]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Remove ARC/ZIO physdone callbacks.
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
29 */
30
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
55
56 /*
57 * ==========================================================================
58 * I/O type descriptions
59 * ==========================================================================
60 */
61 const char *const zio_type_name[ZIO_TYPES] = {
62 /*
63 * Note: Linux kernel thread name length is limited
64 * so these names will differ from upstream open zfs.
65 */
66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
67 };
68
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
71
72 /*
73 * ==========================================================================
74 * I/O kmem caches
75 * ==========================================================================
76 */
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
85
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88
89 #define BP_SPANB(indblkshift, level) \
90 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define COMPARE_META_LEVEL 0x80000000ul
92 /*
93 * The following actions directly effect the spa's sync-to-convergence logic.
94 * The values below define the sync pass when we start performing the action.
95 * Care should be taken when changing these values as they directly impact
96 * spa_sync() performance. Tuning these values may introduce subtle performance
97 * pathologies and should only be done in the context of performance analysis.
98 * These tunables will eventually be removed and replaced with #defines once
99 * enough analysis has been done to determine optimal values.
100 *
101 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102 * regular blocks are not deferred.
103 *
104 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105 * compression (including of metadata). In practice, we don't have this
106 * many sync passes, so this has no effect.
107 *
108 * The original intent was that disabling compression would help the sync
109 * passes to converge. However, in practice disabling compression increases
110 * the average number of sync passes, because when we turn compression off, a
111 * lot of block's size will change and thus we have to re-allocate (not
112 * overwrite) them. It also increases the number of 128KB allocations (e.g.
113 * for indirect blocks and spacemaps) because these will not be compressed.
114 * The 128K allocations are especially detrimental to performance on highly
115 * fragmented systems, which may have very few free segments of this size,
116 * and may need to load new metaslabs to satisfy 128K allocations.
117 */
118
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
121
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
124
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
127
128 /*
129 * An allocating zio is one that either currently has the DVA allocate
130 * stage set or will have it later in its lifetime.
131 */
132 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133
134 /*
135 * Enable smaller cores by excluding metadata
136 * allocations as well.
137 */
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
140
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
146
147 static inline void __zio_execute(zio_t *zio);
148
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150
151 void
152 zio_init(void)
153 {
154 size_t c;
155
156 zio_cache = kmem_cache_create("zio_cache",
157 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 zio_link_cache = kmem_cache_create("zio_link_cache",
159 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
160
161 /*
162 * For small buffers, we want a cache for each multiple of
163 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
164 * for each quarter-power of 2.
165 */
166 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
167 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
168 size_t p2 = size;
169 size_t align = 0;
170 size_t data_cflags, cflags;
171
172 data_cflags = KMC_NODEBUG;
173 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
174 KMC_NODEBUG : 0;
175
176 while (!ISP2(p2))
177 p2 &= p2 - 1;
178
179 #ifndef _KERNEL
180 /*
181 * If we are using watchpoints, put each buffer on its own page,
182 * to eliminate the performance overhead of trapping to the
183 * kernel when modifying a non-watched buffer that shares the
184 * page with a watched buffer.
185 */
186 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
187 continue;
188 /*
189 * Here's the problem - on 4K native devices in userland on
190 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
191 * will fail with EINVAL, causing zdb (and others) to coredump.
192 * Since userland probably doesn't need optimized buffer caches,
193 * we just force 4K alignment on everything.
194 */
195 align = 8 * SPA_MINBLOCKSIZE;
196 #else
197 if (size < PAGESIZE) {
198 align = SPA_MINBLOCKSIZE;
199 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
200 align = PAGESIZE;
201 }
202 #endif
203
204 if (align != 0) {
205 char name[36];
206 if (cflags == data_cflags) {
207 /*
208 * Resulting kmem caches would be identical.
209 * Save memory by creating only one.
210 */
211 (void) snprintf(name, sizeof (name),
212 "zio_buf_comb_%lu", (ulong_t)size);
213 zio_buf_cache[c] = kmem_cache_create(name,
214 size, align, NULL, NULL, NULL, NULL, NULL,
215 cflags);
216 zio_data_buf_cache[c] = zio_buf_cache[c];
217 continue;
218 }
219 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
220 (ulong_t)size);
221 zio_buf_cache[c] = kmem_cache_create(name, size,
222 align, NULL, NULL, NULL, NULL, NULL, cflags);
223
224 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
225 (ulong_t)size);
226 zio_data_buf_cache[c] = kmem_cache_create(name, size,
227 align, NULL, NULL, NULL, NULL, NULL, data_cflags);
228 }
229 }
230
231 while (--c != 0) {
232 ASSERT(zio_buf_cache[c] != NULL);
233 if (zio_buf_cache[c - 1] == NULL)
234 zio_buf_cache[c - 1] = zio_buf_cache[c];
235
236 ASSERT(zio_data_buf_cache[c] != NULL);
237 if (zio_data_buf_cache[c - 1] == NULL)
238 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
239 }
240
241 zio_inject_init();
242
243 lz4_init();
244 }
245
246 void
247 zio_fini(void)
248 {
249 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
250
251 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
252 for (size_t i = 0; i < n; i++) {
253 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
254 (void) printf("zio_fini: [%d] %llu != %llu\n",
255 (int)((i + 1) << SPA_MINBLOCKSHIFT),
256 (long long unsigned)zio_buf_cache_allocs[i],
257 (long long unsigned)zio_buf_cache_frees[i]);
258 }
259 #endif
260
261 /*
262 * The same kmem cache can show up multiple times in both zio_buf_cache
263 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
264 * sort it out.
265 */
266 for (size_t i = 0; i < n; i++) {
267 kmem_cache_t *cache = zio_buf_cache[i];
268 if (cache == NULL)
269 continue;
270 for (size_t j = i; j < n; j++) {
271 if (cache == zio_buf_cache[j])
272 zio_buf_cache[j] = NULL;
273 if (cache == zio_data_buf_cache[j])
274 zio_data_buf_cache[j] = NULL;
275 }
276 kmem_cache_destroy(cache);
277 }
278
279 for (size_t i = 0; i < n; i++) {
280 kmem_cache_t *cache = zio_data_buf_cache[i];
281 if (cache == NULL)
282 continue;
283 for (size_t j = i; j < n; j++) {
284 if (cache == zio_data_buf_cache[j])
285 zio_data_buf_cache[j] = NULL;
286 }
287 kmem_cache_destroy(cache);
288 }
289
290 for (size_t i = 0; i < n; i++) {
291 VERIFY3P(zio_buf_cache[i], ==, NULL);
292 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
293 }
294
295 kmem_cache_destroy(zio_link_cache);
296 kmem_cache_destroy(zio_cache);
297
298 zio_inject_fini();
299
300 lz4_fini();
301 }
302
303 /*
304 * ==========================================================================
305 * Allocate and free I/O buffers
306 * ==========================================================================
307 */
308
309 /*
310 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
311 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
312 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
313 * excess / transient data in-core during a crashdump.
314 */
315 void *
316 zio_buf_alloc(size_t size)
317 {
318 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
319
320 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
321 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
322 atomic_add_64(&zio_buf_cache_allocs[c], 1);
323 #endif
324
325 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
326 }
327
328 /*
329 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
330 * crashdump if the kernel panics. This exists so that we will limit the amount
331 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
332 * of kernel heap dumped to disk when the kernel panics)
333 */
334 void *
335 zio_data_buf_alloc(size_t size)
336 {
337 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
338
339 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
340
341 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
342 }
343
344 void
345 zio_buf_free(void *buf, size_t size)
346 {
347 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
348
349 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
350 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
351 atomic_add_64(&zio_buf_cache_frees[c], 1);
352 #endif
353
354 kmem_cache_free(zio_buf_cache[c], buf);
355 }
356
357 void
358 zio_data_buf_free(void *buf, size_t size)
359 {
360 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
361
362 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
363
364 kmem_cache_free(zio_data_buf_cache[c], buf);
365 }
366
367 static void
368 zio_abd_free(void *abd, size_t size)
369 {
370 (void) size;
371 abd_free((abd_t *)abd);
372 }
373
374 /*
375 * ==========================================================================
376 * Push and pop I/O transform buffers
377 * ==========================================================================
378 */
379 void
380 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
381 zio_transform_func_t *transform)
382 {
383 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
384
385 zt->zt_orig_abd = zio->io_abd;
386 zt->zt_orig_size = zio->io_size;
387 zt->zt_bufsize = bufsize;
388 zt->zt_transform = transform;
389
390 zt->zt_next = zio->io_transform_stack;
391 zio->io_transform_stack = zt;
392
393 zio->io_abd = data;
394 zio->io_size = size;
395 }
396
397 void
398 zio_pop_transforms(zio_t *zio)
399 {
400 zio_transform_t *zt;
401
402 while ((zt = zio->io_transform_stack) != NULL) {
403 if (zt->zt_transform != NULL)
404 zt->zt_transform(zio,
405 zt->zt_orig_abd, zt->zt_orig_size);
406
407 if (zt->zt_bufsize != 0)
408 abd_free(zio->io_abd);
409
410 zio->io_abd = zt->zt_orig_abd;
411 zio->io_size = zt->zt_orig_size;
412 zio->io_transform_stack = zt->zt_next;
413
414 kmem_free(zt, sizeof (zio_transform_t));
415 }
416 }
417
418 /*
419 * ==========================================================================
420 * I/O transform callbacks for subblocks, decompression, and decryption
421 * ==========================================================================
422 */
423 static void
424 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
425 {
426 ASSERT(zio->io_size > size);
427
428 if (zio->io_type == ZIO_TYPE_READ)
429 abd_copy(data, zio->io_abd, size);
430 }
431
432 static void
433 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
434 {
435 if (zio->io_error == 0) {
436 void *tmp = abd_borrow_buf(data, size);
437 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
438 zio->io_abd, tmp, zio->io_size, size,
439 &zio->io_prop.zp_complevel);
440 abd_return_buf_copy(data, tmp, size);
441
442 if (zio_injection_enabled && ret == 0)
443 ret = zio_handle_fault_injection(zio, EINVAL);
444
445 if (ret != 0)
446 zio->io_error = SET_ERROR(EIO);
447 }
448 }
449
450 static void
451 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
452 {
453 int ret;
454 void *tmp;
455 blkptr_t *bp = zio->io_bp;
456 spa_t *spa = zio->io_spa;
457 uint64_t dsobj = zio->io_bookmark.zb_objset;
458 uint64_t lsize = BP_GET_LSIZE(bp);
459 dmu_object_type_t ot = BP_GET_TYPE(bp);
460 uint8_t salt[ZIO_DATA_SALT_LEN];
461 uint8_t iv[ZIO_DATA_IV_LEN];
462 uint8_t mac[ZIO_DATA_MAC_LEN];
463 boolean_t no_crypt = B_FALSE;
464
465 ASSERT(BP_USES_CRYPT(bp));
466 ASSERT3U(size, !=, 0);
467
468 if (zio->io_error != 0)
469 return;
470
471 /*
472 * Verify the cksum of MACs stored in an indirect bp. It will always
473 * be possible to verify this since it does not require an encryption
474 * key.
475 */
476 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
477 zio_crypt_decode_mac_bp(bp, mac);
478
479 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
480 /*
481 * We haven't decompressed the data yet, but
482 * zio_crypt_do_indirect_mac_checksum() requires
483 * decompressed data to be able to parse out the MACs
484 * from the indirect block. We decompress it now and
485 * throw away the result after we are finished.
486 */
487 tmp = zio_buf_alloc(lsize);
488 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
489 zio->io_abd, tmp, zio->io_size, lsize,
490 &zio->io_prop.zp_complevel);
491 if (ret != 0) {
492 ret = SET_ERROR(EIO);
493 goto error;
494 }
495 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
496 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
497 zio_buf_free(tmp, lsize);
498 } else {
499 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
500 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
501 }
502 abd_copy(data, zio->io_abd, size);
503
504 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
505 ret = zio_handle_decrypt_injection(spa,
506 &zio->io_bookmark, ot, ECKSUM);
507 }
508 if (ret != 0)
509 goto error;
510
511 return;
512 }
513
514 /*
515 * If this is an authenticated block, just check the MAC. It would be
516 * nice to separate this out into its own flag, but when this was done,
517 * we had run out of bits in what is now zio_flag_t. Future cleanup
518 * could make this a flag bit.
519 */
520 if (BP_IS_AUTHENTICATED(bp)) {
521 if (ot == DMU_OT_OBJSET) {
522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
524 } else {
525 zio_crypt_decode_mac_bp(bp, mac);
526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
527 zio->io_abd, size, mac);
528 if (zio_injection_enabled && ret == 0) {
529 ret = zio_handle_decrypt_injection(spa,
530 &zio->io_bookmark, ot, ECKSUM);
531 }
532 }
533 abd_copy(data, zio->io_abd, size);
534
535 if (ret != 0)
536 goto error;
537
538 return;
539 }
540
541 zio_crypt_decode_params_bp(bp, salt, iv);
542
543 if (ot == DMU_OT_INTENT_LOG) {
544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
545 zio_crypt_decode_mac_zil(tmp, mac);
546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
547 } else {
548 zio_crypt_decode_mac_bp(bp, mac);
549 }
550
551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
553 zio->io_abd, &no_crypt);
554 if (no_crypt)
555 abd_copy(data, zio->io_abd, size);
556
557 if (ret != 0)
558 goto error;
559
560 return;
561
562 error:
563 /* assert that the key was found unless this was speculative */
564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
565
566 /*
567 * If there was a decryption / authentication error return EIO as
568 * the io_error. If this was not a speculative zio, create an ereport.
569 */
570 if (ret == ECKSUM) {
571 zio->io_error = SET_ERROR(EIO);
572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
573 spa_log_error(spa, &zio->io_bookmark,
574 &zio->io_bp->blk_birth);
575 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
576 spa, NULL, &zio->io_bookmark, zio, 0);
577 }
578 } else {
579 zio->io_error = ret;
580 }
581 }
582
583 /*
584 * ==========================================================================
585 * I/O parent/child relationships and pipeline interlocks
586 * ==========================================================================
587 */
588 zio_t *
589 zio_walk_parents(zio_t *cio, zio_link_t **zl)
590 {
591 list_t *pl = &cio->io_parent_list;
592
593 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
594 if (*zl == NULL)
595 return (NULL);
596
597 ASSERT((*zl)->zl_child == cio);
598 return ((*zl)->zl_parent);
599 }
600
601 zio_t *
602 zio_walk_children(zio_t *pio, zio_link_t **zl)
603 {
604 list_t *cl = &pio->io_child_list;
605
606 ASSERT(MUTEX_HELD(&pio->io_lock));
607
608 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
609 if (*zl == NULL)
610 return (NULL);
611
612 ASSERT((*zl)->zl_parent == pio);
613 return ((*zl)->zl_child);
614 }
615
616 zio_t *
617 zio_unique_parent(zio_t *cio)
618 {
619 zio_link_t *zl = NULL;
620 zio_t *pio = zio_walk_parents(cio, &zl);
621
622 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
623 return (pio);
624 }
625
626 void
627 zio_add_child(zio_t *pio, zio_t *cio)
628 {
629 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
630
631 /*
632 * Logical I/Os can have logical, gang, or vdev children.
633 * Gang I/Os can have gang or vdev children.
634 * Vdev I/Os can only have vdev children.
635 * The following ASSERT captures all of these constraints.
636 */
637 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
638
639 zl->zl_parent = pio;
640 zl->zl_child = cio;
641
642 mutex_enter(&pio->io_lock);
643 mutex_enter(&cio->io_lock);
644
645 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
646
647 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
648 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
649
650 list_insert_head(&pio->io_child_list, zl);
651 list_insert_head(&cio->io_parent_list, zl);
652
653 mutex_exit(&cio->io_lock);
654 mutex_exit(&pio->io_lock);
655 }
656
657 static void
658 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
659 {
660 ASSERT(zl->zl_parent == pio);
661 ASSERT(zl->zl_child == cio);
662
663 mutex_enter(&pio->io_lock);
664 mutex_enter(&cio->io_lock);
665
666 list_remove(&pio->io_child_list, zl);
667 list_remove(&cio->io_parent_list, zl);
668
669 mutex_exit(&cio->io_lock);
670 mutex_exit(&pio->io_lock);
671 kmem_cache_free(zio_link_cache, zl);
672 }
673
674 static boolean_t
675 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
676 {
677 boolean_t waiting = B_FALSE;
678
679 mutex_enter(&zio->io_lock);
680 ASSERT(zio->io_stall == NULL);
681 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
682 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
683 continue;
684
685 uint64_t *countp = &zio->io_children[c][wait];
686 if (*countp != 0) {
687 zio->io_stage >>= 1;
688 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
689 zio->io_stall = countp;
690 waiting = B_TRUE;
691 break;
692 }
693 }
694 mutex_exit(&zio->io_lock);
695 return (waiting);
696 }
697
698 __attribute__((always_inline))
699 static inline void
700 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
701 zio_t **next_to_executep)
702 {
703 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
704 int *errorp = &pio->io_child_error[zio->io_child_type];
705
706 mutex_enter(&pio->io_lock);
707 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
708 *errorp = zio_worst_error(*errorp, zio->io_error);
709 pio->io_reexecute |= zio->io_reexecute;
710 ASSERT3U(*countp, >, 0);
711
712 (*countp)--;
713
714 if (*countp == 0 && pio->io_stall == countp) {
715 zio_taskq_type_t type =
716 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
717 ZIO_TASKQ_INTERRUPT;
718 pio->io_stall = NULL;
719 mutex_exit(&pio->io_lock);
720
721 /*
722 * If we can tell the caller to execute this parent next, do
723 * so. We only do this if the parent's zio type matches the
724 * child's type. Otherwise dispatch the parent zio in its
725 * own taskq.
726 *
727 * Having the caller execute the parent when possible reduces
728 * locking on the zio taskq's, reduces context switch
729 * overhead, and has no recursion penalty. Note that one
730 * read from disk typically causes at least 3 zio's: a
731 * zio_null(), the logical zio_read(), and then a physical
732 * zio. When the physical ZIO completes, we are able to call
733 * zio_done() on all 3 of these zio's from one invocation of
734 * zio_execute() by returning the parent back to
735 * zio_execute(). Since the parent isn't executed until this
736 * thread returns back to zio_execute(), the caller should do
737 * so promptly.
738 *
739 * In other cases, dispatching the parent prevents
740 * overflowing the stack when we have deeply nested
741 * parent-child relationships, as we do with the "mega zio"
742 * of writes for spa_sync(), and the chain of ZIL blocks.
743 */
744 if (next_to_executep != NULL && *next_to_executep == NULL &&
745 pio->io_type == zio->io_type) {
746 *next_to_executep = pio;
747 } else {
748 zio_taskq_dispatch(pio, type, B_FALSE);
749 }
750 } else {
751 mutex_exit(&pio->io_lock);
752 }
753 }
754
755 static void
756 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
757 {
758 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
759 zio->io_error = zio->io_child_error[c];
760 }
761
762 int
763 zio_bookmark_compare(const void *x1, const void *x2)
764 {
765 const zio_t *z1 = x1;
766 const zio_t *z2 = x2;
767
768 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
769 return (-1);
770 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
771 return (1);
772
773 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
774 return (-1);
775 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
776 return (1);
777
778 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
779 return (-1);
780 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
781 return (1);
782
783 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
784 return (-1);
785 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
786 return (1);
787
788 if (z1 < z2)
789 return (-1);
790 if (z1 > z2)
791 return (1);
792
793 return (0);
794 }
795
796 /*
797 * ==========================================================================
798 * Create the various types of I/O (read, write, free, etc)
799 * ==========================================================================
800 */
801 static zio_t *
802 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
803 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
804 void *private, zio_type_t type, zio_priority_t priority,
805 zio_flag_t flags, vdev_t *vd, uint64_t offset,
806 const zbookmark_phys_t *zb, enum zio_stage stage,
807 enum zio_stage pipeline)
808 {
809 zio_t *zio;
810
811 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
812 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
813 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
814
815 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
816 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
817 ASSERT(vd || stage == ZIO_STAGE_OPEN);
818
819 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
820
821 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
822 memset(zio, 0, sizeof (zio_t));
823
824 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
825 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
826
827 list_create(&zio->io_parent_list, sizeof (zio_link_t),
828 offsetof(zio_link_t, zl_parent_node));
829 list_create(&zio->io_child_list, sizeof (zio_link_t),
830 offsetof(zio_link_t, zl_child_node));
831 metaslab_trace_init(&zio->io_alloc_list);
832
833 if (vd != NULL)
834 zio->io_child_type = ZIO_CHILD_VDEV;
835 else if (flags & ZIO_FLAG_GANG_CHILD)
836 zio->io_child_type = ZIO_CHILD_GANG;
837 else if (flags & ZIO_FLAG_DDT_CHILD)
838 zio->io_child_type = ZIO_CHILD_DDT;
839 else
840 zio->io_child_type = ZIO_CHILD_LOGICAL;
841
842 if (bp != NULL) {
843 zio->io_bp = (blkptr_t *)bp;
844 zio->io_bp_copy = *bp;
845 zio->io_bp_orig = *bp;
846 if (type != ZIO_TYPE_WRITE ||
847 zio->io_child_type == ZIO_CHILD_DDT)
848 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
849 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
850 zio->io_logical = zio;
851 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
852 pipeline |= ZIO_GANG_STAGES;
853 }
854
855 zio->io_spa = spa;
856 zio->io_txg = txg;
857 zio->io_done = done;
858 zio->io_private = private;
859 zio->io_type = type;
860 zio->io_priority = priority;
861 zio->io_vd = vd;
862 zio->io_offset = offset;
863 zio->io_orig_abd = zio->io_abd = data;
864 zio->io_orig_size = zio->io_size = psize;
865 zio->io_lsize = lsize;
866 zio->io_orig_flags = zio->io_flags = flags;
867 zio->io_orig_stage = zio->io_stage = stage;
868 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
869 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
870
871 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
872 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
873
874 if (zb != NULL)
875 zio->io_bookmark = *zb;
876
877 if (pio != NULL) {
878 zio->io_metaslab_class = pio->io_metaslab_class;
879 if (zio->io_logical == NULL)
880 zio->io_logical = pio->io_logical;
881 if (zio->io_child_type == ZIO_CHILD_GANG)
882 zio->io_gang_leader = pio->io_gang_leader;
883 zio_add_child(pio, zio);
884 }
885
886 taskq_init_ent(&zio->io_tqent);
887
888 return (zio);
889 }
890
891 void
892 zio_destroy(zio_t *zio)
893 {
894 metaslab_trace_fini(&zio->io_alloc_list);
895 list_destroy(&zio->io_parent_list);
896 list_destroy(&zio->io_child_list);
897 mutex_destroy(&zio->io_lock);
898 cv_destroy(&zio->io_cv);
899 kmem_cache_free(zio_cache, zio);
900 }
901
902 zio_t *
903 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
904 void *private, zio_flag_t flags)
905 {
906 zio_t *zio;
907
908 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
909 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
910 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
911
912 return (zio);
913 }
914
915 zio_t *
916 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
917 {
918 return (zio_null(NULL, spa, NULL, done, private, flags));
919 }
920
921 static int
922 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
923 enum blk_verify_flag blk_verify, const char *fmt, ...)
924 {
925 va_list adx;
926 char buf[256];
927
928 va_start(adx, fmt);
929 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
930 va_end(adx);
931
932 zfs_dbgmsg("bad blkptr at %px: "
933 "DVA[0]=%#llx/%#llx "
934 "DVA[1]=%#llx/%#llx "
935 "DVA[2]=%#llx/%#llx "
936 "prop=%#llx "
937 "pad=%#llx,%#llx "
938 "phys_birth=%#llx "
939 "birth=%#llx "
940 "fill=%#llx "
941 "cksum=%#llx/%#llx/%#llx/%#llx",
942 bp,
943 (long long)bp->blk_dva[0].dva_word[0],
944 (long long)bp->blk_dva[0].dva_word[1],
945 (long long)bp->blk_dva[1].dva_word[0],
946 (long long)bp->blk_dva[1].dva_word[1],
947 (long long)bp->blk_dva[2].dva_word[0],
948 (long long)bp->blk_dva[2].dva_word[1],
949 (long long)bp->blk_prop,
950 (long long)bp->blk_pad[0],
951 (long long)bp->blk_pad[1],
952 (long long)bp->blk_phys_birth,
953 (long long)bp->blk_birth,
954 (long long)bp->blk_fill,
955 (long long)bp->blk_cksum.zc_word[0],
956 (long long)bp->blk_cksum.zc_word[1],
957 (long long)bp->blk_cksum.zc_word[2],
958 (long long)bp->blk_cksum.zc_word[3]);
959 switch (blk_verify) {
960 case BLK_VERIFY_HALT:
961 zfs_panic_recover("%s: %s", spa_name(spa), buf);
962 break;
963 case BLK_VERIFY_LOG:
964 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
965 break;
966 case BLK_VERIFY_ONLY:
967 break;
968 }
969
970 return (1);
971 }
972
973 /*
974 * Verify the block pointer fields contain reasonable values. This means
975 * it only contains known object types, checksum/compression identifiers,
976 * block sizes within the maximum allowed limits, valid DVAs, etc.
977 *
978 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
979 * argument controls the behavior when an invalid field is detected.
980 *
981 * Values for blk_verify_flag:
982 * BLK_VERIFY_ONLY: evaluate the block
983 * BLK_VERIFY_LOG: evaluate the block and log problems
984 * BLK_VERIFY_HALT: call zfs_panic_recover on error
985 *
986 * Values for blk_config_flag:
987 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
988 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
989 * obtained for reader
990 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
991 * performance
992 */
993 boolean_t
994 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
995 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
996 {
997 int errors = 0;
998
999 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
1000 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1001 "blkptr at %px has invalid TYPE %llu",
1002 bp, (longlong_t)BP_GET_TYPE(bp));
1003 }
1004 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
1005 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1006 "blkptr at %px has invalid CHECKSUM %llu",
1007 bp, (longlong_t)BP_GET_CHECKSUM(bp));
1008 }
1009 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
1010 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1011 "blkptr at %px has invalid COMPRESS %llu",
1012 bp, (longlong_t)BP_GET_COMPRESS(bp));
1013 }
1014 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
1015 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1016 "blkptr at %px has invalid LSIZE %llu",
1017 bp, (longlong_t)BP_GET_LSIZE(bp));
1018 }
1019 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
1020 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1021 "blkptr at %px has invalid PSIZE %llu",
1022 bp, (longlong_t)BP_GET_PSIZE(bp));
1023 }
1024
1025 if (BP_IS_EMBEDDED(bp)) {
1026 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1027 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1028 "blkptr at %px has invalid ETYPE %llu",
1029 bp, (longlong_t)BPE_GET_ETYPE(bp));
1030 }
1031 }
1032
1033 /*
1034 * Do not verify individual DVAs if the config is not trusted. This
1035 * will be done once the zio is executed in vdev_mirror_map_alloc.
1036 */
1037 if (!spa->spa_trust_config)
1038 return (errors == 0);
1039
1040 switch (blk_config) {
1041 case BLK_CONFIG_HELD:
1042 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1043 break;
1044 case BLK_CONFIG_NEEDED:
1045 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1046 break;
1047 case BLK_CONFIG_SKIP:
1048 return (errors == 0);
1049 default:
1050 panic("invalid blk_config %u", blk_config);
1051 }
1052
1053 /*
1054 * Pool-specific checks.
1055 *
1056 * Note: it would be nice to verify that the blk_birth and
1057 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1058 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1059 * that are in the log) to be arbitrarily large.
1060 */
1061 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1062 const dva_t *dva = &bp->blk_dva[i];
1063 uint64_t vdevid = DVA_GET_VDEV(dva);
1064
1065 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1066 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1067 "blkptr at %px DVA %u has invalid VDEV %llu",
1068 bp, i, (longlong_t)vdevid);
1069 continue;
1070 }
1071 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1072 if (vd == NULL) {
1073 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1074 "blkptr at %px DVA %u has invalid VDEV %llu",
1075 bp, i, (longlong_t)vdevid);
1076 continue;
1077 }
1078 if (vd->vdev_ops == &vdev_hole_ops) {
1079 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1080 "blkptr at %px DVA %u has hole VDEV %llu",
1081 bp, i, (longlong_t)vdevid);
1082 continue;
1083 }
1084 if (vd->vdev_ops == &vdev_missing_ops) {
1085 /*
1086 * "missing" vdevs are valid during import, but we
1087 * don't have their detailed info (e.g. asize), so
1088 * we can't perform any more checks on them.
1089 */
1090 continue;
1091 }
1092 uint64_t offset = DVA_GET_OFFSET(dva);
1093 uint64_t asize = DVA_GET_ASIZE(dva);
1094 if (DVA_GET_GANG(dva))
1095 asize = vdev_gang_header_asize(vd);
1096 if (offset + asize > vd->vdev_asize) {
1097 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1098 "blkptr at %px DVA %u has invalid OFFSET %llu",
1099 bp, i, (longlong_t)offset);
1100 }
1101 }
1102 if (blk_config == BLK_CONFIG_NEEDED)
1103 spa_config_exit(spa, SCL_VDEV, bp);
1104
1105 return (errors == 0);
1106 }
1107
1108 boolean_t
1109 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1110 {
1111 (void) bp;
1112 uint64_t vdevid = DVA_GET_VDEV(dva);
1113
1114 if (vdevid >= spa->spa_root_vdev->vdev_children)
1115 return (B_FALSE);
1116
1117 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1118 if (vd == NULL)
1119 return (B_FALSE);
1120
1121 if (vd->vdev_ops == &vdev_hole_ops)
1122 return (B_FALSE);
1123
1124 if (vd->vdev_ops == &vdev_missing_ops) {
1125 return (B_FALSE);
1126 }
1127
1128 uint64_t offset = DVA_GET_OFFSET(dva);
1129 uint64_t asize = DVA_GET_ASIZE(dva);
1130
1131 if (DVA_GET_GANG(dva))
1132 asize = vdev_gang_header_asize(vd);
1133 if (offset + asize > vd->vdev_asize)
1134 return (B_FALSE);
1135
1136 return (B_TRUE);
1137 }
1138
1139 zio_t *
1140 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1141 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1142 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1143 {
1144 zio_t *zio;
1145
1146 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1147 data, size, size, done, private,
1148 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1149 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1150 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1151
1152 return (zio);
1153 }
1154
1155 zio_t *
1156 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1157 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1158 zio_done_func_t *ready, zio_done_func_t *children_ready,
1159 zio_done_func_t *done, void *private, zio_priority_t priority,
1160 zio_flag_t flags, const zbookmark_phys_t *zb)
1161 {
1162 zio_t *zio;
1163
1164 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1165 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1166 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1167 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1168 DMU_OT_IS_VALID(zp->zp_type) &&
1169 zp->zp_level < 32 &&
1170 zp->zp_copies > 0 &&
1171 zp->zp_copies <= spa_max_replication(spa));
1172
1173 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1174 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1175 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1176 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1177
1178 zio->io_ready = ready;
1179 zio->io_children_ready = children_ready;
1180 zio->io_prop = *zp;
1181
1182 /*
1183 * Data can be NULL if we are going to call zio_write_override() to
1184 * provide the already-allocated BP. But we may need the data to
1185 * verify a dedup hit (if requested). In this case, don't try to
1186 * dedup (just take the already-allocated BP verbatim). Encrypted
1187 * dedup blocks need data as well so we also disable dedup in this
1188 * case.
1189 */
1190 if (data == NULL &&
1191 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1192 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1193 }
1194
1195 return (zio);
1196 }
1197
1198 zio_t *
1199 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1200 uint64_t size, zio_done_func_t *done, void *private,
1201 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1202 {
1203 zio_t *zio;
1204
1205 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1206 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1207 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1208
1209 return (zio);
1210 }
1211
1212 void
1213 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1214 boolean_t brtwrite)
1215 {
1216 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1217 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1218 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1219 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1220 ASSERT(!brtwrite || !nopwrite);
1221
1222 /*
1223 * We must reset the io_prop to match the values that existed
1224 * when the bp was first written by dmu_sync() keeping in mind
1225 * that nopwrite and dedup are mutually exclusive.
1226 */
1227 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1228 zio->io_prop.zp_nopwrite = nopwrite;
1229 zio->io_prop.zp_brtwrite = brtwrite;
1230 zio->io_prop.zp_copies = copies;
1231 zio->io_bp_override = bp;
1232 }
1233
1234 void
1235 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1236 {
1237
1238 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1239
1240 /*
1241 * The check for EMBEDDED is a performance optimization. We
1242 * process the free here (by ignoring it) rather than
1243 * putting it on the list and then processing it in zio_free_sync().
1244 */
1245 if (BP_IS_EMBEDDED(bp))
1246 return;
1247
1248 /*
1249 * Frees that are for the currently-syncing txg, are not going to be
1250 * deferred, and which will not need to do a read (i.e. not GANG or
1251 * DEDUP), can be processed immediately. Otherwise, put them on the
1252 * in-memory list for later processing.
1253 *
1254 * Note that we only defer frees after zfs_sync_pass_deferred_free
1255 * when the log space map feature is disabled. [see relevant comment
1256 * in spa_sync_iterate_to_convergence()]
1257 */
1258 if (BP_IS_GANG(bp) ||
1259 BP_GET_DEDUP(bp) ||
1260 txg != spa->spa_syncing_txg ||
1261 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1262 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1263 brt_maybe_exists(spa, bp)) {
1264 metaslab_check_free(spa, bp);
1265 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1266 } else {
1267 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1268 }
1269 }
1270
1271 /*
1272 * To improve performance, this function may return NULL if we were able
1273 * to do the free immediately. This avoids the cost of creating a zio
1274 * (and linking it to the parent, etc).
1275 */
1276 zio_t *
1277 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1278 zio_flag_t flags)
1279 {
1280 ASSERT(!BP_IS_HOLE(bp));
1281 ASSERT(spa_syncing_txg(spa) == txg);
1282
1283 if (BP_IS_EMBEDDED(bp))
1284 return (NULL);
1285
1286 metaslab_check_free(spa, bp);
1287 arc_freed(spa, bp);
1288 dsl_scan_freed(spa, bp);
1289
1290 if (BP_IS_GANG(bp) ||
1291 BP_GET_DEDUP(bp) ||
1292 brt_maybe_exists(spa, bp)) {
1293 /*
1294 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1295 * block header, the DDT or the BRT), so issue them
1296 * asynchronously so that this thread is not tied up.
1297 */
1298 enum zio_stage stage =
1299 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1300
1301 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1302 BP_GET_PSIZE(bp), NULL, NULL,
1303 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1304 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1305 } else {
1306 metaslab_free(spa, bp, txg, B_FALSE);
1307 return (NULL);
1308 }
1309 }
1310
1311 zio_t *
1312 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1313 zio_done_func_t *done, void *private, zio_flag_t flags)
1314 {
1315 zio_t *zio;
1316
1317 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1318 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1319
1320 if (BP_IS_EMBEDDED(bp))
1321 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1322
1323 /*
1324 * A claim is an allocation of a specific block. Claims are needed
1325 * to support immediate writes in the intent log. The issue is that
1326 * immediate writes contain committed data, but in a txg that was
1327 * *not* committed. Upon opening the pool after an unclean shutdown,
1328 * the intent log claims all blocks that contain immediate write data
1329 * so that the SPA knows they're in use.
1330 *
1331 * All claims *must* be resolved in the first txg -- before the SPA
1332 * starts allocating blocks -- so that nothing is allocated twice.
1333 * If txg == 0 we just verify that the block is claimable.
1334 */
1335 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1336 spa_min_claim_txg(spa));
1337 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1338 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1339
1340 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1341 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1342 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1343 ASSERT0(zio->io_queued_timestamp);
1344
1345 return (zio);
1346 }
1347
1348 zio_t *
1349 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1350 zio_done_func_t *done, void *private, zio_flag_t flags)
1351 {
1352 zio_t *zio;
1353 int c;
1354
1355 if (vd->vdev_children == 0) {
1356 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1357 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1358 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1359
1360 zio->io_cmd = cmd;
1361 } else {
1362 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1363
1364 for (c = 0; c < vd->vdev_children; c++)
1365 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1366 done, private, flags));
1367 }
1368
1369 return (zio);
1370 }
1371
1372 zio_t *
1373 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1374 zio_done_func_t *done, void *private, zio_priority_t priority,
1375 zio_flag_t flags, enum trim_flag trim_flags)
1376 {
1377 zio_t *zio;
1378
1379 ASSERT0(vd->vdev_children);
1380 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1381 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1382 ASSERT3U(size, !=, 0);
1383
1384 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1385 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1386 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1387 zio->io_trim_flags = trim_flags;
1388
1389 return (zio);
1390 }
1391
1392 zio_t *
1393 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1394 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1395 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1396 {
1397 zio_t *zio;
1398
1399 ASSERT(vd->vdev_children == 0);
1400 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1401 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1402 ASSERT3U(offset + size, <=, vd->vdev_psize);
1403
1404 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1405 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1406 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1407
1408 zio->io_prop.zp_checksum = checksum;
1409
1410 return (zio);
1411 }
1412
1413 zio_t *
1414 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1415 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1416 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1417 {
1418 zio_t *zio;
1419
1420 ASSERT(vd->vdev_children == 0);
1421 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1422 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1423 ASSERT3U(offset + size, <=, vd->vdev_psize);
1424
1425 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1426 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1427 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1428
1429 zio->io_prop.zp_checksum = checksum;
1430
1431 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1432 /*
1433 * zec checksums are necessarily destructive -- they modify
1434 * the end of the write buffer to hold the verifier/checksum.
1435 * Therefore, we must make a local copy in case the data is
1436 * being written to multiple places in parallel.
1437 */
1438 abd_t *wbuf = abd_alloc_sametype(data, size);
1439 abd_copy(wbuf, data, size);
1440
1441 zio_push_transform(zio, wbuf, size, size, NULL);
1442 }
1443
1444 return (zio);
1445 }
1446
1447 /*
1448 * Create a child I/O to do some work for us.
1449 */
1450 zio_t *
1451 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1452 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1453 zio_flag_t flags, zio_done_func_t *done, void *private)
1454 {
1455 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1456 zio_t *zio;
1457
1458 /*
1459 * vdev child I/Os do not propagate their error to the parent.
1460 * Therefore, for correct operation the caller *must* check for
1461 * and handle the error in the child i/o's done callback.
1462 * The only exceptions are i/os that we don't care about
1463 * (OPTIONAL or REPAIR).
1464 */
1465 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1466 done != NULL);
1467
1468 if (type == ZIO_TYPE_READ && bp != NULL) {
1469 /*
1470 * If we have the bp, then the child should perform the
1471 * checksum and the parent need not. This pushes error
1472 * detection as close to the leaves as possible and
1473 * eliminates redundant checksums in the interior nodes.
1474 */
1475 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1476 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1477 }
1478
1479 if (vd->vdev_ops->vdev_op_leaf) {
1480 ASSERT0(vd->vdev_children);
1481 offset += VDEV_LABEL_START_SIZE;
1482 }
1483
1484 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1485
1486 /*
1487 * If we've decided to do a repair, the write is not speculative --
1488 * even if the original read was.
1489 */
1490 if (flags & ZIO_FLAG_IO_REPAIR)
1491 flags &= ~ZIO_FLAG_SPECULATIVE;
1492
1493 /*
1494 * If we're creating a child I/O that is not associated with a
1495 * top-level vdev, then the child zio is not an allocating I/O.
1496 * If this is a retried I/O then we ignore it since we will
1497 * have already processed the original allocating I/O.
1498 */
1499 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1500 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1501 ASSERT(pio->io_metaslab_class != NULL);
1502 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1503 ASSERT(type == ZIO_TYPE_WRITE);
1504 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1505 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1506 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1507 pio->io_child_type == ZIO_CHILD_GANG);
1508
1509 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1510 }
1511
1512 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1513 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1514 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1515 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1516
1517 return (zio);
1518 }
1519
1520 zio_t *
1521 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1522 zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1523 zio_done_func_t *done, void *private)
1524 {
1525 zio_t *zio;
1526
1527 ASSERT(vd->vdev_ops->vdev_op_leaf);
1528
1529 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1530 data, size, size, done, private, type, priority,
1531 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1532 vd, offset, NULL,
1533 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1534
1535 return (zio);
1536 }
1537
1538 void
1539 zio_flush(zio_t *zio, vdev_t *vd)
1540 {
1541 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1542 NULL, NULL,
1543 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1544 }
1545
1546 void
1547 zio_shrink(zio_t *zio, uint64_t size)
1548 {
1549 ASSERT3P(zio->io_executor, ==, NULL);
1550 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1551 ASSERT3U(size, <=, zio->io_size);
1552
1553 /*
1554 * We don't shrink for raidz because of problems with the
1555 * reconstruction when reading back less than the block size.
1556 * Note, BP_IS_RAIDZ() assumes no compression.
1557 */
1558 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1559 if (!BP_IS_RAIDZ(zio->io_bp)) {
1560 /* we are not doing a raw write */
1561 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1562 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1563 }
1564 }
1565
1566 /*
1567 * ==========================================================================
1568 * Prepare to read and write logical blocks
1569 * ==========================================================================
1570 */
1571
1572 static zio_t *
1573 zio_read_bp_init(zio_t *zio)
1574 {
1575 blkptr_t *bp = zio->io_bp;
1576 uint64_t psize =
1577 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1578
1579 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1580
1581 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1582 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1583 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1584 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1585 psize, psize, zio_decompress);
1586 }
1587
1588 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1589 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1590 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1591 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1592 psize, psize, zio_decrypt);
1593 }
1594
1595 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1596 int psize = BPE_GET_PSIZE(bp);
1597 void *data = abd_borrow_buf(zio->io_abd, psize);
1598
1599 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1600 decode_embedded_bp_compressed(bp, data);
1601 abd_return_buf_copy(zio->io_abd, data, psize);
1602 } else {
1603 ASSERT(!BP_IS_EMBEDDED(bp));
1604 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1605 }
1606
1607 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1608 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1609
1610 return (zio);
1611 }
1612
1613 static zio_t *
1614 zio_write_bp_init(zio_t *zio)
1615 {
1616 if (!IO_IS_ALLOCATING(zio))
1617 return (zio);
1618
1619 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1620
1621 if (zio->io_bp_override) {
1622 blkptr_t *bp = zio->io_bp;
1623 zio_prop_t *zp = &zio->io_prop;
1624
1625 ASSERT(bp->blk_birth != zio->io_txg);
1626
1627 *bp = *zio->io_bp_override;
1628 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1629
1630 if (zp->zp_brtwrite)
1631 return (zio);
1632
1633 ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1634
1635 if (BP_IS_EMBEDDED(bp))
1636 return (zio);
1637
1638 /*
1639 * If we've been overridden and nopwrite is set then
1640 * set the flag accordingly to indicate that a nopwrite
1641 * has already occurred.
1642 */
1643 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1644 ASSERT(!zp->zp_dedup);
1645 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1646 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1647 return (zio);
1648 }
1649
1650 ASSERT(!zp->zp_nopwrite);
1651
1652 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1653 return (zio);
1654
1655 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1656 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1657
1658 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1659 !zp->zp_encrypt) {
1660 BP_SET_DEDUP(bp, 1);
1661 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1662 return (zio);
1663 }
1664
1665 /*
1666 * We were unable to handle this as an override bp, treat
1667 * it as a regular write I/O.
1668 */
1669 zio->io_bp_override = NULL;
1670 *bp = zio->io_bp_orig;
1671 zio->io_pipeline = zio->io_orig_pipeline;
1672 }
1673
1674 return (zio);
1675 }
1676
1677 static zio_t *
1678 zio_write_compress(zio_t *zio)
1679 {
1680 spa_t *spa = zio->io_spa;
1681 zio_prop_t *zp = &zio->io_prop;
1682 enum zio_compress compress = zp->zp_compress;
1683 blkptr_t *bp = zio->io_bp;
1684 uint64_t lsize = zio->io_lsize;
1685 uint64_t psize = zio->io_size;
1686 uint32_t pass = 1;
1687
1688 /*
1689 * If our children haven't all reached the ready stage,
1690 * wait for them and then repeat this pipeline stage.
1691 */
1692 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1693 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1694 return (NULL);
1695 }
1696
1697 if (!IO_IS_ALLOCATING(zio))
1698 return (zio);
1699
1700 if (zio->io_children_ready != NULL) {
1701 /*
1702 * Now that all our children are ready, run the callback
1703 * associated with this zio in case it wants to modify the
1704 * data to be written.
1705 */
1706 ASSERT3U(zp->zp_level, >, 0);
1707 zio->io_children_ready(zio);
1708 }
1709
1710 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1711 ASSERT(zio->io_bp_override == NULL);
1712
1713 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1714 /*
1715 * We're rewriting an existing block, which means we're
1716 * working on behalf of spa_sync(). For spa_sync() to
1717 * converge, it must eventually be the case that we don't
1718 * have to allocate new blocks. But compression changes
1719 * the blocksize, which forces a reallocate, and makes
1720 * convergence take longer. Therefore, after the first
1721 * few passes, stop compressing to ensure convergence.
1722 */
1723 pass = spa_sync_pass(spa);
1724
1725 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1726 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1727 ASSERT(!BP_GET_DEDUP(bp));
1728
1729 if (pass >= zfs_sync_pass_dont_compress)
1730 compress = ZIO_COMPRESS_OFF;
1731
1732 /* Make sure someone doesn't change their mind on overwrites */
1733 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1734 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1735 }
1736
1737 /* If it's a compressed write that is not raw, compress the buffer. */
1738 if (compress != ZIO_COMPRESS_OFF &&
1739 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1740 void *cbuf = NULL;
1741 psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize,
1742 zp->zp_complevel);
1743 if (psize == 0) {
1744 compress = ZIO_COMPRESS_OFF;
1745 } else if (psize >= lsize) {
1746 compress = ZIO_COMPRESS_OFF;
1747 if (cbuf != NULL)
1748 zio_buf_free(cbuf, lsize);
1749 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1750 psize <= BPE_PAYLOAD_SIZE &&
1751 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1752 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1753 encode_embedded_bp_compressed(bp,
1754 cbuf, compress, lsize, psize);
1755 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1756 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1757 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1758 zio_buf_free(cbuf, lsize);
1759 bp->blk_birth = zio->io_txg;
1760 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1761 ASSERT(spa_feature_is_active(spa,
1762 SPA_FEATURE_EMBEDDED_DATA));
1763 return (zio);
1764 } else {
1765 /*
1766 * Round compressed size up to the minimum allocation
1767 * size of the smallest-ashift device, and zero the
1768 * tail. This ensures that the compressed size of the
1769 * BP (and thus compressratio property) are correct,
1770 * in that we charge for the padding used to fill out
1771 * the last sector.
1772 */
1773 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1774 size_t rounded = (size_t)roundup(psize,
1775 spa->spa_min_alloc);
1776 if (rounded >= lsize) {
1777 compress = ZIO_COMPRESS_OFF;
1778 zio_buf_free(cbuf, lsize);
1779 psize = lsize;
1780 } else {
1781 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1782 abd_take_ownership_of_buf(cdata, B_TRUE);
1783 abd_zero_off(cdata, psize, rounded - psize);
1784 psize = rounded;
1785 zio_push_transform(zio, cdata,
1786 psize, lsize, NULL);
1787 }
1788 }
1789
1790 /*
1791 * We were unable to handle this as an override bp, treat
1792 * it as a regular write I/O.
1793 */
1794 zio->io_bp_override = NULL;
1795 *bp = zio->io_bp_orig;
1796 zio->io_pipeline = zio->io_orig_pipeline;
1797
1798 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1799 zp->zp_type == DMU_OT_DNODE) {
1800 /*
1801 * The DMU actually relies on the zio layer's compression
1802 * to free metadnode blocks that have had all contained
1803 * dnodes freed. As a result, even when doing a raw
1804 * receive, we must check whether the block can be compressed
1805 * to a hole.
1806 */
1807 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1808 zio->io_abd, NULL, lsize, zp->zp_complevel);
1809 if (psize == 0 || psize >= lsize)
1810 compress = ZIO_COMPRESS_OFF;
1811 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1812 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1813 /*
1814 * If we are raw receiving an encrypted dataset we should not
1815 * take this codepath because it will change the on-disk block
1816 * and decryption will fail.
1817 */
1818 size_t rounded = MIN((size_t)roundup(psize,
1819 spa->spa_min_alloc), lsize);
1820
1821 if (rounded != psize) {
1822 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1823 abd_zero_off(cdata, psize, rounded - psize);
1824 abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1825 psize = rounded;
1826 zio_push_transform(zio, cdata,
1827 psize, rounded, NULL);
1828 }
1829 } else {
1830 ASSERT3U(psize, !=, 0);
1831 }
1832
1833 /*
1834 * The final pass of spa_sync() must be all rewrites, but the first
1835 * few passes offer a trade-off: allocating blocks defers convergence,
1836 * but newly allocated blocks are sequential, so they can be written
1837 * to disk faster. Therefore, we allow the first few passes of
1838 * spa_sync() to allocate new blocks, but force rewrites after that.
1839 * There should only be a handful of blocks after pass 1 in any case.
1840 */
1841 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1842 BP_GET_PSIZE(bp) == psize &&
1843 pass >= zfs_sync_pass_rewrite) {
1844 VERIFY3U(psize, !=, 0);
1845 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1846
1847 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1848 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1849 } else {
1850 BP_ZERO(bp);
1851 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1852 }
1853
1854 if (psize == 0) {
1855 if (zio->io_bp_orig.blk_birth != 0 &&
1856 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1857 BP_SET_LSIZE(bp, lsize);
1858 BP_SET_TYPE(bp, zp->zp_type);
1859 BP_SET_LEVEL(bp, zp->zp_level);
1860 BP_SET_BIRTH(bp, zio->io_txg, 0);
1861 }
1862 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1863 } else {
1864 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1865 BP_SET_LSIZE(bp, lsize);
1866 BP_SET_TYPE(bp, zp->zp_type);
1867 BP_SET_LEVEL(bp, zp->zp_level);
1868 BP_SET_PSIZE(bp, psize);
1869 BP_SET_COMPRESS(bp, compress);
1870 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1871 BP_SET_DEDUP(bp, zp->zp_dedup);
1872 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1873 if (zp->zp_dedup) {
1874 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1875 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1876 ASSERT(!zp->zp_encrypt ||
1877 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1878 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1879 }
1880 if (zp->zp_nopwrite) {
1881 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1882 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1883 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1884 }
1885 }
1886 return (zio);
1887 }
1888
1889 static zio_t *
1890 zio_free_bp_init(zio_t *zio)
1891 {
1892 blkptr_t *bp = zio->io_bp;
1893
1894 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1895 if (BP_GET_DEDUP(bp))
1896 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1897 }
1898
1899 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1900
1901 return (zio);
1902 }
1903
1904 /*
1905 * ==========================================================================
1906 * Execute the I/O pipeline
1907 * ==========================================================================
1908 */
1909
1910 static void
1911 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1912 {
1913 spa_t *spa = zio->io_spa;
1914 zio_type_t t = zio->io_type;
1915 int flags = (cutinline ? TQ_FRONT : 0);
1916
1917 /*
1918 * If we're a config writer or a probe, the normal issue and
1919 * interrupt threads may all be blocked waiting for the config lock.
1920 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1921 */
1922 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1923 t = ZIO_TYPE_NULL;
1924
1925 /*
1926 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1927 */
1928 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1929 t = ZIO_TYPE_NULL;
1930
1931 /*
1932 * If this is a high priority I/O, then use the high priority taskq if
1933 * available.
1934 */
1935 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1936 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1937 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1938 q++;
1939
1940 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1941
1942 /*
1943 * NB: We are assuming that the zio can only be dispatched
1944 * to a single taskq at a time. It would be a grievous error
1945 * to dispatch the zio to another taskq at the same time.
1946 */
1947 ASSERT(taskq_empty_ent(&zio->io_tqent));
1948 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1949 &zio->io_tqent);
1950 }
1951
1952 static boolean_t
1953 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1954 {
1955 spa_t *spa = zio->io_spa;
1956
1957 taskq_t *tq = taskq_of_curthread();
1958
1959 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1960 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1961 uint_t i;
1962 for (i = 0; i < tqs->stqs_count; i++) {
1963 if (tqs->stqs_taskq[i] == tq)
1964 return (B_TRUE);
1965 }
1966 }
1967
1968 return (B_FALSE);
1969 }
1970
1971 static zio_t *
1972 zio_issue_async(zio_t *zio)
1973 {
1974 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1975
1976 return (NULL);
1977 }
1978
1979 void
1980 zio_interrupt(void *zio)
1981 {
1982 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1983 }
1984
1985 void
1986 zio_delay_interrupt(zio_t *zio)
1987 {
1988 /*
1989 * The timeout_generic() function isn't defined in userspace, so
1990 * rather than trying to implement the function, the zio delay
1991 * functionality has been disabled for userspace builds.
1992 */
1993
1994 #ifdef _KERNEL
1995 /*
1996 * If io_target_timestamp is zero, then no delay has been registered
1997 * for this IO, thus jump to the end of this function and "skip" the
1998 * delay; issuing it directly to the zio layer.
1999 */
2000 if (zio->io_target_timestamp != 0) {
2001 hrtime_t now = gethrtime();
2002
2003 if (now >= zio->io_target_timestamp) {
2004 /*
2005 * This IO has already taken longer than the target
2006 * delay to complete, so we don't want to delay it
2007 * any longer; we "miss" the delay and issue it
2008 * directly to the zio layer. This is likely due to
2009 * the target latency being set to a value less than
2010 * the underlying hardware can satisfy (e.g. delay
2011 * set to 1ms, but the disks take 10ms to complete an
2012 * IO request).
2013 */
2014
2015 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2016 hrtime_t, now);
2017
2018 zio_interrupt(zio);
2019 } else {
2020 taskqid_t tid;
2021 hrtime_t diff = zio->io_target_timestamp - now;
2022 clock_t expire_at_tick = ddi_get_lbolt() +
2023 NSEC_TO_TICK(diff);
2024
2025 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2026 hrtime_t, now, hrtime_t, diff);
2027
2028 if (NSEC_TO_TICK(diff) == 0) {
2029 /* Our delay is less than a jiffy - just spin */
2030 zfs_sleep_until(zio->io_target_timestamp);
2031 zio_interrupt(zio);
2032 } else {
2033 /*
2034 * Use taskq_dispatch_delay() in the place of
2035 * OpenZFS's timeout_generic().
2036 */
2037 tid = taskq_dispatch_delay(system_taskq,
2038 zio_interrupt, zio, TQ_NOSLEEP,
2039 expire_at_tick);
2040 if (tid == TASKQID_INVALID) {
2041 /*
2042 * Couldn't allocate a task. Just
2043 * finish the zio without a delay.
2044 */
2045 zio_interrupt(zio);
2046 }
2047 }
2048 }
2049 return;
2050 }
2051 #endif
2052 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2053 zio_interrupt(zio);
2054 }
2055
2056 static void
2057 zio_deadman_impl(zio_t *pio, int ziodepth)
2058 {
2059 zio_t *cio, *cio_next;
2060 zio_link_t *zl = NULL;
2061 vdev_t *vd = pio->io_vd;
2062
2063 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2064 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2065 zbookmark_phys_t *zb = &pio->io_bookmark;
2066 uint64_t delta = gethrtime() - pio->io_timestamp;
2067 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2068
2069 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2070 "delta=%llu queued=%llu io=%llu "
2071 "path=%s "
2072 "last=%llu type=%d "
2073 "priority=%d flags=0x%llx stage=0x%x "
2074 "pipeline=0x%x pipeline-trace=0x%x "
2075 "objset=%llu object=%llu "
2076 "level=%llu blkid=%llu "
2077 "offset=%llu size=%llu "
2078 "error=%d",
2079 ziodepth, pio, pio->io_timestamp,
2080 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2081 vd ? vd->vdev_path : "NULL",
2082 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2083 pio->io_priority, (u_longlong_t)pio->io_flags,
2084 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2085 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2086 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2087 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2088 pio->io_error);
2089 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2090 pio->io_spa, vd, zb, pio, 0);
2091
2092 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2093 taskq_empty_ent(&pio->io_tqent)) {
2094 zio_interrupt(pio);
2095 }
2096 }
2097
2098 mutex_enter(&pio->io_lock);
2099 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2100 cio_next = zio_walk_children(pio, &zl);
2101 zio_deadman_impl(cio, ziodepth + 1);
2102 }
2103 mutex_exit(&pio->io_lock);
2104 }
2105
2106 /*
2107 * Log the critical information describing this zio and all of its children
2108 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2109 */
2110 void
2111 zio_deadman(zio_t *pio, const char *tag)
2112 {
2113 spa_t *spa = pio->io_spa;
2114 char *name = spa_name(spa);
2115
2116 if (!zfs_deadman_enabled || spa_suspended(spa))
2117 return;
2118
2119 zio_deadman_impl(pio, 0);
2120
2121 switch (spa_get_deadman_failmode(spa)) {
2122 case ZIO_FAILURE_MODE_WAIT:
2123 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2124 break;
2125
2126 case ZIO_FAILURE_MODE_CONTINUE:
2127 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2128 break;
2129
2130 case ZIO_FAILURE_MODE_PANIC:
2131 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2132 break;
2133 }
2134 }
2135
2136 /*
2137 * Execute the I/O pipeline until one of the following occurs:
2138 * (1) the I/O completes; (2) the pipeline stalls waiting for
2139 * dependent child I/Os; (3) the I/O issues, so we're waiting
2140 * for an I/O completion interrupt; (4) the I/O is delegated by
2141 * vdev-level caching or aggregation; (5) the I/O is deferred
2142 * due to vdev-level queueing; (6) the I/O is handed off to
2143 * another thread. In all cases, the pipeline stops whenever
2144 * there's no CPU work; it never burns a thread in cv_wait_io().
2145 *
2146 * There's no locking on io_stage because there's no legitimate way
2147 * for multiple threads to be attempting to process the same I/O.
2148 */
2149 static zio_pipe_stage_t *zio_pipeline[];
2150
2151 /*
2152 * zio_execute() is a wrapper around the static function
2153 * __zio_execute() so that we can force __zio_execute() to be
2154 * inlined. This reduces stack overhead which is important
2155 * because __zio_execute() is called recursively in several zio
2156 * code paths. zio_execute() itself cannot be inlined because
2157 * it is externally visible.
2158 */
2159 void
2160 zio_execute(void *zio)
2161 {
2162 fstrans_cookie_t cookie;
2163
2164 cookie = spl_fstrans_mark();
2165 __zio_execute(zio);
2166 spl_fstrans_unmark(cookie);
2167 }
2168
2169 /*
2170 * Used to determine if in the current context the stack is sized large
2171 * enough to allow zio_execute() to be called recursively. A minimum
2172 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2173 */
2174 static boolean_t
2175 zio_execute_stack_check(zio_t *zio)
2176 {
2177 #if !defined(HAVE_LARGE_STACKS)
2178 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2179
2180 /* Executing in txg_sync_thread() context. */
2181 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2182 return (B_TRUE);
2183
2184 /* Pool initialization outside of zio_taskq context. */
2185 if (dp && spa_is_initializing(dp->dp_spa) &&
2186 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2187 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2188 return (B_TRUE);
2189 #else
2190 (void) zio;
2191 #endif /* HAVE_LARGE_STACKS */
2192
2193 return (B_FALSE);
2194 }
2195
2196 __attribute__((always_inline))
2197 static inline void
2198 __zio_execute(zio_t *zio)
2199 {
2200 ASSERT3U(zio->io_queued_timestamp, >, 0);
2201
2202 while (zio->io_stage < ZIO_STAGE_DONE) {
2203 enum zio_stage pipeline = zio->io_pipeline;
2204 enum zio_stage stage = zio->io_stage;
2205
2206 zio->io_executor = curthread;
2207
2208 ASSERT(!MUTEX_HELD(&zio->io_lock));
2209 ASSERT(ISP2(stage));
2210 ASSERT(zio->io_stall == NULL);
2211
2212 do {
2213 stage <<= 1;
2214 } while ((stage & pipeline) == 0);
2215
2216 ASSERT(stage <= ZIO_STAGE_DONE);
2217
2218 /*
2219 * If we are in interrupt context and this pipeline stage
2220 * will grab a config lock that is held across I/O,
2221 * or may wait for an I/O that needs an interrupt thread
2222 * to complete, issue async to avoid deadlock.
2223 *
2224 * For VDEV_IO_START, we cut in line so that the io will
2225 * be sent to disk promptly.
2226 */
2227 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2228 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2229 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2230 zio_requeue_io_start_cut_in_line : B_FALSE;
2231 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2232 return;
2233 }
2234
2235 /*
2236 * If the current context doesn't have large enough stacks
2237 * the zio must be issued asynchronously to prevent overflow.
2238 */
2239 if (zio_execute_stack_check(zio)) {
2240 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2241 zio_requeue_io_start_cut_in_line : B_FALSE;
2242 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2243 return;
2244 }
2245
2246 zio->io_stage = stage;
2247 zio->io_pipeline_trace |= zio->io_stage;
2248
2249 /*
2250 * The zio pipeline stage returns the next zio to execute
2251 * (typically the same as this one), or NULL if we should
2252 * stop.
2253 */
2254 zio = zio_pipeline[highbit64(stage) - 1](zio);
2255
2256 if (zio == NULL)
2257 return;
2258 }
2259 }
2260
2261
2262 /*
2263 * ==========================================================================
2264 * Initiate I/O, either sync or async
2265 * ==========================================================================
2266 */
2267 int
2268 zio_wait(zio_t *zio)
2269 {
2270 /*
2271 * Some routines, like zio_free_sync(), may return a NULL zio
2272 * to avoid the performance overhead of creating and then destroying
2273 * an unneeded zio. For the callers' simplicity, we accept a NULL
2274 * zio and ignore it.
2275 */
2276 if (zio == NULL)
2277 return (0);
2278
2279 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2280 int error;
2281
2282 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2283 ASSERT3P(zio->io_executor, ==, NULL);
2284
2285 zio->io_waiter = curthread;
2286 ASSERT0(zio->io_queued_timestamp);
2287 zio->io_queued_timestamp = gethrtime();
2288
2289 __zio_execute(zio);
2290
2291 mutex_enter(&zio->io_lock);
2292 while (zio->io_executor != NULL) {
2293 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2294 ddi_get_lbolt() + timeout);
2295
2296 if (zfs_deadman_enabled && error == -1 &&
2297 gethrtime() - zio->io_queued_timestamp >
2298 spa_deadman_ziotime(zio->io_spa)) {
2299 mutex_exit(&zio->io_lock);
2300 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2301 zio_deadman(zio, FTAG);
2302 mutex_enter(&zio->io_lock);
2303 }
2304 }
2305 mutex_exit(&zio->io_lock);
2306
2307 error = zio->io_error;
2308 zio_destroy(zio);
2309
2310 return (error);
2311 }
2312
2313 void
2314 zio_nowait(zio_t *zio)
2315 {
2316 /*
2317 * See comment in zio_wait().
2318 */
2319 if (zio == NULL)
2320 return;
2321
2322 ASSERT3P(zio->io_executor, ==, NULL);
2323
2324 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2325 list_is_empty(&zio->io_parent_list)) {
2326 zio_t *pio;
2327
2328 /*
2329 * This is a logical async I/O with no parent to wait for it.
2330 * We add it to the spa_async_root_zio "Godfather" I/O which
2331 * will ensure they complete prior to unloading the pool.
2332 */
2333 spa_t *spa = zio->io_spa;
2334 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2335
2336 zio_add_child(pio, zio);
2337 }
2338
2339 ASSERT0(zio->io_queued_timestamp);
2340 zio->io_queued_timestamp = gethrtime();
2341 __zio_execute(zio);
2342 }
2343
2344 /*
2345 * ==========================================================================
2346 * Reexecute, cancel, or suspend/resume failed I/O
2347 * ==========================================================================
2348 */
2349
2350 static void
2351 zio_reexecute(void *arg)
2352 {
2353 zio_t *pio = arg;
2354 zio_t *cio, *cio_next;
2355
2356 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2357 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2358 ASSERT(pio->io_gang_leader == NULL);
2359 ASSERT(pio->io_gang_tree == NULL);
2360
2361 pio->io_flags = pio->io_orig_flags;
2362 pio->io_stage = pio->io_orig_stage;
2363 pio->io_pipeline = pio->io_orig_pipeline;
2364 pio->io_reexecute = 0;
2365 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2366 pio->io_pipeline_trace = 0;
2367 pio->io_error = 0;
2368 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2369 pio->io_state[w] = 0;
2370 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2371 pio->io_child_error[c] = 0;
2372
2373 if (IO_IS_ALLOCATING(pio))
2374 BP_ZERO(pio->io_bp);
2375
2376 /*
2377 * As we reexecute pio's children, new children could be created.
2378 * New children go to the head of pio's io_child_list, however,
2379 * so we will (correctly) not reexecute them. The key is that
2380 * the remainder of pio's io_child_list, from 'cio_next' onward,
2381 * cannot be affected by any side effects of reexecuting 'cio'.
2382 */
2383 zio_link_t *zl = NULL;
2384 mutex_enter(&pio->io_lock);
2385 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2386 cio_next = zio_walk_children(pio, &zl);
2387 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2388 pio->io_children[cio->io_child_type][w]++;
2389 mutex_exit(&pio->io_lock);
2390 zio_reexecute(cio);
2391 mutex_enter(&pio->io_lock);
2392 }
2393 mutex_exit(&pio->io_lock);
2394
2395 /*
2396 * Now that all children have been reexecuted, execute the parent.
2397 * We don't reexecute "The Godfather" I/O here as it's the
2398 * responsibility of the caller to wait on it.
2399 */
2400 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2401 pio->io_queued_timestamp = gethrtime();
2402 __zio_execute(pio);
2403 }
2404 }
2405
2406 void
2407 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2408 {
2409 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2410 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2411 "failure and the failure mode property for this pool "
2412 "is set to panic.", spa_name(spa));
2413
2414 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2415 "failure and has been suspended.\n", spa_name(spa));
2416
2417 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2418 NULL, NULL, 0);
2419
2420 mutex_enter(&spa->spa_suspend_lock);
2421
2422 if (spa->spa_suspend_zio_root == NULL)
2423 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2424 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2425 ZIO_FLAG_GODFATHER);
2426
2427 spa->spa_suspended = reason;
2428
2429 if (zio != NULL) {
2430 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2431 ASSERT(zio != spa->spa_suspend_zio_root);
2432 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2433 ASSERT(zio_unique_parent(zio) == NULL);
2434 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2435 zio_add_child(spa->spa_suspend_zio_root, zio);
2436 }
2437
2438 mutex_exit(&spa->spa_suspend_lock);
2439 }
2440
2441 int
2442 zio_resume(spa_t *spa)
2443 {
2444 zio_t *pio;
2445
2446 /*
2447 * Reexecute all previously suspended i/o.
2448 */
2449 mutex_enter(&spa->spa_suspend_lock);
2450 spa->spa_suspended = ZIO_SUSPEND_NONE;
2451 cv_broadcast(&spa->spa_suspend_cv);
2452 pio = spa->spa_suspend_zio_root;
2453 spa->spa_suspend_zio_root = NULL;
2454 mutex_exit(&spa->spa_suspend_lock);
2455
2456 if (pio == NULL)
2457 return (0);
2458
2459 zio_reexecute(pio);
2460 return (zio_wait(pio));
2461 }
2462
2463 void
2464 zio_resume_wait(spa_t *spa)
2465 {
2466 mutex_enter(&spa->spa_suspend_lock);
2467 while (spa_suspended(spa))
2468 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2469 mutex_exit(&spa->spa_suspend_lock);
2470 }
2471
2472 /*
2473 * ==========================================================================
2474 * Gang blocks.
2475 *
2476 * A gang block is a collection of small blocks that looks to the DMU
2477 * like one large block. When zio_dva_allocate() cannot find a block
2478 * of the requested size, due to either severe fragmentation or the pool
2479 * being nearly full, it calls zio_write_gang_block() to construct the
2480 * block from smaller fragments.
2481 *
2482 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2483 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2484 * an indirect block: it's an array of block pointers. It consumes
2485 * only one sector and hence is allocatable regardless of fragmentation.
2486 * The gang header's bps point to its gang members, which hold the data.
2487 *
2488 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2489 * as the verifier to ensure uniqueness of the SHA256 checksum.
2490 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2491 * not the gang header. This ensures that data block signatures (needed for
2492 * deduplication) are independent of how the block is physically stored.
2493 *
2494 * Gang blocks can be nested: a gang member may itself be a gang block.
2495 * Thus every gang block is a tree in which root and all interior nodes are
2496 * gang headers, and the leaves are normal blocks that contain user data.
2497 * The root of the gang tree is called the gang leader.
2498 *
2499 * To perform any operation (read, rewrite, free, claim) on a gang block,
2500 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2501 * in the io_gang_tree field of the original logical i/o by recursively
2502 * reading the gang leader and all gang headers below it. This yields
2503 * an in-core tree containing the contents of every gang header and the
2504 * bps for every constituent of the gang block.
2505 *
2506 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2507 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2508 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2509 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2510 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2511 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2512 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2513 * of the gang header plus zio_checksum_compute() of the data to update the
2514 * gang header's blk_cksum as described above.
2515 *
2516 * The two-phase assemble/issue model solves the problem of partial failure --
2517 * what if you'd freed part of a gang block but then couldn't read the
2518 * gang header for another part? Assembling the entire gang tree first
2519 * ensures that all the necessary gang header I/O has succeeded before
2520 * starting the actual work of free, claim, or write. Once the gang tree
2521 * is assembled, free and claim are in-memory operations that cannot fail.
2522 *
2523 * In the event that a gang write fails, zio_dva_unallocate() walks the
2524 * gang tree to immediately free (i.e. insert back into the space map)
2525 * everything we've allocated. This ensures that we don't get ENOSPC
2526 * errors during repeated suspend/resume cycles due to a flaky device.
2527 *
2528 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2529 * the gang tree, we won't modify the block, so we can safely defer the free
2530 * (knowing that the block is still intact). If we *can* assemble the gang
2531 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2532 * each constituent bp and we can allocate a new block on the next sync pass.
2533 *
2534 * In all cases, the gang tree allows complete recovery from partial failure.
2535 * ==========================================================================
2536 */
2537
2538 static void
2539 zio_gang_issue_func_done(zio_t *zio)
2540 {
2541 abd_free(zio->io_abd);
2542 }
2543
2544 static zio_t *
2545 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2546 uint64_t offset)
2547 {
2548 if (gn != NULL)
2549 return (pio);
2550
2551 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2552 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2553 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2554 &pio->io_bookmark));
2555 }
2556
2557 static zio_t *
2558 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2559 uint64_t offset)
2560 {
2561 zio_t *zio;
2562
2563 if (gn != NULL) {
2564 abd_t *gbh_abd =
2565 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2566 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2567 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2568 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2569 &pio->io_bookmark);
2570 /*
2571 * As we rewrite each gang header, the pipeline will compute
2572 * a new gang block header checksum for it; but no one will
2573 * compute a new data checksum, so we do that here. The one
2574 * exception is the gang leader: the pipeline already computed
2575 * its data checksum because that stage precedes gang assembly.
2576 * (Presently, nothing actually uses interior data checksums;
2577 * this is just good hygiene.)
2578 */
2579 if (gn != pio->io_gang_leader->io_gang_tree) {
2580 abd_t *buf = abd_get_offset(data, offset);
2581
2582 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2583 buf, BP_GET_PSIZE(bp));
2584
2585 abd_free(buf);
2586 }
2587 /*
2588 * If we are here to damage data for testing purposes,
2589 * leave the GBH alone so that we can detect the damage.
2590 */
2591 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2592 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2593 } else {
2594 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2595 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2596 zio_gang_issue_func_done, NULL, pio->io_priority,
2597 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2598 }
2599
2600 return (zio);
2601 }
2602
2603 static zio_t *
2604 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2605 uint64_t offset)
2606 {
2607 (void) gn, (void) data, (void) offset;
2608
2609 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2610 ZIO_GANG_CHILD_FLAGS(pio));
2611 if (zio == NULL) {
2612 zio = zio_null(pio, pio->io_spa,
2613 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2614 }
2615 return (zio);
2616 }
2617
2618 static zio_t *
2619 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2620 uint64_t offset)
2621 {
2622 (void) gn, (void) data, (void) offset;
2623 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2624 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2625 }
2626
2627 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2628 NULL,
2629 zio_read_gang,
2630 zio_rewrite_gang,
2631 zio_free_gang,
2632 zio_claim_gang,
2633 NULL
2634 };
2635
2636 static void zio_gang_tree_assemble_done(zio_t *zio);
2637
2638 static zio_gang_node_t *
2639 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2640 {
2641 zio_gang_node_t *gn;
2642
2643 ASSERT(*gnpp == NULL);
2644
2645 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2646 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2647 *gnpp = gn;
2648
2649 return (gn);
2650 }
2651
2652 static void
2653 zio_gang_node_free(zio_gang_node_t **gnpp)
2654 {
2655 zio_gang_node_t *gn = *gnpp;
2656
2657 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2658 ASSERT(gn->gn_child[g] == NULL);
2659
2660 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2661 kmem_free(gn, sizeof (*gn));
2662 *gnpp = NULL;
2663 }
2664
2665 static void
2666 zio_gang_tree_free(zio_gang_node_t **gnpp)
2667 {
2668 zio_gang_node_t *gn = *gnpp;
2669
2670 if (gn == NULL)
2671 return;
2672
2673 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2674 zio_gang_tree_free(&gn->gn_child[g]);
2675
2676 zio_gang_node_free(gnpp);
2677 }
2678
2679 static void
2680 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2681 {
2682 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2683 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2684
2685 ASSERT(gio->io_gang_leader == gio);
2686 ASSERT(BP_IS_GANG(bp));
2687
2688 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2689 zio_gang_tree_assemble_done, gn, gio->io_priority,
2690 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2691 }
2692
2693 static void
2694 zio_gang_tree_assemble_done(zio_t *zio)
2695 {
2696 zio_t *gio = zio->io_gang_leader;
2697 zio_gang_node_t *gn = zio->io_private;
2698 blkptr_t *bp = zio->io_bp;
2699
2700 ASSERT(gio == zio_unique_parent(zio));
2701 ASSERT(list_is_empty(&zio->io_child_list));
2702
2703 if (zio->io_error)
2704 return;
2705
2706 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2707 if (BP_SHOULD_BYTESWAP(bp))
2708 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2709
2710 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2711 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2712 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2713
2714 abd_free(zio->io_abd);
2715
2716 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2717 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2718 if (!BP_IS_GANG(gbp))
2719 continue;
2720 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2721 }
2722 }
2723
2724 static void
2725 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2726 uint64_t offset)
2727 {
2728 zio_t *gio = pio->io_gang_leader;
2729 zio_t *zio;
2730
2731 ASSERT(BP_IS_GANG(bp) == !!gn);
2732 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2733 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2734
2735 /*
2736 * If you're a gang header, your data is in gn->gn_gbh.
2737 * If you're a gang member, your data is in 'data' and gn == NULL.
2738 */
2739 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2740
2741 if (gn != NULL) {
2742 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2743
2744 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2745 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2746 if (BP_IS_HOLE(gbp))
2747 continue;
2748 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2749 offset);
2750 offset += BP_GET_PSIZE(gbp);
2751 }
2752 }
2753
2754 if (gn == gio->io_gang_tree)
2755 ASSERT3U(gio->io_size, ==, offset);
2756
2757 if (zio != pio)
2758 zio_nowait(zio);
2759 }
2760
2761 static zio_t *
2762 zio_gang_assemble(zio_t *zio)
2763 {
2764 blkptr_t *bp = zio->io_bp;
2765
2766 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2767 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2768
2769 zio->io_gang_leader = zio;
2770
2771 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2772
2773 return (zio);
2774 }
2775
2776 static zio_t *
2777 zio_gang_issue(zio_t *zio)
2778 {
2779 blkptr_t *bp = zio->io_bp;
2780
2781 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2782 return (NULL);
2783 }
2784
2785 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2786 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2787
2788 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2789 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2790 0);
2791 else
2792 zio_gang_tree_free(&zio->io_gang_tree);
2793
2794 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2795
2796 return (zio);
2797 }
2798
2799 static void
2800 zio_write_gang_member_ready(zio_t *zio)
2801 {
2802 zio_t *pio = zio_unique_parent(zio);
2803 dva_t *cdva = zio->io_bp->blk_dva;
2804 dva_t *pdva = pio->io_bp->blk_dva;
2805 uint64_t asize;
2806 zio_t *gio __maybe_unused = zio->io_gang_leader;
2807
2808 if (BP_IS_HOLE(zio->io_bp))
2809 return;
2810
2811 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2812
2813 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2814 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2815 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2816 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2817 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2818
2819 mutex_enter(&pio->io_lock);
2820 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2821 ASSERT(DVA_GET_GANG(&pdva[d]));
2822 asize = DVA_GET_ASIZE(&pdva[d]);
2823 asize += DVA_GET_ASIZE(&cdva[d]);
2824 DVA_SET_ASIZE(&pdva[d], asize);
2825 }
2826 mutex_exit(&pio->io_lock);
2827 }
2828
2829 static void
2830 zio_write_gang_done(zio_t *zio)
2831 {
2832 /*
2833 * The io_abd field will be NULL for a zio with no data. The io_flags
2834 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2835 * check for it here as it is cleared in zio_ready.
2836 */
2837 if (zio->io_abd != NULL)
2838 abd_free(zio->io_abd);
2839 }
2840
2841 static zio_t *
2842 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2843 {
2844 spa_t *spa = pio->io_spa;
2845 blkptr_t *bp = pio->io_bp;
2846 zio_t *gio = pio->io_gang_leader;
2847 zio_t *zio;
2848 zio_gang_node_t *gn, **gnpp;
2849 zio_gbh_phys_t *gbh;
2850 abd_t *gbh_abd;
2851 uint64_t txg = pio->io_txg;
2852 uint64_t resid = pio->io_size;
2853 uint64_t lsize;
2854 int copies = gio->io_prop.zp_copies;
2855 zio_prop_t zp;
2856 int error;
2857 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2858
2859 /*
2860 * If one copy was requested, store 2 copies of the GBH, so that we
2861 * can still traverse all the data (e.g. to free or scrub) even if a
2862 * block is damaged. Note that we can't store 3 copies of the GBH in
2863 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2864 */
2865 int gbh_copies = copies;
2866 if (gbh_copies == 1) {
2867 gbh_copies = MIN(2, spa_max_replication(spa));
2868 }
2869
2870 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2871 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2872 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2873 ASSERT(has_data);
2874
2875 flags |= METASLAB_ASYNC_ALLOC;
2876 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2877 mca_alloc_slots, pio));
2878
2879 /*
2880 * The logical zio has already placed a reservation for
2881 * 'copies' allocation slots but gang blocks may require
2882 * additional copies. These additional copies
2883 * (i.e. gbh_copies - copies) are guaranteed to succeed
2884 * since metaslab_class_throttle_reserve() always allows
2885 * additional reservations for gang blocks.
2886 */
2887 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2888 pio->io_allocator, pio, flags));
2889 }
2890
2891 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2892 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2893 &pio->io_alloc_list, pio, pio->io_allocator);
2894 if (error) {
2895 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2896 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2897 ASSERT(has_data);
2898
2899 /*
2900 * If we failed to allocate the gang block header then
2901 * we remove any additional allocation reservations that
2902 * we placed here. The original reservation will
2903 * be removed when the logical I/O goes to the ready
2904 * stage.
2905 */
2906 metaslab_class_throttle_unreserve(mc,
2907 gbh_copies - copies, pio->io_allocator, pio);
2908 }
2909
2910 pio->io_error = error;
2911 return (pio);
2912 }
2913
2914 if (pio == gio) {
2915 gnpp = &gio->io_gang_tree;
2916 } else {
2917 gnpp = pio->io_private;
2918 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2919 }
2920
2921 gn = zio_gang_node_alloc(gnpp);
2922 gbh = gn->gn_gbh;
2923 memset(gbh, 0, SPA_GANGBLOCKSIZE);
2924 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2925
2926 /*
2927 * Create the gang header.
2928 */
2929 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2930 zio_write_gang_done, NULL, pio->io_priority,
2931 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2932
2933 /*
2934 * Create and nowait the gang children.
2935 */
2936 for (int g = 0; resid != 0; resid -= lsize, g++) {
2937 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2938 SPA_MINBLOCKSIZE);
2939 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2940
2941 zp.zp_checksum = gio->io_prop.zp_checksum;
2942 zp.zp_compress = ZIO_COMPRESS_OFF;
2943 zp.zp_complevel = gio->io_prop.zp_complevel;
2944 zp.zp_type = DMU_OT_NONE;
2945 zp.zp_level = 0;
2946 zp.zp_copies = gio->io_prop.zp_copies;
2947 zp.zp_dedup = B_FALSE;
2948 zp.zp_dedup_verify = B_FALSE;
2949 zp.zp_nopwrite = B_FALSE;
2950 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2951 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2952 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2953 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2954 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2955
2956 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2957 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2958 resid) : NULL, lsize, lsize, &zp,
2959 zio_write_gang_member_ready, NULL,
2960 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2961 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2962
2963 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2964 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2965 ASSERT(has_data);
2966
2967 /*
2968 * Gang children won't throttle but we should
2969 * account for their work, so reserve an allocation
2970 * slot for them here.
2971 */
2972 VERIFY(metaslab_class_throttle_reserve(mc,
2973 zp.zp_copies, cio->io_allocator, cio, flags));
2974 }
2975 zio_nowait(cio);
2976 }
2977
2978 /*
2979 * Set pio's pipeline to just wait for zio to finish.
2980 */
2981 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2982
2983 /*
2984 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2985 */
2986 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2987
2988 zio_nowait(zio);
2989
2990 return (pio);
2991 }
2992
2993 /*
2994 * The zio_nop_write stage in the pipeline determines if allocating a
2995 * new bp is necessary. The nopwrite feature can handle writes in
2996 * either syncing or open context (i.e. zil writes) and as a result is
2997 * mutually exclusive with dedup.
2998 *
2999 * By leveraging a cryptographically secure checksum, such as SHA256, we
3000 * can compare the checksums of the new data and the old to determine if
3001 * allocating a new block is required. Note that our requirements for
3002 * cryptographic strength are fairly weak: there can't be any accidental
3003 * hash collisions, but we don't need to be secure against intentional
3004 * (malicious) collisions. To trigger a nopwrite, you have to be able
3005 * to write the file to begin with, and triggering an incorrect (hash
3006 * collision) nopwrite is no worse than simply writing to the file.
3007 * That said, there are no known attacks against the checksum algorithms
3008 * used for nopwrite, assuming that the salt and the checksums
3009 * themselves remain secret.
3010 */
3011 static zio_t *
3012 zio_nop_write(zio_t *zio)
3013 {
3014 blkptr_t *bp = zio->io_bp;
3015 blkptr_t *bp_orig = &zio->io_bp_orig;
3016 zio_prop_t *zp = &zio->io_prop;
3017
3018 ASSERT(BP_IS_HOLE(bp));
3019 ASSERT(BP_GET_LEVEL(bp) == 0);
3020 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3021 ASSERT(zp->zp_nopwrite);
3022 ASSERT(!zp->zp_dedup);
3023 ASSERT(zio->io_bp_override == NULL);
3024 ASSERT(IO_IS_ALLOCATING(zio));
3025
3026 /*
3027 * Check to see if the original bp and the new bp have matching
3028 * characteristics (i.e. same checksum, compression algorithms, etc).
3029 * If they don't then just continue with the pipeline which will
3030 * allocate a new bp.
3031 */
3032 if (BP_IS_HOLE(bp_orig) ||
3033 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3034 ZCHECKSUM_FLAG_NOPWRITE) ||
3035 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3036 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3037 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3038 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3039 zp->zp_copies != BP_GET_NDVAS(bp_orig))
3040 return (zio);
3041
3042 /*
3043 * If the checksums match then reset the pipeline so that we
3044 * avoid allocating a new bp and issuing any I/O.
3045 */
3046 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3047 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3048 ZCHECKSUM_FLAG_NOPWRITE);
3049 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3050 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3051 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3052 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3053
3054 /*
3055 * If we're overwriting a block that is currently on an
3056 * indirect vdev, then ignore the nopwrite request and
3057 * allow a new block to be allocated on a concrete vdev.
3058 */
3059 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3060 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3061 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3062 DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3063 if (tvd->vdev_ops == &vdev_indirect_ops) {
3064 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3065 return (zio);
3066 }
3067 }
3068 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3069
3070 *bp = *bp_orig;
3071 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3072 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3073 }
3074
3075 return (zio);
3076 }
3077
3078 /*
3079 * ==========================================================================
3080 * Block Reference Table
3081 * ==========================================================================
3082 */
3083 static zio_t *
3084 zio_brt_free(zio_t *zio)
3085 {
3086 blkptr_t *bp;
3087
3088 bp = zio->io_bp;
3089
3090 if (BP_GET_LEVEL(bp) > 0 ||
3091 BP_IS_METADATA(bp) ||
3092 !brt_maybe_exists(zio->io_spa, bp)) {
3093 return (zio);
3094 }
3095
3096 if (!brt_entry_decref(zio->io_spa, bp)) {
3097 /*
3098 * This isn't the last reference, so we cannot free
3099 * the data yet.
3100 */
3101 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3102 }
3103
3104 return (zio);
3105 }
3106
3107 /*
3108 * ==========================================================================
3109 * Dedup
3110 * ==========================================================================
3111 */
3112 static void
3113 zio_ddt_child_read_done(zio_t *zio)
3114 {
3115 blkptr_t *bp = zio->io_bp;
3116 ddt_entry_t *dde = zio->io_private;
3117 ddt_phys_t *ddp;
3118 zio_t *pio = zio_unique_parent(zio);
3119
3120 mutex_enter(&pio->io_lock);
3121 ddp = ddt_phys_select(dde, bp);
3122 if (zio->io_error == 0)
3123 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3124
3125 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3126 dde->dde_repair_abd = zio->io_abd;
3127 else
3128 abd_free(zio->io_abd);
3129 mutex_exit(&pio->io_lock);
3130 }
3131
3132 static zio_t *
3133 zio_ddt_read_start(zio_t *zio)
3134 {
3135 blkptr_t *bp = zio->io_bp;
3136
3137 ASSERT(BP_GET_DEDUP(bp));
3138 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3139 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3140
3141 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3142 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3143 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3144 ddt_phys_t *ddp = dde->dde_phys;
3145 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3146 blkptr_t blk;
3147
3148 ASSERT(zio->io_vsd == NULL);
3149 zio->io_vsd = dde;
3150
3151 if (ddp_self == NULL)
3152 return (zio);
3153
3154 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3155 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3156 continue;
3157 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3158 &blk);
3159 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3160 abd_alloc_for_io(zio->io_size, B_TRUE),
3161 zio->io_size, zio_ddt_child_read_done, dde,
3162 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3163 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3164 }
3165 return (zio);
3166 }
3167
3168 zio_nowait(zio_read(zio, zio->io_spa, bp,
3169 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3170 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3171
3172 return (zio);
3173 }
3174
3175 static zio_t *
3176 zio_ddt_read_done(zio_t *zio)
3177 {
3178 blkptr_t *bp = zio->io_bp;
3179
3180 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3181 return (NULL);
3182 }
3183
3184 ASSERT(BP_GET_DEDUP(bp));
3185 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3186 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3187
3188 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3189 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3190 ddt_entry_t *dde = zio->io_vsd;
3191 if (ddt == NULL) {
3192 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3193 return (zio);
3194 }
3195 if (dde == NULL) {
3196 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3197 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3198 return (NULL);
3199 }
3200 if (dde->dde_repair_abd != NULL) {
3201 abd_copy(zio->io_abd, dde->dde_repair_abd,
3202 zio->io_size);
3203 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3204 }
3205 ddt_repair_done(ddt, dde);
3206 zio->io_vsd = NULL;
3207 }
3208
3209 ASSERT(zio->io_vsd == NULL);
3210
3211 return (zio);
3212 }
3213
3214 static boolean_t
3215 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3216 {
3217 spa_t *spa = zio->io_spa;
3218 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3219
3220 ASSERT(!(zio->io_bp_override && do_raw));
3221
3222 /*
3223 * Note: we compare the original data, not the transformed data,
3224 * because when zio->io_bp is an override bp, we will not have
3225 * pushed the I/O transforms. That's an important optimization
3226 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3227 * However, we should never get a raw, override zio so in these
3228 * cases we can compare the io_abd directly. This is useful because
3229 * it allows us to do dedup verification even if we don't have access
3230 * to the original data (for instance, if the encryption keys aren't
3231 * loaded).
3232 */
3233
3234 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3235 zio_t *lio = dde->dde_lead_zio[p];
3236
3237 if (lio != NULL && do_raw) {
3238 return (lio->io_size != zio->io_size ||
3239 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3240 } else if (lio != NULL) {
3241 return (lio->io_orig_size != zio->io_orig_size ||
3242 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3243 }
3244 }
3245
3246 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3247 ddt_phys_t *ddp = &dde->dde_phys[p];
3248
3249 if (ddp->ddp_phys_birth != 0 && do_raw) {
3250 blkptr_t blk = *zio->io_bp;
3251 uint64_t psize;
3252 abd_t *tmpabd;
3253 int error;
3254
3255 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3256 psize = BP_GET_PSIZE(&blk);
3257
3258 if (psize != zio->io_size)
3259 return (B_TRUE);
3260
3261 ddt_exit(ddt);
3262
3263 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3264
3265 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3266 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3267 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3268 ZIO_FLAG_RAW, &zio->io_bookmark));
3269
3270 if (error == 0) {
3271 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3272 error = SET_ERROR(ENOENT);
3273 }
3274
3275 abd_free(tmpabd);
3276 ddt_enter(ddt);
3277 return (error != 0);
3278 } else if (ddp->ddp_phys_birth != 0) {
3279 arc_buf_t *abuf = NULL;
3280 arc_flags_t aflags = ARC_FLAG_WAIT;
3281 blkptr_t blk = *zio->io_bp;
3282 int error;
3283
3284 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3285
3286 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3287 return (B_TRUE);
3288
3289 ddt_exit(ddt);
3290
3291 error = arc_read(NULL, spa, &blk,
3292 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3293 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3294 &aflags, &zio->io_bookmark);
3295
3296 if (error == 0) {
3297 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3298 zio->io_orig_size) != 0)
3299 error = SET_ERROR(ENOENT);
3300 arc_buf_destroy(abuf, &abuf);
3301 }
3302
3303 ddt_enter(ddt);
3304 return (error != 0);
3305 }
3306 }
3307
3308 return (B_FALSE);
3309 }
3310
3311 static void
3312 zio_ddt_child_write_ready(zio_t *zio)
3313 {
3314 int p = zio->io_prop.zp_copies;
3315 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3316 ddt_entry_t *dde = zio->io_private;
3317 ddt_phys_t *ddp = &dde->dde_phys[p];
3318 zio_t *pio;
3319
3320 if (zio->io_error)
3321 return;
3322
3323 ddt_enter(ddt);
3324
3325 ASSERT(dde->dde_lead_zio[p] == zio);
3326
3327 ddt_phys_fill(ddp, zio->io_bp);
3328
3329 zio_link_t *zl = NULL;
3330 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3331 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3332
3333 ddt_exit(ddt);
3334 }
3335
3336 static void
3337 zio_ddt_child_write_done(zio_t *zio)
3338 {
3339 int p = zio->io_prop.zp_copies;
3340 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3341 ddt_entry_t *dde = zio->io_private;
3342 ddt_phys_t *ddp = &dde->dde_phys[p];
3343
3344 ddt_enter(ddt);
3345
3346 ASSERT(ddp->ddp_refcnt == 0);
3347 ASSERT(dde->dde_lead_zio[p] == zio);
3348 dde->dde_lead_zio[p] = NULL;
3349
3350 if (zio->io_error == 0) {
3351 zio_link_t *zl = NULL;
3352 while (zio_walk_parents(zio, &zl) != NULL)
3353 ddt_phys_addref(ddp);
3354 } else {
3355 ddt_phys_clear(ddp);
3356 }
3357
3358 ddt_exit(ddt);
3359 }
3360
3361 static zio_t *
3362 zio_ddt_write(zio_t *zio)
3363 {
3364 spa_t *spa = zio->io_spa;
3365 blkptr_t *bp = zio->io_bp;
3366 uint64_t txg = zio->io_txg;
3367 zio_prop_t *zp = &zio->io_prop;
3368 int p = zp->zp_copies;
3369 zio_t *cio = NULL;
3370 ddt_t *ddt = ddt_select(spa, bp);
3371 ddt_entry_t *dde;
3372 ddt_phys_t *ddp;
3373
3374 ASSERT(BP_GET_DEDUP(bp));
3375 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3376 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3377 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3378
3379 ddt_enter(ddt);
3380 dde = ddt_lookup(ddt, bp, B_TRUE);
3381 ddp = &dde->dde_phys[p];
3382
3383 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3384 /*
3385 * If we're using a weak checksum, upgrade to a strong checksum
3386 * and try again. If we're already using a strong checksum,
3387 * we can't resolve it, so just convert to an ordinary write.
3388 * (And automatically e-mail a paper to Nature?)
3389 */
3390 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3391 ZCHECKSUM_FLAG_DEDUP)) {
3392 zp->zp_checksum = spa_dedup_checksum(spa);
3393 zio_pop_transforms(zio);
3394 zio->io_stage = ZIO_STAGE_OPEN;
3395 BP_ZERO(bp);
3396 } else {
3397 zp->zp_dedup = B_FALSE;
3398 BP_SET_DEDUP(bp, B_FALSE);
3399 }
3400 ASSERT(!BP_GET_DEDUP(bp));
3401 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3402 ddt_exit(ddt);
3403 return (zio);
3404 }
3405
3406 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3407 if (ddp->ddp_phys_birth != 0)
3408 ddt_bp_fill(ddp, bp, txg);
3409 if (dde->dde_lead_zio[p] != NULL)
3410 zio_add_child(zio, dde->dde_lead_zio[p]);
3411 else
3412 ddt_phys_addref(ddp);
3413 } else if (zio->io_bp_override) {
3414 ASSERT(bp->blk_birth == txg);
3415 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3416 ddt_phys_fill(ddp, bp);
3417 ddt_phys_addref(ddp);
3418 } else {
3419 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3420 zio->io_orig_size, zio->io_orig_size, zp,
3421 zio_ddt_child_write_ready, NULL,
3422 zio_ddt_child_write_done, dde, zio->io_priority,
3423 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3424
3425 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3426 dde->dde_lead_zio[p] = cio;
3427 }
3428
3429 ddt_exit(ddt);
3430
3431 zio_nowait(cio);
3432
3433 return (zio);
3434 }
3435
3436 static ddt_entry_t *freedde; /* for debugging */
3437
3438 static zio_t *
3439 zio_ddt_free(zio_t *zio)
3440 {
3441 spa_t *spa = zio->io_spa;
3442 blkptr_t *bp = zio->io_bp;
3443 ddt_t *ddt = ddt_select(spa, bp);
3444 ddt_entry_t *dde;
3445 ddt_phys_t *ddp;
3446
3447 ASSERT(BP_GET_DEDUP(bp));
3448 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3449
3450 ddt_enter(ddt);
3451 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3452 if (dde) {
3453 ddp = ddt_phys_select(dde, bp);
3454 if (ddp)
3455 ddt_phys_decref(ddp);
3456 }
3457 ddt_exit(ddt);
3458
3459 return (zio);
3460 }
3461
3462 /*
3463 * ==========================================================================
3464 * Allocate and free blocks
3465 * ==========================================================================
3466 */
3467
3468 static zio_t *
3469 zio_io_to_allocate(spa_t *spa, int allocator)
3470 {
3471 zio_t *zio;
3472
3473 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3474
3475 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3476 if (zio == NULL)
3477 return (NULL);
3478
3479 ASSERT(IO_IS_ALLOCATING(zio));
3480
3481 /*
3482 * Try to place a reservation for this zio. If we're unable to
3483 * reserve then we throttle.
3484 */
3485 ASSERT3U(zio->io_allocator, ==, allocator);
3486 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3487 zio->io_prop.zp_copies, allocator, zio, 0)) {
3488 return (NULL);
3489 }
3490
3491 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3492 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3493
3494 return (zio);
3495 }
3496
3497 static zio_t *
3498 zio_dva_throttle(zio_t *zio)
3499 {
3500 spa_t *spa = zio->io_spa;
3501 zio_t *nio;
3502 metaslab_class_t *mc;
3503
3504 /* locate an appropriate allocation class */
3505 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3506 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3507
3508 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3509 !mc->mc_alloc_throttle_enabled ||
3510 zio->io_child_type == ZIO_CHILD_GANG ||
3511 zio->io_flags & ZIO_FLAG_NODATA) {
3512 return (zio);
3513 }
3514
3515 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3516 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3517 ASSERT3U(zio->io_queued_timestamp, >, 0);
3518 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3519
3520 zbookmark_phys_t *bm = &zio->io_bookmark;
3521 /*
3522 * We want to try to use as many allocators as possible to help improve
3523 * performance, but we also want logically adjacent IOs to be physically
3524 * adjacent to improve sequential read performance. We chunk each object
3525 * into 2^20 block regions, and then hash based on the objset, object,
3526 * level, and region to accomplish both of these goals.
3527 */
3528 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3529 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3530 zio->io_allocator = allocator;
3531 zio->io_metaslab_class = mc;
3532 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3533 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3534 nio = zio_io_to_allocate(spa, allocator);
3535 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3536 return (nio);
3537 }
3538
3539 static void
3540 zio_allocate_dispatch(spa_t *spa, int allocator)
3541 {
3542 zio_t *zio;
3543
3544 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3545 zio = zio_io_to_allocate(spa, allocator);
3546 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3547 if (zio == NULL)
3548 return;
3549
3550 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3551 ASSERT0(zio->io_error);
3552 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3553 }
3554
3555 static zio_t *
3556 zio_dva_allocate(zio_t *zio)
3557 {
3558 spa_t *spa = zio->io_spa;
3559 metaslab_class_t *mc;
3560 blkptr_t *bp = zio->io_bp;
3561 int error;
3562 int flags = 0;
3563
3564 if (zio->io_gang_leader == NULL) {
3565 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3566 zio->io_gang_leader = zio;
3567 }
3568
3569 ASSERT(BP_IS_HOLE(bp));
3570 ASSERT0(BP_GET_NDVAS(bp));
3571 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3572 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3573 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3574
3575 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3576 if (zio->io_flags & ZIO_FLAG_NODATA)
3577 flags |= METASLAB_DONT_THROTTLE;
3578 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3579 flags |= METASLAB_GANG_CHILD;
3580 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3581 flags |= METASLAB_ASYNC_ALLOC;
3582
3583 /*
3584 * if not already chosen, locate an appropriate allocation class
3585 */
3586 mc = zio->io_metaslab_class;
3587 if (mc == NULL) {
3588 mc = spa_preferred_class(spa, zio->io_size,
3589 zio->io_prop.zp_type, zio->io_prop.zp_level,
3590 zio->io_prop.zp_zpl_smallblk);
3591 zio->io_metaslab_class = mc;
3592 }
3593
3594 /*
3595 * Try allocating the block in the usual metaslab class.
3596 * If that's full, allocate it in the normal class.
3597 * If that's full, allocate as a gang block,
3598 * and if all are full, the allocation fails (which shouldn't happen).
3599 *
3600 * Note that we do not fall back on embedded slog (ZIL) space, to
3601 * preserve unfragmented slog space, which is critical for decent
3602 * sync write performance. If a log allocation fails, we will fall
3603 * back to spa_sync() which is abysmal for performance.
3604 */
3605 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3606 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3607 &zio->io_alloc_list, zio, zio->io_allocator);
3608
3609 /*
3610 * Fallback to normal class when an alloc class is full
3611 */
3612 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3613 /*
3614 * If throttling, transfer reservation over to normal class.
3615 * The io_allocator slot can remain the same even though we
3616 * are switching classes.
3617 */
3618 if (mc->mc_alloc_throttle_enabled &&
3619 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3620 metaslab_class_throttle_unreserve(mc,
3621 zio->io_prop.zp_copies, zio->io_allocator, zio);
3622 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3623
3624 VERIFY(metaslab_class_throttle_reserve(
3625 spa_normal_class(spa),
3626 zio->io_prop.zp_copies, zio->io_allocator, zio,
3627 flags | METASLAB_MUST_RESERVE));
3628 }
3629 zio->io_metaslab_class = mc = spa_normal_class(spa);
3630 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3631 zfs_dbgmsg("%s: metaslab allocation failure, "
3632 "trying normal class: zio %px, size %llu, error %d",
3633 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3634 error);
3635 }
3636
3637 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3638 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3639 &zio->io_alloc_list, zio, zio->io_allocator);
3640 }
3641
3642 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3643 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3644 zfs_dbgmsg("%s: metaslab allocation failure, "
3645 "trying ganging: zio %px, size %llu, error %d",
3646 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3647 error);
3648 }
3649 return (zio_write_gang_block(zio, mc));
3650 }
3651 if (error != 0) {
3652 if (error != ENOSPC ||
3653 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3654 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3655 "size %llu, error %d",
3656 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3657 error);
3658 }
3659 zio->io_error = error;
3660 }
3661
3662 return (zio);
3663 }
3664
3665 static zio_t *
3666 zio_dva_free(zio_t *zio)
3667 {
3668 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3669
3670 return (zio);
3671 }
3672
3673 static zio_t *
3674 zio_dva_claim(zio_t *zio)
3675 {
3676 int error;
3677
3678 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3679 if (error)
3680 zio->io_error = error;
3681
3682 return (zio);
3683 }
3684
3685 /*
3686 * Undo an allocation. This is used by zio_done() when an I/O fails
3687 * and we want to give back the block we just allocated.
3688 * This handles both normal blocks and gang blocks.
3689 */
3690 static void
3691 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3692 {
3693 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3694 ASSERT(zio->io_bp_override == NULL);
3695
3696 if (!BP_IS_HOLE(bp))
3697 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3698
3699 if (gn != NULL) {
3700 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3701 zio_dva_unallocate(zio, gn->gn_child[g],
3702 &gn->gn_gbh->zg_blkptr[g]);
3703 }
3704 }
3705 }
3706
3707 /*
3708 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3709 */
3710 int
3711 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3712 uint64_t size, boolean_t *slog)
3713 {
3714 int error = 1;
3715 zio_alloc_list_t io_alloc_list;
3716
3717 ASSERT(txg > spa_syncing_txg(spa));
3718
3719 metaslab_trace_init(&io_alloc_list);
3720
3721 /*
3722 * Block pointer fields are useful to metaslabs for stats and debugging.
3723 * Fill in the obvious ones before calling into metaslab_alloc().
3724 */
3725 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3726 BP_SET_PSIZE(new_bp, size);
3727 BP_SET_LEVEL(new_bp, 0);
3728
3729 /*
3730 * When allocating a zil block, we don't have information about
3731 * the final destination of the block except the objset it's part
3732 * of, so we just hash the objset ID to pick the allocator to get
3733 * some parallelism.
3734 */
3735 int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3736 int allocator = (uint_t)cityhash4(0, 0, 0,
3737 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3738 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3739 txg, NULL, flags, &io_alloc_list, NULL, allocator);
3740 *slog = (error == 0);
3741 if (error != 0) {
3742 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3743 new_bp, 1, txg, NULL, flags,
3744 &io_alloc_list, NULL, allocator);
3745 }
3746 if (error != 0) {
3747 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3748 new_bp, 1, txg, NULL, flags,
3749 &io_alloc_list, NULL, allocator);
3750 }
3751 metaslab_trace_fini(&io_alloc_list);
3752
3753 if (error == 0) {
3754 BP_SET_LSIZE(new_bp, size);
3755 BP_SET_PSIZE(new_bp, size);
3756 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3757 BP_SET_CHECKSUM(new_bp,
3758 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3759 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3760 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3761 BP_SET_LEVEL(new_bp, 0);
3762 BP_SET_DEDUP(new_bp, 0);
3763 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3764
3765 /*
3766 * encrypted blocks will require an IV and salt. We generate
3767 * these now since we will not be rewriting the bp at
3768 * rewrite time.
3769 */
3770 if (os->os_encrypted) {
3771 uint8_t iv[ZIO_DATA_IV_LEN];
3772 uint8_t salt[ZIO_DATA_SALT_LEN];
3773
3774 BP_SET_CRYPT(new_bp, B_TRUE);
3775 VERIFY0(spa_crypt_get_salt(spa,
3776 dmu_objset_id(os), salt));
3777 VERIFY0(zio_crypt_generate_iv(iv));
3778
3779 zio_crypt_encode_params_bp(new_bp, salt, iv);
3780 }
3781 } else {
3782 zfs_dbgmsg("%s: zil block allocation failure: "
3783 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3784 error);
3785 }
3786
3787 return (error);
3788 }
3789
3790 /*
3791 * ==========================================================================
3792 * Read and write to physical devices
3793 * ==========================================================================
3794 */
3795
3796 /*
3797 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3798 * stops after this stage and will resume upon I/O completion.
3799 * However, there are instances where the vdev layer may need to
3800 * continue the pipeline when an I/O was not issued. Since the I/O
3801 * that was sent to the vdev layer might be different than the one
3802 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3803 * force the underlying vdev layers to call either zio_execute() or
3804 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3805 */
3806 static zio_t *
3807 zio_vdev_io_start(zio_t *zio)
3808 {
3809 vdev_t *vd = zio->io_vd;
3810 uint64_t align;
3811 spa_t *spa = zio->io_spa;
3812
3813 zio->io_delay = 0;
3814
3815 ASSERT(zio->io_error == 0);
3816 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3817
3818 if (vd == NULL) {
3819 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3820 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3821
3822 /*
3823 * The mirror_ops handle multiple DVAs in a single BP.
3824 */
3825 vdev_mirror_ops.vdev_op_io_start(zio);
3826 return (NULL);
3827 }
3828
3829 ASSERT3P(zio->io_logical, !=, zio);
3830 if (zio->io_type == ZIO_TYPE_WRITE) {
3831 ASSERT(spa->spa_trust_config);
3832
3833 /*
3834 * Note: the code can handle other kinds of writes,
3835 * but we don't expect them.
3836 */
3837 if (zio->io_vd->vdev_noalloc) {
3838 ASSERT(zio->io_flags &
3839 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3840 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3841 }
3842 }
3843
3844 align = 1ULL << vd->vdev_top->vdev_ashift;
3845
3846 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3847 P2PHASE(zio->io_size, align) != 0) {
3848 /* Transform logical writes to be a full physical block size. */
3849 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3850 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3851 ASSERT(vd == vd->vdev_top);
3852 if (zio->io_type == ZIO_TYPE_WRITE) {
3853 abd_copy(abuf, zio->io_abd, zio->io_size);
3854 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3855 }
3856 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3857 }
3858
3859 /*
3860 * If this is not a physical io, make sure that it is properly aligned
3861 * before proceeding.
3862 */
3863 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3864 ASSERT0(P2PHASE(zio->io_offset, align));
3865 ASSERT0(P2PHASE(zio->io_size, align));
3866 } else {
3867 /*
3868 * For physical writes, we allow 512b aligned writes and assume
3869 * the device will perform a read-modify-write as necessary.
3870 */
3871 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3872 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3873 }
3874
3875 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3876
3877 /*
3878 * If this is a repair I/O, and there's no self-healing involved --
3879 * that is, we're just resilvering what we expect to resilver --
3880 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3881 * This prevents spurious resilvering.
3882 *
3883 * There are a few ways that we can end up creating these spurious
3884 * resilver i/os:
3885 *
3886 * 1. A resilver i/o will be issued if any DVA in the BP has a
3887 * dirty DTL. The mirror code will issue resilver writes to
3888 * each DVA, including the one(s) that are not on vdevs with dirty
3889 * DTLs.
3890 *
3891 * 2. With nested replication, which happens when we have a
3892 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3893 * For example, given mirror(replacing(A+B), C), it's likely that
3894 * only A is out of date (it's the new device). In this case, we'll
3895 * read from C, then use the data to resilver A+B -- but we don't
3896 * actually want to resilver B, just A. The top-level mirror has no
3897 * way to know this, so instead we just discard unnecessary repairs
3898 * as we work our way down the vdev tree.
3899 *
3900 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3901 * The same logic applies to any form of nested replication: ditto
3902 * + mirror, RAID-Z + replacing, etc.
3903 *
3904 * However, indirect vdevs point off to other vdevs which may have
3905 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3906 * will be properly bypassed instead.
3907 *
3908 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3909 * a dRAID spare vdev. For example, when a dRAID spare is first
3910 * used, its spare blocks need to be written to but the leaf vdev's
3911 * of such blocks can have empty DTL_PARTIAL.
3912 *
3913 * There seemed no clean way to allow such writes while bypassing
3914 * spurious ones. At this point, just avoid all bypassing for dRAID
3915 * for correctness.
3916 */
3917 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3918 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3919 zio->io_txg != 0 && /* not a delegated i/o */
3920 vd->vdev_ops != &vdev_indirect_ops &&
3921 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3922 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3923 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3924 zio_vdev_io_bypass(zio);
3925 return (zio);
3926 }
3927
3928 /*
3929 * Select the next best leaf I/O to process. Distributed spares are
3930 * excluded since they dispatch the I/O directly to a leaf vdev after
3931 * applying the dRAID mapping.
3932 */
3933 if (vd->vdev_ops->vdev_op_leaf &&
3934 vd->vdev_ops != &vdev_draid_spare_ops &&
3935 (zio->io_type == ZIO_TYPE_READ ||
3936 zio->io_type == ZIO_TYPE_WRITE ||
3937 zio->io_type == ZIO_TYPE_TRIM)) {
3938
3939 if ((zio = vdev_queue_io(zio)) == NULL)
3940 return (NULL);
3941
3942 if (!vdev_accessible(vd, zio)) {
3943 zio->io_error = SET_ERROR(ENXIO);
3944 zio_interrupt(zio);
3945 return (NULL);
3946 }
3947 zio->io_delay = gethrtime();
3948 }
3949
3950 vd->vdev_ops->vdev_op_io_start(zio);
3951 return (NULL);
3952 }
3953
3954 static zio_t *
3955 zio_vdev_io_done(zio_t *zio)
3956 {
3957 vdev_t *vd = zio->io_vd;
3958 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3959 boolean_t unexpected_error = B_FALSE;
3960
3961 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3962 return (NULL);
3963 }
3964
3965 ASSERT(zio->io_type == ZIO_TYPE_READ ||
3966 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3967
3968 if (zio->io_delay)
3969 zio->io_delay = gethrtime() - zio->io_delay;
3970
3971 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3972 vd->vdev_ops != &vdev_draid_spare_ops) {
3973 vdev_queue_io_done(zio);
3974
3975 if (zio_injection_enabled && zio->io_error == 0)
3976 zio->io_error = zio_handle_device_injections(vd, zio,
3977 EIO, EILSEQ);
3978
3979 if (zio_injection_enabled && zio->io_error == 0)
3980 zio->io_error = zio_handle_label_injection(zio, EIO);
3981
3982 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3983 if (!vdev_accessible(vd, zio)) {
3984 zio->io_error = SET_ERROR(ENXIO);
3985 } else {
3986 unexpected_error = B_TRUE;
3987 }
3988 }
3989 }
3990
3991 ops->vdev_op_io_done(zio);
3992
3993 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
3994 VERIFY(vdev_probe(vd, zio) == NULL);
3995
3996 return (zio);
3997 }
3998
3999 /*
4000 * This function is used to change the priority of an existing zio that is
4001 * currently in-flight. This is used by the arc to upgrade priority in the
4002 * event that a demand read is made for a block that is currently queued
4003 * as a scrub or async read IO. Otherwise, the high priority read request
4004 * would end up having to wait for the lower priority IO.
4005 */
4006 void
4007 zio_change_priority(zio_t *pio, zio_priority_t priority)
4008 {
4009 zio_t *cio, *cio_next;
4010 zio_link_t *zl = NULL;
4011
4012 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4013
4014 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4015 vdev_queue_change_io_priority(pio, priority);
4016 } else {
4017 pio->io_priority = priority;
4018 }
4019
4020 mutex_enter(&pio->io_lock);
4021 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4022 cio_next = zio_walk_children(pio, &zl);
4023 zio_change_priority(cio, priority);
4024 }
4025 mutex_exit(&pio->io_lock);
4026 }
4027
4028 /*
4029 * For non-raidz ZIOs, we can just copy aside the bad data read from the
4030 * disk, and use that to finish the checksum ereport later.
4031 */
4032 static void
4033 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4034 const abd_t *good_buf)
4035 {
4036 /* no processing needed */
4037 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4038 }
4039
4040 void
4041 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4042 {
4043 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4044
4045 abd_copy(abd, zio->io_abd, zio->io_size);
4046
4047 zcr->zcr_cbinfo = zio->io_size;
4048 zcr->zcr_cbdata = abd;
4049 zcr->zcr_finish = zio_vsd_default_cksum_finish;
4050 zcr->zcr_free = zio_abd_free;
4051 }
4052
4053 static zio_t *
4054 zio_vdev_io_assess(zio_t *zio)
4055 {
4056 vdev_t *vd = zio->io_vd;
4057
4058 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4059 return (NULL);
4060 }
4061
4062 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4063 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4064
4065 if (zio->io_vsd != NULL) {
4066 zio->io_vsd_ops->vsd_free(zio);
4067 zio->io_vsd = NULL;
4068 }
4069
4070 if (zio_injection_enabled && zio->io_error == 0)
4071 zio->io_error = zio_handle_fault_injection(zio, EIO);
4072
4073 /*
4074 * If the I/O failed, determine whether we should attempt to retry it.
4075 *
4076 * On retry, we cut in line in the issue queue, since we don't want
4077 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4078 */
4079 if (zio->io_error && vd == NULL &&
4080 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4081 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
4082 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
4083 zio->io_error = 0;
4084 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4085 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4086 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4087 zio_requeue_io_start_cut_in_line);
4088 return (NULL);
4089 }
4090
4091 /*
4092 * If we got an error on a leaf device, convert it to ENXIO
4093 * if the device is not accessible at all.
4094 */
4095 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4096 !vdev_accessible(vd, zio))
4097 zio->io_error = SET_ERROR(ENXIO);
4098
4099 /*
4100 * If we can't write to an interior vdev (mirror or RAID-Z),
4101 * set vdev_cant_write so that we stop trying to allocate from it.
4102 */
4103 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4104 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4105 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4106 "cant_write=TRUE due to write failure with ENXIO",
4107 zio);
4108 vd->vdev_cant_write = B_TRUE;
4109 }
4110
4111 /*
4112 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4113 * attempts will ever succeed. In this case we set a persistent
4114 * boolean flag so that we don't bother with it in the future.
4115 */
4116 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4117 zio->io_type == ZIO_TYPE_IOCTL &&
4118 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4119 vd->vdev_nowritecache = B_TRUE;
4120
4121 if (zio->io_error)
4122 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4123
4124 return (zio);
4125 }
4126
4127 void
4128 zio_vdev_io_reissue(zio_t *zio)
4129 {
4130 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4131 ASSERT(zio->io_error == 0);
4132
4133 zio->io_stage >>= 1;
4134 }
4135
4136 void
4137 zio_vdev_io_redone(zio_t *zio)
4138 {
4139 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4140
4141 zio->io_stage >>= 1;
4142 }
4143
4144 void
4145 zio_vdev_io_bypass(zio_t *zio)
4146 {
4147 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4148 ASSERT(zio->io_error == 0);
4149
4150 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4151 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4152 }
4153
4154 /*
4155 * ==========================================================================
4156 * Encrypt and store encryption parameters
4157 * ==========================================================================
4158 */
4159
4160
4161 /*
4162 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4163 * managing the storage of encryption parameters and passing them to the
4164 * lower-level encryption functions.
4165 */
4166 static zio_t *
4167 zio_encrypt(zio_t *zio)
4168 {
4169 zio_prop_t *zp = &zio->io_prop;
4170 spa_t *spa = zio->io_spa;
4171 blkptr_t *bp = zio->io_bp;
4172 uint64_t psize = BP_GET_PSIZE(bp);
4173 uint64_t dsobj = zio->io_bookmark.zb_objset;
4174 dmu_object_type_t ot = BP_GET_TYPE(bp);
4175 void *enc_buf = NULL;
4176 abd_t *eabd = NULL;
4177 uint8_t salt[ZIO_DATA_SALT_LEN];
4178 uint8_t iv[ZIO_DATA_IV_LEN];
4179 uint8_t mac[ZIO_DATA_MAC_LEN];
4180 boolean_t no_crypt = B_FALSE;
4181
4182 /* the root zio already encrypted the data */
4183 if (zio->io_child_type == ZIO_CHILD_GANG)
4184 return (zio);
4185
4186 /* only ZIL blocks are re-encrypted on rewrite */
4187 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4188 return (zio);
4189
4190 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4191 BP_SET_CRYPT(bp, B_FALSE);
4192 return (zio);
4193 }
4194
4195 /* if we are doing raw encryption set the provided encryption params */
4196 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4197 ASSERT0(BP_GET_LEVEL(bp));
4198 BP_SET_CRYPT(bp, B_TRUE);
4199 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4200 if (ot != DMU_OT_OBJSET)
4201 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4202
4203 /* dnode blocks must be written out in the provided byteorder */
4204 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4205 ot == DMU_OT_DNODE) {
4206 void *bswap_buf = zio_buf_alloc(psize);
4207 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4208
4209 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4210 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4211 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4212 psize);
4213
4214 abd_take_ownership_of_buf(babd, B_TRUE);
4215 zio_push_transform(zio, babd, psize, psize, NULL);
4216 }
4217
4218 if (DMU_OT_IS_ENCRYPTED(ot))
4219 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4220 return (zio);
4221 }
4222
4223 /* indirect blocks only maintain a cksum of the lower level MACs */
4224 if (BP_GET_LEVEL(bp) > 0) {
4225 BP_SET_CRYPT(bp, B_TRUE);
4226 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4227 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4228 mac));
4229 zio_crypt_encode_mac_bp(bp, mac);
4230 return (zio);
4231 }
4232
4233 /*
4234 * Objset blocks are a special case since they have 2 256-bit MACs
4235 * embedded within them.
4236 */
4237 if (ot == DMU_OT_OBJSET) {
4238 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4239 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4240 BP_SET_CRYPT(bp, B_TRUE);
4241 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4242 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4243 return (zio);
4244 }
4245
4246 /* unencrypted object types are only authenticated with a MAC */
4247 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4248 BP_SET_CRYPT(bp, B_TRUE);
4249 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4250 zio->io_abd, psize, mac));
4251 zio_crypt_encode_mac_bp(bp, mac);
4252 return (zio);
4253 }
4254
4255 /*
4256 * Later passes of sync-to-convergence may decide to rewrite data
4257 * in place to avoid more disk reallocations. This presents a problem
4258 * for encryption because this constitutes rewriting the new data with
4259 * the same encryption key and IV. However, this only applies to blocks
4260 * in the MOS (particularly the spacemaps) and we do not encrypt the
4261 * MOS. We assert that the zio is allocating or an intent log write
4262 * to enforce this.
4263 */
4264 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4265 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4266 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4267 ASSERT3U(psize, !=, 0);
4268
4269 enc_buf = zio_buf_alloc(psize);
4270 eabd = abd_get_from_buf(enc_buf, psize);
4271 abd_take_ownership_of_buf(eabd, B_TRUE);
4272
4273 /*
4274 * For an explanation of what encryption parameters are stored
4275 * where, see the block comment in zio_crypt.c.
4276 */
4277 if (ot == DMU_OT_INTENT_LOG) {
4278 zio_crypt_decode_params_bp(bp, salt, iv);
4279 } else {
4280 BP_SET_CRYPT(bp, B_TRUE);
4281 }
4282
4283 /* Perform the encryption. This should not fail */
4284 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4285 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4286 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4287
4288 /* encode encryption metadata into the bp */
4289 if (ot == DMU_OT_INTENT_LOG) {
4290 /*
4291 * ZIL blocks store the MAC in the embedded checksum, so the
4292 * transform must always be applied.
4293 */
4294 zio_crypt_encode_mac_zil(enc_buf, mac);
4295 zio_push_transform(zio, eabd, psize, psize, NULL);
4296 } else {
4297 BP_SET_CRYPT(bp, B_TRUE);
4298 zio_crypt_encode_params_bp(bp, salt, iv);
4299 zio_crypt_encode_mac_bp(bp, mac);
4300
4301 if (no_crypt) {
4302 ASSERT3U(ot, ==, DMU_OT_DNODE);
4303 abd_free(eabd);
4304 } else {
4305 zio_push_transform(zio, eabd, psize, psize, NULL);
4306 }
4307 }
4308
4309 return (zio);
4310 }
4311
4312 /*
4313 * ==========================================================================
4314 * Generate and verify checksums
4315 * ==========================================================================
4316 */
4317 static zio_t *
4318 zio_checksum_generate(zio_t *zio)
4319 {
4320 blkptr_t *bp = zio->io_bp;
4321 enum zio_checksum checksum;
4322
4323 if (bp == NULL) {
4324 /*
4325 * This is zio_write_phys().
4326 * We're either generating a label checksum, or none at all.
4327 */
4328 checksum = zio->io_prop.zp_checksum;
4329
4330 if (checksum == ZIO_CHECKSUM_OFF)
4331 return (zio);
4332
4333 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4334 } else {
4335 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4336 ASSERT(!IO_IS_ALLOCATING(zio));
4337 checksum = ZIO_CHECKSUM_GANG_HEADER;
4338 } else {
4339 checksum = BP_GET_CHECKSUM(bp);
4340 }
4341 }
4342
4343 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4344
4345 return (zio);
4346 }
4347
4348 static zio_t *
4349 zio_checksum_verify(zio_t *zio)
4350 {
4351 zio_bad_cksum_t info;
4352 blkptr_t *bp = zio->io_bp;
4353 int error;
4354
4355 ASSERT(zio->io_vd != NULL);
4356
4357 if (bp == NULL) {
4358 /*
4359 * This is zio_read_phys().
4360 * We're either verifying a label checksum, or nothing at all.
4361 */
4362 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4363 return (zio);
4364
4365 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4366 }
4367
4368 if ((error = zio_checksum_error(zio, &info)) != 0) {
4369 zio->io_error = error;
4370 if (error == ECKSUM &&
4371 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4372 mutex_enter(&zio->io_vd->vdev_stat_lock);
4373 zio->io_vd->vdev_stat.vs_checksum_errors++;
4374 mutex_exit(&zio->io_vd->vdev_stat_lock);
4375 (void) zfs_ereport_start_checksum(zio->io_spa,
4376 zio->io_vd, &zio->io_bookmark, zio,
4377 zio->io_offset, zio->io_size, &info);
4378 }
4379 }
4380
4381 return (zio);
4382 }
4383
4384 /*
4385 * Called by RAID-Z to ensure we don't compute the checksum twice.
4386 */
4387 void
4388 zio_checksum_verified(zio_t *zio)
4389 {
4390 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4391 }
4392
4393 /*
4394 * ==========================================================================
4395 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4396 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4397 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4398 * indicate errors that are specific to one I/O, and most likely permanent.
4399 * Any other error is presumed to be worse because we weren't expecting it.
4400 * ==========================================================================
4401 */
4402 int
4403 zio_worst_error(int e1, int e2)
4404 {
4405 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4406 int r1, r2;
4407
4408 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4409 if (e1 == zio_error_rank[r1])
4410 break;
4411
4412 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4413 if (e2 == zio_error_rank[r2])
4414 break;
4415
4416 return (r1 > r2 ? e1 : e2);
4417 }
4418
4419 /*
4420 * ==========================================================================
4421 * I/O completion
4422 * ==========================================================================
4423 */
4424 static zio_t *
4425 zio_ready(zio_t *zio)
4426 {
4427 blkptr_t *bp = zio->io_bp;
4428 zio_t *pio, *pio_next;
4429 zio_link_t *zl = NULL;
4430
4431 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4432 ZIO_WAIT_READY)) {
4433 return (NULL);
4434 }
4435
4436 if (zio->io_ready) {
4437 ASSERT(IO_IS_ALLOCATING(zio));
4438 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4439 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4440 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4441
4442 zio->io_ready(zio);
4443 }
4444
4445 if (bp != NULL && bp != &zio->io_bp_copy)
4446 zio->io_bp_copy = *bp;
4447
4448 if (zio->io_error != 0) {
4449 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4450
4451 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4452 ASSERT(IO_IS_ALLOCATING(zio));
4453 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4454 ASSERT(zio->io_metaslab_class != NULL);
4455
4456 /*
4457 * We were unable to allocate anything, unreserve and
4458 * issue the next I/O to allocate.
4459 */
4460 metaslab_class_throttle_unreserve(
4461 zio->io_metaslab_class, zio->io_prop.zp_copies,
4462 zio->io_allocator, zio);
4463 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4464 }
4465 }
4466
4467 mutex_enter(&zio->io_lock);
4468 zio->io_state[ZIO_WAIT_READY] = 1;
4469 pio = zio_walk_parents(zio, &zl);
4470 mutex_exit(&zio->io_lock);
4471
4472 /*
4473 * As we notify zio's parents, new parents could be added.
4474 * New parents go to the head of zio's io_parent_list, however,
4475 * so we will (correctly) not notify them. The remainder of zio's
4476 * io_parent_list, from 'pio_next' onward, cannot change because
4477 * all parents must wait for us to be done before they can be done.
4478 */
4479 for (; pio != NULL; pio = pio_next) {
4480 pio_next = zio_walk_parents(zio, &zl);
4481 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4482 }
4483
4484 if (zio->io_flags & ZIO_FLAG_NODATA) {
4485 if (bp != NULL && BP_IS_GANG(bp)) {
4486 zio->io_flags &= ~ZIO_FLAG_NODATA;
4487 } else {
4488 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4489 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4490 }
4491 }
4492
4493 if (zio_injection_enabled &&
4494 zio->io_spa->spa_syncing_txg == zio->io_txg)
4495 zio_handle_ignored_writes(zio);
4496
4497 return (zio);
4498 }
4499
4500 /*
4501 * Update the allocation throttle accounting.
4502 */
4503 static void
4504 zio_dva_throttle_done(zio_t *zio)
4505 {
4506 zio_t *lio __maybe_unused = zio->io_logical;
4507 zio_t *pio = zio_unique_parent(zio);
4508 vdev_t *vd = zio->io_vd;
4509 int flags = METASLAB_ASYNC_ALLOC;
4510
4511 ASSERT3P(zio->io_bp, !=, NULL);
4512 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4513 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4514 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4515 ASSERT(vd != NULL);
4516 ASSERT3P(vd, ==, vd->vdev_top);
4517 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4518 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4519 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4520 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4521 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4522
4523 /*
4524 * Parents of gang children can have two flavors -- ones that
4525 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4526 * and ones that allocated the constituent blocks. The allocation
4527 * throttle needs to know the allocating parent zio so we must find
4528 * it here.
4529 */
4530 if (pio->io_child_type == ZIO_CHILD_GANG) {
4531 /*
4532 * If our parent is a rewrite gang child then our grandparent
4533 * would have been the one that performed the allocation.
4534 */
4535 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4536 pio = zio_unique_parent(pio);
4537 flags |= METASLAB_GANG_CHILD;
4538 }
4539
4540 ASSERT(IO_IS_ALLOCATING(pio));
4541 ASSERT3P(zio, !=, zio->io_logical);
4542 ASSERT(zio->io_logical != NULL);
4543 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4544 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4545 ASSERT(zio->io_metaslab_class != NULL);
4546
4547 mutex_enter(&pio->io_lock);
4548 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4549 pio->io_allocator, B_TRUE);
4550 mutex_exit(&pio->io_lock);
4551
4552 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4553 pio->io_allocator, pio);
4554
4555 /*
4556 * Call into the pipeline to see if there is more work that
4557 * needs to be done. If there is work to be done it will be
4558 * dispatched to another taskq thread.
4559 */
4560 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4561 }
4562
4563 static zio_t *
4564 zio_done(zio_t *zio)
4565 {
4566 /*
4567 * Always attempt to keep stack usage minimal here since
4568 * we can be called recursively up to 19 levels deep.
4569 */
4570 const uint64_t psize = zio->io_size;
4571 zio_t *pio, *pio_next;
4572 zio_link_t *zl = NULL;
4573
4574 /*
4575 * If our children haven't all completed,
4576 * wait for them and then repeat this pipeline stage.
4577 */
4578 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4579 return (NULL);
4580 }
4581
4582 /*
4583 * If the allocation throttle is enabled, then update the accounting.
4584 * We only track child I/Os that are part of an allocating async
4585 * write. We must do this since the allocation is performed
4586 * by the logical I/O but the actual write is done by child I/Os.
4587 */
4588 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4589 zio->io_child_type == ZIO_CHILD_VDEV) {
4590 ASSERT(zio->io_metaslab_class != NULL);
4591 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4592 zio_dva_throttle_done(zio);
4593 }
4594
4595 /*
4596 * If the allocation throttle is enabled, verify that
4597 * we have decremented the refcounts for every I/O that was throttled.
4598 */
4599 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4600 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4601 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4602 ASSERT(zio->io_bp != NULL);
4603
4604 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4605 zio->io_allocator);
4606 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4607 mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4608 }
4609
4610
4611 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4612 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4613 ASSERT(zio->io_children[c][w] == 0);
4614
4615 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4616 ASSERT(zio->io_bp->blk_pad[0] == 0);
4617 ASSERT(zio->io_bp->blk_pad[1] == 0);
4618 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4619 sizeof (blkptr_t)) == 0 ||
4620 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4621 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4622 zio->io_bp_override == NULL &&
4623 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4624 ASSERT3U(zio->io_prop.zp_copies, <=,
4625 BP_GET_NDVAS(zio->io_bp));
4626 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4627 (BP_COUNT_GANG(zio->io_bp) ==
4628 BP_GET_NDVAS(zio->io_bp)));
4629 }
4630 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4631 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4632 }
4633
4634 /*
4635 * If there were child vdev/gang/ddt errors, they apply to us now.
4636 */
4637 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4638 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4639 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4640
4641 /*
4642 * If the I/O on the transformed data was successful, generate any
4643 * checksum reports now while we still have the transformed data.
4644 */
4645 if (zio->io_error == 0) {
4646 while (zio->io_cksum_report != NULL) {
4647 zio_cksum_report_t *zcr = zio->io_cksum_report;
4648 uint64_t align = zcr->zcr_align;
4649 uint64_t asize = P2ROUNDUP(psize, align);
4650 abd_t *adata = zio->io_abd;
4651
4652 if (adata != NULL && asize != psize) {
4653 adata = abd_alloc(asize, B_TRUE);
4654 abd_copy(adata, zio->io_abd, psize);
4655 abd_zero_off(adata, psize, asize - psize);
4656 }
4657
4658 zio->io_cksum_report = zcr->zcr_next;
4659 zcr->zcr_next = NULL;
4660 zcr->zcr_finish(zcr, adata);
4661 zfs_ereport_free_checksum(zcr);
4662
4663 if (adata != NULL && asize != psize)
4664 abd_free(adata);
4665 }
4666 }
4667
4668 zio_pop_transforms(zio); /* note: may set zio->io_error */
4669
4670 vdev_stat_update(zio, psize);
4671
4672 /*
4673 * If this I/O is attached to a particular vdev is slow, exceeding
4674 * 30 seconds to complete, post an error described the I/O delay.
4675 * We ignore these errors if the device is currently unavailable.
4676 */
4677 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4678 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4679 /*
4680 * We want to only increment our slow IO counters if
4681 * the IO is valid (i.e. not if the drive is removed).
4682 *
4683 * zfs_ereport_post() will also do these checks, but
4684 * it can also ratelimit and have other failures, so we
4685 * need to increment the slow_io counters independent
4686 * of it.
4687 */
4688 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4689 zio->io_spa, zio->io_vd, zio)) {
4690 mutex_enter(&zio->io_vd->vdev_stat_lock);
4691 zio->io_vd->vdev_stat.vs_slow_ios++;
4692 mutex_exit(&zio->io_vd->vdev_stat_lock);
4693
4694 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4695 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4696 zio, 0);
4697 }
4698 }
4699 }
4700
4701 if (zio->io_error) {
4702 /*
4703 * If this I/O is attached to a particular vdev,
4704 * generate an error message describing the I/O failure
4705 * at the block level. We ignore these errors if the
4706 * device is currently unavailable.
4707 */
4708 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4709 !vdev_is_dead(zio->io_vd)) {
4710 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4711 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4712 if (ret != EALREADY) {
4713 mutex_enter(&zio->io_vd->vdev_stat_lock);
4714 if (zio->io_type == ZIO_TYPE_READ)
4715 zio->io_vd->vdev_stat.vs_read_errors++;
4716 else if (zio->io_type == ZIO_TYPE_WRITE)
4717 zio->io_vd->vdev_stat.vs_write_errors++;
4718 mutex_exit(&zio->io_vd->vdev_stat_lock);
4719 }
4720 }
4721
4722 if ((zio->io_error == EIO || !(zio->io_flags &
4723 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4724 zio == zio->io_logical) {
4725 /*
4726 * For logical I/O requests, tell the SPA to log the
4727 * error and generate a logical data ereport.
4728 */
4729 spa_log_error(zio->io_spa, &zio->io_bookmark,
4730 &zio->io_bp->blk_birth);
4731 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4732 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4733 }
4734 }
4735
4736 if (zio->io_error && zio == zio->io_logical) {
4737 /*
4738 * Determine whether zio should be reexecuted. This will
4739 * propagate all the way to the root via zio_notify_parent().
4740 */
4741 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4742 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4743
4744 if (IO_IS_ALLOCATING(zio) &&
4745 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4746 if (zio->io_error != ENOSPC)
4747 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4748 else
4749 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4750 }
4751
4752 if ((zio->io_type == ZIO_TYPE_READ ||
4753 zio->io_type == ZIO_TYPE_FREE) &&
4754 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4755 zio->io_error == ENXIO &&
4756 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4757 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4758 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4759
4760 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4761 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4762
4763 /*
4764 * Here is a possibly good place to attempt to do
4765 * either combinatorial reconstruction or error correction
4766 * based on checksums. It also might be a good place
4767 * to send out preliminary ereports before we suspend
4768 * processing.
4769 */
4770 }
4771
4772 /*
4773 * If there were logical child errors, they apply to us now.
4774 * We defer this until now to avoid conflating logical child
4775 * errors with errors that happened to the zio itself when
4776 * updating vdev stats and reporting FMA events above.
4777 */
4778 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4779
4780 if ((zio->io_error || zio->io_reexecute) &&
4781 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4782 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4783 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4784
4785 zio_gang_tree_free(&zio->io_gang_tree);
4786
4787 /*
4788 * Godfather I/Os should never suspend.
4789 */
4790 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4791 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4792 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4793
4794 if (zio->io_reexecute) {
4795 /*
4796 * This is a logical I/O that wants to reexecute.
4797 *
4798 * Reexecute is top-down. When an i/o fails, if it's not
4799 * the root, it simply notifies its parent and sticks around.
4800 * The parent, seeing that it still has children in zio_done(),
4801 * does the same. This percolates all the way up to the root.
4802 * The root i/o will reexecute or suspend the entire tree.
4803 *
4804 * This approach ensures that zio_reexecute() honors
4805 * all the original i/o dependency relationships, e.g.
4806 * parents not executing until children are ready.
4807 */
4808 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4809
4810 zio->io_gang_leader = NULL;
4811
4812 mutex_enter(&zio->io_lock);
4813 zio->io_state[ZIO_WAIT_DONE] = 1;
4814 mutex_exit(&zio->io_lock);
4815
4816 /*
4817 * "The Godfather" I/O monitors its children but is
4818 * not a true parent to them. It will track them through
4819 * the pipeline but severs its ties whenever they get into
4820 * trouble (e.g. suspended). This allows "The Godfather"
4821 * I/O to return status without blocking.
4822 */
4823 zl = NULL;
4824 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4825 pio = pio_next) {
4826 zio_link_t *remove_zl = zl;
4827 pio_next = zio_walk_parents(zio, &zl);
4828
4829 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4830 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4831 zio_remove_child(pio, zio, remove_zl);
4832 /*
4833 * This is a rare code path, so we don't
4834 * bother with "next_to_execute".
4835 */
4836 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4837 NULL);
4838 }
4839 }
4840
4841 if ((pio = zio_unique_parent(zio)) != NULL) {
4842 /*
4843 * We're not a root i/o, so there's nothing to do
4844 * but notify our parent. Don't propagate errors
4845 * upward since we haven't permanently failed yet.
4846 */
4847 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4848 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4849 /*
4850 * This is a rare code path, so we don't bother with
4851 * "next_to_execute".
4852 */
4853 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4854 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4855 /*
4856 * We'd fail again if we reexecuted now, so suspend
4857 * until conditions improve (e.g. device comes online).
4858 */
4859 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4860 } else {
4861 /*
4862 * Reexecution is potentially a huge amount of work.
4863 * Hand it off to the otherwise-unused claim taskq.
4864 */
4865 ASSERT(taskq_empty_ent(&zio->io_tqent));
4866 spa_taskq_dispatch_ent(zio->io_spa,
4867 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4868 zio_reexecute, zio, 0, &zio->io_tqent);
4869 }
4870 return (NULL);
4871 }
4872
4873 ASSERT(list_is_empty(&zio->io_child_list));
4874 ASSERT(zio->io_reexecute == 0);
4875 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4876
4877 /*
4878 * Report any checksum errors, since the I/O is complete.
4879 */
4880 while (zio->io_cksum_report != NULL) {
4881 zio_cksum_report_t *zcr = zio->io_cksum_report;
4882 zio->io_cksum_report = zcr->zcr_next;
4883 zcr->zcr_next = NULL;
4884 zcr->zcr_finish(zcr, NULL);
4885 zfs_ereport_free_checksum(zcr);
4886 }
4887
4888 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4889 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4890 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4891 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4892 }
4893
4894 /*
4895 * It is the responsibility of the done callback to ensure that this
4896 * particular zio is no longer discoverable for adoption, and as
4897 * such, cannot acquire any new parents.
4898 */
4899 if (zio->io_done)
4900 zio->io_done(zio);
4901
4902 mutex_enter(&zio->io_lock);
4903 zio->io_state[ZIO_WAIT_DONE] = 1;
4904 mutex_exit(&zio->io_lock);
4905
4906 /*
4907 * We are done executing this zio. We may want to execute a parent
4908 * next. See the comment in zio_notify_parent().
4909 */
4910 zio_t *next_to_execute = NULL;
4911 zl = NULL;
4912 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4913 zio_link_t *remove_zl = zl;
4914 pio_next = zio_walk_parents(zio, &zl);
4915 zio_remove_child(pio, zio, remove_zl);
4916 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4917 }
4918
4919 if (zio->io_waiter != NULL) {
4920 mutex_enter(&zio->io_lock);
4921 zio->io_executor = NULL;
4922 cv_broadcast(&zio->io_cv);
4923 mutex_exit(&zio->io_lock);
4924 } else {
4925 zio_destroy(zio);
4926 }
4927
4928 return (next_to_execute);
4929 }
4930
4931 /*
4932 * ==========================================================================
4933 * I/O pipeline definition
4934 * ==========================================================================
4935 */
4936 static zio_pipe_stage_t *zio_pipeline[] = {
4937 NULL,
4938 zio_read_bp_init,
4939 zio_write_bp_init,
4940 zio_free_bp_init,
4941 zio_issue_async,
4942 zio_write_compress,
4943 zio_encrypt,
4944 zio_checksum_generate,
4945 zio_nop_write,
4946 zio_brt_free,
4947 zio_ddt_read_start,
4948 zio_ddt_read_done,
4949 zio_ddt_write,
4950 zio_ddt_free,
4951 zio_gang_assemble,
4952 zio_gang_issue,
4953 zio_dva_throttle,
4954 zio_dva_allocate,
4955 zio_dva_free,
4956 zio_dva_claim,
4957 zio_ready,
4958 zio_vdev_io_start,
4959 zio_vdev_io_done,
4960 zio_vdev_io_assess,
4961 zio_checksum_verify,
4962 zio_done
4963 };
4964
4965
4966
4967
4968 /*
4969 * Compare two zbookmark_phys_t's to see which we would reach first in a
4970 * pre-order traversal of the object tree.
4971 *
4972 * This is simple in every case aside from the meta-dnode object. For all other
4973 * objects, we traverse them in order (object 1 before object 2, and so on).
4974 * However, all of these objects are traversed while traversing object 0, since
4975 * the data it points to is the list of objects. Thus, we need to convert to a
4976 * canonical representation so we can compare meta-dnode bookmarks to
4977 * non-meta-dnode bookmarks.
4978 *
4979 * We do this by calculating "equivalents" for each field of the zbookmark.
4980 * zbookmarks outside of the meta-dnode use their own object and level, and
4981 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4982 * blocks this bookmark refers to) by multiplying their blkid by their span
4983 * (the number of L0 blocks contained within one block at their level).
4984 * zbookmarks inside the meta-dnode calculate their object equivalent
4985 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4986 * level + 1<<31 (any value larger than a level could ever be) for their level.
4987 * This causes them to always compare before a bookmark in their object
4988 * equivalent, compare appropriately to bookmarks in other objects, and to
4989 * compare appropriately to other bookmarks in the meta-dnode.
4990 */
4991 int
4992 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4993 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4994 {
4995 /*
4996 * These variables represent the "equivalent" values for the zbookmark,
4997 * after converting zbookmarks inside the meta dnode to their
4998 * normal-object equivalents.
4999 */
5000 uint64_t zb1obj, zb2obj;
5001 uint64_t zb1L0, zb2L0;
5002 uint64_t zb1level, zb2level;
5003
5004 if (zb1->zb_object == zb2->zb_object &&
5005 zb1->zb_level == zb2->zb_level &&
5006 zb1->zb_blkid == zb2->zb_blkid)
5007 return (0);
5008
5009 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5010 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5011
5012 /*
5013 * BP_SPANB calculates the span in blocks.
5014 */
5015 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5016 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5017
5018 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5019 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5020 zb1L0 = 0;
5021 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5022 } else {
5023 zb1obj = zb1->zb_object;
5024 zb1level = zb1->zb_level;
5025 }
5026
5027 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5028 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5029 zb2L0 = 0;
5030 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5031 } else {
5032 zb2obj = zb2->zb_object;
5033 zb2level = zb2->zb_level;
5034 }
5035
5036 /* Now that we have a canonical representation, do the comparison. */
5037 if (zb1obj != zb2obj)
5038 return (zb1obj < zb2obj ? -1 : 1);
5039 else if (zb1L0 != zb2L0)
5040 return (zb1L0 < zb2L0 ? -1 : 1);
5041 else if (zb1level != zb2level)
5042 return (zb1level > zb2level ? -1 : 1);
5043 /*
5044 * This can (theoretically) happen if the bookmarks have the same object
5045 * and level, but different blkids, if the block sizes are not the same.
5046 * There is presently no way to change the indirect block sizes
5047 */
5048 return (0);
5049 }
5050
5051 /*
5052 * This function checks the following: given that last_block is the place that
5053 * our traversal stopped last time, does that guarantee that we've visited
5054 * every node under subtree_root? Therefore, we can't just use the raw output
5055 * of zbookmark_compare. We have to pass in a modified version of
5056 * subtree_root; by incrementing the block id, and then checking whether
5057 * last_block is before or equal to that, we can tell whether or not having
5058 * visited last_block implies that all of subtree_root's children have been
5059 * visited.
5060 */
5061 boolean_t
5062 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5063 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5064 {
5065 zbookmark_phys_t mod_zb = *subtree_root;
5066 mod_zb.zb_blkid++;
5067 ASSERT0(last_block->zb_level);
5068
5069 /* The objset_phys_t isn't before anything. */
5070 if (dnp == NULL)
5071 return (B_FALSE);
5072
5073 /*
5074 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5075 * data block size in sectors, because that variable is only used if
5076 * the bookmark refers to a block in the meta-dnode. Since we don't
5077 * know without examining it what object it refers to, and there's no
5078 * harm in passing in this value in other cases, we always pass it in.
5079 *
5080 * We pass in 0 for the indirect block size shift because zb2 must be
5081 * level 0. The indirect block size is only used to calculate the span
5082 * of the bookmark, but since the bookmark must be level 0, the span is
5083 * always 1, so the math works out.
5084 *
5085 * If you make changes to how the zbookmark_compare code works, be sure
5086 * to make sure that this code still works afterwards.
5087 */
5088 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5089 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5090 last_block) <= 0);
5091 }
5092
5093 /*
5094 * This function is similar to zbookmark_subtree_completed(), but returns true
5095 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5096 */
5097 boolean_t
5098 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5099 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5100 {
5101 ASSERT0(last_block->zb_level);
5102 if (dnp == NULL)
5103 return (B_FALSE);
5104 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5105 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5106 last_block) >= 0);
5107 }
5108
5109 EXPORT_SYMBOL(zio_type_name);
5110 EXPORT_SYMBOL(zio_buf_alloc);
5111 EXPORT_SYMBOL(zio_data_buf_alloc);
5112 EXPORT_SYMBOL(zio_buf_free);
5113 EXPORT_SYMBOL(zio_data_buf_free);
5114
5115 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5116 "Max I/O completion time (milliseconds) before marking it as slow");
5117
5118 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5119 "Prioritize requeued I/O");
5120
5121 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW,
5122 "Defer frees starting in this pass");
5123
5124 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5125 "Don't compress starting in this pass");
5126
5127 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5128 "Rewrite new bps starting in this pass");
5129
5130 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5131 "Throttle block allocations in the ZIO pipeline");
5132
5133 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5134 "Log all slow ZIOs, not just those with vdevs");