enter(ddt);
2838 return (error != 0);
2839 }
2840 }
2841
2842 return (B_FALSE);
2843 }
2844
2845 static void
2846 zio_ddt_child_write_ready(zio_t *zio)
2847 {
2848 int p = zio->io_prop.zp_copies;
2849 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2850 ddt_entry_t *dde = zio->io_private;
2851 ddt_phys_t *ddp = &dde->dde_phys[p];
2852 zio_t *pio;
2853
2854 if (zio->io_error)
2855 return;
2856
2857 ddt_enter(ddt);
2858
2859 ASSERT(dde->dde_lead_zio[p] == zio);
2860
2861 ddt_phys_fill(ddp, zio->io_bp);
2862
2863 zio_link_t *zl = NULL;
2864 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
2865 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2866
2867 ddt_exit(ddt);
2868 }
2869
2870 static void
2871 zio_ddt_child_write_done(zio_t *zio)
2872 {
2873 int p = zio->io_prop.zp_copies;
2874 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2875 ddt_entry_t *dde = zio->io_private;
2876 ddt_phys_t *ddp = &dde->dde_phys[p];
2877
2878 ddt_enter(ddt);
2879
2880 ASSERT(ddp->ddp_refcnt == 0);
2881 ASSERT(dde->dde_lead_zio[p] == zio);
2882 dde->dde_lead_zio[p] = NULL;
2883
2884 if (zio->io_error == 0) {
2885 zio_link_t *zl = NULL;
2886 while (zio_walk_parents(zio, &zl) != NULL)
2887 ddt_phys_addref(ddp);
2888 } else {
2889 ddt_phys_clear(ddp);
2890 }
2891
2892 ddt_exit(ddt);
2893 }
2894
2895 static void
2896 zio_ddt_ditto_write_done(zio_t *zio)
2897 {
2898 int p = DDT_PHYS_DITTO;
2899 ASSERTV(zio_prop_t *zp = &zio->io_prop);
2900 blkptr_t *bp = zio->io_bp;
2901 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2902 ddt_entry_t *dde = zio->io_private;
2903 ddt_phys_t *ddp = &dde->dde_phys[p];
2904 ddt_key_t *ddk = &dde->dde_key;
2905
2906 ddt_enter(ddt);
2907
2908 ASSERT(ddp->ddp_refcnt == 0);
2909 ASSERT(dde->dde_lead_zio[p] == zio);
2910 dde->dde_lead_zio[p] = NULL;
2911
2912 if (zio->io_error == 0) {
2913 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2914 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2915 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2916 if (ddp->ddp_phys_birth != 0)
2917 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2918 ddt_phys_fill(ddp, bp);
2919 }
2920
2921 ddt_exit(ddt);
2922 }
2923
2924 static int
2925 zio_ddt_write(zio_t *zio)
2926 {
2927 spa_t *spa = zio->io_spa;
2928 blkptr_t *bp = zio->io_bp;
2929 uint64_t txg = zio->io_txg;
2930 zio_prop_t *zp = &zio->io_prop;
2931 int p = zp->zp_copies;
2932 int ditto_copies;
2933 zio_t *cio = NULL;
2934 zio_t *dio = NULL;
2935 ddt_t *ddt = ddt_select(spa, bp);
2936 ddt_entry_t *dde;
2937 ddt_phys_t *ddp;
2938
2939 ASSERT(BP_GET_DEDUP(bp));
2940 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2941 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2942 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
2943
2944 ddt_enter(ddt);
2945 dde = ddt_lookup(ddt, bp, B_TRUE);
2946 ddp = &dde->dde_phys[p];
2947
2948 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2949 /*
2950 * If we're using a weak checksum, upgrade to a strong checksum
2951 * and try again. If we're already using a strong checksum,
2952 * we can't resolve it, so just convert to an ordinary write.
2953 * (And automatically e-mail a paper to Nature?)
2954 */
2955 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
2956 ZCHECKSUM_FLAG_DEDUP)) {
2957 zp->zp_checksum = spa_dedup_checksum(spa);
2958 zio_pop_transforms(zio);
2959 zio->io_stage = ZIO_STAGE_OPEN;
2960 BP_ZERO(bp);
2961 } else {
2962 zp->zp_dedup = B_FALSE;
2963 }
2964 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2965 ddt_exit(ddt);
2966 return (ZIO_PIPELINE_CONTINUE);
2967 }
2968
2969 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2970 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2971
2972 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2973 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2974 zio_prop_t czp = *zp;
2975
2976 czp.zp_copies = ditto_copies;
2977
2978 /*
2979 * If we arrived here with an override bp, we won't have run
2980 * the transform stack, so we won't have the data we need to
2981 * generate a child i/o. So, toss the override bp and restart.
2982 * This is safe, because using the override bp is just an
2983 * optimization; and it's rare, so the cost doesn't matter.
2984 */
2985 if (zio->io_bp_override) {
2986 zio_pop_transforms(zio);
2987 zio->io_stage = ZIO_STAGE_OPEN;
2988 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2989 zio->io_bp_override = NULL;
2990 BP_ZERO(bp);
2991 ddt_exit(ddt);
2992 return (ZIO_PIPELINE_CONTINUE);
2993 }
2994
2995 dio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
2996 zio->io_orig_size, zio->io_orig_size, &czp, NULL, NULL,
2997 NULL, zio_ddt_ditto_write_done, dde, zio->io_priority,
2998 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2999
3000 zio_push_transform(dio, zio->io_abd, zio->io_size, 0, NULL);
3001 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
3002 }
3003
3004 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3005 if (ddp->ddp_phys_birth != 0)
3006 ddt_bp_fill(ddp, bp, txg);
3007 if (dde->dde_lead_zio[p] != NULL)
3008 zio_add_child(zio, dde->dde_lead_zio[p]);
3009 else
3010 ddt_phys_addref(ddp);
3011 } else if (zio->io_bp_override) {
3012 ASSERT(bp->blk_birth == txg);
3013 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3014 ddt_phys_fill(ddp, bp);
3015 ddt_phys_addref(ddp);
3016 } else {
3017 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3018 zio->io_orig_size, zio->io_orig_size, zp,
3019 zio_ddt_child_write_ready, NULL, NULL,
3020 zio_ddt_child_write_done, dde, zio->io_priority,
3021 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3022
3023 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3024 dde->dde_lead_zio[p] = cio;
3025 }
3026
3027 ddt_exit(ddt);
3028
3029 if (cio)
3030 zio_nowait(cio);
3031 if (dio)
3032 zio_nowait(dio);
3033
3034 return (ZIO_PIPELINE_CONTINUE);
3035 }
3036
3037 ddt_entry_t *freedde; /* for debugging */
3038
3039 static int
3040 zio_ddt_free(zio_t *zio)
3041 {
3042 spa_t *spa = zio->io_spa;
3043 blkptr_t *bp = zio->io_bp;
3044 ddt_t *ddt = ddt_select(spa, bp);
3045 ddt_entry_t *dde;
3046 ddt_phys_t *ddp;
3047
3048 ASSERT(BP_GET_DEDUP(bp));
3049 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3050
3051 ddt_enter(ddt);
3052 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3053 if (dde) {
3054 ddp = ddt_phys_select(dde, bp);
3055 if (ddp)
3056 ddt_phys_decref(ddp);
3057 }
3058 ddt_exit(ddt);
3059
3060 return (ZIO_PIPELINE_CONTINUE);
3061 }
3062
3063 /*
3064 * ==========================================================================
3065 * Allocate and free blocks
3066 * ==========================================================================
3067 */
3068
3069 static zio_t *
3070 zio_io_to_allocate(spa_t *spa)
3071 {
3072 zio_t *zio;
3073
3074 ASSERT(MUTEX_HELD(&spa->spa_alloc_lock));
3075
3076 zio = avl_first(&spa->spa_alloc_tree);
3077 if (zio == NULL)
3078 return (NULL);
3079
3080 ASSERT(IO_IS_ALLOCATING(zio));
3081
3082 /*
3083 * Try to place a reservation for this zio. If we're unable to
3084 * reserve then we throttle.
3085 */
3086 if (!metaslab_class_throttle_reserve(spa_normal_class(spa),
3087 zio->io_prop.zp_copies, zio, 0)) {
3088 return (NULL);
3089 }
3090
3091 avl_remove(&spa->spa_alloc_tree, zio);
3092 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3093
3094 return (zio);
3095 }
3096
3097 static int
3098 zio_dva_throttle(zio_t *zio)
3099 {
3100 spa_t *spa = zio->io_spa;
3101 zio_t *nio;
3102
3103 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3104 !spa_normal_class(zio->io_spa)->mc_alloc_throttle_enabled ||
3105 zio->io_child_type == ZIO_CHILD_GANG ||
3106 zio->io_flags & ZIO_FLAG_NODATA) {
3107 return (ZIO_PIPELINE_CONTINUE);
3108 }
3109
3110 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3111
3112 ASSERT3U(zio->io_queued_timestamp, >, 0);
3113 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3114
3115 mutex_enter(&spa->spa_alloc_lock);
3116
3117 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3118 avl_add(&spa->spa_alloc_tree, zio);
3119
3120 nio = zio_io_to_allocate(zio->io_spa);
3121 mutex_exit(&spa->spa_alloc_lock);
3122
3123 if (nio == zio)
3124 return (ZIO_PIPELINE_CONTINUE);
3125
3126 if (nio != NULL) {
3127 ASSERT(nio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3128 /*
3129 * We are passing control to a new zio so make sure that
3130 * it is processed by a different thread. We do this to
3131 * avoid stack overflows that can occur when parents are
3132 * throttled and children are making progress. We allow
3133 * it to go to the head of the taskq since it's already
3134 * been waiting.
3135 */
3136 zio_taskq_dispatch(nio, ZIO_TASKQ_ISSUE, B_TRUE);
3137 }
3138 return (ZIO_PIPELINE_STOP);
3139 }
3140
3141 void
3142 zio_allocate_dispatch(spa_t *spa)
3143 {
3144 zio_t *zio;
3145
3146 mutex_enter(&spa->spa_alloc_lock);
3147 zio = zio_io_to_allocate(spa);
3148 mutex_exit(&spa->spa_alloc_lock);
3149 if (zio == NULL)
3150 return;
3151
3152 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3153 ASSERT0(zio->io_error);
3154 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3155 }
3156
3157 static int
3158 zio_dva_allocate(zio_t *zio)
3159 {
3160 spa_t *spa = zio->io_spa;
3161 metaslab_class_t *mc = spa_normal_class(spa);
3162 blkptr_t *bp = zio->io_bp;
3163 int error;
3164 int flags = 0;
3165
3166 if (zio->io_gang_leader == NULL) {
3167 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3168 zio->io_gang_leader = zio;
3169 }
3170
3171 ASSERT(BP_IS_HOLE(bp));
3172 ASSERT0(BP_GET_NDVAS(bp));
3173 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3174 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3175 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3176
3177 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3178 if (zio->io_flags & ZIO_FLAG_NODATA)
3179 flags |= METASLAB_DONT_THROTTLE;
3180 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3181 flags |= METASLAB_GANG_CHILD;
3182 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3183 flags |= METASLAB_ASYNC_ALLOC;
3184
3185 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3186 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3187 &zio->io_alloc_list, zio);
3188
3189 if (error != 0) {
3190 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
3191 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
3192 error);
3193 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
3194 return (zio_write_gang_block(zio));
3195 zio->io_error = error;
3196 }
3197
3198 return (ZIO_PIPELINE_CONTINUE);
3199 }
3200
3201 static int
3202 zio_dva_free(zio_t *zio)
3203 {
3204 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3205
3206 return (ZIO_PIPELINE_CONTINUE);
3207 }
3208
3209 static int
3210 zio_dva_claim(zio_t *zio)
3211 {
3212 int error;
3213
3214 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3215 if (error)
3216 zio->io_error = error;
3217
3218 return (ZIO_PIPELINE_CONTINUE);
3219 }
3220
3221 /*
3222 * Undo an allocation. This is used by zio_done() when an I/O fails
3223 * and we want to give back the block we just allocated.
3224 * This handles both normal blocks and gang blocks.
3225 */
3226 static void
3227 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3228 {
3229 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3230 ASSERT(zio->io_bp_override == NULL);
3231
3232 if (!BP_IS_HOLE(bp))
3233 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3234
3235 if (gn != NULL) {
3236 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3237 zio_dva_unallocate(zio, gn->gn_child[g],
3238 &gn->gn_gbh->zg_blkptr[g]);
3239 }
3240 }
3241 }
3242
3243 /*
3244 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3245 */
3246 int
3247 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3248 uint64_t size, boolean_t *slog)
3249 {
3250 int error = 1;
3251 zio_alloc_list_t io_alloc_list;
3252
3253 ASSERT(txg > spa_syncing_txg(spa));
3254
3255 metaslab_trace_init(&io_alloc_list);
3256 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3257 txg, NULL, METASLAB_FASTWRITE, &io_alloc_list, NULL);
3258 if (error == 0) {
3259 *slog = TRUE;
3260 } else {
3261 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3262 new_bp, 1, txg, NULL, METASLAB_FASTWRITE,
3263 &io_alloc_list, NULL);
3264 if (error == 0)
3265 *slog = FALSE;
3266 }
3267 metaslab_trace_fini(&io_alloc_list);
3268
3269 if (error == 0) {
3270 BP_SET_LSIZE(new_bp, size);
3271 BP_SET_PSIZE(new_bp, size);
3272 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3273 BP_SET_CHECKSUM(new_bp,
3274 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3275 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3276 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3277 BP_SET_LEVEL(new_bp, 0);
3278 BP_SET_DEDUP(new_bp, 0);
3279 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3280
3281 /*
3282 * encrypted blocks will require an IV and salt. We generate
3283 * these now since we will not be rewriting the bp at
3284 * rewrite time.
3285 */
3286 if (os->os_encrypted) {
3287 uint8_t iv[ZIO_DATA_IV_LEN];
3288 uint8_t salt[ZIO_DATA_SALT_LEN];
3289
3290 BP_SET_CRYPT(new_bp, B_TRUE);
3291 VERIFY0(spa_crypt_get_salt(spa,
3292 dmu_objset_id(os), salt));
3293 VERIFY0(zio_crypt_generate_iv(iv));
3294
3295 zio_crypt_encode_params_bp(new_bp, salt, iv);
3296 }
3297 } else {
3298 zfs_dbgmsg("%s: zil block allocation failure: "
3299 "size %llu, error %d", spa_name(spa), size, error);
3300 }
3301
3302 return (error);
3303 }
3304
3305 /*
3306 * Free an intent log block.
3307 */
3308 void
3309 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
3310 {
3311 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
3312 ASSERT(!BP_IS_GANG(bp));
3313
3314 zio_free(spa, txg, bp);
3315 }
3316
3317 /*
3318 * ==========================================================================
3319 * Read and write to physical devices
3320 * ==========================================================================
3321 */
3322
3323
3324 /*
3325 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3326 * stops after this stage and will resume upon I/O completion.
3327 * However, there are instances where the vdev layer may need to
3328 * continue the pipeline when an I/O was not issued. Since the I/O
3329 * that was sent to the vdev layer might be different than the one
3330 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3331 * force the underlying vdev layers to call either zio_execute() or
3332 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3333 */
3334 static int
3335 zio_vdev_io_start(zio_t *zio)
3336 {
3337 vdev_t *vd = zio->io_vd;
3338 uint64_t align;
3339 spa_t *spa = zio->io_spa;
3340
3341 zio->io_delay = 0;
3342
3343 ASSERT(zio->io_error == 0);
3344 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3345
3346 if (vd == NULL) {
3347 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3348 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3349
3350 /*
3351 * The mirror_ops handle multiple DVAs in a single BP.
3352 */
3353 vdev_mirror_ops.vdev_op_io_start(zio);
3354 return (ZIO_PIPELINE_STOP);
3355 }
3356
3357 ASSERT3P(zio->io_logical, !=, zio);
3358
3359 align = 1ULL << vd->vdev_top->vdev_ashift;
3360
3361 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3362 P2PHASE(zio->io_size, align) != 0) {
3363 /* Transform logical writes to be a full physical block size. */
3364 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3365 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3366 ASSERT(vd == vd->vdev_top);
3367 if (zio->io_type == ZIO_TYPE_WRITE) {
3368 abd_copy(abuf, zio->io_abd, zio->io_size);
3369 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3370 }
3371 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3372 }
3373
3374 /*
3375 * If this is not a physical io, make sure that it is properly aligned
3376 * before proceeding.
3377 */
3378 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3379 ASSERT0(P2PHASE(zio->io_offset, align));
3380 ASSERT0(P2PHASE(zio->io_size, align));
3381 } else {
3382 /*
3383 * For physical writes, we allow 512b aligned writes and assume
3384 * the device will perform a read-modify-write as necessary.
3385 */
3386 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3387 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3388 }
3389
3390 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3391
3392 /*
3393 * If this is a repair I/O, and there's no self-healing involved --
3394 * that is, we're just resilvering what we expect to resilver --
3395 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3396 * This prevents spurious resilvering with nested replication.
3397 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
3398 * A is out of date, we'll read from C+D, then use the data to
3399 * resilver A+B -- but we don't actually want to resilver B, just A.
3400 * The top-level mirror has no way to know this, so instead we just
3401 * discard unnecessary repairs as we work our way down the vdev tree.
3402 * The same logic applies to any form of nested replication:
3403 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
3404 */
3405 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3406 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3407 zio->io_txg != 0 && /* not a delegated i/o */
3408 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3409 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3410 zio_vdev_io_bypass(zio);
3411 return (ZIO_PIPELINE_CONTINUE);
3412 }
3413
3414 if (vd->vdev_ops->vdev_op_leaf &&
3415 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
3416
3417 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3418 return (ZIO_PIPELINE_CONTINUE);
3419
3420 if ((zio = vdev_queue_io(zio)) == NULL)
3421 return (ZIO_PIPELINE_STOP);
3422
3423 if (!vdev_accessible(vd, zio)) {
3424 zio->io_error = SET_ERROR(ENXIO);
3425 zio_interrupt(zio);
3426 return (ZIO_PIPELINE_STOP);
3427 }
3428 zio->io_delay = gethrtime();
3429 }
3430
3431 vd->vdev_ops->vdev_op_io_start(zio);
3432 return (ZIO_PIPELINE_STOP);
3433 }
3434
3435 static int
3436 zio_vdev_io_done(zio_t *zio)
3437 {
3438 vdev_t *vd = zio->io_vd;
3439 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3440 boolean_t unexpected_error = B_FALSE;
3441
3442 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3443 return (ZIO_PIPELINE_STOP);
3444
3445 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
3446
3447 if (zio->io_delay)
3448 zio->io_delay = gethrtime() - zio->io_delay;
3449
3450 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
3451
3452 vdev_queue_io_done(zio);
3453
3454 if (zio->io_type == ZIO_TYPE_WRITE)
3455 vdev_cache_write(zio);
3456
3457 if (zio_injection_enabled && zio->io_error == 0)
3458 zio->io_error = zio_handle_device_injections(vd, zio,
3459 EIO, EILSEQ);
3460
3461 if (zio_injection_enabled && zio->io_error == 0)
3462 zio->io_error = zio_handle_label_injection(zio, EIO);
3463
3464 if (zio->io_error) {
3465 if (!vdev_accessible(vd, zio)) {
3466 zio->io_error = SET_ERROR(ENXIO);
3467 } else {
3468 unexpected_error = B_TRUE;
3469 }
3470 }
3471 }
3472
3473 ops->vdev_op_io_done(zio);
3474
3475 if (unexpected_error)
3476 VERIFY(vdev_probe(vd, zio) == NULL);
3477
3478 return (ZIO_PIPELINE_CONTINUE);
3479 }
3480
3481 /*
3482 * This function is used to change the priority of an existing zio that is
3483 * currently in-flight. This is used by the arc to upgrade priority in the
3484 * event that a demand read is made for a block that is currently queued
3485 * as a scrub or async read IO. Otherwise, the high priority read request
3486 * would end up having to wait for the lower priority IO.
3487 */
3488 void
3489 zio_change_priority(zio_t *pio, zio_priority_t priority)
3490 {
3491 zio_t *cio, *cio_next;
3492 zio_link_t *zl = NULL;
3493
3494 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3495
3496 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3497 vdev_queue_change_io_priority(pio, priority);
3498 } else {
3499 pio->io_priority = priority;
3500 }
3501
3502 mutex_enter(&pio->io_lock);
3503 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3504 cio_next = zio_walk_children(pio, &zl);
3505 zio_change_priority(cio, priority);
3506 }
3507 mutex_exit(&pio->io_lock);
3508 }
3509
3510 /*
3511 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3512 * disk, and use that to finish the checksum ereport later.
3513 */
3514 static void
3515 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3516 const abd_t *good_buf)
3517 {
3518 /* no processing needed */
3519 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3520 }
3521
3522 /*ARGSUSED*/
3523 void
3524 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
3525 {
3526 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3527
3528 abd_copy(abd, zio->io_abd, zio->io_size);
3529
3530 zcr->zcr_cbinfo = zio->io_size;
3531 zcr->zcr_cbdata = abd;
3532 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3533 zcr->zcr_free = zio_abd_free;
3534 }
3535
3536 static int
3537 zio_vdev_io_assess(zio_t *zio)
3538 {
3539 vdev_t *vd = zio->io_vd;
3540
3541 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
3542 return (ZIO_PIPELINE_STOP);
3543
3544 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3545 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3546
3547 if (zio->io_vsd != NULL) {
3548 zio->io_vsd_ops->vsd_free(zio);
3549 zio->io_vsd = NULL;
3550 }
3551
3552 if (zio_injection_enabled && zio->io_error == 0)
3553 zio->io_error = zio_handle_fault_injection(zio, EIO);
3554
3555 /*
3556 * If the I/O failed, determine whether we should attempt to retry it.
3557 *
3558 * On retry, we cut in line in the issue queue, since we don't want
3559 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3560 */
3561 if (zio->io_error && vd == NULL &&
3562 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3563 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3564 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3565 zio->io_error = 0;
3566 zio->io_flags |= ZIO_FLAG_IO_RETRY |
3567 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
3568 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
3569 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
3570 zio_requeue_io_start_cut_in_line);
3571 return (ZIO_PIPELINE_STOP);
3572 }
3573
3574 /*
3575 * If we got an error on a leaf device, convert it to ENXIO
3576 * if the device is not accessible at all.
3577 */
3578 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3579 !vdev_accessible(vd, zio))
3580 zio->io_error = SET_ERROR(ENXIO);
3581
3582 /*
3583 * If we can't write to an interior vdev (mirror or RAID-Z),
3584 * set vdev_cant_write so that we stop trying to allocate from it.
3585 */
3586 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
3587 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
3588 vd->vdev_cant_write = B_TRUE;
3589 }
3590
3591 /*
3592 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
3593 * attempts will ever succeed. In this case we set a persistent bit so
3594 * that we don't bother with it in the future.
3595 */
3596 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
3597 zio->io_type == ZIO_TYPE_IOCTL &&
3598 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
3599 vd->vdev_nowritecache = B_TRUE;
3600
3601 if (zio->io_error)
3602 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3603
3604 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3605 zio->io_physdone != NULL) {
3606 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
3607 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
3608 zio->io_physdone(zio->io_logical);
3609 }
3610
3611 return (ZIO_PIPELINE_CONTINUE);
3612 }
3613
3614 void
3615 zio_vdev_io_reissue(zio_t *zio)
3616 {
3617 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3618 ASSERT(zio->io_error == 0);
3619
3620 zio->io_stage >>= 1;
3621 }
3622
3623 void
3624 zio_vdev_io_redone(zio_t *zio)
3625 {
3626 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
3627
3628 zio->io_stage >>= 1;
3629 }
3630
3631 void
3632 zio_vdev_io_bypass(zio_t *zio)
3633 {
3634 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
3635 ASSERT(zio->io_error == 0);
3636
3637 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
3638 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
3639 }
3640
3641 /*
3642 * ==========================================================================
3643 * Encrypt and store encryption parameters
3644 * ==========================================================================
3645 */
3646
3647
3648 /*
3649 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
3650 * managing the storage of encryption parameters and passing them to the
3651 * lower-level encryption functions.
3652 */
3653 static int
3654 zio_encrypt(zio_t *zio)
3655 {
3656 zio_prop_t *zp = &zio->io_prop;
3657 spa_t *spa = zio->io_spa;
3658 blkptr_t *bp = zio->io_bp;
3659 uint64_t psize = BP_GET_PSIZE(bp);
3660 dmu_object_type_t ot = BP_GET_TYPE(bp);
3661 void *enc_buf = NULL;
3662 abd_t *eabd = NULL;
3663 uint8_t salt[ZIO_DATA_SALT_LEN];
3664 uint8_t iv[ZIO_DATA_IV_LEN];
3665 uint8_t mac[ZIO_DATA_MAC_LEN];
3666 boolean_t no_crypt = B_FALSE;
3667
3668 /* the root zio already encrypted the data */
3669 if (zio->io_child_type == ZIO_CHILD_GANG)
3670 return (ZIO_PIPELINE_CONTINUE);
3671
3672 /* only ZIL blocks are re-encrypted on rewrite */
3673 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
3674 return (ZIO_PIPELINE_CONTINUE);
3675
3676 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
3677 BP_SET_CRYPT(bp, B_FALSE);
3678 return (ZIO_PIPELINE_CONTINUE);
3679 }
3680
3681 /* if we are doing raw encryption set the provided encryption params */
3682 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
3683 BP_SET_CRYPT(bp, B_TRUE);
3684 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
3685 if (ot != DMU_OT_OBJSET)
3686 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
3687 if (DMU_OT_IS_ENCRYPTED(ot))
3688 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
3689 return (ZIO_PIPELINE_CONTINUE);
3690 }
3691
3692 /* indirect blocks only maintain a cksum of the lower level MACs */
3693 if (BP_GET_LEVEL(bp) > 0) {
3694 BP_SET_CRYPT(bp, B_TRUE);
3695 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
3696 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
3697 mac));
3698 zio_crypt_encode_mac_bp(bp, mac);
3699 return (ZIO_PIPELINE_CONTINUE);
3700 }
3701
3702 /*
3703 * Objset blocks are a special case since they have 2 256-bit MACs
3704 * embedded within them.
3705 */
3706 if (ot == DMU_OT_OBJSET) {
3707 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
3708 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
3709 BP_SET_CRYPT(bp, B_TRUE);
3710 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa,
3711 zio->io_bookmark.zb_objset, zio->io_abd, psize,
3712 BP_SHOULD_BYTESWAP(bp)));
3713 return (ZIO_PIPELINE_CONTINUE);
3714 }
3715
3716 /* unencrypted object types are only authenticated with a MAC */
3717 if (!DMU_OT_IS_ENCRYPTED(ot)) {
3718 BP_SET_CRYPT(bp, B_TRUE);
3719 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa,
3720 zio->io_bookmark.zb_objset, zio->io_abd, psize, mac));
3721 zio_crypt_encode_mac_bp(bp, mac);
3722 return (ZIO_PIPELINE_CONTINUE);
3723 }
3724
3725 /*
3726 * Later passes of sync-to-convergence may decide to rewrite data
3727 * in place to avoid more disk reallocations. This presents a problem
3728 * for encryption because this consitutes rewriting the new data with
3729 * the same encryption key and IV. However, this only applies to blocks
3730 * in the MOS (particularly the spacemaps) and we do not encrypt the
3731 * MOS. We assert that the zio is allocating or an intent log write
3732 * to enforce this.
3733 */
3734 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
3735 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
3736 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
3737 ASSERT3U(psize, !=, 0);
3738
3739 enc_buf = zio_buf_alloc(psize);
3740 eabd = abd_get_from_buf(enc_buf, psize);
3741 abd_take_ownership_of_buf(eabd, B_TRUE);
3742
3743 /*
3744 * For an explanation of what encryption parameters are stored
3745 * where, see the block comment in zio_crypt.c.
3746 */
3747 if (ot == DMU_OT_INTENT_LOG) {
3748 zio_crypt_decode_params_bp(bp, salt, iv);
3749 } else {
3750 BP_SET_CRYPT(bp, B_TRUE);
3751 }
3752
3753 /* Perform the encryption. This should not fail */
3754 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, zio->io_bookmark.zb_objset, bp,
3755 zio->io_txg, psize, zio->io_abd, eabd, iv, mac, salt, &no_crypt));
3756
3757 /* encode encryption metadata into the bp */
3758 if (ot == DMU_OT_INTENT_LOG) {
3759 /*
3760 * ZIL blocks store the MAC in the embedded checksum, so the
3761 * transform must always be applied.
3762 */
3763 zio_crypt_encode_mac_zil(enc_buf, mac);
3764 zio_push_transform(zio, eabd, psize, psize, NULL);
3765 } else {
3766 BP_SET_CRYPT(bp, B_TRUE);
3767 zio_crypt_encode_params_bp(bp, salt, iv);
3768 zio_crypt_encode_mac_bp(bp, mac);
3769
3770 if (no_crypt) {
3771 ASSERT3U(ot, ==, DMU_OT_DNODE);
3772 abd_free(eabd);
3773 } else {
3774 zio_push_transform(zio, eabd, psize, psize, NULL);
3775 }
3776 }
3777
3778 return (ZIO_PIPELINE_CONTINUE);
3779 }
3780
3781 /*
3782 * ==========================================================================
3783 * Generate and verify checksums
3784 * ==========================================================================
3785 */
3786 static int
3787 zio_checksum_generate(zio_t *zio)
3788 {
3789 blkptr_t *bp = zio->io_bp;
3790 enum zio_checksum checksum;
3791
3792 if (bp == NULL) {
3793 /*
3794 * This is zio_write_phys().
3795 * We're either generating a label checksum, or none at all.
3796 */
3797 checksum = zio->io_prop.zp_checksum;
3798
3799 if (checksum == ZIO_CHECKSUM_OFF)
3800 return (ZIO_PIPELINE_CONTINUE);
3801
3802 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
3803 } else {
3804 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
3805 ASSERT(!IO_IS_ALLOCATING(zio));
3806 checksum = ZIO_CHECKSUM_GANG_HEADER;
3807 } else {
3808 checksum = BP_GET_CHECKSUM(bp);
3809 }
3810 }
3811
3812 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
3813
3814 return (ZIO_PIPELINE_CONTINUE);
3815 }
3816
3817 static int
3818 zio_checksum_verify(zio_t *zio)
3819 {
3820 zio_bad_cksum_t info;
3821 blkptr_t *bp = zio->io_bp;
3822 int error;
3823
3824 ASSERT(zio->io_vd != NULL);
3825
3826 if (bp == NULL) {
3827 /*
3828 * This is zio_read_phys().
3829 * We're either verifying a label checksum, or nothing at all.
3830 */
3831 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
3832 return (ZIO_PIPELINE_CONTINUE);
3833
3834 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
3835 }
3836
3837 if ((error = zio_checksum_error(zio, &info)) != 0) {
3838 zio->io_error = error;
3839 if (error == ECKSUM &&
3840 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
3841 zfs_ereport_start_checksum(zio->io_spa,
3842 zio->io_vd, &zio->io_bookmark, zio,
3843 zio->io_offset, zio->io_size, NULL, &info);
3844 }
3845 }
3846
3847 return (ZIO_PIPELINE_CONTINUE);
3848 }
3849
3850 /*
3851 * Called by RAID-Z to ensure we don't compute the checksum twice.
3852 */
3853 void
3854 zio_checksum_verified(zio_t *zio)
3855 {
3856 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
3857 }
3858
3859 /*
3860 * ==========================================================================
3861 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
3862 * An error of 0 indicates success. ENXIO indicates whole-device failure,
3863 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
3864 * indicate errors that are specific to one I/O, and most likely permanent.
3865 * Any other error is presumed to be worse because we weren't expecting it.
3866 * ==========================================================================
3867 */
3868 int
3869 zio_worst_error(int e1, int e2)
3870 {
3871 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
3872 int r1, r2;
3873
3874 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
3875 if (e1 == zio_error_rank[r1])
3876 break;
3877
3878 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
3879 if (e2 == zio_error_rank[r2])
3880 break;
3881
3882 return (r1 > r2 ? e1 : e2);
3883 }
3884
3885 /*
3886 * ==========================================================================
3887 * I/O completion
3888 * ==========================================================================
3889 */
3890 static int
3891 zio_ready(zio_t *zio)
3892 {
3893 blkptr_t *bp = zio->io_bp;
3894 zio_t *pio, *pio_next;
3895 zio_link_t *zl = NULL;
3896
3897 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
3898 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
3899 return (ZIO_PIPELINE_STOP);
3900
3901 if (zio->io_ready) {
3902 ASSERT(IO_IS_ALLOCATING(zio));
3903 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
3904 (zio->io_flags & ZIO_FLAG_NOPWRITE));
3905 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
3906
3907 zio->io_ready(zio);
3908 }
3909
3910 if (bp != NULL && bp != &zio->io_bp_copy)
3911 zio->io_bp_copy = *bp;
3912
3913 if (zio->io_error != 0) {
3914 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3915
3916 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3917 ASSERT(IO_IS_ALLOCATING(zio));
3918 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3919 /*
3920 * We were unable to allocate anything, unreserve and
3921 * issue the next I/O to allocate.
3922 */
3923 metaslab_class_throttle_unreserve(
3924 spa_normal_class(zio->io_spa),
3925 zio->io_prop.zp_copies, zio);
3926 zio_allocate_dispatch(zio->io_spa);
3927 }
3928 }
3929
3930 mutex_enter(&zio->io_lock);
3931 zio->io_state[ZIO_WAIT_READY] = 1;
3932 pio = zio_walk_parents(zio, &zl);
3933 mutex_exit(&zio->io_lock);
3934
3935 /*
3936 * As we notify zio's parents, new parents could be added.
3937 * New parents go to the head of zio's io_parent_list, however,
3938 * so we will (correctly) not notify them. The remainder of zio's
3939 * io_parent_list, from 'pio_next' onward, cannot change because
3940 * all parents must wait for us to be done before they can be done.
3941 */
3942 for (; pio != NULL; pio = pio_next) {
3943 pio_next = zio_walk_parents(zio, &zl);
3944 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
3945 }
3946
3947 if (zio->io_flags & ZIO_FLAG_NODATA) {
3948 if (BP_IS_GANG(bp)) {
3949 zio->io_flags &= ~ZIO_FLAG_NODATA;
3950 } else {
3951 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
3952 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
3953 }
3954 }
3955
3956 if (zio_injection_enabled &&
3957 zio->io_spa->spa_syncing_txg == zio->io_txg)
3958 zio_handle_ignored_writes(zio);
3959
3960 return (ZIO_PIPELINE_CONTINUE);
3961 }
3962
3963 /*
3964 * Update the allocation throttle accounting.
3965 */
3966 static void
3967 zio_dva_throttle_done(zio_t *zio)
3968 {
3969 ASSERTV(zio_t *lio = zio->io_logical);
3970 zio_t *pio = zio_unique_parent(zio);
3971 vdev_t *vd = zio->io_vd;
3972 int flags = METASLAB_ASYNC_ALLOC;
3973
3974 ASSERT3P(zio->io_bp, !=, NULL);
3975 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
3976 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
3977 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
3978 ASSERT(vd != NULL);
3979 ASSERT3P(vd, ==, vd->vdev_top);
3980 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
3981 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
3982 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
3983 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
3984 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
3985
3986 /*
3987 * Parents of gang children can have two flavors -- ones that
3988 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
3989 * and ones that allocated the constituent blocks. The allocation
3990 * throttle needs to know the allocating parent zio so we must find
3991 * it here.
3992 */
3993 if (pio->io_child_type == ZIO_CHILD_GANG) {
3994 /*
3995 * If our parent is a rewrite gang child then our grandparent
3996 * would have been the one that performed the allocation.
3997 */
3998 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
3999 pio = zio_unique_parent(pio);
4000 flags |= METASLAB_GANG_CHILD;
4001 }
4002
4003 ASSERT(IO_IS_ALLOCATING(pio));
4004 ASSERT3P(zio, !=, zio->io_logical);
4005 ASSERT(zio->io_logical != NULL);
4006 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4007 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4008
4009 mutex_enter(&pio->io_lock);
4010 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags);
4011 mutex_exit(&pio->io_lock);
4012
4013 metaslab_class_throttle_unreserve(spa_normal_class(zio->io_spa),
4014 1, pio);
4015
4016 /*
4017 * Call into the pipeline to see if there is more work that
4018 * needs to be done. If there is work to be done it will be
4019 * dispatched to another taskq thread.
4020 */
4021 zio_allocate_dispatch(zio->io_spa);
4022 }
4023
4024 static int
4025 zio_done(zio_t *zio)
4026 {
4027 /*
4028 * Always attempt to keep stack usage minimal here since
4029 * we can be called recurisvely up to 19 levels deep.
4030 */
4031 const uint64_t psize = zio->io_size;
4032 zio_t *pio, *pio_next;
4033 zio_link_t *zl = NULL;
4034
4035 /*
4036 * If our children haven't all completed,
4037 * wait for them and then repeat this pipeline stage.
4038 */
4039 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
4040 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
4041 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
4042 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
4043 return (ZIO_PIPELINE_STOP);
4044
4045 /*
4046 * If the allocation throttle is enabled, then update the accounting.
4047 * We only track child I/Os that are part of an allocating async
4048 * write. We must do this since the allocation is performed
4049 * by the logical I/O but the actual write is done by child I/Os.
4050 */
4051 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4052 zio->io_child_type == ZIO_CHILD_VDEV) {
4053 ASSERT(spa_normal_class(
4054 zio->io_spa)->mc_alloc_throttle_enabled);
4055 zio_dva_throttle_done(zio);
4056 }
4057
4058 /*
4059 * If the allocation throttle is enabled, verify that
4060 * we have decremented the refcounts for every I/O that was throttled.
4061 */
4062 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4063 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4064 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4065 ASSERT(zio->io_bp != NULL);
4066 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio);
4067 VERIFY(refcount_not_held(
4068 &(spa_normal_class(zio->io_spa)->mc_alloc_slots), zio));
4069 }
4070
4071
4072 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4073 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4074 ASSERT(zio->io_children[c][w] == 0);
4075
4076 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4077 ASSERT(zio->io_bp->blk_pad[0] == 0);
4078 ASSERT(zio->io_bp->blk_pad[1] == 0);
4079 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4080 sizeof (blkptr_t)) == 0 ||
4081 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4082 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4083 zio->io_bp_override == NULL &&
4084 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4085 ASSERT(!BP_SHOULD_BYTESWAP(zio->io_bp));
4086 ASSERT3U(zio->io_prop.zp_copies, <=,
4087 BP_GET_NDVAS(zio->io_bp));
4088 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4089 (BP_COUNT_GANG(zio->io_bp) ==
4090 BP_GET_NDVAS(zio->io_bp)));
4091 }
4092 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4093 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4094 }
4095
4096 /*
4097 * If there were child vdev/gang/ddt errors, they apply to us now.
4098 */
4099 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4100 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4101 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4102
4103 /*
4104 * If the I/O on the transformed data was successful, generate any
4105 * checksum reports now while we still have the transformed data.
4106 */
4107 if (zio->io_error == 0) {
4108 while (zio->io_cksum_report != NULL) {
4109 zio_cksum_report_t *zcr = zio->io_cksum_report;
4110 uint64_t align = zcr->zcr_align;
4111 uint64_t asize = P2ROUNDUP(psize, align);
4112 abd_t *adata = zio->io_abd;
4113
4114 if (asize != psize) {
4115 adata = abd_alloc(asize, B_TRUE);
4116 abd_copy(adata, zio->io_abd, psize);
4117 abd_zero_off(adata, psize, asize - psize);
4118 }
4119
4120 zio->io_cksum_report = zcr->zcr_next;
4121 zcr->zcr_next = NULL;
4122 zcr->zcr_finish(zcr, adata);
4123 zfs_ereport_free_checksum(zcr);
4124
4125 if (asize != psize)
4126 abd_free(adata);
4127 }
4128 }
4129
4130 zio_pop_transforms(zio); /* note: may set zio->io_error */
4131
4132 vdev_stat_update(zio, psize);
4133
4134 /*
4135 * If this I/O is attached to a particular vdev is slow, exceeding
4136 * 30 seconds to complete, post an error described the I/O delay.
4137 * We ignore these errors if the device is currently unavailable.
4138 */
4139 if (zio->io_delay >= MSEC2NSEC(zio_delay_max)) {
4140 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
4141 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
4142 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4143 }
4144
4145 if (zio->io_error) {
4146 /*
4147 * If this I/O is attached to a particular vdev,
4148 * generate an error message describing the I/O failure
4149 * at the block level. We ignore these errors if the
4150 * device is currently unavailable.
4151 */
4152 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4153 !vdev_is_dead(zio->io_vd))
4154 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
4155 zio->io_vd, &zio->io_bookmark, zio, 0, 0);
4156
4157 if ((zio->io_error == EIO || !(zio->io_flags &
4158 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4159 zio == zio->io_logical) {
4160 /*
4161 * For logical I/O requests, tell the SPA to log the
4162 * error and generate a logical data ereport.
4163 */
4164 spa_log_error(zio->io_spa, &zio->io_bookmark);
4165 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa,
4166 NULL, &zio->io_bookmark, zio, 0, 0);
4167 }
4168 }
4169
4170 if (zio->io_error && zio == zio->io_logical) {
4171 /*
4172 * Determine whether zio should be reexecuted. This will
4173 * propagate all the way to the root via zio_notify_parent().
4174 */
4175 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4176 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4177
4178 if (IO_IS_ALLOCATING(zio) &&
4179 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4180 if (zio->io_error != ENOSPC)
4181 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4182 else
4183 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4184 }
4185
4186 if ((zio->io_type == ZIO_TYPE_READ ||
4187 zio->io_type == ZIO_TYPE_FREE) &&
4188 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4189 zio->io_error == ENXIO &&
4190 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4191 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4192 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4193
4194 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4195 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4196
4197 /*
4198 * Here is a possibly good place to attempt to do
4199 * either combinatorial reconstruction or error correction
4200 * based on checksums. It also might be a good place
4201 * to send out preliminary ereports before we suspend
4202 * processing.
4203 */
4204 }
4205
4206 /*
4207 * If there were logical child errors, they apply to us now.
4208 * We defer this until now to avoid conflating logical child
4209 * errors with errors that happened to the zio itself when
4210 * updating vdev stats and reporting FMA events above.
4211 */
4212 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4213
4214 if ((zio->io_error || zio->io_reexecute) &&
4215 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4216 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4217 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4218
4219 zio_gang_tree_free(&zio->io_gang_tree);
4220
4221 /*
4222 * Godfather I/Os should never suspend.
4223 */
4224 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4225 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4226 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4227
4228 if (zio->io_reexecute) {
4229 /*
4230 * This is a logical I/O that wants to reexecute.
4231 *
4232 * Reexecute is top-down. When an i/o fails, if it's not
4233 * the root, it simply notifies its parent and sticks around.
4234 * The parent, seeing that it still has children in zio_done(),
4235 * does the same. This percolates all the way up to the root.
4236 * The root i/o will reexecute or suspend the entire tree.
4237 *
4238 * This approach ensures that zio_reexecute() honors
4239 * all the original i/o dependency relationships, e.g.
4240 * parents not executing until children are ready.
4241 */
4242 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4243
4244 zio->io_gang_leader = NULL;
4245
4246 mutex_enter(&zio->io_lock);
4247 zio->io_state[ZIO_WAIT_DONE] = 1;
4248 mutex_exit(&zio->io_lock);
4249
4250 /*
4251 * "The Godfather" I/O monitors its children but is
4252 * not a true parent to them. It will track them through
4253 * the pipeline but severs its ties whenever they get into
4254 * trouble (e.g. suspended). This allows "The Godfather"
4255 * I/O to return status without blocking.
4256 */
4257 zl = NULL;
4258 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4259 pio = pio_next) {
4260 zio_link_t *remove_zl = zl;
4261 pio_next = zio_walk_parents(zio, &zl);
4262
4263 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4264 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4265 zio_remove_child(pio, zio, remove_zl);
4266 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4267 }
4268 }
4269
4270 if ((pio = zio_unique_parent(zio)) != NULL) {
4271 /*
4272 * We're not a root i/o, so there's nothing to do
4273 * but notify our parent. Don't propagate errors
4274 * upward since we haven't permanently failed yet.
4275 */
4276 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4277 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4278 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4279 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4280 /*
4281 * We'd fail again if we reexecuted now, so suspend
4282 * until conditions improve (e.g. device comes online).
4283 */
4284 zio_suspend(zio->io_spa, zio);
4285 } else {
4286 /*
4287 * Reexecution is potentially a huge amount of work.
4288 * Hand it off to the otherwise-unused claim taskq.
4289 */
4290 ASSERT(taskq_empty_ent(&zio->io_tqent));
4291 spa_taskq_dispatch_ent(zio->io_spa,
4292 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4293 (task_func_t *)zio_reexecute, zio, 0,
4294 &zio->io_tqent);
4295 }
4296 return (ZIO_PIPELINE_STOP);
4297 }
4298
4299 ASSERT(zio->io_child_count == 0);
4300 ASSERT(zio->io_reexecute == 0);
4301 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4302
4303 /*
4304 * Report any checksum errors, since the I/O is complete.
4305 */
4306 while (zio->io_cksum_report != NULL) {
4307 zio_cksum_report_t *zcr = zio->io_cksum_report;
4308 zio->io_cksum_report = zcr->zcr_next;
4309 zcr->zcr_next = NULL;
4310 zcr->zcr_finish(zcr, NULL);
4311 zfs_ereport_free_checksum(zcr);
4312 }
4313
4314 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4315 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4316 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4317 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4318 }
4319
4320 /*
4321 * It is the responsibility of the done callback to ensure that this
4322 * particular zio is no longer discoverable for adoption, and as
4323 * such, cannot acquire any new parents.
4324 */
4325 if (zio->io_done)
4326 zio->io_done(zio);
4327
4328 mutex_enter(&zio->io_lock);
4329 zio->io_state[ZIO_WAIT_DONE] = 1;
4330 mutex_exit(&zio->io_lock);
4331
4332 zl = NULL;
4333 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4334 zio_link_t *remove_zl = zl;
4335 pio_next = zio_walk_parents(zio, &zl);
4336 zio_remove_child(pio, zio, remove_zl);
4337 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
4338 }
4339
4340 if (zio->io_waiter != NULL) {
4341 mutex_enter(&zio->io_lock);
4342 zio->io_executor = NULL;
4343 cv_broadcast(&zio->io_cv);
4344 mutex_exit(&zio->io_lock);
4345 } else {
4346 zio_destroy(zio);
4347 }
4348
4349 return (ZIO_PIPELINE_STOP);
4350 }
4351
4352 /*
4353 * ==========================================================================
4354 * I/O pipeline definition
4355 * ==========================================================================
4356 */
4357 static zio_pipe_stage_t *zio_pipeline[] = {
4358 NULL,
4359 zio_read_bp_init,
4360 zio_write_bp_init,
4361 zio_free_bp_init,
4362 zio_issue_async,
4363 zio_write_compress,
4364 zio_encrypt,
4365 zio_checksum_generate,
4366 zio_nop_write,
4367 zio_ddt_read_start,
4368 zio_ddt_read_done,
4369 zio_ddt_write,
4370 zio_ddt_free,
4371 zio_gang_assemble,
4372 zio_gang_issue,
4373 zio_dva_throttle,
4374 zio_dva_allocate,
4375 zio_dva_free,
4376 zio_dva_claim,
4377 zio_ready,
4378 zio_vdev_io_start,
4379 zio_vdev_io_done,
4380 zio_vdev_io_assess,
4381 zio_checksum_verify,
4382 zio_done
4383 };
4384
4385
4386
4387
4388 /*
4389 * Compare two zbookmark_phys_t's to see which we would reach first in a
4390 * pre-order traversal of the object tree.
4391 *
4392 * This is simple in every case aside from the meta-dnode object. For all other
4393 * objects, we traverse them in order (object 1 before object 2, and so on).
4394 * However, all of these objects are traversed while traversing object 0, since
4395 * the data it points to is the list of objects. Thus, we need to convert to a
4396 * canonical representation so we can compare meta-dnode bookmarks to
4397 * non-meta-dnode bookmarks.
4398 *
4399 * We do this by calculating "equivalents" for each field of the zbookmark.
4400 * zbookmarks outside of the meta-dnode use their own object and level, and
4401 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4402 * blocks this bookmark refers to) by multiplying their blkid by their span
4403 * (the number of L0 blocks contained within one block at their level).
4404 * zbookmarks inside the meta-dnode calculate their object equivalent
4405 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4406 * level + 1<<31 (any value larger than a level could ever be) for their level.
4407 * This causes them to always compare before a bookmark in their object
4408 * equivalent, compare appropriately to bookmarks in other objects, and to
4409 * compare appropriately to other bookmarks in the meta-dnode.
4410 */
4411 int
4412 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4413 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4414 {
4415 /*
4416 * These variables represent the "equivalent" values for the zbookmark,
4417 * after converting zbookmarks inside the meta dnode to their
4418 * normal-object equivalents.
4419 */
4420 uint64_t zb1obj, zb2obj;
4421 uint64_t zb1L0, zb2L0;
4422 uint64_t zb1level, zb2level;
4423
4424 if (zb1->zb_object == zb2->zb_object &&
4425 zb1->zb_level == zb2->zb_level &&
4426 zb1->zb_blkid == zb2->zb_blkid)
4427 return (0);
4428
4429 /*
4430 * BP_SPANB calculates the span in blocks.
4431 */
4432 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4433 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4434
4435 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4436 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4437 zb1L0 = 0;
4438 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4439 } else {
4440 zb1obj = zb1->zb_object;
4441 zb1level = zb1->zb_level;
4442 }
4443
4444 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4445 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4446 zb2L0 = 0;
4447 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4448 } else {
4449 zb2obj = zb2->zb_object;
4450 zb2level = zb2->zb_level;
4451 }
4452
4453 /* Now that we have a canonical representation, do the comparison. */
4454 if (zb1obj != zb2obj)
4455 return (zb1obj < zb2obj ? -1 : 1);
4456 else if (zb1L0 != zb2L0)
4457 return (zb1L0 < zb2L0 ? -1 : 1);
4458 else if (zb1level != zb2level)
4459 return (zb1level > zb2level ? -1 : 1);
4460 /*
4461 * This can (theoretically) happen if the bookmarks have the same object
4462 * and level, but different blkids, if the block sizes are not the same.
4463 * There is presently no way to change the indirect block sizes
4464 */
4465 return (0);
4466 }
4467
4468 /*
4469 * This function checks the following: given that last_block is the place that
4470 * our traversal stopped last time, does that guarantee that we've visited
4471 * every node under subtree_root? Therefore, we can't just use the raw output
4472 * of zbookmark_compare. We have to pass in a modified version of
4473 * subtree_root; by incrementing the block id, and then checking whether
4474 * last_block is before or equal to that, we can tell whether or not having
4475 * visited last_block implies that all of subtree_root's children have been
4476 * visited.
4477 */
4478 boolean_t
4479 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4480 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4481 {
4482 zbookmark_phys_t mod_zb = *subtree_root;
4483 mod_zb.zb_blkid++;
4484 ASSERT(last_block->zb_level == 0);
4485
4486 /* The objset_phys_t isn't before anything. */
4487 if (dnp == NULL)
4488 return (B_FALSE);
4489
4490 /*
4491 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4492 * data block size in sectors, because that variable is only used if
4493 * the bookmark refers to a block in the meta-dnode. Since we don't
4494 * know without examining it what object it refers to, and there's no
4495 * harm in passing in this value in other cases, we always pass it in.
4496 *
4497 * We pass in 0 for the indirect block size shift because zb2 must be
4498 * level 0. The indirect block size is only used to calculate the span
4499 * of the bookmark, but since the bookmark must be level 0, the span is
4500 * always 1, so the math works out.
4501 *
4502 * If you make changes to how the zbookmark_compare code works, be sure
4503 * to make sure that this code still works afterwards.
4504 */
4505 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
4506 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
4507 last_block) <= 0);
4508 }
4509
4510 #if defined(_KERNEL) && defined(HAVE_SPL)
4511 EXPORT_SYMBOL(zio_type_name);
4512 EXPORT_SYMBOL(zio_buf_alloc);
4513 EXPORT_SYMBOL(zio_data_buf_alloc);
4514 EXPORT_SYMBOL(zio_buf_free);
4515 EXPORT_SYMBOL(zio_data_buf_free);
4516
4517 module_param(zio_delay_max, int, 0644);
4518 MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
4519
4520 module_param(zio_requeue_io_start_cut_in_line, int, 0644);
4521 MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
4522
4523 module_param(zfs_sync_pass_deferred_free, int, 0644);
4524 MODULE_PARM_DESC(zfs_sync_pass_deferred_free,
4525 "Defer frees starting in this pass");
4526
4527 module_param(zfs_sync_pass_dont_compress, int, 0644);
4528 MODULE_PARM_DESC(zfs_sync_pass_dont_compress,
4529 "Don't compress starting in this pass");
4530
4531 module_param(zfs_sync_pass_rewrite, int, 0644);
4532 MODULE_PARM_DESC(zfs_sync_pass_rewrite,
4533 "Rewrite new bps starting in this pass");
4534
4535 module_param(zio_dva_throttle_enabled, int, 0644);
4536 MODULE_PARM_DESC(zio_dva_throttle_enabled,
4537 "Throttle block allocations in the ZIO pipeline");
4538 #endif