]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Merge branch 'feature-flags'
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/fm/fs/zfs.h>
29 #include <sys/spa.h>
30 #include <sys/txg.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio_impl.h>
34 #include <sys/zio_compress.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/arc.h>
38 #include <sys/ddt.h>
39
40 /*
41 * ==========================================================================
42 * I/O priority table
43 * ==========================================================================
44 */
45 uint8_t zio_priority_table[ZIO_PRIORITY_TABLE_SIZE] = {
46 0, /* ZIO_PRIORITY_NOW */
47 0, /* ZIO_PRIORITY_SYNC_READ */
48 0, /* ZIO_PRIORITY_SYNC_WRITE */
49 0, /* ZIO_PRIORITY_LOG_WRITE */
50 1, /* ZIO_PRIORITY_CACHE_FILL */
51 1, /* ZIO_PRIORITY_AGG */
52 4, /* ZIO_PRIORITY_FREE */
53 4, /* ZIO_PRIORITY_ASYNC_WRITE */
54 6, /* ZIO_PRIORITY_ASYNC_READ */
55 10, /* ZIO_PRIORITY_RESILVER */
56 20, /* ZIO_PRIORITY_SCRUB */
57 2, /* ZIO_PRIORITY_DDT_PREFETCH */
58 };
59
60 /*
61 * ==========================================================================
62 * I/O type descriptions
63 * ==========================================================================
64 */
65 char *zio_type_name[ZIO_TYPES] = {
66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl"
67 };
68
69 /*
70 * ==========================================================================
71 * I/O kmem caches
72 * ==========================================================================
73 */
74 kmem_cache_t *zio_cache;
75 kmem_cache_t *zio_link_cache;
76 kmem_cache_t *zio_vdev_cache;
77 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
78 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 int zio_bulk_flags = 0;
80 int zio_delay_max = ZIO_DELAY_MAX;
81
82 #ifdef _KERNEL
83 extern vmem_t *zio_alloc_arena;
84 #endif
85 extern int zfs_mg_alloc_failures;
86
87 /*
88 * An allocating zio is one that either currently has the DVA allocate
89 * stage set or will have it later in its lifetime.
90 */
91 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
92
93 int zio_requeue_io_start_cut_in_line = 1;
94
95 #ifdef ZFS_DEBUG
96 int zio_buf_debug_limit = 16384;
97 #else
98 int zio_buf_debug_limit = 0;
99 #endif
100
101 static inline void __zio_execute(zio_t *zio);
102
103 static int
104 zio_cons(void *arg, void *unused, int kmflag)
105 {
106 zio_t *zio = arg;
107
108 bzero(zio, sizeof (zio_t));
109
110 mutex_init(&zio->io_lock, NULL, MUTEX_DEFAULT, NULL);
111 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
112
113 list_create(&zio->io_parent_list, sizeof (zio_link_t),
114 offsetof(zio_link_t, zl_parent_node));
115 list_create(&zio->io_child_list, sizeof (zio_link_t),
116 offsetof(zio_link_t, zl_child_node));
117
118 return (0);
119 }
120
121 static void
122 zio_dest(void *arg, void *unused)
123 {
124 zio_t *zio = arg;
125
126 mutex_destroy(&zio->io_lock);
127 cv_destroy(&zio->io_cv);
128 list_destroy(&zio->io_parent_list);
129 list_destroy(&zio->io_child_list);
130 }
131
132 void
133 zio_init(void)
134 {
135 size_t c;
136 vmem_t *data_alloc_arena = NULL;
137
138 #ifdef _KERNEL
139 data_alloc_arena = zio_alloc_arena;
140 #endif
141 zio_cache = kmem_cache_create("zio_cache", sizeof (zio_t), 0,
142 zio_cons, zio_dest, NULL, NULL, NULL, KMC_KMEM);
143 zio_link_cache = kmem_cache_create("zio_link_cache",
144 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, KMC_KMEM);
145 zio_vdev_cache = kmem_cache_create("zio_vdev_cache", sizeof(vdev_io_t),
146 PAGESIZE, NULL, NULL, NULL, NULL, NULL, KMC_VMEM);
147
148 /*
149 * For small buffers, we want a cache for each multiple of
150 * SPA_MINBLOCKSIZE. For medium-size buffers, we want a cache
151 * for each quarter-power of 2. For large buffers, we want
152 * a cache for each multiple of PAGESIZE.
153 */
154 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
155 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
156 size_t p2 = size;
157 size_t align = 0;
158
159 while (p2 & (p2 - 1))
160 p2 &= p2 - 1;
161
162 if (size <= 4 * SPA_MINBLOCKSIZE) {
163 align = SPA_MINBLOCKSIZE;
164 } else if (P2PHASE(size, PAGESIZE) == 0) {
165 align = PAGESIZE;
166 } else if (P2PHASE(size, p2 >> 2) == 0) {
167 align = p2 >> 2;
168 }
169
170 if (align != 0) {
171 char name[36];
172 int flags = zio_bulk_flags;
173
174 /*
175 * The smallest buffers (512b) are heavily used and
176 * experience a lot of churn. The slabs allocated
177 * for them are also relatively small (32K). Thus
178 * in over to avoid expensive calls to vmalloc() we
179 * make an exception to the usual slab allocation
180 * policy and force these buffers to be kmem backed.
181 */
182 if (size == (1 << SPA_MINBLOCKSHIFT))
183 flags |= KMC_KMEM;
184
185 (void) sprintf(name, "zio_buf_%lu", (ulong_t)size);
186 zio_buf_cache[c] = kmem_cache_create(name, size,
187 align, NULL, NULL, NULL, NULL, NULL, flags);
188
189 (void) sprintf(name, "zio_data_buf_%lu", (ulong_t)size);
190 zio_data_buf_cache[c] = kmem_cache_create(name, size,
191 align, NULL, NULL, NULL, NULL,
192 data_alloc_arena, flags);
193 }
194 }
195
196 while (--c != 0) {
197 ASSERT(zio_buf_cache[c] != NULL);
198 if (zio_buf_cache[c - 1] == NULL)
199 zio_buf_cache[c - 1] = zio_buf_cache[c];
200
201 ASSERT(zio_data_buf_cache[c] != NULL);
202 if (zio_data_buf_cache[c - 1] == NULL)
203 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
204 }
205
206 /*
207 * The zio write taskqs have 1 thread per cpu, allow 1/2 of the taskqs
208 * to fail 3 times per txg or 8 failures, whichever is greater.
209 */
210 zfs_mg_alloc_failures = MAX((3 * max_ncpus / 2), 8);
211
212 zio_inject_init();
213 }
214
215 void
216 zio_fini(void)
217 {
218 size_t c;
219 kmem_cache_t *last_cache = NULL;
220 kmem_cache_t *last_data_cache = NULL;
221
222 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
223 if (zio_buf_cache[c] != last_cache) {
224 last_cache = zio_buf_cache[c];
225 kmem_cache_destroy(zio_buf_cache[c]);
226 }
227 zio_buf_cache[c] = NULL;
228
229 if (zio_data_buf_cache[c] != last_data_cache) {
230 last_data_cache = zio_data_buf_cache[c];
231 kmem_cache_destroy(zio_data_buf_cache[c]);
232 }
233 zio_data_buf_cache[c] = NULL;
234 }
235
236 kmem_cache_destroy(zio_vdev_cache);
237 kmem_cache_destroy(zio_link_cache);
238 kmem_cache_destroy(zio_cache);
239
240 zio_inject_fini();
241 }
242
243 /*
244 * ==========================================================================
245 * Allocate and free I/O buffers
246 * ==========================================================================
247 */
248
249 /*
250 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
251 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
252 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
253 * excess / transient data in-core during a crashdump.
254 */
255 void *
256 zio_buf_alloc(size_t size)
257 {
258 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
259
260 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
261
262 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE | KM_NODEBUG));
263 }
264
265 /*
266 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
267 * crashdump if the kernel panics. This exists so that we will limit the amount
268 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
269 * of kernel heap dumped to disk when the kernel panics)
270 */
271 void *
272 zio_data_buf_alloc(size_t size)
273 {
274 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
275
276 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
277
278 return (kmem_cache_alloc(zio_data_buf_cache[c],
279 KM_PUSHPAGE | KM_NODEBUG));
280 }
281
282 void
283 zio_buf_free(void *buf, size_t size)
284 {
285 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
286
287 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
288
289 kmem_cache_free(zio_buf_cache[c], buf);
290 }
291
292 void
293 zio_data_buf_free(void *buf, size_t size)
294 {
295 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
296
297 ASSERT(c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
298
299 kmem_cache_free(zio_data_buf_cache[c], buf);
300 }
301
302 /*
303 * Dedicated I/O buffers to ensure that memory fragmentation never prevents
304 * or significantly delays the issuing of a zio. These buffers are used
305 * to aggregate I/O and could be used for raidz stripes.
306 */
307 void *
308 zio_vdev_alloc(void)
309 {
310 return (kmem_cache_alloc(zio_vdev_cache, KM_PUSHPAGE));
311 }
312
313 void
314 zio_vdev_free(void *buf)
315 {
316 kmem_cache_free(zio_vdev_cache, buf);
317
318 }
319
320 /*
321 * ==========================================================================
322 * Push and pop I/O transform buffers
323 * ==========================================================================
324 */
325 static void
326 zio_push_transform(zio_t *zio, void *data, uint64_t size, uint64_t bufsize,
327 zio_transform_func_t *transform)
328 {
329 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_PUSHPAGE);
330
331 zt->zt_orig_data = zio->io_data;
332 zt->zt_orig_size = zio->io_size;
333 zt->zt_bufsize = bufsize;
334 zt->zt_transform = transform;
335
336 zt->zt_next = zio->io_transform_stack;
337 zio->io_transform_stack = zt;
338
339 zio->io_data = data;
340 zio->io_size = size;
341 }
342
343 static void
344 zio_pop_transforms(zio_t *zio)
345 {
346 zio_transform_t *zt;
347
348 while ((zt = zio->io_transform_stack) != NULL) {
349 if (zt->zt_transform != NULL)
350 zt->zt_transform(zio,
351 zt->zt_orig_data, zt->zt_orig_size);
352
353 if (zt->zt_bufsize != 0)
354 zio_buf_free(zio->io_data, zt->zt_bufsize);
355
356 zio->io_data = zt->zt_orig_data;
357 zio->io_size = zt->zt_orig_size;
358 zio->io_transform_stack = zt->zt_next;
359
360 kmem_free(zt, sizeof (zio_transform_t));
361 }
362 }
363
364 /*
365 * ==========================================================================
366 * I/O transform callbacks for subblocks and decompression
367 * ==========================================================================
368 */
369 static void
370 zio_subblock(zio_t *zio, void *data, uint64_t size)
371 {
372 ASSERT(zio->io_size > size);
373
374 if (zio->io_type == ZIO_TYPE_READ)
375 bcopy(zio->io_data, data, size);
376 }
377
378 static void
379 zio_decompress(zio_t *zio, void *data, uint64_t size)
380 {
381 if (zio->io_error == 0 &&
382 zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
383 zio->io_data, data, zio->io_size, size) != 0)
384 zio->io_error = EIO;
385 }
386
387 /*
388 * ==========================================================================
389 * I/O parent/child relationships and pipeline interlocks
390 * ==========================================================================
391 */
392 /*
393 * NOTE - Callers to zio_walk_parents() and zio_walk_children must
394 * continue calling these functions until they return NULL.
395 * Otherwise, the next caller will pick up the list walk in
396 * some indeterminate state. (Otherwise every caller would
397 * have to pass in a cookie to keep the state represented by
398 * io_walk_link, which gets annoying.)
399 */
400 zio_t *
401 zio_walk_parents(zio_t *cio)
402 {
403 zio_link_t *zl = cio->io_walk_link;
404 list_t *pl = &cio->io_parent_list;
405
406 zl = (zl == NULL) ? list_head(pl) : list_next(pl, zl);
407 cio->io_walk_link = zl;
408
409 if (zl == NULL)
410 return (NULL);
411
412 ASSERT(zl->zl_child == cio);
413 return (zl->zl_parent);
414 }
415
416 zio_t *
417 zio_walk_children(zio_t *pio)
418 {
419 zio_link_t *zl = pio->io_walk_link;
420 list_t *cl = &pio->io_child_list;
421
422 zl = (zl == NULL) ? list_head(cl) : list_next(cl, zl);
423 pio->io_walk_link = zl;
424
425 if (zl == NULL)
426 return (NULL);
427
428 ASSERT(zl->zl_parent == pio);
429 return (zl->zl_child);
430 }
431
432 zio_t *
433 zio_unique_parent(zio_t *cio)
434 {
435 zio_t *pio = zio_walk_parents(cio);
436
437 VERIFY(zio_walk_parents(cio) == NULL);
438 return (pio);
439 }
440
441 void
442 zio_add_child(zio_t *pio, zio_t *cio)
443 {
444 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_PUSHPAGE);
445 int w;
446
447 /*
448 * Logical I/Os can have logical, gang, or vdev children.
449 * Gang I/Os can have gang or vdev children.
450 * Vdev I/Os can only have vdev children.
451 * The following ASSERT captures all of these constraints.
452 */
453 ASSERT(cio->io_child_type <= pio->io_child_type);
454
455 zl->zl_parent = pio;
456 zl->zl_child = cio;
457
458 mutex_enter(&cio->io_lock);
459 mutex_enter(&pio->io_lock);
460
461 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
462
463 for (w = 0; w < ZIO_WAIT_TYPES; w++)
464 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
465
466 list_insert_head(&pio->io_child_list, zl);
467 list_insert_head(&cio->io_parent_list, zl);
468
469 pio->io_child_count++;
470 cio->io_parent_count++;
471
472 mutex_exit(&pio->io_lock);
473 mutex_exit(&cio->io_lock);
474 }
475
476 static void
477 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
478 {
479 ASSERT(zl->zl_parent == pio);
480 ASSERT(zl->zl_child == cio);
481
482 mutex_enter(&cio->io_lock);
483 mutex_enter(&pio->io_lock);
484
485 list_remove(&pio->io_child_list, zl);
486 list_remove(&cio->io_parent_list, zl);
487
488 pio->io_child_count--;
489 cio->io_parent_count--;
490
491 mutex_exit(&pio->io_lock);
492 mutex_exit(&cio->io_lock);
493
494 kmem_cache_free(zio_link_cache, zl);
495 }
496
497 static boolean_t
498 zio_wait_for_children(zio_t *zio, enum zio_child child, enum zio_wait_type wait)
499 {
500 uint64_t *countp = &zio->io_children[child][wait];
501 boolean_t waiting = B_FALSE;
502
503 mutex_enter(&zio->io_lock);
504 ASSERT(zio->io_stall == NULL);
505 if (*countp != 0) {
506 zio->io_stage >>= 1;
507 zio->io_stall = countp;
508 waiting = B_TRUE;
509 }
510 mutex_exit(&zio->io_lock);
511
512 return (waiting);
513 }
514
515 __attribute__((always_inline))
516 static inline void
517 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait)
518 {
519 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
520 int *errorp = &pio->io_child_error[zio->io_child_type];
521
522 mutex_enter(&pio->io_lock);
523 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
524 *errorp = zio_worst_error(*errorp, zio->io_error);
525 pio->io_reexecute |= zio->io_reexecute;
526 ASSERT3U(*countp, >, 0);
527 if (--*countp == 0 && pio->io_stall == countp) {
528 pio->io_stall = NULL;
529 mutex_exit(&pio->io_lock);
530 __zio_execute(pio);
531 } else {
532 mutex_exit(&pio->io_lock);
533 }
534 }
535
536 static void
537 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
538 {
539 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
540 zio->io_error = zio->io_child_error[c];
541 }
542
543 /*
544 * ==========================================================================
545 * Create the various types of I/O (read, write, free, etc)
546 * ==========================================================================
547 */
548 static zio_t *
549 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
550 void *data, uint64_t size, zio_done_func_t *done, void *private,
551 zio_type_t type, int priority, enum zio_flag flags,
552 vdev_t *vd, uint64_t offset, const zbookmark_t *zb,
553 enum zio_stage stage, enum zio_stage pipeline)
554 {
555 zio_t *zio;
556
557 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
558 ASSERT(P2PHASE(size, SPA_MINBLOCKSIZE) == 0);
559 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
560
561 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
562 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
563 ASSERT(vd || stage == ZIO_STAGE_OPEN);
564
565 zio = kmem_cache_alloc(zio_cache, KM_PUSHPAGE);
566
567 if (vd != NULL)
568 zio->io_child_type = ZIO_CHILD_VDEV;
569 else if (flags & ZIO_FLAG_GANG_CHILD)
570 zio->io_child_type = ZIO_CHILD_GANG;
571 else if (flags & ZIO_FLAG_DDT_CHILD)
572 zio->io_child_type = ZIO_CHILD_DDT;
573 else
574 zio->io_child_type = ZIO_CHILD_LOGICAL;
575
576 if (bp != NULL) {
577 zio->io_logical = NULL;
578 zio->io_bp = (blkptr_t *)bp;
579 zio->io_bp_copy = *bp;
580 zio->io_bp_orig = *bp;
581 if (type != ZIO_TYPE_WRITE ||
582 zio->io_child_type == ZIO_CHILD_DDT)
583 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
584 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
585 zio->io_logical = zio;
586 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
587 pipeline |= ZIO_GANG_STAGES;
588 } else {
589 zio->io_logical = NULL;
590 zio->io_bp = NULL;
591 bzero(&zio->io_bp_copy, sizeof (blkptr_t));
592 bzero(&zio->io_bp_orig, sizeof (blkptr_t));
593 }
594
595 zio->io_spa = spa;
596 zio->io_txg = txg;
597 zio->io_ready = NULL;
598 zio->io_done = done;
599 zio->io_private = private;
600 zio->io_prev_space_delta = 0;
601 zio->io_type = type;
602 zio->io_priority = priority;
603 zio->io_vd = vd;
604 zio->io_vsd = NULL;
605 zio->io_vsd_ops = NULL;
606 zio->io_offset = offset;
607 zio->io_deadline = 0;
608 zio->io_orig_data = zio->io_data = data;
609 zio->io_orig_size = zio->io_size = size;
610 zio->io_orig_flags = zio->io_flags = flags;
611 zio->io_orig_stage = zio->io_stage = stage;
612 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
613 bzero(&zio->io_prop, sizeof (zio_prop_t));
614 zio->io_cmd = 0;
615 zio->io_reexecute = 0;
616 zio->io_bp_override = NULL;
617 zio->io_walk_link = NULL;
618 zio->io_transform_stack = NULL;
619 zio->io_delay = 0;
620 zio->io_error = 0;
621 zio->io_child_count = 0;
622 zio->io_parent_count = 0;
623 zio->io_stall = NULL;
624 zio->io_gang_leader = NULL;
625 zio->io_gang_tree = NULL;
626 zio->io_executor = NULL;
627 zio->io_waiter = NULL;
628 zio->io_cksum_report = NULL;
629 zio->io_ena = 0;
630 bzero(zio->io_child_error, sizeof (int) * ZIO_CHILD_TYPES);
631 bzero(zio->io_children,
632 sizeof (uint64_t) * ZIO_CHILD_TYPES * ZIO_WAIT_TYPES);
633 bzero(&zio->io_bookmark, sizeof (zbookmark_t));
634
635 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
636 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
637
638 if (zb != NULL)
639 zio->io_bookmark = *zb;
640
641 if (pio != NULL) {
642 if (zio->io_logical == NULL)
643 zio->io_logical = pio->io_logical;
644 if (zio->io_child_type == ZIO_CHILD_GANG)
645 zio->io_gang_leader = pio->io_gang_leader;
646 zio_add_child(pio, zio);
647 }
648
649 taskq_init_ent(&zio->io_tqent);
650
651 return (zio);
652 }
653
654 static void
655 zio_destroy(zio_t *zio)
656 {
657 kmem_cache_free(zio_cache, zio);
658 }
659
660 zio_t *
661 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
662 void *private, enum zio_flag flags)
663 {
664 zio_t *zio;
665
666 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
667 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
668 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
669
670 return (zio);
671 }
672
673 zio_t *
674 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
675 {
676 return (zio_null(NULL, spa, NULL, done, private, flags));
677 }
678
679 zio_t *
680 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
681 void *data, uint64_t size, zio_done_func_t *done, void *private,
682 int priority, enum zio_flag flags, const zbookmark_t *zb)
683 {
684 zio_t *zio;
685
686 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
687 data, size, done, private,
688 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
689 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
690 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
691
692 return (zio);
693 }
694
695 zio_t *
696 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
697 void *data, uint64_t size, const zio_prop_t *zp,
698 zio_done_func_t *ready, zio_done_func_t *done, void *private,
699 int priority, enum zio_flag flags, const zbookmark_t *zb)
700 {
701 zio_t *zio;
702
703 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
704 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
705 zp->zp_compress >= ZIO_COMPRESS_OFF &&
706 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
707 DMU_OT_IS_VALID(zp->zp_type) &&
708 zp->zp_level < 32 &&
709 zp->zp_copies > 0 &&
710 zp->zp_copies <= spa_max_replication(spa) &&
711 zp->zp_dedup <= 1 &&
712 zp->zp_dedup_verify <= 1);
713
714 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
715 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
716 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
717 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
718
719 zio->io_ready = ready;
720 zio->io_prop = *zp;
721
722 return (zio);
723 }
724
725 zio_t *
726 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, void *data,
727 uint64_t size, zio_done_func_t *done, void *private, int priority,
728 enum zio_flag flags, zbookmark_t *zb)
729 {
730 zio_t *zio;
731
732 zio = zio_create(pio, spa, txg, bp, data, size, done, private,
733 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
734 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
735
736 return (zio);
737 }
738
739 void
740 zio_write_override(zio_t *zio, blkptr_t *bp, int copies)
741 {
742 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
743 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
744 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
745 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
746
747 zio->io_prop.zp_copies = copies;
748 zio->io_bp_override = bp;
749 }
750
751 void
752 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
753 {
754 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
755 }
756
757 zio_t *
758 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
759 enum zio_flag flags)
760 {
761 zio_t *zio;
762
763 dprintf_bp(bp, "freeing in txg %llu, pass %u",
764 (longlong_t)txg, spa->spa_sync_pass);
765
766 ASSERT(!BP_IS_HOLE(bp));
767 ASSERT(spa_syncing_txg(spa) == txg);
768 ASSERT(spa_sync_pass(spa) <= SYNC_PASS_DEFERRED_FREE);
769
770 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
771 NULL, NULL, ZIO_TYPE_FREE, ZIO_PRIORITY_FREE, flags,
772 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_FREE_PIPELINE);
773
774 return (zio);
775 }
776
777 zio_t *
778 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
779 zio_done_func_t *done, void *private, enum zio_flag flags)
780 {
781 zio_t *zio;
782
783 /*
784 * A claim is an allocation of a specific block. Claims are needed
785 * to support immediate writes in the intent log. The issue is that
786 * immediate writes contain committed data, but in a txg that was
787 * *not* committed. Upon opening the pool after an unclean shutdown,
788 * the intent log claims all blocks that contain immediate write data
789 * so that the SPA knows they're in use.
790 *
791 * All claims *must* be resolved in the first txg -- before the SPA
792 * starts allocating blocks -- so that nothing is allocated twice.
793 * If txg == 0 we just verify that the block is claimable.
794 */
795 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <, spa_first_txg(spa));
796 ASSERT(txg == spa_first_txg(spa) || txg == 0);
797 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(1M) */
798
799 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
800 done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW, flags,
801 NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
802
803 return (zio);
804 }
805
806 zio_t *
807 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
808 zio_done_func_t *done, void *private, int priority, enum zio_flag flags)
809 {
810 zio_t *zio;
811 int c;
812
813 if (vd->vdev_children == 0) {
814 zio = zio_create(pio, spa, 0, NULL, NULL, 0, done, private,
815 ZIO_TYPE_IOCTL, priority, flags, vd, 0, NULL,
816 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
817
818 zio->io_cmd = cmd;
819 } else {
820 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
821
822 for (c = 0; c < vd->vdev_children; c++)
823 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
824 done, private, priority, flags));
825 }
826
827 return (zio);
828 }
829
830 zio_t *
831 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
832 void *data, int checksum, zio_done_func_t *done, void *private,
833 int priority, enum zio_flag flags, boolean_t labels)
834 {
835 zio_t *zio;
836
837 ASSERT(vd->vdev_children == 0);
838 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
839 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
840 ASSERT3U(offset + size, <=, vd->vdev_psize);
841
842 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
843 ZIO_TYPE_READ, priority, flags, vd, offset, NULL,
844 ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
845
846 zio->io_prop.zp_checksum = checksum;
847
848 return (zio);
849 }
850
851 zio_t *
852 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
853 void *data, int checksum, zio_done_func_t *done, void *private,
854 int priority, enum zio_flag flags, boolean_t labels)
855 {
856 zio_t *zio;
857
858 ASSERT(vd->vdev_children == 0);
859 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
860 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
861 ASSERT3U(offset + size, <=, vd->vdev_psize);
862
863 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, done, private,
864 ZIO_TYPE_WRITE, priority, flags, vd, offset, NULL,
865 ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
866
867 zio->io_prop.zp_checksum = checksum;
868
869 if (zio_checksum_table[checksum].ci_eck) {
870 /*
871 * zec checksums are necessarily destructive -- they modify
872 * the end of the write buffer to hold the verifier/checksum.
873 * Therefore, we must make a local copy in case the data is
874 * being written to multiple places in parallel.
875 */
876 void *wbuf = zio_buf_alloc(size);
877 bcopy(data, wbuf, size);
878 zio_push_transform(zio, wbuf, size, size, NULL);
879 }
880
881 return (zio);
882 }
883
884 /*
885 * Create a child I/O to do some work for us.
886 */
887 zio_t *
888 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
889 void *data, uint64_t size, int type, int priority, enum zio_flag flags,
890 zio_done_func_t *done, void *private)
891 {
892 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
893 zio_t *zio;
894
895 ASSERT(vd->vdev_parent ==
896 (pio->io_vd ? pio->io_vd : pio->io_spa->spa_root_vdev));
897
898 if (type == ZIO_TYPE_READ && bp != NULL) {
899 /*
900 * If we have the bp, then the child should perform the
901 * checksum and the parent need not. This pushes error
902 * detection as close to the leaves as possible and
903 * eliminates redundant checksums in the interior nodes.
904 */
905 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
906 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
907 }
908
909 if (vd->vdev_children == 0)
910 offset += VDEV_LABEL_START_SIZE;
911
912 flags |= ZIO_VDEV_CHILD_FLAGS(pio) | ZIO_FLAG_DONT_PROPAGATE;
913
914 /*
915 * If we've decided to do a repair, the write is not speculative --
916 * even if the original read was.
917 */
918 if (flags & ZIO_FLAG_IO_REPAIR)
919 flags &= ~ZIO_FLAG_SPECULATIVE;
920
921 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size,
922 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
923 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
924
925 return (zio);
926 }
927
928 zio_t *
929 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, void *data, uint64_t size,
930 int type, int priority, enum zio_flag flags,
931 zio_done_func_t *done, void *private)
932 {
933 zio_t *zio;
934
935 ASSERT(vd->vdev_ops->vdev_op_leaf);
936
937 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
938 data, size, done, private, type, priority,
939 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY,
940 vd, offset, NULL,
941 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
942
943 return (zio);
944 }
945
946 void
947 zio_flush(zio_t *zio, vdev_t *vd)
948 {
949 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
950 NULL, NULL, ZIO_PRIORITY_NOW,
951 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
952 }
953
954 void
955 zio_shrink(zio_t *zio, uint64_t size)
956 {
957 ASSERT(zio->io_executor == NULL);
958 ASSERT(zio->io_orig_size == zio->io_size);
959 ASSERT(size <= zio->io_size);
960
961 /*
962 * We don't shrink for raidz because of problems with the
963 * reconstruction when reading back less than the block size.
964 * Note, BP_IS_RAIDZ() assumes no compression.
965 */
966 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
967 if (!BP_IS_RAIDZ(zio->io_bp))
968 zio->io_orig_size = zio->io_size = size;
969 }
970
971 /*
972 * ==========================================================================
973 * Prepare to read and write logical blocks
974 * ==========================================================================
975 */
976
977 static int
978 zio_read_bp_init(zio_t *zio)
979 {
980 blkptr_t *bp = zio->io_bp;
981
982 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
983 zio->io_child_type == ZIO_CHILD_LOGICAL &&
984 !(zio->io_flags & ZIO_FLAG_RAW)) {
985 uint64_t psize = BP_GET_PSIZE(bp);
986 void *cbuf = zio_buf_alloc(psize);
987
988 zio_push_transform(zio, cbuf, psize, psize, zio_decompress);
989 }
990
991 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
992 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
993
994 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
995 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
996
997 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
998 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
999
1000 return (ZIO_PIPELINE_CONTINUE);
1001 }
1002
1003 static int
1004 zio_write_bp_init(zio_t *zio)
1005 {
1006 spa_t *spa = zio->io_spa;
1007 zio_prop_t *zp = &zio->io_prop;
1008 enum zio_compress compress = zp->zp_compress;
1009 blkptr_t *bp = zio->io_bp;
1010 uint64_t lsize = zio->io_size;
1011 uint64_t psize = lsize;
1012 int pass = 1;
1013
1014 /*
1015 * If our children haven't all reached the ready stage,
1016 * wait for them and then repeat this pipeline stage.
1017 */
1018 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
1019 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_READY))
1020 return (ZIO_PIPELINE_STOP);
1021
1022 if (!IO_IS_ALLOCATING(zio))
1023 return (ZIO_PIPELINE_CONTINUE);
1024
1025 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1026
1027 if (zio->io_bp_override) {
1028 ASSERT(bp->blk_birth != zio->io_txg);
1029 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1030
1031 *bp = *zio->io_bp_override;
1032 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1033
1034 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1035 return (ZIO_PIPELINE_CONTINUE);
1036
1037 ASSERT(zio_checksum_table[zp->zp_checksum].ci_dedup ||
1038 zp->zp_dedup_verify);
1039
1040 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum) {
1041 BP_SET_DEDUP(bp, 1);
1042 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1043 return (ZIO_PIPELINE_CONTINUE);
1044 }
1045 zio->io_bp_override = NULL;
1046 BP_ZERO(bp);
1047 }
1048
1049 if (bp->blk_birth == zio->io_txg) {
1050 /*
1051 * We're rewriting an existing block, which means we're
1052 * working on behalf of spa_sync(). For spa_sync() to
1053 * converge, it must eventually be the case that we don't
1054 * have to allocate new blocks. But compression changes
1055 * the blocksize, which forces a reallocate, and makes
1056 * convergence take longer. Therefore, after the first
1057 * few passes, stop compressing to ensure convergence.
1058 */
1059 pass = spa_sync_pass(spa);
1060
1061 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1062 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1063 ASSERT(!BP_GET_DEDUP(bp));
1064
1065 if (pass > SYNC_PASS_DONT_COMPRESS)
1066 compress = ZIO_COMPRESS_OFF;
1067
1068 /* Make sure someone doesn't change their mind on overwrites */
1069 ASSERT(MIN(zp->zp_copies + BP_IS_GANG(bp),
1070 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1071 }
1072
1073 if (compress != ZIO_COMPRESS_OFF) {
1074 void *cbuf = zio_buf_alloc(lsize);
1075 psize = zio_compress_data(compress, zio->io_data, cbuf, lsize);
1076 if (psize == 0 || psize == lsize) {
1077 compress = ZIO_COMPRESS_OFF;
1078 zio_buf_free(cbuf, lsize);
1079 } else {
1080 ASSERT(psize < lsize);
1081 zio_push_transform(zio, cbuf, psize, lsize, NULL);
1082 }
1083 }
1084
1085 /*
1086 * The final pass of spa_sync() must be all rewrites, but the first
1087 * few passes offer a trade-off: allocating blocks defers convergence,
1088 * but newly allocated blocks are sequential, so they can be written
1089 * to disk faster. Therefore, we allow the first few passes of
1090 * spa_sync() to allocate new blocks, but force rewrites after that.
1091 * There should only be a handful of blocks after pass 1 in any case.
1092 */
1093 if (bp->blk_birth == zio->io_txg && BP_GET_PSIZE(bp) == psize &&
1094 pass > SYNC_PASS_REWRITE) {
1095 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1096 ASSERT(psize != 0);
1097 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1098 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1099 } else {
1100 BP_ZERO(bp);
1101 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1102 }
1103
1104 if (psize == 0) {
1105 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1106 } else {
1107 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1108 BP_SET_LSIZE(bp, lsize);
1109 BP_SET_PSIZE(bp, psize);
1110 BP_SET_COMPRESS(bp, compress);
1111 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1112 BP_SET_TYPE(bp, zp->zp_type);
1113 BP_SET_LEVEL(bp, zp->zp_level);
1114 BP_SET_DEDUP(bp, zp->zp_dedup);
1115 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1116 if (zp->zp_dedup) {
1117 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1118 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1119 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1120 }
1121 }
1122
1123 return (ZIO_PIPELINE_CONTINUE);
1124 }
1125
1126 static int
1127 zio_free_bp_init(zio_t *zio)
1128 {
1129 blkptr_t *bp = zio->io_bp;
1130
1131 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1132 if (BP_GET_DEDUP(bp))
1133 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1134 }
1135
1136 return (ZIO_PIPELINE_CONTINUE);
1137 }
1138
1139 /*
1140 * ==========================================================================
1141 * Execute the I/O pipeline
1142 * ==========================================================================
1143 */
1144
1145 static void
1146 zio_taskq_dispatch(zio_t *zio, enum zio_taskq_type q, boolean_t cutinline)
1147 {
1148 spa_t *spa = zio->io_spa;
1149 zio_type_t t = zio->io_type;
1150 int flags = (cutinline ? TQ_FRONT : 0);
1151
1152 /*
1153 * If we're a config writer or a probe, the normal issue and
1154 * interrupt threads may all be blocked waiting for the config lock.
1155 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1156 */
1157 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1158 t = ZIO_TYPE_NULL;
1159
1160 /*
1161 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1162 */
1163 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1164 t = ZIO_TYPE_NULL;
1165
1166 /*
1167 * If this is a high priority I/O, then use the high priority taskq.
1168 */
1169 if (zio->io_priority == ZIO_PRIORITY_NOW &&
1170 spa->spa_zio_taskq[t][q + 1] != NULL)
1171 q++;
1172
1173 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1174
1175 /*
1176 * NB: We are assuming that the zio can only be dispatched
1177 * to a single taskq at a time. It would be a grievous error
1178 * to dispatch the zio to another taskq at the same time.
1179 */
1180 ASSERT(taskq_empty_ent(&zio->io_tqent));
1181 taskq_dispatch_ent(spa->spa_zio_taskq[t][q],
1182 (task_func_t *)zio_execute, zio, flags, &zio->io_tqent);
1183 }
1184
1185 static boolean_t
1186 zio_taskq_member(zio_t *zio, enum zio_taskq_type q)
1187 {
1188 kthread_t *executor = zio->io_executor;
1189 spa_t *spa = zio->io_spa;
1190 zio_type_t t;
1191
1192 for (t = 0; t < ZIO_TYPES; t++)
1193 if (taskq_member(spa->spa_zio_taskq[t][q], executor))
1194 return (B_TRUE);
1195
1196 return (B_FALSE);
1197 }
1198
1199 static int
1200 zio_issue_async(zio_t *zio)
1201 {
1202 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1203
1204 return (ZIO_PIPELINE_STOP);
1205 }
1206
1207 void
1208 zio_interrupt(zio_t *zio)
1209 {
1210 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1211 }
1212
1213 /*
1214 * Execute the I/O pipeline until one of the following occurs:
1215 * (1) the I/O completes; (2) the pipeline stalls waiting for
1216 * dependent child I/Os; (3) the I/O issues, so we're waiting
1217 * for an I/O completion interrupt; (4) the I/O is delegated by
1218 * vdev-level caching or aggregation; (5) the I/O is deferred
1219 * due to vdev-level queueing; (6) the I/O is handed off to
1220 * another thread. In all cases, the pipeline stops whenever
1221 * there's no CPU work; it never burns a thread in cv_wait().
1222 *
1223 * There's no locking on io_stage because there's no legitimate way
1224 * for multiple threads to be attempting to process the same I/O.
1225 */
1226 static zio_pipe_stage_t *zio_pipeline[];
1227
1228 /*
1229 * zio_execute() is a wrapper around the static function
1230 * __zio_execute() so that we can force __zio_execute() to be
1231 * inlined. This reduces stack overhead which is important
1232 * because __zio_execute() is called recursively in several zio
1233 * code paths. zio_execute() itself cannot be inlined because
1234 * it is externally visible.
1235 */
1236 void
1237 zio_execute(zio_t *zio)
1238 {
1239 __zio_execute(zio);
1240 }
1241
1242 __attribute__((always_inline))
1243 static inline void
1244 __zio_execute(zio_t *zio)
1245 {
1246 zio->io_executor = curthread;
1247
1248 while (zio->io_stage < ZIO_STAGE_DONE) {
1249 enum zio_stage pipeline = zio->io_pipeline;
1250 enum zio_stage stage = zio->io_stage;
1251 dsl_pool_t *dp;
1252 boolean_t cut;
1253 int rv;
1254
1255 ASSERT(!MUTEX_HELD(&zio->io_lock));
1256 ASSERT(ISP2(stage));
1257 ASSERT(zio->io_stall == NULL);
1258
1259 do {
1260 stage <<= 1;
1261 } while ((stage & pipeline) == 0);
1262
1263 ASSERT(stage <= ZIO_STAGE_DONE);
1264
1265 dp = spa_get_dsl(zio->io_spa);
1266 cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
1267 zio_requeue_io_start_cut_in_line : B_FALSE;
1268
1269 /*
1270 * If we are in interrupt context and this pipeline stage
1271 * will grab a config lock that is held across I/O,
1272 * or may wait for an I/O that needs an interrupt thread
1273 * to complete, issue async to avoid deadlock.
1274 *
1275 * For VDEV_IO_START, we cut in line so that the io will
1276 * be sent to disk promptly.
1277 */
1278 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
1279 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
1280 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1281 return;
1282 }
1283
1284 /*
1285 * If we executing in the context of the tx_sync_thread,
1286 * or we are performing pool initialization outside of a
1287 * zio_taskq[ZIO_TASKQ_ISSUE] context. Then issue the zio
1288 * async to minimize stack usage for these deep call paths.
1289 */
1290 if ((dp && curthread == dp->dp_tx.tx_sync_thread) ||
1291 (dp && spa_is_initializing(dp->dp_spa) &&
1292 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE))) {
1293 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
1294 return;
1295 }
1296
1297 zio->io_stage = stage;
1298 rv = zio_pipeline[highbit(stage) - 1](zio);
1299
1300 if (rv == ZIO_PIPELINE_STOP)
1301 return;
1302
1303 ASSERT(rv == ZIO_PIPELINE_CONTINUE);
1304 }
1305 }
1306
1307
1308 /*
1309 * ==========================================================================
1310 * Initiate I/O, either sync or async
1311 * ==========================================================================
1312 */
1313 int
1314 zio_wait(zio_t *zio)
1315 {
1316 int error;
1317
1318 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1319 ASSERT(zio->io_executor == NULL);
1320
1321 zio->io_waiter = curthread;
1322
1323 __zio_execute(zio);
1324
1325 mutex_enter(&zio->io_lock);
1326 while (zio->io_executor != NULL)
1327 cv_wait_io(&zio->io_cv, &zio->io_lock);
1328 mutex_exit(&zio->io_lock);
1329
1330 error = zio->io_error;
1331 zio_destroy(zio);
1332
1333 return (error);
1334 }
1335
1336 void
1337 zio_nowait(zio_t *zio)
1338 {
1339 ASSERT(zio->io_executor == NULL);
1340
1341 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
1342 zio_unique_parent(zio) == NULL) {
1343 /*
1344 * This is a logical async I/O with no parent to wait for it.
1345 * We add it to the spa_async_root_zio "Godfather" I/O which
1346 * will ensure they complete prior to unloading the pool.
1347 */
1348 spa_t *spa = zio->io_spa;
1349
1350 zio_add_child(spa->spa_async_zio_root, zio);
1351 }
1352
1353 __zio_execute(zio);
1354 }
1355
1356 /*
1357 * ==========================================================================
1358 * Reexecute or suspend/resume failed I/O
1359 * ==========================================================================
1360 */
1361
1362 static void
1363 zio_reexecute(zio_t *pio)
1364 {
1365 zio_t *cio, *cio_next;
1366 int c, w;
1367
1368 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
1369 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
1370 ASSERT(pio->io_gang_leader == NULL);
1371 ASSERT(pio->io_gang_tree == NULL);
1372
1373 pio->io_flags = pio->io_orig_flags;
1374 pio->io_stage = pio->io_orig_stage;
1375 pio->io_pipeline = pio->io_orig_pipeline;
1376 pio->io_reexecute = 0;
1377 pio->io_error = 0;
1378 for (w = 0; w < ZIO_WAIT_TYPES; w++)
1379 pio->io_state[w] = 0;
1380 for (c = 0; c < ZIO_CHILD_TYPES; c++)
1381 pio->io_child_error[c] = 0;
1382
1383 if (IO_IS_ALLOCATING(pio))
1384 BP_ZERO(pio->io_bp);
1385
1386 /*
1387 * As we reexecute pio's children, new children could be created.
1388 * New children go to the head of pio's io_child_list, however,
1389 * so we will (correctly) not reexecute them. The key is that
1390 * the remainder of pio's io_child_list, from 'cio_next' onward,
1391 * cannot be affected by any side effects of reexecuting 'cio'.
1392 */
1393 for (cio = zio_walk_children(pio); cio != NULL; cio = cio_next) {
1394 cio_next = zio_walk_children(pio);
1395 mutex_enter(&pio->io_lock);
1396 for (w = 0; w < ZIO_WAIT_TYPES; w++)
1397 pio->io_children[cio->io_child_type][w]++;
1398 mutex_exit(&pio->io_lock);
1399 zio_reexecute(cio);
1400 }
1401
1402 /*
1403 * Now that all children have been reexecuted, execute the parent.
1404 * We don't reexecute "The Godfather" I/O here as it's the
1405 * responsibility of the caller to wait on him.
1406 */
1407 if (!(pio->io_flags & ZIO_FLAG_GODFATHER))
1408 __zio_execute(pio);
1409 }
1410
1411 void
1412 zio_suspend(spa_t *spa, zio_t *zio)
1413 {
1414 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
1415 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
1416 "failure and the failure mode property for this pool "
1417 "is set to panic.", spa_name(spa));
1418
1419 zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL, NULL, 0, 0);
1420
1421 mutex_enter(&spa->spa_suspend_lock);
1422
1423 if (spa->spa_suspend_zio_root == NULL)
1424 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
1425 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
1426 ZIO_FLAG_GODFATHER);
1427
1428 spa->spa_suspended = B_TRUE;
1429
1430 if (zio != NULL) {
1431 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
1432 ASSERT(zio != spa->spa_suspend_zio_root);
1433 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1434 ASSERT(zio_unique_parent(zio) == NULL);
1435 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
1436 zio_add_child(spa->spa_suspend_zio_root, zio);
1437 }
1438
1439 mutex_exit(&spa->spa_suspend_lock);
1440 }
1441
1442 int
1443 zio_resume(spa_t *spa)
1444 {
1445 zio_t *pio;
1446
1447 /*
1448 * Reexecute all previously suspended i/o.
1449 */
1450 mutex_enter(&spa->spa_suspend_lock);
1451 spa->spa_suspended = B_FALSE;
1452 cv_broadcast(&spa->spa_suspend_cv);
1453 pio = spa->spa_suspend_zio_root;
1454 spa->spa_suspend_zio_root = NULL;
1455 mutex_exit(&spa->spa_suspend_lock);
1456
1457 if (pio == NULL)
1458 return (0);
1459
1460 zio_reexecute(pio);
1461 return (zio_wait(pio));
1462 }
1463
1464 void
1465 zio_resume_wait(spa_t *spa)
1466 {
1467 mutex_enter(&spa->spa_suspend_lock);
1468 while (spa_suspended(spa))
1469 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
1470 mutex_exit(&spa->spa_suspend_lock);
1471 }
1472
1473 /*
1474 * ==========================================================================
1475 * Gang blocks.
1476 *
1477 * A gang block is a collection of small blocks that looks to the DMU
1478 * like one large block. When zio_dva_allocate() cannot find a block
1479 * of the requested size, due to either severe fragmentation or the pool
1480 * being nearly full, it calls zio_write_gang_block() to construct the
1481 * block from smaller fragments.
1482 *
1483 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
1484 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
1485 * an indirect block: it's an array of block pointers. It consumes
1486 * only one sector and hence is allocatable regardless of fragmentation.
1487 * The gang header's bps point to its gang members, which hold the data.
1488 *
1489 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
1490 * as the verifier to ensure uniqueness of the SHA256 checksum.
1491 * Critically, the gang block bp's blk_cksum is the checksum of the data,
1492 * not the gang header. This ensures that data block signatures (needed for
1493 * deduplication) are independent of how the block is physically stored.
1494 *
1495 * Gang blocks can be nested: a gang member may itself be a gang block.
1496 * Thus every gang block is a tree in which root and all interior nodes are
1497 * gang headers, and the leaves are normal blocks that contain user data.
1498 * The root of the gang tree is called the gang leader.
1499 *
1500 * To perform any operation (read, rewrite, free, claim) on a gang block,
1501 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
1502 * in the io_gang_tree field of the original logical i/o by recursively
1503 * reading the gang leader and all gang headers below it. This yields
1504 * an in-core tree containing the contents of every gang header and the
1505 * bps for every constituent of the gang block.
1506 *
1507 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
1508 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
1509 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
1510 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
1511 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
1512 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
1513 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
1514 * of the gang header plus zio_checksum_compute() of the data to update the
1515 * gang header's blk_cksum as described above.
1516 *
1517 * The two-phase assemble/issue model solves the problem of partial failure --
1518 * what if you'd freed part of a gang block but then couldn't read the
1519 * gang header for another part? Assembling the entire gang tree first
1520 * ensures that all the necessary gang header I/O has succeeded before
1521 * starting the actual work of free, claim, or write. Once the gang tree
1522 * is assembled, free and claim are in-memory operations that cannot fail.
1523 *
1524 * In the event that a gang write fails, zio_dva_unallocate() walks the
1525 * gang tree to immediately free (i.e. insert back into the space map)
1526 * everything we've allocated. This ensures that we don't get ENOSPC
1527 * errors during repeated suspend/resume cycles due to a flaky device.
1528 *
1529 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
1530 * the gang tree, we won't modify the block, so we can safely defer the free
1531 * (knowing that the block is still intact). If we *can* assemble the gang
1532 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
1533 * each constituent bp and we can allocate a new block on the next sync pass.
1534 *
1535 * In all cases, the gang tree allows complete recovery from partial failure.
1536 * ==========================================================================
1537 */
1538
1539 static zio_t *
1540 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1541 {
1542 if (gn != NULL)
1543 return (pio);
1544
1545 return (zio_read(pio, pio->io_spa, bp, data, BP_GET_PSIZE(bp),
1546 NULL, NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1547 &pio->io_bookmark));
1548 }
1549
1550 zio_t *
1551 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1552 {
1553 zio_t *zio;
1554
1555 if (gn != NULL) {
1556 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1557 gn->gn_gbh, SPA_GANGBLOCKSIZE, NULL, NULL, pio->io_priority,
1558 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1559 /*
1560 * As we rewrite each gang header, the pipeline will compute
1561 * a new gang block header checksum for it; but no one will
1562 * compute a new data checksum, so we do that here. The one
1563 * exception is the gang leader: the pipeline already computed
1564 * its data checksum because that stage precedes gang assembly.
1565 * (Presently, nothing actually uses interior data checksums;
1566 * this is just good hygiene.)
1567 */
1568 if (gn != pio->io_gang_leader->io_gang_tree) {
1569 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
1570 data, BP_GET_PSIZE(bp));
1571 }
1572 /*
1573 * If we are here to damage data for testing purposes,
1574 * leave the GBH alone so that we can detect the damage.
1575 */
1576 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
1577 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
1578 } else {
1579 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
1580 data, BP_GET_PSIZE(bp), NULL, NULL, pio->io_priority,
1581 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1582 }
1583
1584 return (zio);
1585 }
1586
1587 /* ARGSUSED */
1588 zio_t *
1589 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1590 {
1591 return (zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
1592 ZIO_GANG_CHILD_FLAGS(pio)));
1593 }
1594
1595 /* ARGSUSED */
1596 zio_t *
1597 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, void *data)
1598 {
1599 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
1600 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
1601 }
1602
1603 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
1604 NULL,
1605 zio_read_gang,
1606 zio_rewrite_gang,
1607 zio_free_gang,
1608 zio_claim_gang,
1609 NULL
1610 };
1611
1612 static void zio_gang_tree_assemble_done(zio_t *zio);
1613
1614 static zio_gang_node_t *
1615 zio_gang_node_alloc(zio_gang_node_t **gnpp)
1616 {
1617 zio_gang_node_t *gn;
1618
1619 ASSERT(*gnpp == NULL);
1620
1621 gn = kmem_zalloc(sizeof (*gn), KM_PUSHPAGE);
1622 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
1623 *gnpp = gn;
1624
1625 return (gn);
1626 }
1627
1628 static void
1629 zio_gang_node_free(zio_gang_node_t **gnpp)
1630 {
1631 zio_gang_node_t *gn = *gnpp;
1632 int g;
1633
1634 for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
1635 ASSERT(gn->gn_child[g] == NULL);
1636
1637 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
1638 kmem_free(gn, sizeof (*gn));
1639 *gnpp = NULL;
1640 }
1641
1642 static void
1643 zio_gang_tree_free(zio_gang_node_t **gnpp)
1644 {
1645 zio_gang_node_t *gn = *gnpp;
1646 int g;
1647
1648 if (gn == NULL)
1649 return;
1650
1651 for (g = 0; g < SPA_GBH_NBLKPTRS; g++)
1652 zio_gang_tree_free(&gn->gn_child[g]);
1653
1654 zio_gang_node_free(gnpp);
1655 }
1656
1657 static void
1658 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
1659 {
1660 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
1661
1662 ASSERT(gio->io_gang_leader == gio);
1663 ASSERT(BP_IS_GANG(bp));
1664
1665 zio_nowait(zio_read(gio, gio->io_spa, bp, gn->gn_gbh,
1666 SPA_GANGBLOCKSIZE, zio_gang_tree_assemble_done, gn,
1667 gio->io_priority, ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
1668 }
1669
1670 static void
1671 zio_gang_tree_assemble_done(zio_t *zio)
1672 {
1673 zio_t *gio = zio->io_gang_leader;
1674 zio_gang_node_t *gn = zio->io_private;
1675 blkptr_t *bp = zio->io_bp;
1676 int g;
1677
1678 ASSERT(gio == zio_unique_parent(zio));
1679 ASSERT(zio->io_child_count == 0);
1680
1681 if (zio->io_error)
1682 return;
1683
1684 if (BP_SHOULD_BYTESWAP(bp))
1685 byteswap_uint64_array(zio->io_data, zio->io_size);
1686
1687 ASSERT(zio->io_data == gn->gn_gbh);
1688 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
1689 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1690
1691 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1692 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1693 if (!BP_IS_GANG(gbp))
1694 continue;
1695 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
1696 }
1697 }
1698
1699 static void
1700 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, void *data)
1701 {
1702 zio_t *gio = pio->io_gang_leader;
1703 zio_t *zio;
1704 int g;
1705
1706 ASSERT(BP_IS_GANG(bp) == !!gn);
1707 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
1708 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
1709
1710 /*
1711 * If you're a gang header, your data is in gn->gn_gbh.
1712 * If you're a gang member, your data is in 'data' and gn == NULL.
1713 */
1714 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data);
1715
1716 if (gn != NULL) {
1717 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
1718
1719 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
1720 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
1721 if (BP_IS_HOLE(gbp))
1722 continue;
1723 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data);
1724 data = (char *)data + BP_GET_PSIZE(gbp);
1725 }
1726 }
1727
1728 if (gn == gio->io_gang_tree)
1729 ASSERT3P((char *)gio->io_data + gio->io_size, ==, data);
1730
1731 if (zio != pio)
1732 zio_nowait(zio);
1733 }
1734
1735 static int
1736 zio_gang_assemble(zio_t *zio)
1737 {
1738 blkptr_t *bp = zio->io_bp;
1739
1740 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
1741 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1742
1743 zio->io_gang_leader = zio;
1744
1745 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
1746
1747 return (ZIO_PIPELINE_CONTINUE);
1748 }
1749
1750 static int
1751 zio_gang_issue(zio_t *zio)
1752 {
1753 blkptr_t *bp = zio->io_bp;
1754
1755 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE))
1756 return (ZIO_PIPELINE_STOP);
1757
1758 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
1759 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
1760
1761 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
1762 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_data);
1763 else
1764 zio_gang_tree_free(&zio->io_gang_tree);
1765
1766 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1767
1768 return (ZIO_PIPELINE_CONTINUE);
1769 }
1770
1771 static void
1772 zio_write_gang_member_ready(zio_t *zio)
1773 {
1774 zio_t *pio = zio_unique_parent(zio);
1775 ASSERTV(zio_t *gio = zio->io_gang_leader;)
1776 dva_t *cdva = zio->io_bp->blk_dva;
1777 dva_t *pdva = pio->io_bp->blk_dva;
1778 uint64_t asize;
1779 int d;
1780
1781 if (BP_IS_HOLE(zio->io_bp))
1782 return;
1783
1784 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
1785
1786 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
1787 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
1788 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
1789 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
1790 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
1791
1792 mutex_enter(&pio->io_lock);
1793 for (d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
1794 ASSERT(DVA_GET_GANG(&pdva[d]));
1795 asize = DVA_GET_ASIZE(&pdva[d]);
1796 asize += DVA_GET_ASIZE(&cdva[d]);
1797 DVA_SET_ASIZE(&pdva[d], asize);
1798 }
1799 mutex_exit(&pio->io_lock);
1800 }
1801
1802 static int
1803 zio_write_gang_block(zio_t *pio)
1804 {
1805 spa_t *spa = pio->io_spa;
1806 blkptr_t *bp = pio->io_bp;
1807 zio_t *gio = pio->io_gang_leader;
1808 zio_t *zio;
1809 zio_gang_node_t *gn, **gnpp;
1810 zio_gbh_phys_t *gbh;
1811 uint64_t txg = pio->io_txg;
1812 uint64_t resid = pio->io_size;
1813 uint64_t lsize;
1814 int copies = gio->io_prop.zp_copies;
1815 int gbh_copies = MIN(copies + 1, spa_max_replication(spa));
1816 zio_prop_t zp;
1817 int g, error;
1818
1819 error = metaslab_alloc(spa, spa_normal_class(spa), SPA_GANGBLOCKSIZE,
1820 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp,
1821 METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER);
1822 if (error) {
1823 pio->io_error = error;
1824 return (ZIO_PIPELINE_CONTINUE);
1825 }
1826
1827 if (pio == gio) {
1828 gnpp = &gio->io_gang_tree;
1829 } else {
1830 gnpp = pio->io_private;
1831 ASSERT(pio->io_ready == zio_write_gang_member_ready);
1832 }
1833
1834 gn = zio_gang_node_alloc(gnpp);
1835 gbh = gn->gn_gbh;
1836 bzero(gbh, SPA_GANGBLOCKSIZE);
1837
1838 /*
1839 * Create the gang header.
1840 */
1841 zio = zio_rewrite(pio, spa, txg, bp, gbh, SPA_GANGBLOCKSIZE, NULL, NULL,
1842 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
1843
1844 /*
1845 * Create and nowait the gang children.
1846 */
1847 for (g = 0; resid != 0; resid -= lsize, g++) {
1848 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
1849 SPA_MINBLOCKSIZE);
1850 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
1851
1852 zp.zp_checksum = gio->io_prop.zp_checksum;
1853 zp.zp_compress = ZIO_COMPRESS_OFF;
1854 zp.zp_type = DMU_OT_NONE;
1855 zp.zp_level = 0;
1856 zp.zp_copies = gio->io_prop.zp_copies;
1857 zp.zp_dedup = 0;
1858 zp.zp_dedup_verify = 0;
1859
1860 zio_nowait(zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
1861 (char *)pio->io_data + (pio->io_size - resid), lsize, &zp,
1862 zio_write_gang_member_ready, NULL, &gn->gn_child[g],
1863 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
1864 &pio->io_bookmark));
1865 }
1866
1867 /*
1868 * Set pio's pipeline to just wait for zio to finish.
1869 */
1870 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1871
1872 /*
1873 * We didn't allocate this bp, so make sure it doesn't get unmarked.
1874 */
1875 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
1876
1877 zio_nowait(zio);
1878
1879 return (ZIO_PIPELINE_CONTINUE);
1880 }
1881
1882 /*
1883 * ==========================================================================
1884 * Dedup
1885 * ==========================================================================
1886 */
1887 static void
1888 zio_ddt_child_read_done(zio_t *zio)
1889 {
1890 blkptr_t *bp = zio->io_bp;
1891 ddt_entry_t *dde = zio->io_private;
1892 ddt_phys_t *ddp;
1893 zio_t *pio = zio_unique_parent(zio);
1894
1895 mutex_enter(&pio->io_lock);
1896 ddp = ddt_phys_select(dde, bp);
1897 if (zio->io_error == 0)
1898 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
1899 if (zio->io_error == 0 && dde->dde_repair_data == NULL)
1900 dde->dde_repair_data = zio->io_data;
1901 else
1902 zio_buf_free(zio->io_data, zio->io_size);
1903 mutex_exit(&pio->io_lock);
1904 }
1905
1906 static int
1907 zio_ddt_read_start(zio_t *zio)
1908 {
1909 blkptr_t *bp = zio->io_bp;
1910 int p;
1911
1912 ASSERT(BP_GET_DEDUP(bp));
1913 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1914 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1915
1916 if (zio->io_child_error[ZIO_CHILD_DDT]) {
1917 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1918 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
1919 ddt_phys_t *ddp = dde->dde_phys;
1920 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
1921 blkptr_t blk;
1922
1923 ASSERT(zio->io_vsd == NULL);
1924 zio->io_vsd = dde;
1925
1926 if (ddp_self == NULL)
1927 return (ZIO_PIPELINE_CONTINUE);
1928
1929 for (p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
1930 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
1931 continue;
1932 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
1933 &blk);
1934 zio_nowait(zio_read(zio, zio->io_spa, &blk,
1935 zio_buf_alloc(zio->io_size), zio->io_size,
1936 zio_ddt_child_read_done, dde, zio->io_priority,
1937 ZIO_DDT_CHILD_FLAGS(zio) | ZIO_FLAG_DONT_PROPAGATE,
1938 &zio->io_bookmark));
1939 }
1940 return (ZIO_PIPELINE_CONTINUE);
1941 }
1942
1943 zio_nowait(zio_read(zio, zio->io_spa, bp,
1944 zio->io_data, zio->io_size, NULL, NULL, zio->io_priority,
1945 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
1946
1947 return (ZIO_PIPELINE_CONTINUE);
1948 }
1949
1950 static int
1951 zio_ddt_read_done(zio_t *zio)
1952 {
1953 blkptr_t *bp = zio->io_bp;
1954
1955 if (zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE))
1956 return (ZIO_PIPELINE_STOP);
1957
1958 ASSERT(BP_GET_DEDUP(bp));
1959 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
1960 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1961
1962 if (zio->io_child_error[ZIO_CHILD_DDT]) {
1963 ddt_t *ddt = ddt_select(zio->io_spa, bp);
1964 ddt_entry_t *dde = zio->io_vsd;
1965 if (ddt == NULL) {
1966 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
1967 return (ZIO_PIPELINE_CONTINUE);
1968 }
1969 if (dde == NULL) {
1970 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
1971 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1972 return (ZIO_PIPELINE_STOP);
1973 }
1974 if (dde->dde_repair_data != NULL) {
1975 bcopy(dde->dde_repair_data, zio->io_data, zio->io_size);
1976 zio->io_child_error[ZIO_CHILD_DDT] = 0;
1977 }
1978 ddt_repair_done(ddt, dde);
1979 zio->io_vsd = NULL;
1980 }
1981
1982 ASSERT(zio->io_vsd == NULL);
1983
1984 return (ZIO_PIPELINE_CONTINUE);
1985 }
1986
1987 static boolean_t
1988 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
1989 {
1990 spa_t *spa = zio->io_spa;
1991 int p;
1992
1993 /*
1994 * Note: we compare the original data, not the transformed data,
1995 * because when zio->io_bp is an override bp, we will not have
1996 * pushed the I/O transforms. That's an important optimization
1997 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
1998 */
1999 for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2000 zio_t *lio = dde->dde_lead_zio[p];
2001
2002 if (lio != NULL) {
2003 return (lio->io_orig_size != zio->io_orig_size ||
2004 bcmp(zio->io_orig_data, lio->io_orig_data,
2005 zio->io_orig_size) != 0);
2006 }
2007 }
2008
2009 for (p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
2010 ddt_phys_t *ddp = &dde->dde_phys[p];
2011
2012 if (ddp->ddp_phys_birth != 0) {
2013 arc_buf_t *abuf = NULL;
2014 uint32_t aflags = ARC_WAIT;
2015 blkptr_t blk = *zio->io_bp;
2016 int error;
2017
2018 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
2019
2020 ddt_exit(ddt);
2021
2022 error = arc_read_nolock(NULL, spa, &blk,
2023 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
2024 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2025 &aflags, &zio->io_bookmark);
2026
2027 if (error == 0) {
2028 if (arc_buf_size(abuf) != zio->io_orig_size ||
2029 bcmp(abuf->b_data, zio->io_orig_data,
2030 zio->io_orig_size) != 0)
2031 error = EEXIST;
2032 VERIFY(arc_buf_remove_ref(abuf, &abuf) == 1);
2033 }
2034
2035 ddt_enter(ddt);
2036 return (error != 0);
2037 }
2038 }
2039
2040 return (B_FALSE);
2041 }
2042
2043 static void
2044 zio_ddt_child_write_ready(zio_t *zio)
2045 {
2046 int p = zio->io_prop.zp_copies;
2047 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2048 ddt_entry_t *dde = zio->io_private;
2049 ddt_phys_t *ddp = &dde->dde_phys[p];
2050 zio_t *pio;
2051
2052 if (zio->io_error)
2053 return;
2054
2055 ddt_enter(ddt);
2056
2057 ASSERT(dde->dde_lead_zio[p] == zio);
2058
2059 ddt_phys_fill(ddp, zio->io_bp);
2060
2061 while ((pio = zio_walk_parents(zio)) != NULL)
2062 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
2063
2064 ddt_exit(ddt);
2065 }
2066
2067 static void
2068 zio_ddt_child_write_done(zio_t *zio)
2069 {
2070 int p = zio->io_prop.zp_copies;
2071 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
2072 ddt_entry_t *dde = zio->io_private;
2073 ddt_phys_t *ddp = &dde->dde_phys[p];
2074
2075 ddt_enter(ddt);
2076
2077 ASSERT(ddp->ddp_refcnt == 0);
2078 ASSERT(dde->dde_lead_zio[p] == zio);
2079 dde->dde_lead_zio[p] = NULL;
2080
2081 if (zio->io_error == 0) {
2082 while (zio_walk_parents(zio) != NULL)
2083 ddt_phys_addref(ddp);
2084 } else {
2085 ddt_phys_clear(ddp);
2086 }
2087
2088 ddt_exit(ddt);
2089 }
2090
2091 static void
2092 zio_ddt_ditto_write_done(zio_t *zio)
2093 {
2094 int p = DDT_PHYS_DITTO;
2095 blkptr_t *bp = zio->io_bp;
2096 ddt_t *ddt = ddt_select(zio->io_spa, bp);
2097 ddt_entry_t *dde = zio->io_private;
2098 ddt_phys_t *ddp = &dde->dde_phys[p];
2099 ddt_key_t *ddk = &dde->dde_key;
2100 ASSERTV(zio_prop_t *zp = &zio->io_prop);
2101
2102 ddt_enter(ddt);
2103
2104 ASSERT(ddp->ddp_refcnt == 0);
2105 ASSERT(dde->dde_lead_zio[p] == zio);
2106 dde->dde_lead_zio[p] = NULL;
2107
2108 if (zio->io_error == 0) {
2109 ASSERT(ZIO_CHECKSUM_EQUAL(bp->blk_cksum, ddk->ddk_cksum));
2110 ASSERT(zp->zp_copies < SPA_DVAS_PER_BP);
2111 ASSERT(zp->zp_copies == BP_GET_NDVAS(bp) - BP_IS_GANG(bp));
2112 if (ddp->ddp_phys_birth != 0)
2113 ddt_phys_free(ddt, ddk, ddp, zio->io_txg);
2114 ddt_phys_fill(ddp, bp);
2115 }
2116
2117 ddt_exit(ddt);
2118 }
2119
2120 static int
2121 zio_ddt_write(zio_t *zio)
2122 {
2123 spa_t *spa = zio->io_spa;
2124 blkptr_t *bp = zio->io_bp;
2125 uint64_t txg = zio->io_txg;
2126 zio_prop_t *zp = &zio->io_prop;
2127 int p = zp->zp_copies;
2128 int ditto_copies;
2129 zio_t *cio = NULL;
2130 zio_t *dio = NULL;
2131 ddt_t *ddt = ddt_select(spa, bp);
2132 ddt_entry_t *dde;
2133 ddt_phys_t *ddp;
2134
2135 ASSERT(BP_GET_DEDUP(bp));
2136 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
2137 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
2138
2139 ddt_enter(ddt);
2140 dde = ddt_lookup(ddt, bp, B_TRUE);
2141 ddp = &dde->dde_phys[p];
2142
2143 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
2144 /*
2145 * If we're using a weak checksum, upgrade to a strong checksum
2146 * and try again. If we're already using a strong checksum,
2147 * we can't resolve it, so just convert to an ordinary write.
2148 * (And automatically e-mail a paper to Nature?)
2149 */
2150 if (!zio_checksum_table[zp->zp_checksum].ci_dedup) {
2151 zp->zp_checksum = spa_dedup_checksum(spa);
2152 zio_pop_transforms(zio);
2153 zio->io_stage = ZIO_STAGE_OPEN;
2154 BP_ZERO(bp);
2155 } else {
2156 zp->zp_dedup = 0;
2157 }
2158 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2159 ddt_exit(ddt);
2160 return (ZIO_PIPELINE_CONTINUE);
2161 }
2162
2163 ditto_copies = ddt_ditto_copies_needed(ddt, dde, ddp);
2164 ASSERT(ditto_copies < SPA_DVAS_PER_BP);
2165
2166 if (ditto_copies > ddt_ditto_copies_present(dde) &&
2167 dde->dde_lead_zio[DDT_PHYS_DITTO] == NULL) {
2168 zio_prop_t czp = *zp;
2169
2170 czp.zp_copies = ditto_copies;
2171
2172 /*
2173 * If we arrived here with an override bp, we won't have run
2174 * the transform stack, so we won't have the data we need to
2175 * generate a child i/o. So, toss the override bp and restart.
2176 * This is safe, because using the override bp is just an
2177 * optimization; and it's rare, so the cost doesn't matter.
2178 */
2179 if (zio->io_bp_override) {
2180 zio_pop_transforms(zio);
2181 zio->io_stage = ZIO_STAGE_OPEN;
2182 zio->io_pipeline = ZIO_WRITE_PIPELINE;
2183 zio->io_bp_override = NULL;
2184 BP_ZERO(bp);
2185 ddt_exit(ddt);
2186 return (ZIO_PIPELINE_CONTINUE);
2187 }
2188
2189 dio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2190 zio->io_orig_size, &czp, NULL,
2191 zio_ddt_ditto_write_done, dde, zio->io_priority,
2192 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2193
2194 zio_push_transform(dio, zio->io_data, zio->io_size, 0, NULL);
2195 dde->dde_lead_zio[DDT_PHYS_DITTO] = dio;
2196 }
2197
2198 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
2199 if (ddp->ddp_phys_birth != 0)
2200 ddt_bp_fill(ddp, bp, txg);
2201 if (dde->dde_lead_zio[p] != NULL)
2202 zio_add_child(zio, dde->dde_lead_zio[p]);
2203 else
2204 ddt_phys_addref(ddp);
2205 } else if (zio->io_bp_override) {
2206 ASSERT(bp->blk_birth == txg);
2207 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
2208 ddt_phys_fill(ddp, bp);
2209 ddt_phys_addref(ddp);
2210 } else {
2211 cio = zio_write(zio, spa, txg, bp, zio->io_orig_data,
2212 zio->io_orig_size, zp, zio_ddt_child_write_ready,
2213 zio_ddt_child_write_done, dde, zio->io_priority,
2214 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
2215
2216 zio_push_transform(cio, zio->io_data, zio->io_size, 0, NULL);
2217 dde->dde_lead_zio[p] = cio;
2218 }
2219
2220 ddt_exit(ddt);
2221
2222 if (cio)
2223 zio_nowait(cio);
2224 if (dio)
2225 zio_nowait(dio);
2226
2227 return (ZIO_PIPELINE_CONTINUE);
2228 }
2229
2230 ddt_entry_t *freedde; /* for debugging */
2231
2232 static int
2233 zio_ddt_free(zio_t *zio)
2234 {
2235 spa_t *spa = zio->io_spa;
2236 blkptr_t *bp = zio->io_bp;
2237 ddt_t *ddt = ddt_select(spa, bp);
2238 ddt_entry_t *dde;
2239 ddt_phys_t *ddp;
2240
2241 ASSERT(BP_GET_DEDUP(bp));
2242 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2243
2244 ddt_enter(ddt);
2245 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
2246 ddp = ddt_phys_select(dde, bp);
2247 ddt_phys_decref(ddp);
2248 ddt_exit(ddt);
2249
2250 return (ZIO_PIPELINE_CONTINUE);
2251 }
2252
2253 /*
2254 * ==========================================================================
2255 * Allocate and free blocks
2256 * ==========================================================================
2257 */
2258 static int
2259 zio_dva_allocate(zio_t *zio)
2260 {
2261 spa_t *spa = zio->io_spa;
2262 metaslab_class_t *mc = spa_normal_class(spa);
2263 blkptr_t *bp = zio->io_bp;
2264 int error;
2265 int flags = 0;
2266
2267 if (zio->io_gang_leader == NULL) {
2268 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2269 zio->io_gang_leader = zio;
2270 }
2271
2272 ASSERT(BP_IS_HOLE(bp));
2273 ASSERT3U(BP_GET_NDVAS(bp), ==, 0);
2274 ASSERT3U(zio->io_prop.zp_copies, >, 0);
2275 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
2276 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
2277
2278 /*
2279 * The dump device does not support gang blocks so allocation on
2280 * behalf of the dump device (i.e. ZIO_FLAG_NODATA) must avoid
2281 * the "fast" gang feature.
2282 */
2283 flags |= (zio->io_flags & ZIO_FLAG_NODATA) ? METASLAB_GANG_AVOID : 0;
2284 flags |= (zio->io_flags & ZIO_FLAG_GANG_CHILD) ?
2285 METASLAB_GANG_CHILD : 0;
2286 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
2287 error = metaslab_alloc(spa, mc, zio->io_size, bp,
2288 zio->io_prop.zp_copies, zio->io_txg, NULL, flags);
2289
2290 if (error) {
2291 spa_dbgmsg(spa, "%s: metaslab allocation failure: zio %p, "
2292 "size %llu, error %d", spa_name(spa), zio, zio->io_size,
2293 error);
2294 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE)
2295 return (zio_write_gang_block(zio));
2296 zio->io_error = error;
2297 }
2298
2299 return (ZIO_PIPELINE_CONTINUE);
2300 }
2301
2302 static int
2303 zio_dva_free(zio_t *zio)
2304 {
2305 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
2306
2307 return (ZIO_PIPELINE_CONTINUE);
2308 }
2309
2310 static int
2311 zio_dva_claim(zio_t *zio)
2312 {
2313 int error;
2314
2315 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
2316 if (error)
2317 zio->io_error = error;
2318
2319 return (ZIO_PIPELINE_CONTINUE);
2320 }
2321
2322 /*
2323 * Undo an allocation. This is used by zio_done() when an I/O fails
2324 * and we want to give back the block we just allocated.
2325 * This handles both normal blocks and gang blocks.
2326 */
2327 static void
2328 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
2329 {
2330 int g;
2331
2332 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2333 ASSERT(zio->io_bp_override == NULL);
2334
2335 if (!BP_IS_HOLE(bp))
2336 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
2337
2338 if (gn != NULL) {
2339 for (g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2340 zio_dva_unallocate(zio, gn->gn_child[g],
2341 &gn->gn_gbh->zg_blkptr[g]);
2342 }
2343 }
2344 }
2345
2346 /*
2347 * Try to allocate an intent log block. Return 0 on success, errno on failure.
2348 */
2349 int
2350 zio_alloc_zil(spa_t *spa, uint64_t txg, blkptr_t *new_bp, uint64_t size,
2351 boolean_t use_slog)
2352 {
2353 int error = 1;
2354
2355 ASSERT(txg > spa_syncing_txg(spa));
2356
2357 /*
2358 * ZIL blocks are always contiguous (i.e. not gang blocks) so we
2359 * set the METASLAB_GANG_AVOID flag so that they don't "fast gang"
2360 * when allocating them.
2361 */
2362 if (use_slog) {
2363 error = metaslab_alloc(spa, spa_log_class(spa), size,
2364 new_bp, 1, txg, NULL,
2365 METASLAB_FASTWRITE | METASLAB_GANG_AVOID);
2366 }
2367
2368 if (error) {
2369 error = metaslab_alloc(spa, spa_normal_class(spa), size,
2370 new_bp, 1, txg, NULL,
2371 METASLAB_FASTWRITE | METASLAB_GANG_AVOID);
2372 }
2373
2374 if (error == 0) {
2375 BP_SET_LSIZE(new_bp, size);
2376 BP_SET_PSIZE(new_bp, size);
2377 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
2378 BP_SET_CHECKSUM(new_bp,
2379 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
2380 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
2381 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
2382 BP_SET_LEVEL(new_bp, 0);
2383 BP_SET_DEDUP(new_bp, 0);
2384 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
2385 }
2386
2387 return (error);
2388 }
2389
2390 /*
2391 * Free an intent log block.
2392 */
2393 void
2394 zio_free_zil(spa_t *spa, uint64_t txg, blkptr_t *bp)
2395 {
2396 ASSERT(BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG);
2397 ASSERT(!BP_IS_GANG(bp));
2398
2399 zio_free(spa, txg, bp);
2400 }
2401
2402 /*
2403 * ==========================================================================
2404 * Read and write to physical devices
2405 * ==========================================================================
2406 */
2407 static int
2408 zio_vdev_io_start(zio_t *zio)
2409 {
2410 vdev_t *vd = zio->io_vd;
2411 uint64_t align;
2412 spa_t *spa = zio->io_spa;
2413
2414 ASSERT(zio->io_error == 0);
2415 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
2416
2417 if (vd == NULL) {
2418 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2419 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
2420
2421 /*
2422 * The mirror_ops handle multiple DVAs in a single BP.
2423 */
2424 return (vdev_mirror_ops.vdev_op_io_start(zio));
2425 }
2426
2427 /*
2428 * We keep track of time-sensitive I/Os so that the scan thread
2429 * can quickly react to certain workloads. In particular, we care
2430 * about non-scrubbing, top-level reads and writes with the following
2431 * characteristics:
2432 * - synchronous writes of user data to non-slog devices
2433 * - any reads of user data
2434 * When these conditions are met, adjust the timestamp of spa_last_io
2435 * which allows the scan thread to adjust its workload accordingly.
2436 */
2437 if (!(zio->io_flags & ZIO_FLAG_SCAN_THREAD) && zio->io_bp != NULL &&
2438 vd == vd->vdev_top && !vd->vdev_islog &&
2439 zio->io_bookmark.zb_objset != DMU_META_OBJSET &&
2440 zio->io_txg != spa_syncing_txg(spa)) {
2441 uint64_t old = spa->spa_last_io;
2442 uint64_t new = ddi_get_lbolt64();
2443 if (old != new)
2444 (void) atomic_cas_64(&spa->spa_last_io, old, new);
2445 }
2446
2447 align = 1ULL << vd->vdev_top->vdev_ashift;
2448
2449 if (P2PHASE(zio->io_size, align) != 0) {
2450 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2451 char *abuf = zio_buf_alloc(asize);
2452 ASSERT(vd == vd->vdev_top);
2453 if (zio->io_type == ZIO_TYPE_WRITE) {
2454 bcopy(zio->io_data, abuf, zio->io_size);
2455 bzero(abuf + zio->io_size, asize - zio->io_size);
2456 }
2457 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
2458 }
2459
2460 ASSERT(P2PHASE(zio->io_offset, align) == 0);
2461 ASSERT(P2PHASE(zio->io_size, align) == 0);
2462 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
2463
2464 /*
2465 * If this is a repair I/O, and there's no self-healing involved --
2466 * that is, we're just resilvering what we expect to resilver --
2467 * then don't do the I/O unless zio's txg is actually in vd's DTL.
2468 * This prevents spurious resilvering with nested replication.
2469 * For example, given a mirror of mirrors, (A+B)+(C+D), if only
2470 * A is out of date, we'll read from C+D, then use the data to
2471 * resilver A+B -- but we don't actually want to resilver B, just A.
2472 * The top-level mirror has no way to know this, so instead we just
2473 * discard unnecessary repairs as we work our way down the vdev tree.
2474 * The same logic applies to any form of nested replication:
2475 * ditto + mirror, RAID-Z + replacing, etc. This covers them all.
2476 */
2477 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
2478 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
2479 zio->io_txg != 0 && /* not a delegated i/o */
2480 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
2481 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
2482 zio_vdev_io_bypass(zio);
2483 return (ZIO_PIPELINE_CONTINUE);
2484 }
2485
2486 if (vd->vdev_ops->vdev_op_leaf &&
2487 (zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE)) {
2488
2489 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0)
2490 return (ZIO_PIPELINE_CONTINUE);
2491
2492 if ((zio = vdev_queue_io(zio)) == NULL)
2493 return (ZIO_PIPELINE_STOP);
2494
2495 if (!vdev_accessible(vd, zio)) {
2496 zio->io_error = ENXIO;
2497 zio_interrupt(zio);
2498 return (ZIO_PIPELINE_STOP);
2499 }
2500 }
2501
2502 return (vd->vdev_ops->vdev_op_io_start(zio));
2503 }
2504
2505 static int
2506 zio_vdev_io_done(zio_t *zio)
2507 {
2508 vdev_t *vd = zio->io_vd;
2509 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
2510 boolean_t unexpected_error = B_FALSE;
2511
2512 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2513 return (ZIO_PIPELINE_STOP);
2514
2515 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE);
2516
2517 if (vd != NULL && vd->vdev_ops->vdev_op_leaf) {
2518
2519 vdev_queue_io_done(zio);
2520
2521 if (zio->io_type == ZIO_TYPE_WRITE)
2522 vdev_cache_write(zio);
2523
2524 if (zio_injection_enabled && zio->io_error == 0)
2525 zio->io_error = zio_handle_device_injection(vd,
2526 zio, EIO);
2527
2528 if (zio_injection_enabled && zio->io_error == 0)
2529 zio->io_error = zio_handle_label_injection(zio, EIO);
2530
2531 if (zio->io_error) {
2532 if (!vdev_accessible(vd, zio)) {
2533 zio->io_error = ENXIO;
2534 } else {
2535 unexpected_error = B_TRUE;
2536 }
2537 }
2538 }
2539
2540 ops->vdev_op_io_done(zio);
2541
2542 if (unexpected_error)
2543 VERIFY(vdev_probe(vd, zio) == NULL);
2544
2545 return (ZIO_PIPELINE_CONTINUE);
2546 }
2547
2548 /*
2549 * For non-raidz ZIOs, we can just copy aside the bad data read from the
2550 * disk, and use that to finish the checksum ereport later.
2551 */
2552 static void
2553 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
2554 const void *good_buf)
2555 {
2556 /* no processing needed */
2557 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
2558 }
2559
2560 /*ARGSUSED*/
2561 void
2562 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *ignored)
2563 {
2564 void *buf = zio_buf_alloc(zio->io_size);
2565
2566 bcopy(zio->io_data, buf, zio->io_size);
2567
2568 zcr->zcr_cbinfo = zio->io_size;
2569 zcr->zcr_cbdata = buf;
2570 zcr->zcr_finish = zio_vsd_default_cksum_finish;
2571 zcr->zcr_free = zio_buf_free;
2572 }
2573
2574 static int
2575 zio_vdev_io_assess(zio_t *zio)
2576 {
2577 vdev_t *vd = zio->io_vd;
2578
2579 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE))
2580 return (ZIO_PIPELINE_STOP);
2581
2582 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
2583 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
2584
2585 if (zio->io_vsd != NULL) {
2586 zio->io_vsd_ops->vsd_free(zio);
2587 zio->io_vsd = NULL;
2588 }
2589
2590 if (zio_injection_enabled && zio->io_error == 0)
2591 zio->io_error = zio_handle_fault_injection(zio, EIO);
2592
2593 /*
2594 * If the I/O failed, determine whether we should attempt to retry it.
2595 *
2596 * On retry, we cut in line in the issue queue, since we don't want
2597 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
2598 */
2599 if (zio->io_error && vd == NULL &&
2600 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
2601 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
2602 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
2603 zio->io_error = 0;
2604 zio->io_flags |= ZIO_FLAG_IO_RETRY |
2605 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
2606 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
2607 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
2608 zio_requeue_io_start_cut_in_line);
2609 return (ZIO_PIPELINE_STOP);
2610 }
2611
2612 /*
2613 * If we got an error on a leaf device, convert it to ENXIO
2614 * if the device is not accessible at all.
2615 */
2616 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
2617 !vdev_accessible(vd, zio))
2618 zio->io_error = ENXIO;
2619
2620 /*
2621 * If we can't write to an interior vdev (mirror or RAID-Z),
2622 * set vdev_cant_write so that we stop trying to allocate from it.
2623 */
2624 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
2625 vd != NULL && !vd->vdev_ops->vdev_op_leaf)
2626 vd->vdev_cant_write = B_TRUE;
2627
2628 if (zio->io_error)
2629 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2630
2631 return (ZIO_PIPELINE_CONTINUE);
2632 }
2633
2634 void
2635 zio_vdev_io_reissue(zio_t *zio)
2636 {
2637 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2638 ASSERT(zio->io_error == 0);
2639
2640 zio->io_stage >>= 1;
2641 }
2642
2643 void
2644 zio_vdev_io_redone(zio_t *zio)
2645 {
2646 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
2647
2648 zio->io_stage >>= 1;
2649 }
2650
2651 void
2652 zio_vdev_io_bypass(zio_t *zio)
2653 {
2654 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
2655 ASSERT(zio->io_error == 0);
2656
2657 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
2658 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
2659 }
2660
2661 /*
2662 * ==========================================================================
2663 * Generate and verify checksums
2664 * ==========================================================================
2665 */
2666 static int
2667 zio_checksum_generate(zio_t *zio)
2668 {
2669 blkptr_t *bp = zio->io_bp;
2670 enum zio_checksum checksum;
2671
2672 if (bp == NULL) {
2673 /*
2674 * This is zio_write_phys().
2675 * We're either generating a label checksum, or none at all.
2676 */
2677 checksum = zio->io_prop.zp_checksum;
2678
2679 if (checksum == ZIO_CHECKSUM_OFF)
2680 return (ZIO_PIPELINE_CONTINUE);
2681
2682 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
2683 } else {
2684 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
2685 ASSERT(!IO_IS_ALLOCATING(zio));
2686 checksum = ZIO_CHECKSUM_GANG_HEADER;
2687 } else {
2688 checksum = BP_GET_CHECKSUM(bp);
2689 }
2690 }
2691
2692 zio_checksum_compute(zio, checksum, zio->io_data, zio->io_size);
2693
2694 return (ZIO_PIPELINE_CONTINUE);
2695 }
2696
2697 static int
2698 zio_checksum_verify(zio_t *zio)
2699 {
2700 zio_bad_cksum_t info;
2701 blkptr_t *bp = zio->io_bp;
2702 int error;
2703
2704 ASSERT(zio->io_vd != NULL);
2705
2706 if (bp == NULL) {
2707 /*
2708 * This is zio_read_phys().
2709 * We're either verifying a label checksum, or nothing at all.
2710 */
2711 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
2712 return (ZIO_PIPELINE_CONTINUE);
2713
2714 ASSERT(zio->io_prop.zp_checksum == ZIO_CHECKSUM_LABEL);
2715 }
2716
2717 if ((error = zio_checksum_error(zio, &info)) != 0) {
2718 zio->io_error = error;
2719 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2720 zfs_ereport_start_checksum(zio->io_spa,
2721 zio->io_vd, zio, zio->io_offset,
2722 zio->io_size, NULL, &info);
2723 }
2724 }
2725
2726 return (ZIO_PIPELINE_CONTINUE);
2727 }
2728
2729 /*
2730 * Called by RAID-Z to ensure we don't compute the checksum twice.
2731 */
2732 void
2733 zio_checksum_verified(zio_t *zio)
2734 {
2735 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
2736 }
2737
2738 /*
2739 * ==========================================================================
2740 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
2741 * An error of 0 indictes success. ENXIO indicates whole-device failure,
2742 * which may be transient (e.g. unplugged) or permament. ECKSUM and EIO
2743 * indicate errors that are specific to one I/O, and most likely permanent.
2744 * Any other error is presumed to be worse because we weren't expecting it.
2745 * ==========================================================================
2746 */
2747 int
2748 zio_worst_error(int e1, int e2)
2749 {
2750 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
2751 int r1, r2;
2752
2753 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
2754 if (e1 == zio_error_rank[r1])
2755 break;
2756
2757 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
2758 if (e2 == zio_error_rank[r2])
2759 break;
2760
2761 return (r1 > r2 ? e1 : e2);
2762 }
2763
2764 /*
2765 * ==========================================================================
2766 * I/O completion
2767 * ==========================================================================
2768 */
2769 static int
2770 zio_ready(zio_t *zio)
2771 {
2772 blkptr_t *bp = zio->io_bp;
2773 zio_t *pio, *pio_next;
2774
2775 if (zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_READY) ||
2776 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_READY))
2777 return (ZIO_PIPELINE_STOP);
2778
2779 if (zio->io_ready) {
2780 ASSERT(IO_IS_ALLOCATING(zio));
2781 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
2782 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
2783
2784 zio->io_ready(zio);
2785 }
2786
2787 if (bp != NULL && bp != &zio->io_bp_copy)
2788 zio->io_bp_copy = *bp;
2789
2790 if (zio->io_error)
2791 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2792
2793 mutex_enter(&zio->io_lock);
2794 zio->io_state[ZIO_WAIT_READY] = 1;
2795 pio = zio_walk_parents(zio);
2796 mutex_exit(&zio->io_lock);
2797
2798 /*
2799 * As we notify zio's parents, new parents could be added.
2800 * New parents go to the head of zio's io_parent_list, however,
2801 * so we will (correctly) not notify them. The remainder of zio's
2802 * io_parent_list, from 'pio_next' onward, cannot change because
2803 * all parents must wait for us to be done before they can be done.
2804 */
2805 for (; pio != NULL; pio = pio_next) {
2806 pio_next = zio_walk_parents(zio);
2807 zio_notify_parent(pio, zio, ZIO_WAIT_READY);
2808 }
2809
2810 if (zio->io_flags & ZIO_FLAG_NODATA) {
2811 if (BP_IS_GANG(bp)) {
2812 zio->io_flags &= ~ZIO_FLAG_NODATA;
2813 } else {
2814 ASSERT((uintptr_t)zio->io_data < SPA_MAXBLOCKSIZE);
2815 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2816 }
2817 }
2818
2819 if (zio_injection_enabled &&
2820 zio->io_spa->spa_syncing_txg == zio->io_txg)
2821 zio_handle_ignored_writes(zio);
2822
2823 return (ZIO_PIPELINE_CONTINUE);
2824 }
2825
2826 static int
2827 zio_done(zio_t *zio)
2828 {
2829 zio_t *pio, *pio_next;
2830 int c, w;
2831
2832 /*
2833 * If our children haven't all completed,
2834 * wait for them and then repeat this pipeline stage.
2835 */
2836 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV, ZIO_WAIT_DONE) ||
2837 zio_wait_for_children(zio, ZIO_CHILD_GANG, ZIO_WAIT_DONE) ||
2838 zio_wait_for_children(zio, ZIO_CHILD_DDT, ZIO_WAIT_DONE) ||
2839 zio_wait_for_children(zio, ZIO_CHILD_LOGICAL, ZIO_WAIT_DONE))
2840 return (ZIO_PIPELINE_STOP);
2841
2842 for (c = 0; c < ZIO_CHILD_TYPES; c++)
2843 for (w = 0; w < ZIO_WAIT_TYPES; w++)
2844 ASSERT(zio->io_children[c][w] == 0);
2845
2846 if (zio->io_bp != NULL) {
2847 ASSERT(zio->io_bp->blk_pad[0] == 0);
2848 ASSERT(zio->io_bp->blk_pad[1] == 0);
2849 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy, sizeof (blkptr_t)) == 0 ||
2850 (zio->io_bp == zio_unique_parent(zio)->io_bp));
2851 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
2852 zio->io_bp_override == NULL &&
2853 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
2854 ASSERT(!BP_SHOULD_BYTESWAP(zio->io_bp));
2855 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2856 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
2857 (BP_COUNT_GANG(zio->io_bp) == BP_GET_NDVAS(zio->io_bp)));
2858 }
2859 }
2860
2861 /*
2862 * If there were child vdev/gang/ddt errors, they apply to us now.
2863 */
2864 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
2865 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
2866 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
2867
2868 /*
2869 * If the I/O on the transformed data was successful, generate any
2870 * checksum reports now while we still have the transformed data.
2871 */
2872 if (zio->io_error == 0) {
2873 while (zio->io_cksum_report != NULL) {
2874 zio_cksum_report_t *zcr = zio->io_cksum_report;
2875 uint64_t align = zcr->zcr_align;
2876 uint64_t asize = P2ROUNDUP(zio->io_size, align);
2877 char *abuf = zio->io_data;
2878
2879 if (asize != zio->io_size) {
2880 abuf = zio_buf_alloc(asize);
2881 bcopy(zio->io_data, abuf, zio->io_size);
2882 bzero(abuf + zio->io_size, asize - zio->io_size);
2883 }
2884
2885 zio->io_cksum_report = zcr->zcr_next;
2886 zcr->zcr_next = NULL;
2887 zcr->zcr_finish(zcr, abuf);
2888 zfs_ereport_free_checksum(zcr);
2889
2890 if (asize != zio->io_size)
2891 zio_buf_free(abuf, asize);
2892 }
2893 }
2894
2895 zio_pop_transforms(zio); /* note: may set zio->io_error */
2896
2897 vdev_stat_update(zio, zio->io_size);
2898
2899 /*
2900 * If this I/O is attached to a particular vdev is slow, exeeding
2901 * 30 seconds to complete, post an error described the I/O delay.
2902 * We ignore these errors if the device is currently unavailable.
2903 */
2904 if (zio->io_delay >= zio_delay_max) {
2905 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd))
2906 zfs_ereport_post(FM_EREPORT_ZFS_DELAY, zio->io_spa,
2907 zio->io_vd, zio, 0, 0);
2908 }
2909
2910 if (zio->io_error) {
2911 /*
2912 * If this I/O is attached to a particular vdev,
2913 * generate an error message describing the I/O failure
2914 * at the block level. We ignore these errors if the
2915 * device is currently unavailable.
2916 */
2917 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
2918 !vdev_is_dead(zio->io_vd))
2919 zfs_ereport_post(FM_EREPORT_ZFS_IO, zio->io_spa,
2920 zio->io_vd, zio, 0, 0);
2921
2922 if ((zio->io_error == EIO || !(zio->io_flags &
2923 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
2924 zio == zio->io_logical) {
2925 /*
2926 * For logical I/O requests, tell the SPA to log the
2927 * error and generate a logical data ereport.
2928 */
2929 spa_log_error(zio->io_spa, zio);
2930 zfs_ereport_post(FM_EREPORT_ZFS_DATA, zio->io_spa, NULL, zio,
2931 0, 0);
2932 }
2933 }
2934
2935 if (zio->io_error && zio == zio->io_logical) {
2936 /*
2937 * Determine whether zio should be reexecuted. This will
2938 * propagate all the way to the root via zio_notify_parent().
2939 */
2940 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
2941 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2942
2943 if (IO_IS_ALLOCATING(zio) &&
2944 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
2945 if (zio->io_error != ENOSPC)
2946 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
2947 else
2948 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2949 }
2950
2951 if ((zio->io_type == ZIO_TYPE_READ ||
2952 zio->io_type == ZIO_TYPE_FREE) &&
2953 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
2954 zio->io_error == ENXIO &&
2955 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
2956 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
2957 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2958
2959 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
2960 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
2961
2962 /*
2963 * Here is a possibly good place to attempt to do
2964 * either combinatorial reconstruction or error correction
2965 * based on checksums. It also might be a good place
2966 * to send out preliminary ereports before we suspend
2967 * processing.
2968 */
2969 }
2970
2971 /*
2972 * If there were logical child errors, they apply to us now.
2973 * We defer this until now to avoid conflating logical child
2974 * errors with errors that happened to the zio itself when
2975 * updating vdev stats and reporting FMA events above.
2976 */
2977 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
2978
2979 if ((zio->io_error || zio->io_reexecute) &&
2980 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
2981 !(zio->io_flags & ZIO_FLAG_IO_REWRITE))
2982 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
2983
2984 zio_gang_tree_free(&zio->io_gang_tree);
2985
2986 /*
2987 * Godfather I/Os should never suspend.
2988 */
2989 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
2990 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
2991 zio->io_reexecute = 0;
2992
2993 if (zio->io_reexecute) {
2994 /*
2995 * This is a logical I/O that wants to reexecute.
2996 *
2997 * Reexecute is top-down. When an i/o fails, if it's not
2998 * the root, it simply notifies its parent and sticks around.
2999 * The parent, seeing that it still has children in zio_done(),
3000 * does the same. This percolates all the way up to the root.
3001 * The root i/o will reexecute or suspend the entire tree.
3002 *
3003 * This approach ensures that zio_reexecute() honors
3004 * all the original i/o dependency relationships, e.g.
3005 * parents not executing until children are ready.
3006 */
3007 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3008
3009 zio->io_gang_leader = NULL;
3010
3011 mutex_enter(&zio->io_lock);
3012 zio->io_state[ZIO_WAIT_DONE] = 1;
3013 mutex_exit(&zio->io_lock);
3014
3015 /*
3016 * "The Godfather" I/O monitors its children but is
3017 * not a true parent to them. It will track them through
3018 * the pipeline but severs its ties whenever they get into
3019 * trouble (e.g. suspended). This allows "The Godfather"
3020 * I/O to return status without blocking.
3021 */
3022 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3023 zio_link_t *zl = zio->io_walk_link;
3024 pio_next = zio_walk_parents(zio);
3025
3026 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
3027 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
3028 zio_remove_child(pio, zio, zl);
3029 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3030 }
3031 }
3032
3033 if ((pio = zio_unique_parent(zio)) != NULL) {
3034 /*
3035 * We're not a root i/o, so there's nothing to do
3036 * but notify our parent. Don't propagate errors
3037 * upward since we haven't permanently failed yet.
3038 */
3039 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
3040 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
3041 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3042 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
3043 /*
3044 * We'd fail again if we reexecuted now, so suspend
3045 * until conditions improve (e.g. device comes online).
3046 */
3047 zio_suspend(zio->io_spa, zio);
3048 } else {
3049 /*
3050 * Reexecution is potentially a huge amount of work.
3051 * Hand it off to the otherwise-unused claim taskq.
3052 */
3053 ASSERT(taskq_empty_ent(&zio->io_tqent));
3054 (void) taskq_dispatch_ent(
3055 zio->io_spa->spa_zio_taskq[ZIO_TYPE_CLAIM][ZIO_TASKQ_ISSUE],
3056 (task_func_t *)zio_reexecute, zio, 0,
3057 &zio->io_tqent);
3058 }
3059 return (ZIO_PIPELINE_STOP);
3060 }
3061
3062 ASSERT(zio->io_child_count == 0);
3063 ASSERT(zio->io_reexecute == 0);
3064 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
3065
3066 /*
3067 * Report any checksum errors, since the I/O is complete.
3068 */
3069 while (zio->io_cksum_report != NULL) {
3070 zio_cksum_report_t *zcr = zio->io_cksum_report;
3071 zio->io_cksum_report = zcr->zcr_next;
3072 zcr->zcr_next = NULL;
3073 zcr->zcr_finish(zcr, NULL);
3074 zfs_ereport_free_checksum(zcr);
3075 }
3076
3077 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
3078 !BP_IS_HOLE(zio->io_bp)) {
3079 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
3080 }
3081
3082 /*
3083 * It is the responsibility of the done callback to ensure that this
3084 * particular zio is no longer discoverable for adoption, and as
3085 * such, cannot acquire any new parents.
3086 */
3087 if (zio->io_done)
3088 zio->io_done(zio);
3089
3090 mutex_enter(&zio->io_lock);
3091 zio->io_state[ZIO_WAIT_DONE] = 1;
3092 mutex_exit(&zio->io_lock);
3093
3094 for (pio = zio_walk_parents(zio); pio != NULL; pio = pio_next) {
3095 zio_link_t *zl = zio->io_walk_link;
3096 pio_next = zio_walk_parents(zio);
3097 zio_remove_child(pio, zio, zl);
3098 zio_notify_parent(pio, zio, ZIO_WAIT_DONE);
3099 }
3100
3101 if (zio->io_waiter != NULL) {
3102 mutex_enter(&zio->io_lock);
3103 zio->io_executor = NULL;
3104 cv_broadcast(&zio->io_cv);
3105 mutex_exit(&zio->io_lock);
3106 } else {
3107 zio_destroy(zio);
3108 }
3109
3110 return (ZIO_PIPELINE_STOP);
3111 }
3112
3113 /*
3114 * ==========================================================================
3115 * I/O pipeline definition
3116 * ==========================================================================
3117 */
3118 static zio_pipe_stage_t *zio_pipeline[] = {
3119 NULL,
3120 zio_read_bp_init,
3121 zio_free_bp_init,
3122 zio_issue_async,
3123 zio_write_bp_init,
3124 zio_checksum_generate,
3125 zio_ddt_read_start,
3126 zio_ddt_read_done,
3127 zio_ddt_write,
3128 zio_ddt_free,
3129 zio_gang_assemble,
3130 zio_gang_issue,
3131 zio_dva_allocate,
3132 zio_dva_free,
3133 zio_dva_claim,
3134 zio_ready,
3135 zio_vdev_io_start,
3136 zio_vdev_io_done,
3137 zio_vdev_io_assess,
3138 zio_checksum_verify,
3139 zio_done
3140 };
3141
3142 /* dnp is the dnode for zb1->zb_object */
3143 boolean_t
3144 zbookmark_is_before(const dnode_phys_t *dnp, const zbookmark_t *zb1,
3145 const zbookmark_t *zb2)
3146 {
3147 uint64_t zb1nextL0, zb2thisobj;
3148
3149 ASSERT(zb1->zb_objset == zb2->zb_objset);
3150 ASSERT(zb2->zb_level == 0);
3151
3152 /*
3153 * A bookmark in the deadlist is considered to be after
3154 * everything else.
3155 */
3156 if (zb2->zb_object == DMU_DEADLIST_OBJECT)
3157 return (B_TRUE);
3158
3159 /* The objset_phys_t isn't before anything. */
3160 if (dnp == NULL)
3161 return (B_FALSE);
3162
3163 zb1nextL0 = (zb1->zb_blkid + 1) <<
3164 ((zb1->zb_level) * (dnp->dn_indblkshift - SPA_BLKPTRSHIFT));
3165
3166 zb2thisobj = zb2->zb_object ? zb2->zb_object :
3167 zb2->zb_blkid << (DNODE_BLOCK_SHIFT - DNODE_SHIFT);
3168
3169 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
3170 uint64_t nextobj = zb1nextL0 *
3171 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT) >> DNODE_SHIFT;
3172 return (nextobj <= zb2thisobj);
3173 }
3174
3175 if (zb1->zb_object < zb2thisobj)
3176 return (B_TRUE);
3177 if (zb1->zb_object > zb2thisobj)
3178 return (B_FALSE);
3179 if (zb2->zb_object == DMU_META_DNODE_OBJECT)
3180 return (B_FALSE);
3181 return (zb1nextL0 <= zb2->zb_blkid);
3182 }
3183
3184 #if defined(_KERNEL) && defined(HAVE_SPL)
3185 /* Fault injection */
3186 EXPORT_SYMBOL(zio_injection_enabled);
3187 EXPORT_SYMBOL(zio_inject_fault);
3188 EXPORT_SYMBOL(zio_inject_list_next);
3189 EXPORT_SYMBOL(zio_clear_fault);
3190 EXPORT_SYMBOL(zio_handle_fault_injection);
3191 EXPORT_SYMBOL(zio_handle_device_injection);
3192 EXPORT_SYMBOL(zio_handle_label_injection);
3193 EXPORT_SYMBOL(zio_priority_table);
3194 EXPORT_SYMBOL(zio_type_name);
3195
3196 module_param(zio_bulk_flags, int, 0644);
3197 MODULE_PARM_DESC(zio_bulk_flags, "Additional flags to pass to bulk buffers");
3198
3199 module_param(zio_delay_max, int, 0644);
3200 MODULE_PARM_DESC(zio_delay_max, "Max zio millisec delay before posting event");
3201
3202 module_param(zio_requeue_io_start_cut_in_line, int, 0644);
3203 MODULE_PARM_DESC(zio_requeue_io_start_cut_in_line, "Prioritize requeued I/O");
3204 #endif