]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
Implement a new type of zfs receive: corrective receive (-c)
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
29 */
30
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
54
55 /*
56 * ==========================================================================
57 * I/O type descriptions
58 * ==========================================================================
59 */
60 const char *const zio_type_name[ZIO_TYPES] = {
61 /*
62 * Note: Linux kernel thread name length is limited
63 * so these names will differ from upstream open zfs.
64 */
65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
66 };
67
68 int zio_dva_throttle_enabled = B_TRUE;
69 static int zio_deadman_log_all = B_FALSE;
70
71 /*
72 * ==========================================================================
73 * I/O kmem caches
74 * ==========================================================================
75 */
76 static kmem_cache_t *zio_cache;
77 static kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
84
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 static int zio_slow_io_ms = (30 * MILLISEC);
87
88 #define BP_SPANB(indblkshift, level) \
89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define COMPARE_META_LEVEL 0x80000000ul
91 /*
92 * The following actions directly effect the spa's sync-to-convergence logic.
93 * The values below define the sync pass when we start performing the action.
94 * Care should be taken when changing these values as they directly impact
95 * spa_sync() performance. Tuning these values may introduce subtle performance
96 * pathologies and should only be done in the context of performance analysis.
97 * These tunables will eventually be removed and replaced with #defines once
98 * enough analysis has been done to determine optimal values.
99 *
100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101 * regular blocks are not deferred.
102 *
103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104 * compression (including of metadata). In practice, we don't have this
105 * many sync passes, so this has no effect.
106 *
107 * The original intent was that disabling compression would help the sync
108 * passes to converge. However, in practice disabling compression increases
109 * the average number of sync passes, because when we turn compression off, a
110 * lot of block's size will change and thus we have to re-allocate (not
111 * overwrite) them. It also increases the number of 128KB allocations (e.g.
112 * for indirect blocks and spacemaps) because these will not be compressed.
113 * The 128K allocations are especially detrimental to performance on highly
114 * fragmented systems, which may have very few free segments of this size,
115 * and may need to load new metaslabs to satisfy 128K allocations.
116 */
117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
118 static int zfs_sync_pass_dont_compress = 8; /* don't compress s. i. t. p. */
119 static int zfs_sync_pass_rewrite = 2; /* rewrite new bps s. i. t. p. */
120
121 /*
122 * An allocating zio is one that either currently has the DVA allocate
123 * stage set or will have it later in its lifetime.
124 */
125 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
126
127 /*
128 * Enable smaller cores by excluding metadata
129 * allocations as well.
130 */
131 int zio_exclude_metadata = 0;
132 static int zio_requeue_io_start_cut_in_line = 1;
133
134 #ifdef ZFS_DEBUG
135 static const int zio_buf_debug_limit = 16384;
136 #else
137 static const int zio_buf_debug_limit = 0;
138 #endif
139
140 static inline void __zio_execute(zio_t *zio);
141
142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
143
144 void
145 zio_init(void)
146 {
147 size_t c;
148
149 zio_cache = kmem_cache_create("zio_cache",
150 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
151 zio_link_cache = kmem_cache_create("zio_link_cache",
152 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
153
154 /*
155 * For small buffers, we want a cache for each multiple of
156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
157 * for each quarter-power of 2.
158 */
159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
160 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
161 size_t p2 = size;
162 size_t align = 0;
163 size_t data_cflags, cflags;
164
165 data_cflags = KMC_NODEBUG;
166 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
167 KMC_NODEBUG : 0;
168
169 while (!ISP2(p2))
170 p2 &= p2 - 1;
171
172 #ifndef _KERNEL
173 /*
174 * If we are using watchpoints, put each buffer on its own page,
175 * to eliminate the performance overhead of trapping to the
176 * kernel when modifying a non-watched buffer that shares the
177 * page with a watched buffer.
178 */
179 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
180 continue;
181 /*
182 * Here's the problem - on 4K native devices in userland on
183 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
184 * will fail with EINVAL, causing zdb (and others) to coredump.
185 * Since userland probably doesn't need optimized buffer caches,
186 * we just force 4K alignment on everything.
187 */
188 align = 8 * SPA_MINBLOCKSIZE;
189 #else
190 if (size < PAGESIZE) {
191 align = SPA_MINBLOCKSIZE;
192 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
193 align = PAGESIZE;
194 }
195 #endif
196
197 if (align != 0) {
198 char name[36];
199 if (cflags == data_cflags) {
200 /*
201 * Resulting kmem caches would be identical.
202 * Save memory by creating only one.
203 */
204 (void) snprintf(name, sizeof (name),
205 "zio_buf_comb_%lu", (ulong_t)size);
206 zio_buf_cache[c] = kmem_cache_create(name,
207 size, align, NULL, NULL, NULL, NULL, NULL,
208 cflags);
209 zio_data_buf_cache[c] = zio_buf_cache[c];
210 continue;
211 }
212 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
213 (ulong_t)size);
214 zio_buf_cache[c] = kmem_cache_create(name, size,
215 align, NULL, NULL, NULL, NULL, NULL, cflags);
216
217 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
218 (ulong_t)size);
219 zio_data_buf_cache[c] = kmem_cache_create(name, size,
220 align, NULL, NULL, NULL, NULL, NULL, data_cflags);
221 }
222 }
223
224 while (--c != 0) {
225 ASSERT(zio_buf_cache[c] != NULL);
226 if (zio_buf_cache[c - 1] == NULL)
227 zio_buf_cache[c - 1] = zio_buf_cache[c];
228
229 ASSERT(zio_data_buf_cache[c] != NULL);
230 if (zio_data_buf_cache[c - 1] == NULL)
231 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
232 }
233
234 zio_inject_init();
235
236 lz4_init();
237 }
238
239 void
240 zio_fini(void)
241 {
242 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
243
244 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
245 for (size_t i = 0; i < n; i++) {
246 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
247 (void) printf("zio_fini: [%d] %llu != %llu\n",
248 (int)((i + 1) << SPA_MINBLOCKSHIFT),
249 (long long unsigned)zio_buf_cache_allocs[i],
250 (long long unsigned)zio_buf_cache_frees[i]);
251 }
252 #endif
253
254 /*
255 * The same kmem cache can show up multiple times in both zio_buf_cache
256 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
257 * sort it out.
258 */
259 for (size_t i = 0; i < n; i++) {
260 kmem_cache_t *cache = zio_buf_cache[i];
261 if (cache == NULL)
262 continue;
263 for (size_t j = i; j < n; j++) {
264 if (cache == zio_buf_cache[j])
265 zio_buf_cache[j] = NULL;
266 if (cache == zio_data_buf_cache[j])
267 zio_data_buf_cache[j] = NULL;
268 }
269 kmem_cache_destroy(cache);
270 }
271
272 for (size_t i = 0; i < n; i++) {
273 kmem_cache_t *cache = zio_data_buf_cache[i];
274 if (cache == NULL)
275 continue;
276 for (size_t j = i; j < n; j++) {
277 if (cache == zio_data_buf_cache[j])
278 zio_data_buf_cache[j] = NULL;
279 }
280 kmem_cache_destroy(cache);
281 }
282
283 for (size_t i = 0; i < n; i++) {
284 VERIFY3P(zio_buf_cache[i], ==, NULL);
285 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
286 }
287
288 kmem_cache_destroy(zio_link_cache);
289 kmem_cache_destroy(zio_cache);
290
291 zio_inject_fini();
292
293 lz4_fini();
294 }
295
296 /*
297 * ==========================================================================
298 * Allocate and free I/O buffers
299 * ==========================================================================
300 */
301
302 /*
303 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
304 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
305 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
306 * excess / transient data in-core during a crashdump.
307 */
308 void *
309 zio_buf_alloc(size_t size)
310 {
311 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
312
313 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
314 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
315 atomic_add_64(&zio_buf_cache_allocs[c], 1);
316 #endif
317
318 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
319 }
320
321 /*
322 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
323 * crashdump if the kernel panics. This exists so that we will limit the amount
324 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
325 * of kernel heap dumped to disk when the kernel panics)
326 */
327 void *
328 zio_data_buf_alloc(size_t size)
329 {
330 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
331
332 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
333
334 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
335 }
336
337 void
338 zio_buf_free(void *buf, size_t size)
339 {
340 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
341
342 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
343 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
344 atomic_add_64(&zio_buf_cache_frees[c], 1);
345 #endif
346
347 kmem_cache_free(zio_buf_cache[c], buf);
348 }
349
350 void
351 zio_data_buf_free(void *buf, size_t size)
352 {
353 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
354
355 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
356
357 kmem_cache_free(zio_data_buf_cache[c], buf);
358 }
359
360 static void
361 zio_abd_free(void *abd, size_t size)
362 {
363 (void) size;
364 abd_free((abd_t *)abd);
365 }
366
367 /*
368 * ==========================================================================
369 * Push and pop I/O transform buffers
370 * ==========================================================================
371 */
372 void
373 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
374 zio_transform_func_t *transform)
375 {
376 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
377
378 zt->zt_orig_abd = zio->io_abd;
379 zt->zt_orig_size = zio->io_size;
380 zt->zt_bufsize = bufsize;
381 zt->zt_transform = transform;
382
383 zt->zt_next = zio->io_transform_stack;
384 zio->io_transform_stack = zt;
385
386 zio->io_abd = data;
387 zio->io_size = size;
388 }
389
390 void
391 zio_pop_transforms(zio_t *zio)
392 {
393 zio_transform_t *zt;
394
395 while ((zt = zio->io_transform_stack) != NULL) {
396 if (zt->zt_transform != NULL)
397 zt->zt_transform(zio,
398 zt->zt_orig_abd, zt->zt_orig_size);
399
400 if (zt->zt_bufsize != 0)
401 abd_free(zio->io_abd);
402
403 zio->io_abd = zt->zt_orig_abd;
404 zio->io_size = zt->zt_orig_size;
405 zio->io_transform_stack = zt->zt_next;
406
407 kmem_free(zt, sizeof (zio_transform_t));
408 }
409 }
410
411 /*
412 * ==========================================================================
413 * I/O transform callbacks for subblocks, decompression, and decryption
414 * ==========================================================================
415 */
416 static void
417 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
418 {
419 ASSERT(zio->io_size > size);
420
421 if (zio->io_type == ZIO_TYPE_READ)
422 abd_copy(data, zio->io_abd, size);
423 }
424
425 static void
426 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
427 {
428 if (zio->io_error == 0) {
429 void *tmp = abd_borrow_buf(data, size);
430 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
431 zio->io_abd, tmp, zio->io_size, size,
432 &zio->io_prop.zp_complevel);
433 abd_return_buf_copy(data, tmp, size);
434
435 if (zio_injection_enabled && ret == 0)
436 ret = zio_handle_fault_injection(zio, EINVAL);
437
438 if (ret != 0)
439 zio->io_error = SET_ERROR(EIO);
440 }
441 }
442
443 static void
444 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
445 {
446 int ret;
447 void *tmp;
448 blkptr_t *bp = zio->io_bp;
449 spa_t *spa = zio->io_spa;
450 uint64_t dsobj = zio->io_bookmark.zb_objset;
451 uint64_t lsize = BP_GET_LSIZE(bp);
452 dmu_object_type_t ot = BP_GET_TYPE(bp);
453 uint8_t salt[ZIO_DATA_SALT_LEN];
454 uint8_t iv[ZIO_DATA_IV_LEN];
455 uint8_t mac[ZIO_DATA_MAC_LEN];
456 boolean_t no_crypt = B_FALSE;
457
458 ASSERT(BP_USES_CRYPT(bp));
459 ASSERT3U(size, !=, 0);
460
461 if (zio->io_error != 0)
462 return;
463
464 /*
465 * Verify the cksum of MACs stored in an indirect bp. It will always
466 * be possible to verify this since it does not require an encryption
467 * key.
468 */
469 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
470 zio_crypt_decode_mac_bp(bp, mac);
471
472 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
473 /*
474 * We haven't decompressed the data yet, but
475 * zio_crypt_do_indirect_mac_checksum() requires
476 * decompressed data to be able to parse out the MACs
477 * from the indirect block. We decompress it now and
478 * throw away the result after we are finished.
479 */
480 tmp = zio_buf_alloc(lsize);
481 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
482 zio->io_abd, tmp, zio->io_size, lsize,
483 &zio->io_prop.zp_complevel);
484 if (ret != 0) {
485 ret = SET_ERROR(EIO);
486 goto error;
487 }
488 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
489 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
490 zio_buf_free(tmp, lsize);
491 } else {
492 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
493 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
494 }
495 abd_copy(data, zio->io_abd, size);
496
497 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
498 ret = zio_handle_decrypt_injection(spa,
499 &zio->io_bookmark, ot, ECKSUM);
500 }
501 if (ret != 0)
502 goto error;
503
504 return;
505 }
506
507 /*
508 * If this is an authenticated block, just check the MAC. It would be
509 * nice to separate this out into its own flag, but for the moment
510 * enum zio_flag is out of bits.
511 */
512 if (BP_IS_AUTHENTICATED(bp)) {
513 if (ot == DMU_OT_OBJSET) {
514 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
515 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
516 } else {
517 zio_crypt_decode_mac_bp(bp, mac);
518 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
519 zio->io_abd, size, mac);
520 if (zio_injection_enabled && ret == 0) {
521 ret = zio_handle_decrypt_injection(spa,
522 &zio->io_bookmark, ot, ECKSUM);
523 }
524 }
525 abd_copy(data, zio->io_abd, size);
526
527 if (ret != 0)
528 goto error;
529
530 return;
531 }
532
533 zio_crypt_decode_params_bp(bp, salt, iv);
534
535 if (ot == DMU_OT_INTENT_LOG) {
536 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
537 zio_crypt_decode_mac_zil(tmp, mac);
538 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
539 } else {
540 zio_crypt_decode_mac_bp(bp, mac);
541 }
542
543 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
544 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
545 zio->io_abd, &no_crypt);
546 if (no_crypt)
547 abd_copy(data, zio->io_abd, size);
548
549 if (ret != 0)
550 goto error;
551
552 return;
553
554 error:
555 /* assert that the key was found unless this was speculative */
556 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
557
558 /*
559 * If there was a decryption / authentication error return EIO as
560 * the io_error. If this was not a speculative zio, create an ereport.
561 */
562 if (ret == ECKSUM) {
563 zio->io_error = SET_ERROR(EIO);
564 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
565 spa_log_error(spa, &zio->io_bookmark);
566 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
567 spa, NULL, &zio->io_bookmark, zio, 0);
568 }
569 } else {
570 zio->io_error = ret;
571 }
572 }
573
574 /*
575 * ==========================================================================
576 * I/O parent/child relationships and pipeline interlocks
577 * ==========================================================================
578 */
579 zio_t *
580 zio_walk_parents(zio_t *cio, zio_link_t **zl)
581 {
582 list_t *pl = &cio->io_parent_list;
583
584 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
585 if (*zl == NULL)
586 return (NULL);
587
588 ASSERT((*zl)->zl_child == cio);
589 return ((*zl)->zl_parent);
590 }
591
592 zio_t *
593 zio_walk_children(zio_t *pio, zio_link_t **zl)
594 {
595 list_t *cl = &pio->io_child_list;
596
597 ASSERT(MUTEX_HELD(&pio->io_lock));
598
599 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
600 if (*zl == NULL)
601 return (NULL);
602
603 ASSERT((*zl)->zl_parent == pio);
604 return ((*zl)->zl_child);
605 }
606
607 zio_t *
608 zio_unique_parent(zio_t *cio)
609 {
610 zio_link_t *zl = NULL;
611 zio_t *pio = zio_walk_parents(cio, &zl);
612
613 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
614 return (pio);
615 }
616
617 void
618 zio_add_child(zio_t *pio, zio_t *cio)
619 {
620 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
621
622 /*
623 * Logical I/Os can have logical, gang, or vdev children.
624 * Gang I/Os can have gang or vdev children.
625 * Vdev I/Os can only have vdev children.
626 * The following ASSERT captures all of these constraints.
627 */
628 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
629
630 zl->zl_parent = pio;
631 zl->zl_child = cio;
632
633 mutex_enter(&pio->io_lock);
634 mutex_enter(&cio->io_lock);
635
636 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
637
638 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
639 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
640
641 list_insert_head(&pio->io_child_list, zl);
642 list_insert_head(&cio->io_parent_list, zl);
643
644 pio->io_child_count++;
645 cio->io_parent_count++;
646
647 mutex_exit(&cio->io_lock);
648 mutex_exit(&pio->io_lock);
649 }
650
651 static void
652 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
653 {
654 ASSERT(zl->zl_parent == pio);
655 ASSERT(zl->zl_child == cio);
656
657 mutex_enter(&pio->io_lock);
658 mutex_enter(&cio->io_lock);
659
660 list_remove(&pio->io_child_list, zl);
661 list_remove(&cio->io_parent_list, zl);
662
663 pio->io_child_count--;
664 cio->io_parent_count--;
665
666 mutex_exit(&cio->io_lock);
667 mutex_exit(&pio->io_lock);
668 kmem_cache_free(zio_link_cache, zl);
669 }
670
671 static boolean_t
672 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
673 {
674 boolean_t waiting = B_FALSE;
675
676 mutex_enter(&zio->io_lock);
677 ASSERT(zio->io_stall == NULL);
678 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
679 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
680 continue;
681
682 uint64_t *countp = &zio->io_children[c][wait];
683 if (*countp != 0) {
684 zio->io_stage >>= 1;
685 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
686 zio->io_stall = countp;
687 waiting = B_TRUE;
688 break;
689 }
690 }
691 mutex_exit(&zio->io_lock);
692 return (waiting);
693 }
694
695 __attribute__((always_inline))
696 static inline void
697 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
698 zio_t **next_to_executep)
699 {
700 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
701 int *errorp = &pio->io_child_error[zio->io_child_type];
702
703 mutex_enter(&pio->io_lock);
704 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
705 *errorp = zio_worst_error(*errorp, zio->io_error);
706 pio->io_reexecute |= zio->io_reexecute;
707 ASSERT3U(*countp, >, 0);
708
709 (*countp)--;
710
711 if (*countp == 0 && pio->io_stall == countp) {
712 zio_taskq_type_t type =
713 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
714 ZIO_TASKQ_INTERRUPT;
715 pio->io_stall = NULL;
716 mutex_exit(&pio->io_lock);
717
718 /*
719 * If we can tell the caller to execute this parent next, do
720 * so. Otherwise dispatch the parent zio as its own task.
721 *
722 * Having the caller execute the parent when possible reduces
723 * locking on the zio taskq's, reduces context switch
724 * overhead, and has no recursion penalty. Note that one
725 * read from disk typically causes at least 3 zio's: a
726 * zio_null(), the logical zio_read(), and then a physical
727 * zio. When the physical ZIO completes, we are able to call
728 * zio_done() on all 3 of these zio's from one invocation of
729 * zio_execute() by returning the parent back to
730 * zio_execute(). Since the parent isn't executed until this
731 * thread returns back to zio_execute(), the caller should do
732 * so promptly.
733 *
734 * In other cases, dispatching the parent prevents
735 * overflowing the stack when we have deeply nested
736 * parent-child relationships, as we do with the "mega zio"
737 * of writes for spa_sync(), and the chain of ZIL blocks.
738 */
739 if (next_to_executep != NULL && *next_to_executep == NULL) {
740 *next_to_executep = pio;
741 } else {
742 zio_taskq_dispatch(pio, type, B_FALSE);
743 }
744 } else {
745 mutex_exit(&pio->io_lock);
746 }
747 }
748
749 static void
750 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
751 {
752 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
753 zio->io_error = zio->io_child_error[c];
754 }
755
756 int
757 zio_bookmark_compare(const void *x1, const void *x2)
758 {
759 const zio_t *z1 = x1;
760 const zio_t *z2 = x2;
761
762 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
763 return (-1);
764 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
765 return (1);
766
767 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
768 return (-1);
769 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
770 return (1);
771
772 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
773 return (-1);
774 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
775 return (1);
776
777 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
778 return (-1);
779 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
780 return (1);
781
782 if (z1 < z2)
783 return (-1);
784 if (z1 > z2)
785 return (1);
786
787 return (0);
788 }
789
790 /*
791 * ==========================================================================
792 * Create the various types of I/O (read, write, free, etc)
793 * ==========================================================================
794 */
795 static zio_t *
796 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
797 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
798 void *private, zio_type_t type, zio_priority_t priority,
799 enum zio_flag flags, vdev_t *vd, uint64_t offset,
800 const zbookmark_phys_t *zb, enum zio_stage stage,
801 enum zio_stage pipeline)
802 {
803 zio_t *zio;
804
805 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
806 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
807 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
808
809 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
810 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
811 ASSERT(vd || stage == ZIO_STAGE_OPEN);
812
813 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
814
815 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
816 memset(zio, 0, sizeof (zio_t));
817
818 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
819 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
820
821 list_create(&zio->io_parent_list, sizeof (zio_link_t),
822 offsetof(zio_link_t, zl_parent_node));
823 list_create(&zio->io_child_list, sizeof (zio_link_t),
824 offsetof(zio_link_t, zl_child_node));
825 metaslab_trace_init(&zio->io_alloc_list);
826
827 if (vd != NULL)
828 zio->io_child_type = ZIO_CHILD_VDEV;
829 else if (flags & ZIO_FLAG_GANG_CHILD)
830 zio->io_child_type = ZIO_CHILD_GANG;
831 else if (flags & ZIO_FLAG_DDT_CHILD)
832 zio->io_child_type = ZIO_CHILD_DDT;
833 else
834 zio->io_child_type = ZIO_CHILD_LOGICAL;
835
836 if (bp != NULL) {
837 zio->io_bp = (blkptr_t *)bp;
838 zio->io_bp_copy = *bp;
839 zio->io_bp_orig = *bp;
840 if (type != ZIO_TYPE_WRITE ||
841 zio->io_child_type == ZIO_CHILD_DDT)
842 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
843 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
844 zio->io_logical = zio;
845 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
846 pipeline |= ZIO_GANG_STAGES;
847 }
848
849 zio->io_spa = spa;
850 zio->io_txg = txg;
851 zio->io_done = done;
852 zio->io_private = private;
853 zio->io_type = type;
854 zio->io_priority = priority;
855 zio->io_vd = vd;
856 zio->io_offset = offset;
857 zio->io_orig_abd = zio->io_abd = data;
858 zio->io_orig_size = zio->io_size = psize;
859 zio->io_lsize = lsize;
860 zio->io_orig_flags = zio->io_flags = flags;
861 zio->io_orig_stage = zio->io_stage = stage;
862 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
863 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
864
865 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
866 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
867
868 if (zb != NULL)
869 zio->io_bookmark = *zb;
870
871 if (pio != NULL) {
872 zio->io_metaslab_class = pio->io_metaslab_class;
873 if (zio->io_logical == NULL)
874 zio->io_logical = pio->io_logical;
875 if (zio->io_child_type == ZIO_CHILD_GANG)
876 zio->io_gang_leader = pio->io_gang_leader;
877 zio_add_child(pio, zio);
878 }
879
880 taskq_init_ent(&zio->io_tqent);
881
882 return (zio);
883 }
884
885 void
886 zio_destroy(zio_t *zio)
887 {
888 metaslab_trace_fini(&zio->io_alloc_list);
889 list_destroy(&zio->io_parent_list);
890 list_destroy(&zio->io_child_list);
891 mutex_destroy(&zio->io_lock);
892 cv_destroy(&zio->io_cv);
893 kmem_cache_free(zio_cache, zio);
894 }
895
896 zio_t *
897 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
898 void *private, enum zio_flag flags)
899 {
900 zio_t *zio;
901
902 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
903 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
904 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
905
906 return (zio);
907 }
908
909 zio_t *
910 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
911 {
912 return (zio_null(NULL, spa, NULL, done, private, flags));
913 }
914
915 static int
916 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
917 enum blk_verify_flag blk_verify, const char *fmt, ...)
918 {
919 va_list adx;
920 char buf[256];
921
922 va_start(adx, fmt);
923 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
924 va_end(adx);
925
926 switch (blk_verify) {
927 case BLK_VERIFY_HALT:
928 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
929 zfs_panic_recover("%s: %s", spa_name(spa), buf);
930 break;
931 case BLK_VERIFY_LOG:
932 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
933 break;
934 case BLK_VERIFY_ONLY:
935 break;
936 }
937
938 return (1);
939 }
940
941 /*
942 * Verify the block pointer fields contain reasonable values. This means
943 * it only contains known object types, checksum/compression identifiers,
944 * block sizes within the maximum allowed limits, valid DVAs, etc.
945 *
946 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
947 * argument controls the behavior when an invalid field is detected.
948 *
949 * Modes for zfs_blkptr_verify:
950 * 1) BLK_VERIFY_ONLY (evaluate the block)
951 * 2) BLK_VERIFY_LOG (evaluate the block and log problems)
952 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
953 */
954 boolean_t
955 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
956 enum blk_verify_flag blk_verify)
957 {
958 int errors = 0;
959
960 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
961 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
962 "blkptr at %p has invalid TYPE %llu",
963 bp, (longlong_t)BP_GET_TYPE(bp));
964 }
965 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
966 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
967 "blkptr at %p has invalid CHECKSUM %llu",
968 bp, (longlong_t)BP_GET_CHECKSUM(bp));
969 }
970 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
971 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
972 "blkptr at %p has invalid COMPRESS %llu",
973 bp, (longlong_t)BP_GET_COMPRESS(bp));
974 }
975 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
976 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
977 "blkptr at %p has invalid LSIZE %llu",
978 bp, (longlong_t)BP_GET_LSIZE(bp));
979 }
980 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
981 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
982 "blkptr at %p has invalid PSIZE %llu",
983 bp, (longlong_t)BP_GET_PSIZE(bp));
984 }
985
986 if (BP_IS_EMBEDDED(bp)) {
987 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
988 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
989 "blkptr at %p has invalid ETYPE %llu",
990 bp, (longlong_t)BPE_GET_ETYPE(bp));
991 }
992 }
993
994 /*
995 * Do not verify individual DVAs if the config is not trusted. This
996 * will be done once the zio is executed in vdev_mirror_map_alloc.
997 */
998 if (!spa->spa_trust_config)
999 return (errors == 0);
1000
1001 if (!config_held)
1002 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1003 else
1004 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1005 /*
1006 * Pool-specific checks.
1007 *
1008 * Note: it would be nice to verify that the blk_birth and
1009 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1010 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1011 * that are in the log) to be arbitrarily large.
1012 */
1013 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1014 const dva_t *dva = &bp->blk_dva[i];
1015 uint64_t vdevid = DVA_GET_VDEV(dva);
1016
1017 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1018 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1019 "blkptr at %p DVA %u has invalid VDEV %llu",
1020 bp, i, (longlong_t)vdevid);
1021 continue;
1022 }
1023 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1024 if (vd == NULL) {
1025 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1026 "blkptr at %p DVA %u has invalid VDEV %llu",
1027 bp, i, (longlong_t)vdevid);
1028 continue;
1029 }
1030 if (vd->vdev_ops == &vdev_hole_ops) {
1031 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1032 "blkptr at %p DVA %u has hole VDEV %llu",
1033 bp, i, (longlong_t)vdevid);
1034 continue;
1035 }
1036 if (vd->vdev_ops == &vdev_missing_ops) {
1037 /*
1038 * "missing" vdevs are valid during import, but we
1039 * don't have their detailed info (e.g. asize), so
1040 * we can't perform any more checks on them.
1041 */
1042 continue;
1043 }
1044 uint64_t offset = DVA_GET_OFFSET(dva);
1045 uint64_t asize = DVA_GET_ASIZE(dva);
1046 if (DVA_GET_GANG(dva))
1047 asize = vdev_gang_header_asize(vd);
1048 if (offset + asize > vd->vdev_asize) {
1049 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1050 "blkptr at %p DVA %u has invalid OFFSET %llu",
1051 bp, i, (longlong_t)offset);
1052 }
1053 }
1054 if (errors > 0)
1055 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1056 if (!config_held)
1057 spa_config_exit(spa, SCL_VDEV, bp);
1058
1059 return (errors == 0);
1060 }
1061
1062 boolean_t
1063 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1064 {
1065 (void) bp;
1066 uint64_t vdevid = DVA_GET_VDEV(dva);
1067
1068 if (vdevid >= spa->spa_root_vdev->vdev_children)
1069 return (B_FALSE);
1070
1071 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1072 if (vd == NULL)
1073 return (B_FALSE);
1074
1075 if (vd->vdev_ops == &vdev_hole_ops)
1076 return (B_FALSE);
1077
1078 if (vd->vdev_ops == &vdev_missing_ops) {
1079 return (B_FALSE);
1080 }
1081
1082 uint64_t offset = DVA_GET_OFFSET(dva);
1083 uint64_t asize = DVA_GET_ASIZE(dva);
1084
1085 if (DVA_GET_GANG(dva))
1086 asize = vdev_gang_header_asize(vd);
1087 if (offset + asize > vd->vdev_asize)
1088 return (B_FALSE);
1089
1090 return (B_TRUE);
1091 }
1092
1093 zio_t *
1094 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1095 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1096 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1097 {
1098 zio_t *zio;
1099
1100 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1101 data, size, size, done, private,
1102 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1103 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1104 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1105
1106 return (zio);
1107 }
1108
1109 zio_t *
1110 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1111 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1112 zio_done_func_t *ready, zio_done_func_t *children_ready,
1113 zio_done_func_t *physdone, zio_done_func_t *done,
1114 void *private, zio_priority_t priority, enum zio_flag flags,
1115 const zbookmark_phys_t *zb)
1116 {
1117 zio_t *zio;
1118
1119 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1120 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1121 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1122 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1123 DMU_OT_IS_VALID(zp->zp_type) &&
1124 zp->zp_level < 32 &&
1125 zp->zp_copies > 0 &&
1126 zp->zp_copies <= spa_max_replication(spa));
1127
1128 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1129 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1130 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1131 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1132
1133 zio->io_ready = ready;
1134 zio->io_children_ready = children_ready;
1135 zio->io_physdone = physdone;
1136 zio->io_prop = *zp;
1137
1138 /*
1139 * Data can be NULL if we are going to call zio_write_override() to
1140 * provide the already-allocated BP. But we may need the data to
1141 * verify a dedup hit (if requested). In this case, don't try to
1142 * dedup (just take the already-allocated BP verbatim). Encrypted
1143 * dedup blocks need data as well so we also disable dedup in this
1144 * case.
1145 */
1146 if (data == NULL &&
1147 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1148 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1149 }
1150
1151 return (zio);
1152 }
1153
1154 zio_t *
1155 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1156 uint64_t size, zio_done_func_t *done, void *private,
1157 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1158 {
1159 zio_t *zio;
1160
1161 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1162 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1163 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1164
1165 return (zio);
1166 }
1167
1168 void
1169 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1170 {
1171 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1172 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1173 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1174 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1175
1176 /*
1177 * We must reset the io_prop to match the values that existed
1178 * when the bp was first written by dmu_sync() keeping in mind
1179 * that nopwrite and dedup are mutually exclusive.
1180 */
1181 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1182 zio->io_prop.zp_nopwrite = nopwrite;
1183 zio->io_prop.zp_copies = copies;
1184 zio->io_bp_override = bp;
1185 }
1186
1187 void
1188 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1189 {
1190
1191 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1192
1193 /*
1194 * The check for EMBEDDED is a performance optimization. We
1195 * process the free here (by ignoring it) rather than
1196 * putting it on the list and then processing it in zio_free_sync().
1197 */
1198 if (BP_IS_EMBEDDED(bp))
1199 return;
1200 metaslab_check_free(spa, bp);
1201
1202 /*
1203 * Frees that are for the currently-syncing txg, are not going to be
1204 * deferred, and which will not need to do a read (i.e. not GANG or
1205 * DEDUP), can be processed immediately. Otherwise, put them on the
1206 * in-memory list for later processing.
1207 *
1208 * Note that we only defer frees after zfs_sync_pass_deferred_free
1209 * when the log space map feature is disabled. [see relevant comment
1210 * in spa_sync_iterate_to_convergence()]
1211 */
1212 if (BP_IS_GANG(bp) ||
1213 BP_GET_DEDUP(bp) ||
1214 txg != spa->spa_syncing_txg ||
1215 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1216 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1217 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1218 } else {
1219 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1220 }
1221 }
1222
1223 /*
1224 * To improve performance, this function may return NULL if we were able
1225 * to do the free immediately. This avoids the cost of creating a zio
1226 * (and linking it to the parent, etc).
1227 */
1228 zio_t *
1229 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1230 enum zio_flag flags)
1231 {
1232 ASSERT(!BP_IS_HOLE(bp));
1233 ASSERT(spa_syncing_txg(spa) == txg);
1234
1235 if (BP_IS_EMBEDDED(bp))
1236 return (NULL);
1237
1238 metaslab_check_free(spa, bp);
1239 arc_freed(spa, bp);
1240 dsl_scan_freed(spa, bp);
1241
1242 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1243 /*
1244 * GANG and DEDUP blocks can induce a read (for the gang block
1245 * header, or the DDT), so issue them asynchronously so that
1246 * this thread is not tied up.
1247 */
1248 enum zio_stage stage =
1249 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1250
1251 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1252 BP_GET_PSIZE(bp), NULL, NULL,
1253 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1254 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1255 } else {
1256 metaslab_free(spa, bp, txg, B_FALSE);
1257 return (NULL);
1258 }
1259 }
1260
1261 zio_t *
1262 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1263 zio_done_func_t *done, void *private, enum zio_flag flags)
1264 {
1265 zio_t *zio;
1266
1267 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1268 BLK_VERIFY_HALT);
1269
1270 if (BP_IS_EMBEDDED(bp))
1271 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1272
1273 /*
1274 * A claim is an allocation of a specific block. Claims are needed
1275 * to support immediate writes in the intent log. The issue is that
1276 * immediate writes contain committed data, but in a txg that was
1277 * *not* committed. Upon opening the pool after an unclean shutdown,
1278 * the intent log claims all blocks that contain immediate write data
1279 * so that the SPA knows they're in use.
1280 *
1281 * All claims *must* be resolved in the first txg -- before the SPA
1282 * starts allocating blocks -- so that nothing is allocated twice.
1283 * If txg == 0 we just verify that the block is claimable.
1284 */
1285 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1286 spa_min_claim_txg(spa));
1287 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1288 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1289
1290 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1291 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1292 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1293 ASSERT0(zio->io_queued_timestamp);
1294
1295 return (zio);
1296 }
1297
1298 zio_t *
1299 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1300 zio_done_func_t *done, void *private, enum zio_flag flags)
1301 {
1302 zio_t *zio;
1303 int c;
1304
1305 if (vd->vdev_children == 0) {
1306 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1307 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1308 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1309
1310 zio->io_cmd = cmd;
1311 } else {
1312 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1313
1314 for (c = 0; c < vd->vdev_children; c++)
1315 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1316 done, private, flags));
1317 }
1318
1319 return (zio);
1320 }
1321
1322 zio_t *
1323 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1324 zio_done_func_t *done, void *private, zio_priority_t priority,
1325 enum zio_flag flags, enum trim_flag trim_flags)
1326 {
1327 zio_t *zio;
1328
1329 ASSERT0(vd->vdev_children);
1330 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1331 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1332 ASSERT3U(size, !=, 0);
1333
1334 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1335 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1336 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1337 zio->io_trim_flags = trim_flags;
1338
1339 return (zio);
1340 }
1341
1342 zio_t *
1343 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1344 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1345 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1346 {
1347 zio_t *zio;
1348
1349 ASSERT(vd->vdev_children == 0);
1350 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1351 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1352 ASSERT3U(offset + size, <=, vd->vdev_psize);
1353
1354 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1355 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1356 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1357
1358 zio->io_prop.zp_checksum = checksum;
1359
1360 return (zio);
1361 }
1362
1363 zio_t *
1364 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1365 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1366 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1367 {
1368 zio_t *zio;
1369
1370 ASSERT(vd->vdev_children == 0);
1371 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1372 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1373 ASSERT3U(offset + size, <=, vd->vdev_psize);
1374
1375 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1376 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1377 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1378
1379 zio->io_prop.zp_checksum = checksum;
1380
1381 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1382 /*
1383 * zec checksums are necessarily destructive -- they modify
1384 * the end of the write buffer to hold the verifier/checksum.
1385 * Therefore, we must make a local copy in case the data is
1386 * being written to multiple places in parallel.
1387 */
1388 abd_t *wbuf = abd_alloc_sametype(data, size);
1389 abd_copy(wbuf, data, size);
1390
1391 zio_push_transform(zio, wbuf, size, size, NULL);
1392 }
1393
1394 return (zio);
1395 }
1396
1397 /*
1398 * Create a child I/O to do some work for us.
1399 */
1400 zio_t *
1401 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1402 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1403 enum zio_flag flags, zio_done_func_t *done, void *private)
1404 {
1405 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1406 zio_t *zio;
1407
1408 /*
1409 * vdev child I/Os do not propagate their error to the parent.
1410 * Therefore, for correct operation the caller *must* check for
1411 * and handle the error in the child i/o's done callback.
1412 * The only exceptions are i/os that we don't care about
1413 * (OPTIONAL or REPAIR).
1414 */
1415 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1416 done != NULL);
1417
1418 if (type == ZIO_TYPE_READ && bp != NULL) {
1419 /*
1420 * If we have the bp, then the child should perform the
1421 * checksum and the parent need not. This pushes error
1422 * detection as close to the leaves as possible and
1423 * eliminates redundant checksums in the interior nodes.
1424 */
1425 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1426 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1427 }
1428
1429 if (vd->vdev_ops->vdev_op_leaf) {
1430 ASSERT0(vd->vdev_children);
1431 offset += VDEV_LABEL_START_SIZE;
1432 }
1433
1434 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1435
1436 /*
1437 * If we've decided to do a repair, the write is not speculative --
1438 * even if the original read was.
1439 */
1440 if (flags & ZIO_FLAG_IO_REPAIR)
1441 flags &= ~ZIO_FLAG_SPECULATIVE;
1442
1443 /*
1444 * If we're creating a child I/O that is not associated with a
1445 * top-level vdev, then the child zio is not an allocating I/O.
1446 * If this is a retried I/O then we ignore it since we will
1447 * have already processed the original allocating I/O.
1448 */
1449 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1450 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1451 ASSERT(pio->io_metaslab_class != NULL);
1452 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1453 ASSERT(type == ZIO_TYPE_WRITE);
1454 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1455 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1456 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1457 pio->io_child_type == ZIO_CHILD_GANG);
1458
1459 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1460 }
1461
1462
1463 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1464 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1465 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1466 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1467
1468 zio->io_physdone = pio->io_physdone;
1469 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1470 zio->io_logical->io_phys_children++;
1471
1472 return (zio);
1473 }
1474
1475 zio_t *
1476 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1477 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1478 zio_done_func_t *done, void *private)
1479 {
1480 zio_t *zio;
1481
1482 ASSERT(vd->vdev_ops->vdev_op_leaf);
1483
1484 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1485 data, size, size, done, private, type, priority,
1486 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1487 vd, offset, NULL,
1488 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1489
1490 return (zio);
1491 }
1492
1493 void
1494 zio_flush(zio_t *zio, vdev_t *vd)
1495 {
1496 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1497 NULL, NULL,
1498 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1499 }
1500
1501 void
1502 zio_shrink(zio_t *zio, uint64_t size)
1503 {
1504 ASSERT3P(zio->io_executor, ==, NULL);
1505 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1506 ASSERT3U(size, <=, zio->io_size);
1507
1508 /*
1509 * We don't shrink for raidz because of problems with the
1510 * reconstruction when reading back less than the block size.
1511 * Note, BP_IS_RAIDZ() assumes no compression.
1512 */
1513 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1514 if (!BP_IS_RAIDZ(zio->io_bp)) {
1515 /* we are not doing a raw write */
1516 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1517 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1518 }
1519 }
1520
1521 /*
1522 * ==========================================================================
1523 * Prepare to read and write logical blocks
1524 * ==========================================================================
1525 */
1526
1527 static zio_t *
1528 zio_read_bp_init(zio_t *zio)
1529 {
1530 blkptr_t *bp = zio->io_bp;
1531 uint64_t psize =
1532 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1533
1534 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1535
1536 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1537 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1538 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1539 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1540 psize, psize, zio_decompress);
1541 }
1542
1543 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1544 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1545 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1546 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1547 psize, psize, zio_decrypt);
1548 }
1549
1550 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1551 int psize = BPE_GET_PSIZE(bp);
1552 void *data = abd_borrow_buf(zio->io_abd, psize);
1553
1554 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1555 decode_embedded_bp_compressed(bp, data);
1556 abd_return_buf_copy(zio->io_abd, data, psize);
1557 } else {
1558 ASSERT(!BP_IS_EMBEDDED(bp));
1559 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1560 }
1561
1562 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1563 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1564
1565 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1566 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1567
1568 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1569 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1570
1571 return (zio);
1572 }
1573
1574 static zio_t *
1575 zio_write_bp_init(zio_t *zio)
1576 {
1577 if (!IO_IS_ALLOCATING(zio))
1578 return (zio);
1579
1580 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1581
1582 if (zio->io_bp_override) {
1583 blkptr_t *bp = zio->io_bp;
1584 zio_prop_t *zp = &zio->io_prop;
1585
1586 ASSERT(bp->blk_birth != zio->io_txg);
1587 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1588
1589 *bp = *zio->io_bp_override;
1590 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1591
1592 if (BP_IS_EMBEDDED(bp))
1593 return (zio);
1594
1595 /*
1596 * If we've been overridden and nopwrite is set then
1597 * set the flag accordingly to indicate that a nopwrite
1598 * has already occurred.
1599 */
1600 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1601 ASSERT(!zp->zp_dedup);
1602 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1603 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1604 return (zio);
1605 }
1606
1607 ASSERT(!zp->zp_nopwrite);
1608
1609 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1610 return (zio);
1611
1612 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1613 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1614
1615 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1616 !zp->zp_encrypt) {
1617 BP_SET_DEDUP(bp, 1);
1618 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1619 return (zio);
1620 }
1621
1622 /*
1623 * We were unable to handle this as an override bp, treat
1624 * it as a regular write I/O.
1625 */
1626 zio->io_bp_override = NULL;
1627 *bp = zio->io_bp_orig;
1628 zio->io_pipeline = zio->io_orig_pipeline;
1629 }
1630
1631 return (zio);
1632 }
1633
1634 static zio_t *
1635 zio_write_compress(zio_t *zio)
1636 {
1637 spa_t *spa = zio->io_spa;
1638 zio_prop_t *zp = &zio->io_prop;
1639 enum zio_compress compress = zp->zp_compress;
1640 blkptr_t *bp = zio->io_bp;
1641 uint64_t lsize = zio->io_lsize;
1642 uint64_t psize = zio->io_size;
1643 int pass = 1;
1644
1645 /*
1646 * If our children haven't all reached the ready stage,
1647 * wait for them and then repeat this pipeline stage.
1648 */
1649 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1650 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1651 return (NULL);
1652 }
1653
1654 if (!IO_IS_ALLOCATING(zio))
1655 return (zio);
1656
1657 if (zio->io_children_ready != NULL) {
1658 /*
1659 * Now that all our children are ready, run the callback
1660 * associated with this zio in case it wants to modify the
1661 * data to be written.
1662 */
1663 ASSERT3U(zp->zp_level, >, 0);
1664 zio->io_children_ready(zio);
1665 }
1666
1667 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1668 ASSERT(zio->io_bp_override == NULL);
1669
1670 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1671 /*
1672 * We're rewriting an existing block, which means we're
1673 * working on behalf of spa_sync(). For spa_sync() to
1674 * converge, it must eventually be the case that we don't
1675 * have to allocate new blocks. But compression changes
1676 * the blocksize, which forces a reallocate, and makes
1677 * convergence take longer. Therefore, after the first
1678 * few passes, stop compressing to ensure convergence.
1679 */
1680 pass = spa_sync_pass(spa);
1681
1682 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1683 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1684 ASSERT(!BP_GET_DEDUP(bp));
1685
1686 if (pass >= zfs_sync_pass_dont_compress)
1687 compress = ZIO_COMPRESS_OFF;
1688
1689 /* Make sure someone doesn't change their mind on overwrites */
1690 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1691 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1692 }
1693
1694 /* If it's a compressed write that is not raw, compress the buffer. */
1695 if (compress != ZIO_COMPRESS_OFF &&
1696 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1697 void *cbuf = zio_buf_alloc(lsize);
1698 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1699 zp->zp_complevel);
1700 if (psize == 0 || psize >= lsize) {
1701 compress = ZIO_COMPRESS_OFF;
1702 zio_buf_free(cbuf, lsize);
1703 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1704 psize <= BPE_PAYLOAD_SIZE &&
1705 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1706 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1707 encode_embedded_bp_compressed(bp,
1708 cbuf, compress, lsize, psize);
1709 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1710 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1711 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1712 zio_buf_free(cbuf, lsize);
1713 bp->blk_birth = zio->io_txg;
1714 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1715 ASSERT(spa_feature_is_active(spa,
1716 SPA_FEATURE_EMBEDDED_DATA));
1717 return (zio);
1718 } else {
1719 /*
1720 * Round compressed size up to the minimum allocation
1721 * size of the smallest-ashift device, and zero the
1722 * tail. This ensures that the compressed size of the
1723 * BP (and thus compressratio property) are correct,
1724 * in that we charge for the padding used to fill out
1725 * the last sector.
1726 */
1727 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1728 size_t rounded = (size_t)roundup(psize,
1729 spa->spa_min_alloc);
1730 if (rounded >= lsize) {
1731 compress = ZIO_COMPRESS_OFF;
1732 zio_buf_free(cbuf, lsize);
1733 psize = lsize;
1734 } else {
1735 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1736 abd_take_ownership_of_buf(cdata, B_TRUE);
1737 abd_zero_off(cdata, psize, rounded - psize);
1738 psize = rounded;
1739 zio_push_transform(zio, cdata,
1740 psize, lsize, NULL);
1741 }
1742 }
1743
1744 /*
1745 * We were unable to handle this as an override bp, treat
1746 * it as a regular write I/O.
1747 */
1748 zio->io_bp_override = NULL;
1749 *bp = zio->io_bp_orig;
1750 zio->io_pipeline = zio->io_orig_pipeline;
1751
1752 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1753 zp->zp_type == DMU_OT_DNODE) {
1754 /*
1755 * The DMU actually relies on the zio layer's compression
1756 * to free metadnode blocks that have had all contained
1757 * dnodes freed. As a result, even when doing a raw
1758 * receive, we must check whether the block can be compressed
1759 * to a hole.
1760 */
1761 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1762 zio->io_abd, NULL, lsize, zp->zp_complevel);
1763 if (psize == 0 || psize >= lsize)
1764 compress = ZIO_COMPRESS_OFF;
1765 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1766 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1767 /*
1768 * If we are raw receiving an encrypted dataset we should not
1769 * take this codepath because it will change the on-disk block
1770 * and decryption will fail.
1771 */
1772 size_t rounded = MIN((size_t)roundup(psize,
1773 spa->spa_min_alloc), lsize);
1774
1775 if (rounded != psize) {
1776 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1777 abd_zero_off(cdata, psize, rounded - psize);
1778 abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1779 psize = rounded;
1780 zio_push_transform(zio, cdata,
1781 psize, rounded, NULL);
1782 }
1783 } else {
1784 ASSERT3U(psize, !=, 0);
1785 }
1786
1787 /*
1788 * The final pass of spa_sync() must be all rewrites, but the first
1789 * few passes offer a trade-off: allocating blocks defers convergence,
1790 * but newly allocated blocks are sequential, so they can be written
1791 * to disk faster. Therefore, we allow the first few passes of
1792 * spa_sync() to allocate new blocks, but force rewrites after that.
1793 * There should only be a handful of blocks after pass 1 in any case.
1794 */
1795 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1796 BP_GET_PSIZE(bp) == psize &&
1797 pass >= zfs_sync_pass_rewrite) {
1798 VERIFY3U(psize, !=, 0);
1799 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1800
1801 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1802 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1803 } else {
1804 BP_ZERO(bp);
1805 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1806 }
1807
1808 if (psize == 0) {
1809 if (zio->io_bp_orig.blk_birth != 0 &&
1810 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1811 BP_SET_LSIZE(bp, lsize);
1812 BP_SET_TYPE(bp, zp->zp_type);
1813 BP_SET_LEVEL(bp, zp->zp_level);
1814 BP_SET_BIRTH(bp, zio->io_txg, 0);
1815 }
1816 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1817 } else {
1818 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1819 BP_SET_LSIZE(bp, lsize);
1820 BP_SET_TYPE(bp, zp->zp_type);
1821 BP_SET_LEVEL(bp, zp->zp_level);
1822 BP_SET_PSIZE(bp, psize);
1823 BP_SET_COMPRESS(bp, compress);
1824 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1825 BP_SET_DEDUP(bp, zp->zp_dedup);
1826 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1827 if (zp->zp_dedup) {
1828 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1829 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1830 ASSERT(!zp->zp_encrypt ||
1831 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1832 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1833 }
1834 if (zp->zp_nopwrite) {
1835 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1836 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1837 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1838 }
1839 }
1840 return (zio);
1841 }
1842
1843 static zio_t *
1844 zio_free_bp_init(zio_t *zio)
1845 {
1846 blkptr_t *bp = zio->io_bp;
1847
1848 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1849 if (BP_GET_DEDUP(bp))
1850 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1851 }
1852
1853 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1854
1855 return (zio);
1856 }
1857
1858 /*
1859 * ==========================================================================
1860 * Execute the I/O pipeline
1861 * ==========================================================================
1862 */
1863
1864 static void
1865 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1866 {
1867 spa_t *spa = zio->io_spa;
1868 zio_type_t t = zio->io_type;
1869 int flags = (cutinline ? TQ_FRONT : 0);
1870
1871 /*
1872 * If we're a config writer or a probe, the normal issue and
1873 * interrupt threads may all be blocked waiting for the config lock.
1874 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1875 */
1876 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1877 t = ZIO_TYPE_NULL;
1878
1879 /*
1880 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1881 */
1882 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1883 t = ZIO_TYPE_NULL;
1884
1885 /*
1886 * If this is a high priority I/O, then use the high priority taskq if
1887 * available.
1888 */
1889 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1890 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1891 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1892 q++;
1893
1894 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1895
1896 /*
1897 * NB: We are assuming that the zio can only be dispatched
1898 * to a single taskq at a time. It would be a grievous error
1899 * to dispatch the zio to another taskq at the same time.
1900 */
1901 ASSERT(taskq_empty_ent(&zio->io_tqent));
1902 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1903 &zio->io_tqent);
1904 }
1905
1906 static boolean_t
1907 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1908 {
1909 spa_t *spa = zio->io_spa;
1910
1911 taskq_t *tq = taskq_of_curthread();
1912
1913 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1914 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1915 uint_t i;
1916 for (i = 0; i < tqs->stqs_count; i++) {
1917 if (tqs->stqs_taskq[i] == tq)
1918 return (B_TRUE);
1919 }
1920 }
1921
1922 return (B_FALSE);
1923 }
1924
1925 static zio_t *
1926 zio_issue_async(zio_t *zio)
1927 {
1928 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1929
1930 return (NULL);
1931 }
1932
1933 void
1934 zio_interrupt(void *zio)
1935 {
1936 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1937 }
1938
1939 void
1940 zio_delay_interrupt(zio_t *zio)
1941 {
1942 /*
1943 * The timeout_generic() function isn't defined in userspace, so
1944 * rather than trying to implement the function, the zio delay
1945 * functionality has been disabled for userspace builds.
1946 */
1947
1948 #ifdef _KERNEL
1949 /*
1950 * If io_target_timestamp is zero, then no delay has been registered
1951 * for this IO, thus jump to the end of this function and "skip" the
1952 * delay; issuing it directly to the zio layer.
1953 */
1954 if (zio->io_target_timestamp != 0) {
1955 hrtime_t now = gethrtime();
1956
1957 if (now >= zio->io_target_timestamp) {
1958 /*
1959 * This IO has already taken longer than the target
1960 * delay to complete, so we don't want to delay it
1961 * any longer; we "miss" the delay and issue it
1962 * directly to the zio layer. This is likely due to
1963 * the target latency being set to a value less than
1964 * the underlying hardware can satisfy (e.g. delay
1965 * set to 1ms, but the disks take 10ms to complete an
1966 * IO request).
1967 */
1968
1969 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1970 hrtime_t, now);
1971
1972 zio_interrupt(zio);
1973 } else {
1974 taskqid_t tid;
1975 hrtime_t diff = zio->io_target_timestamp - now;
1976 clock_t expire_at_tick = ddi_get_lbolt() +
1977 NSEC_TO_TICK(diff);
1978
1979 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1980 hrtime_t, now, hrtime_t, diff);
1981
1982 if (NSEC_TO_TICK(diff) == 0) {
1983 /* Our delay is less than a jiffy - just spin */
1984 zfs_sleep_until(zio->io_target_timestamp);
1985 zio_interrupt(zio);
1986 } else {
1987 /*
1988 * Use taskq_dispatch_delay() in the place of
1989 * OpenZFS's timeout_generic().
1990 */
1991 tid = taskq_dispatch_delay(system_taskq,
1992 zio_interrupt, zio, TQ_NOSLEEP,
1993 expire_at_tick);
1994 if (tid == TASKQID_INVALID) {
1995 /*
1996 * Couldn't allocate a task. Just
1997 * finish the zio without a delay.
1998 */
1999 zio_interrupt(zio);
2000 }
2001 }
2002 }
2003 return;
2004 }
2005 #endif
2006 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2007 zio_interrupt(zio);
2008 }
2009
2010 static void
2011 zio_deadman_impl(zio_t *pio, int ziodepth)
2012 {
2013 zio_t *cio, *cio_next;
2014 zio_link_t *zl = NULL;
2015 vdev_t *vd = pio->io_vd;
2016
2017 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2018 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2019 zbookmark_phys_t *zb = &pio->io_bookmark;
2020 uint64_t delta = gethrtime() - pio->io_timestamp;
2021 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2022
2023 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2024 "delta=%llu queued=%llu io=%llu "
2025 "path=%s "
2026 "last=%llu type=%d "
2027 "priority=%d flags=0x%x stage=0x%x "
2028 "pipeline=0x%x pipeline-trace=0x%x "
2029 "objset=%llu object=%llu "
2030 "level=%llu blkid=%llu "
2031 "offset=%llu size=%llu "
2032 "error=%d",
2033 ziodepth, pio, pio->io_timestamp,
2034 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2035 vd ? vd->vdev_path : "NULL",
2036 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2037 pio->io_priority, pio->io_flags, pio->io_stage,
2038 pio->io_pipeline, pio->io_pipeline_trace,
2039 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2040 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2041 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2042 pio->io_error);
2043 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2044 pio->io_spa, vd, zb, pio, 0);
2045
2046 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2047 taskq_empty_ent(&pio->io_tqent)) {
2048 zio_interrupt(pio);
2049 }
2050 }
2051
2052 mutex_enter(&pio->io_lock);
2053 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2054 cio_next = zio_walk_children(pio, &zl);
2055 zio_deadman_impl(cio, ziodepth + 1);
2056 }
2057 mutex_exit(&pio->io_lock);
2058 }
2059
2060 /*
2061 * Log the critical information describing this zio and all of its children
2062 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2063 */
2064 void
2065 zio_deadman(zio_t *pio, const char *tag)
2066 {
2067 spa_t *spa = pio->io_spa;
2068 char *name = spa_name(spa);
2069
2070 if (!zfs_deadman_enabled || spa_suspended(spa))
2071 return;
2072
2073 zio_deadman_impl(pio, 0);
2074
2075 switch (spa_get_deadman_failmode(spa)) {
2076 case ZIO_FAILURE_MODE_WAIT:
2077 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2078 break;
2079
2080 case ZIO_FAILURE_MODE_CONTINUE:
2081 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2082 break;
2083
2084 case ZIO_FAILURE_MODE_PANIC:
2085 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2086 break;
2087 }
2088 }
2089
2090 /*
2091 * Execute the I/O pipeline until one of the following occurs:
2092 * (1) the I/O completes; (2) the pipeline stalls waiting for
2093 * dependent child I/Os; (3) the I/O issues, so we're waiting
2094 * for an I/O completion interrupt; (4) the I/O is delegated by
2095 * vdev-level caching or aggregation; (5) the I/O is deferred
2096 * due to vdev-level queueing; (6) the I/O is handed off to
2097 * another thread. In all cases, the pipeline stops whenever
2098 * there's no CPU work; it never burns a thread in cv_wait_io().
2099 *
2100 * There's no locking on io_stage because there's no legitimate way
2101 * for multiple threads to be attempting to process the same I/O.
2102 */
2103 static zio_pipe_stage_t *zio_pipeline[];
2104
2105 /*
2106 * zio_execute() is a wrapper around the static function
2107 * __zio_execute() so that we can force __zio_execute() to be
2108 * inlined. This reduces stack overhead which is important
2109 * because __zio_execute() is called recursively in several zio
2110 * code paths. zio_execute() itself cannot be inlined because
2111 * it is externally visible.
2112 */
2113 void
2114 zio_execute(void *zio)
2115 {
2116 fstrans_cookie_t cookie;
2117
2118 cookie = spl_fstrans_mark();
2119 __zio_execute(zio);
2120 spl_fstrans_unmark(cookie);
2121 }
2122
2123 /*
2124 * Used to determine if in the current context the stack is sized large
2125 * enough to allow zio_execute() to be called recursively. A minimum
2126 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2127 */
2128 static boolean_t
2129 zio_execute_stack_check(zio_t *zio)
2130 {
2131 #if !defined(HAVE_LARGE_STACKS)
2132 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2133
2134 /* Executing in txg_sync_thread() context. */
2135 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2136 return (B_TRUE);
2137
2138 /* Pool initialization outside of zio_taskq context. */
2139 if (dp && spa_is_initializing(dp->dp_spa) &&
2140 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2141 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2142 return (B_TRUE);
2143 #else
2144 (void) zio;
2145 #endif /* HAVE_LARGE_STACKS */
2146
2147 return (B_FALSE);
2148 }
2149
2150 __attribute__((always_inline))
2151 static inline void
2152 __zio_execute(zio_t *zio)
2153 {
2154 ASSERT3U(zio->io_queued_timestamp, >, 0);
2155
2156 while (zio->io_stage < ZIO_STAGE_DONE) {
2157 enum zio_stage pipeline = zio->io_pipeline;
2158 enum zio_stage stage = zio->io_stage;
2159
2160 zio->io_executor = curthread;
2161
2162 ASSERT(!MUTEX_HELD(&zio->io_lock));
2163 ASSERT(ISP2(stage));
2164 ASSERT(zio->io_stall == NULL);
2165
2166 do {
2167 stage <<= 1;
2168 } while ((stage & pipeline) == 0);
2169
2170 ASSERT(stage <= ZIO_STAGE_DONE);
2171
2172 /*
2173 * If we are in interrupt context and this pipeline stage
2174 * will grab a config lock that is held across I/O,
2175 * or may wait for an I/O that needs an interrupt thread
2176 * to complete, issue async to avoid deadlock.
2177 *
2178 * For VDEV_IO_START, we cut in line so that the io will
2179 * be sent to disk promptly.
2180 */
2181 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2182 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2183 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2184 zio_requeue_io_start_cut_in_line : B_FALSE;
2185 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2186 return;
2187 }
2188
2189 /*
2190 * If the current context doesn't have large enough stacks
2191 * the zio must be issued asynchronously to prevent overflow.
2192 */
2193 if (zio_execute_stack_check(zio)) {
2194 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2195 zio_requeue_io_start_cut_in_line : B_FALSE;
2196 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2197 return;
2198 }
2199
2200 zio->io_stage = stage;
2201 zio->io_pipeline_trace |= zio->io_stage;
2202
2203 /*
2204 * The zio pipeline stage returns the next zio to execute
2205 * (typically the same as this one), or NULL if we should
2206 * stop.
2207 */
2208 zio = zio_pipeline[highbit64(stage) - 1](zio);
2209
2210 if (zio == NULL)
2211 return;
2212 }
2213 }
2214
2215
2216 /*
2217 * ==========================================================================
2218 * Initiate I/O, either sync or async
2219 * ==========================================================================
2220 */
2221 int
2222 zio_wait(zio_t *zio)
2223 {
2224 /*
2225 * Some routines, like zio_free_sync(), may return a NULL zio
2226 * to avoid the performance overhead of creating and then destroying
2227 * an unneeded zio. For the callers' simplicity, we accept a NULL
2228 * zio and ignore it.
2229 */
2230 if (zio == NULL)
2231 return (0);
2232
2233 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2234 int error;
2235
2236 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2237 ASSERT3P(zio->io_executor, ==, NULL);
2238
2239 zio->io_waiter = curthread;
2240 ASSERT0(zio->io_queued_timestamp);
2241 zio->io_queued_timestamp = gethrtime();
2242
2243 __zio_execute(zio);
2244
2245 mutex_enter(&zio->io_lock);
2246 while (zio->io_executor != NULL) {
2247 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2248 ddi_get_lbolt() + timeout);
2249
2250 if (zfs_deadman_enabled && error == -1 &&
2251 gethrtime() - zio->io_queued_timestamp >
2252 spa_deadman_ziotime(zio->io_spa)) {
2253 mutex_exit(&zio->io_lock);
2254 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2255 zio_deadman(zio, FTAG);
2256 mutex_enter(&zio->io_lock);
2257 }
2258 }
2259 mutex_exit(&zio->io_lock);
2260
2261 error = zio->io_error;
2262 zio_destroy(zio);
2263
2264 return (error);
2265 }
2266
2267 void
2268 zio_nowait(zio_t *zio)
2269 {
2270 /*
2271 * See comment in zio_wait().
2272 */
2273 if (zio == NULL)
2274 return;
2275
2276 ASSERT3P(zio->io_executor, ==, NULL);
2277
2278 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2279 zio_unique_parent(zio) == NULL) {
2280 zio_t *pio;
2281
2282 /*
2283 * This is a logical async I/O with no parent to wait for it.
2284 * We add it to the spa_async_root_zio "Godfather" I/O which
2285 * will ensure they complete prior to unloading the pool.
2286 */
2287 spa_t *spa = zio->io_spa;
2288 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2289
2290 zio_add_child(pio, zio);
2291 }
2292
2293 ASSERT0(zio->io_queued_timestamp);
2294 zio->io_queued_timestamp = gethrtime();
2295 __zio_execute(zio);
2296 }
2297
2298 /*
2299 * ==========================================================================
2300 * Reexecute, cancel, or suspend/resume failed I/O
2301 * ==========================================================================
2302 */
2303
2304 static void
2305 zio_reexecute(void *arg)
2306 {
2307 zio_t *pio = arg;
2308 zio_t *cio, *cio_next;
2309
2310 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2311 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2312 ASSERT(pio->io_gang_leader == NULL);
2313 ASSERT(pio->io_gang_tree == NULL);
2314
2315 pio->io_flags = pio->io_orig_flags;
2316 pio->io_stage = pio->io_orig_stage;
2317 pio->io_pipeline = pio->io_orig_pipeline;
2318 pio->io_reexecute = 0;
2319 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2320 pio->io_pipeline_trace = 0;
2321 pio->io_error = 0;
2322 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2323 pio->io_state[w] = 0;
2324 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2325 pio->io_child_error[c] = 0;
2326
2327 if (IO_IS_ALLOCATING(pio))
2328 BP_ZERO(pio->io_bp);
2329
2330 /*
2331 * As we reexecute pio's children, new children could be created.
2332 * New children go to the head of pio's io_child_list, however,
2333 * so we will (correctly) not reexecute them. The key is that
2334 * the remainder of pio's io_child_list, from 'cio_next' onward,
2335 * cannot be affected by any side effects of reexecuting 'cio'.
2336 */
2337 zio_link_t *zl = NULL;
2338 mutex_enter(&pio->io_lock);
2339 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2340 cio_next = zio_walk_children(pio, &zl);
2341 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2342 pio->io_children[cio->io_child_type][w]++;
2343 mutex_exit(&pio->io_lock);
2344 zio_reexecute(cio);
2345 mutex_enter(&pio->io_lock);
2346 }
2347 mutex_exit(&pio->io_lock);
2348
2349 /*
2350 * Now that all children have been reexecuted, execute the parent.
2351 * We don't reexecute "The Godfather" I/O here as it's the
2352 * responsibility of the caller to wait on it.
2353 */
2354 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2355 pio->io_queued_timestamp = gethrtime();
2356 __zio_execute(pio);
2357 }
2358 }
2359
2360 void
2361 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2362 {
2363 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2364 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2365 "failure and the failure mode property for this pool "
2366 "is set to panic.", spa_name(spa));
2367
2368 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2369 "failure and has been suspended.\n", spa_name(spa));
2370
2371 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2372 NULL, NULL, 0);
2373
2374 mutex_enter(&spa->spa_suspend_lock);
2375
2376 if (spa->spa_suspend_zio_root == NULL)
2377 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2378 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2379 ZIO_FLAG_GODFATHER);
2380
2381 spa->spa_suspended = reason;
2382
2383 if (zio != NULL) {
2384 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2385 ASSERT(zio != spa->spa_suspend_zio_root);
2386 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2387 ASSERT(zio_unique_parent(zio) == NULL);
2388 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2389 zio_add_child(spa->spa_suspend_zio_root, zio);
2390 }
2391
2392 mutex_exit(&spa->spa_suspend_lock);
2393 }
2394
2395 int
2396 zio_resume(spa_t *spa)
2397 {
2398 zio_t *pio;
2399
2400 /*
2401 * Reexecute all previously suspended i/o.
2402 */
2403 mutex_enter(&spa->spa_suspend_lock);
2404 spa->spa_suspended = ZIO_SUSPEND_NONE;
2405 cv_broadcast(&spa->spa_suspend_cv);
2406 pio = spa->spa_suspend_zio_root;
2407 spa->spa_suspend_zio_root = NULL;
2408 mutex_exit(&spa->spa_suspend_lock);
2409
2410 if (pio == NULL)
2411 return (0);
2412
2413 zio_reexecute(pio);
2414 return (zio_wait(pio));
2415 }
2416
2417 void
2418 zio_resume_wait(spa_t *spa)
2419 {
2420 mutex_enter(&spa->spa_suspend_lock);
2421 while (spa_suspended(spa))
2422 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2423 mutex_exit(&spa->spa_suspend_lock);
2424 }
2425
2426 /*
2427 * ==========================================================================
2428 * Gang blocks.
2429 *
2430 * A gang block is a collection of small blocks that looks to the DMU
2431 * like one large block. When zio_dva_allocate() cannot find a block
2432 * of the requested size, due to either severe fragmentation or the pool
2433 * being nearly full, it calls zio_write_gang_block() to construct the
2434 * block from smaller fragments.
2435 *
2436 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2437 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2438 * an indirect block: it's an array of block pointers. It consumes
2439 * only one sector and hence is allocatable regardless of fragmentation.
2440 * The gang header's bps point to its gang members, which hold the data.
2441 *
2442 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2443 * as the verifier to ensure uniqueness of the SHA256 checksum.
2444 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2445 * not the gang header. This ensures that data block signatures (needed for
2446 * deduplication) are independent of how the block is physically stored.
2447 *
2448 * Gang blocks can be nested: a gang member may itself be a gang block.
2449 * Thus every gang block is a tree in which root and all interior nodes are
2450 * gang headers, and the leaves are normal blocks that contain user data.
2451 * The root of the gang tree is called the gang leader.
2452 *
2453 * To perform any operation (read, rewrite, free, claim) on a gang block,
2454 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2455 * in the io_gang_tree field of the original logical i/o by recursively
2456 * reading the gang leader and all gang headers below it. This yields
2457 * an in-core tree containing the contents of every gang header and the
2458 * bps for every constituent of the gang block.
2459 *
2460 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2461 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2462 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2463 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2464 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2465 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2466 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2467 * of the gang header plus zio_checksum_compute() of the data to update the
2468 * gang header's blk_cksum as described above.
2469 *
2470 * The two-phase assemble/issue model solves the problem of partial failure --
2471 * what if you'd freed part of a gang block but then couldn't read the
2472 * gang header for another part? Assembling the entire gang tree first
2473 * ensures that all the necessary gang header I/O has succeeded before
2474 * starting the actual work of free, claim, or write. Once the gang tree
2475 * is assembled, free and claim are in-memory operations that cannot fail.
2476 *
2477 * In the event that a gang write fails, zio_dva_unallocate() walks the
2478 * gang tree to immediately free (i.e. insert back into the space map)
2479 * everything we've allocated. This ensures that we don't get ENOSPC
2480 * errors during repeated suspend/resume cycles due to a flaky device.
2481 *
2482 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2483 * the gang tree, we won't modify the block, so we can safely defer the free
2484 * (knowing that the block is still intact). If we *can* assemble the gang
2485 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2486 * each constituent bp and we can allocate a new block on the next sync pass.
2487 *
2488 * In all cases, the gang tree allows complete recovery from partial failure.
2489 * ==========================================================================
2490 */
2491
2492 static void
2493 zio_gang_issue_func_done(zio_t *zio)
2494 {
2495 abd_free(zio->io_abd);
2496 }
2497
2498 static zio_t *
2499 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2500 uint64_t offset)
2501 {
2502 if (gn != NULL)
2503 return (pio);
2504
2505 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2506 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2507 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2508 &pio->io_bookmark));
2509 }
2510
2511 static zio_t *
2512 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2513 uint64_t offset)
2514 {
2515 zio_t *zio;
2516
2517 if (gn != NULL) {
2518 abd_t *gbh_abd =
2519 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2520 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2521 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2522 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2523 &pio->io_bookmark);
2524 /*
2525 * As we rewrite each gang header, the pipeline will compute
2526 * a new gang block header checksum for it; but no one will
2527 * compute a new data checksum, so we do that here. The one
2528 * exception is the gang leader: the pipeline already computed
2529 * its data checksum because that stage precedes gang assembly.
2530 * (Presently, nothing actually uses interior data checksums;
2531 * this is just good hygiene.)
2532 */
2533 if (gn != pio->io_gang_leader->io_gang_tree) {
2534 abd_t *buf = abd_get_offset(data, offset);
2535
2536 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2537 buf, BP_GET_PSIZE(bp));
2538
2539 abd_free(buf);
2540 }
2541 /*
2542 * If we are here to damage data for testing purposes,
2543 * leave the GBH alone so that we can detect the damage.
2544 */
2545 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2546 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2547 } else {
2548 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2549 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2550 zio_gang_issue_func_done, NULL, pio->io_priority,
2551 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2552 }
2553
2554 return (zio);
2555 }
2556
2557 static zio_t *
2558 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2559 uint64_t offset)
2560 {
2561 (void) gn, (void) data, (void) offset;
2562
2563 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2564 ZIO_GANG_CHILD_FLAGS(pio));
2565 if (zio == NULL) {
2566 zio = zio_null(pio, pio->io_spa,
2567 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2568 }
2569 return (zio);
2570 }
2571
2572 static zio_t *
2573 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2574 uint64_t offset)
2575 {
2576 (void) gn, (void) data, (void) offset;
2577 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2578 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2579 }
2580
2581 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2582 NULL,
2583 zio_read_gang,
2584 zio_rewrite_gang,
2585 zio_free_gang,
2586 zio_claim_gang,
2587 NULL
2588 };
2589
2590 static void zio_gang_tree_assemble_done(zio_t *zio);
2591
2592 static zio_gang_node_t *
2593 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2594 {
2595 zio_gang_node_t *gn;
2596
2597 ASSERT(*gnpp == NULL);
2598
2599 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2600 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2601 *gnpp = gn;
2602
2603 return (gn);
2604 }
2605
2606 static void
2607 zio_gang_node_free(zio_gang_node_t **gnpp)
2608 {
2609 zio_gang_node_t *gn = *gnpp;
2610
2611 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2612 ASSERT(gn->gn_child[g] == NULL);
2613
2614 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2615 kmem_free(gn, sizeof (*gn));
2616 *gnpp = NULL;
2617 }
2618
2619 static void
2620 zio_gang_tree_free(zio_gang_node_t **gnpp)
2621 {
2622 zio_gang_node_t *gn = *gnpp;
2623
2624 if (gn == NULL)
2625 return;
2626
2627 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2628 zio_gang_tree_free(&gn->gn_child[g]);
2629
2630 zio_gang_node_free(gnpp);
2631 }
2632
2633 static void
2634 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2635 {
2636 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2637 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2638
2639 ASSERT(gio->io_gang_leader == gio);
2640 ASSERT(BP_IS_GANG(bp));
2641
2642 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2643 zio_gang_tree_assemble_done, gn, gio->io_priority,
2644 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2645 }
2646
2647 static void
2648 zio_gang_tree_assemble_done(zio_t *zio)
2649 {
2650 zio_t *gio = zio->io_gang_leader;
2651 zio_gang_node_t *gn = zio->io_private;
2652 blkptr_t *bp = zio->io_bp;
2653
2654 ASSERT(gio == zio_unique_parent(zio));
2655 ASSERT(zio->io_child_count == 0);
2656
2657 if (zio->io_error)
2658 return;
2659
2660 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2661 if (BP_SHOULD_BYTESWAP(bp))
2662 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2663
2664 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2665 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2666 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2667
2668 abd_free(zio->io_abd);
2669
2670 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2671 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2672 if (!BP_IS_GANG(gbp))
2673 continue;
2674 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2675 }
2676 }
2677
2678 static void
2679 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2680 uint64_t offset)
2681 {
2682 zio_t *gio = pio->io_gang_leader;
2683 zio_t *zio;
2684
2685 ASSERT(BP_IS_GANG(bp) == !!gn);
2686 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2687 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2688
2689 /*
2690 * If you're a gang header, your data is in gn->gn_gbh.
2691 * If you're a gang member, your data is in 'data' and gn == NULL.
2692 */
2693 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2694
2695 if (gn != NULL) {
2696 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2697
2698 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2699 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2700 if (BP_IS_HOLE(gbp))
2701 continue;
2702 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2703 offset);
2704 offset += BP_GET_PSIZE(gbp);
2705 }
2706 }
2707
2708 if (gn == gio->io_gang_tree)
2709 ASSERT3U(gio->io_size, ==, offset);
2710
2711 if (zio != pio)
2712 zio_nowait(zio);
2713 }
2714
2715 static zio_t *
2716 zio_gang_assemble(zio_t *zio)
2717 {
2718 blkptr_t *bp = zio->io_bp;
2719
2720 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2721 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2722
2723 zio->io_gang_leader = zio;
2724
2725 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2726
2727 return (zio);
2728 }
2729
2730 static zio_t *
2731 zio_gang_issue(zio_t *zio)
2732 {
2733 blkptr_t *bp = zio->io_bp;
2734
2735 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2736 return (NULL);
2737 }
2738
2739 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2740 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2741
2742 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2743 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2744 0);
2745 else
2746 zio_gang_tree_free(&zio->io_gang_tree);
2747
2748 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2749
2750 return (zio);
2751 }
2752
2753 static void
2754 zio_write_gang_member_ready(zio_t *zio)
2755 {
2756 zio_t *pio = zio_unique_parent(zio);
2757 dva_t *cdva = zio->io_bp->blk_dva;
2758 dva_t *pdva = pio->io_bp->blk_dva;
2759 uint64_t asize;
2760 zio_t *gio __maybe_unused = zio->io_gang_leader;
2761
2762 if (BP_IS_HOLE(zio->io_bp))
2763 return;
2764
2765 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2766
2767 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2768 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2769 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2770 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2771 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2772
2773 mutex_enter(&pio->io_lock);
2774 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2775 ASSERT(DVA_GET_GANG(&pdva[d]));
2776 asize = DVA_GET_ASIZE(&pdva[d]);
2777 asize += DVA_GET_ASIZE(&cdva[d]);
2778 DVA_SET_ASIZE(&pdva[d], asize);
2779 }
2780 mutex_exit(&pio->io_lock);
2781 }
2782
2783 static void
2784 zio_write_gang_done(zio_t *zio)
2785 {
2786 /*
2787 * The io_abd field will be NULL for a zio with no data. The io_flags
2788 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2789 * check for it here as it is cleared in zio_ready.
2790 */
2791 if (zio->io_abd != NULL)
2792 abd_free(zio->io_abd);
2793 }
2794
2795 static zio_t *
2796 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2797 {
2798 spa_t *spa = pio->io_spa;
2799 blkptr_t *bp = pio->io_bp;
2800 zio_t *gio = pio->io_gang_leader;
2801 zio_t *zio;
2802 zio_gang_node_t *gn, **gnpp;
2803 zio_gbh_phys_t *gbh;
2804 abd_t *gbh_abd;
2805 uint64_t txg = pio->io_txg;
2806 uint64_t resid = pio->io_size;
2807 uint64_t lsize;
2808 int copies = gio->io_prop.zp_copies;
2809 int gbh_copies;
2810 zio_prop_t zp;
2811 int error;
2812 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2813
2814 /*
2815 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2816 * have a third copy.
2817 */
2818 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2819 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2820 gbh_copies = SPA_DVAS_PER_BP - 1;
2821
2822 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2823 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2824 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2825 ASSERT(has_data);
2826
2827 flags |= METASLAB_ASYNC_ALLOC;
2828 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2829 mca_alloc_slots, pio));
2830
2831 /*
2832 * The logical zio has already placed a reservation for
2833 * 'copies' allocation slots but gang blocks may require
2834 * additional copies. These additional copies
2835 * (i.e. gbh_copies - copies) are guaranteed to succeed
2836 * since metaslab_class_throttle_reserve() always allows
2837 * additional reservations for gang blocks.
2838 */
2839 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2840 pio->io_allocator, pio, flags));
2841 }
2842
2843 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2844 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2845 &pio->io_alloc_list, pio, pio->io_allocator);
2846 if (error) {
2847 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2848 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2849 ASSERT(has_data);
2850
2851 /*
2852 * If we failed to allocate the gang block header then
2853 * we remove any additional allocation reservations that
2854 * we placed here. The original reservation will
2855 * be removed when the logical I/O goes to the ready
2856 * stage.
2857 */
2858 metaslab_class_throttle_unreserve(mc,
2859 gbh_copies - copies, pio->io_allocator, pio);
2860 }
2861
2862 pio->io_error = error;
2863 return (pio);
2864 }
2865
2866 if (pio == gio) {
2867 gnpp = &gio->io_gang_tree;
2868 } else {
2869 gnpp = pio->io_private;
2870 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2871 }
2872
2873 gn = zio_gang_node_alloc(gnpp);
2874 gbh = gn->gn_gbh;
2875 memset(gbh, 0, SPA_GANGBLOCKSIZE);
2876 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2877
2878 /*
2879 * Create the gang header.
2880 */
2881 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2882 zio_write_gang_done, NULL, pio->io_priority,
2883 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2884
2885 /*
2886 * Create and nowait the gang children.
2887 */
2888 for (int g = 0; resid != 0; resid -= lsize, g++) {
2889 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2890 SPA_MINBLOCKSIZE);
2891 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2892
2893 zp.zp_checksum = gio->io_prop.zp_checksum;
2894 zp.zp_compress = ZIO_COMPRESS_OFF;
2895 zp.zp_complevel = gio->io_prop.zp_complevel;
2896 zp.zp_type = DMU_OT_NONE;
2897 zp.zp_level = 0;
2898 zp.zp_copies = gio->io_prop.zp_copies;
2899 zp.zp_dedup = B_FALSE;
2900 zp.zp_dedup_verify = B_FALSE;
2901 zp.zp_nopwrite = B_FALSE;
2902 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2903 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2904 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
2905 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
2906 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
2907
2908 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2909 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2910 resid) : NULL, lsize, lsize, &zp,
2911 zio_write_gang_member_ready, NULL, NULL,
2912 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2913 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2914
2915 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2916 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2917 ASSERT(has_data);
2918
2919 /*
2920 * Gang children won't throttle but we should
2921 * account for their work, so reserve an allocation
2922 * slot for them here.
2923 */
2924 VERIFY(metaslab_class_throttle_reserve(mc,
2925 zp.zp_copies, cio->io_allocator, cio, flags));
2926 }
2927 zio_nowait(cio);
2928 }
2929
2930 /*
2931 * Set pio's pipeline to just wait for zio to finish.
2932 */
2933 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2934
2935 /*
2936 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2937 */
2938 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2939
2940 zio_nowait(zio);
2941
2942 return (pio);
2943 }
2944
2945 /*
2946 * The zio_nop_write stage in the pipeline determines if allocating a
2947 * new bp is necessary. The nopwrite feature can handle writes in
2948 * either syncing or open context (i.e. zil writes) and as a result is
2949 * mutually exclusive with dedup.
2950 *
2951 * By leveraging a cryptographically secure checksum, such as SHA256, we
2952 * can compare the checksums of the new data and the old to determine if
2953 * allocating a new block is required. Note that our requirements for
2954 * cryptographic strength are fairly weak: there can't be any accidental
2955 * hash collisions, but we don't need to be secure against intentional
2956 * (malicious) collisions. To trigger a nopwrite, you have to be able
2957 * to write the file to begin with, and triggering an incorrect (hash
2958 * collision) nopwrite is no worse than simply writing to the file.
2959 * That said, there are no known attacks against the checksum algorithms
2960 * used for nopwrite, assuming that the salt and the checksums
2961 * themselves remain secret.
2962 */
2963 static zio_t *
2964 zio_nop_write(zio_t *zio)
2965 {
2966 blkptr_t *bp = zio->io_bp;
2967 blkptr_t *bp_orig = &zio->io_bp_orig;
2968 zio_prop_t *zp = &zio->io_prop;
2969
2970 ASSERT(BP_GET_LEVEL(bp) == 0);
2971 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2972 ASSERT(zp->zp_nopwrite);
2973 ASSERT(!zp->zp_dedup);
2974 ASSERT(zio->io_bp_override == NULL);
2975 ASSERT(IO_IS_ALLOCATING(zio));
2976
2977 /*
2978 * Check to see if the original bp and the new bp have matching
2979 * characteristics (i.e. same checksum, compression algorithms, etc).
2980 * If they don't then just continue with the pipeline which will
2981 * allocate a new bp.
2982 */
2983 if (BP_IS_HOLE(bp_orig) ||
2984 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2985 ZCHECKSUM_FLAG_NOPWRITE) ||
2986 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2987 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2988 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2989 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2990 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2991 return (zio);
2992
2993 /*
2994 * If the checksums match then reset the pipeline so that we
2995 * avoid allocating a new bp and issuing any I/O.
2996 */
2997 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2998 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2999 ZCHECKSUM_FLAG_NOPWRITE);
3000 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3001 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3002 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3003 ASSERT(memcmp(&bp->blk_prop, &bp_orig->blk_prop,
3004 sizeof (uint64_t)) == 0);
3005
3006 /*
3007 * If we're overwriting a block that is currently on an
3008 * indirect vdev, then ignore the nopwrite request and
3009 * allow a new block to be allocated on a concrete vdev.
3010 */
3011 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3012 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3013 DVA_GET_VDEV(&bp->blk_dva[0]));
3014 if (tvd->vdev_ops == &vdev_indirect_ops) {
3015 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3016 return (zio);
3017 }
3018 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3019
3020 *bp = *bp_orig;
3021 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3022 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3023 }
3024
3025 return (zio);
3026 }
3027
3028 /*
3029 * ==========================================================================
3030 * Dedup
3031 * ==========================================================================
3032 */
3033 static void
3034 zio_ddt_child_read_done(zio_t *zio)
3035 {
3036 blkptr_t *bp = zio->io_bp;
3037 ddt_entry_t *dde = zio->io_private;
3038 ddt_phys_t *ddp;
3039 zio_t *pio = zio_unique_parent(zio);
3040
3041 mutex_enter(&pio->io_lock);
3042 ddp = ddt_phys_select(dde, bp);
3043 if (zio->io_error == 0)
3044 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3045
3046 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3047 dde->dde_repair_abd = zio->io_abd;
3048 else
3049 abd_free(zio->io_abd);
3050 mutex_exit(&pio->io_lock);
3051 }
3052
3053 static zio_t *
3054 zio_ddt_read_start(zio_t *zio)
3055 {
3056 blkptr_t *bp = zio->io_bp;
3057
3058 ASSERT(BP_GET_DEDUP(bp));
3059 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3060 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3061
3062 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3063 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3064 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3065 ddt_phys_t *ddp = dde->dde_phys;
3066 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3067 blkptr_t blk;
3068
3069 ASSERT(zio->io_vsd == NULL);
3070 zio->io_vsd = dde;
3071
3072 if (ddp_self == NULL)
3073 return (zio);
3074
3075 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3076 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3077 continue;
3078 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3079 &blk);
3080 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3081 abd_alloc_for_io(zio->io_size, B_TRUE),
3082 zio->io_size, zio_ddt_child_read_done, dde,
3083 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3084 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3085 }
3086 return (zio);
3087 }
3088
3089 zio_nowait(zio_read(zio, zio->io_spa, bp,
3090 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3091 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3092
3093 return (zio);
3094 }
3095
3096 static zio_t *
3097 zio_ddt_read_done(zio_t *zio)
3098 {
3099 blkptr_t *bp = zio->io_bp;
3100
3101 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3102 return (NULL);
3103 }
3104
3105 ASSERT(BP_GET_DEDUP(bp));
3106 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3107 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3108
3109 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3110 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3111 ddt_entry_t *dde = zio->io_vsd;
3112 if (ddt == NULL) {
3113 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3114 return (zio);
3115 }
3116 if (dde == NULL) {
3117 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3118 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3119 return (NULL);
3120 }
3121 if (dde->dde_repair_abd != NULL) {
3122 abd_copy(zio->io_abd, dde->dde_repair_abd,
3123 zio->io_size);
3124 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3125 }
3126 ddt_repair_done(ddt, dde);
3127 zio->io_vsd = NULL;
3128 }
3129
3130 ASSERT(zio->io_vsd == NULL);
3131
3132 return (zio);
3133 }
3134
3135 static boolean_t
3136 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3137 {
3138 spa_t *spa = zio->io_spa;
3139 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3140
3141 ASSERT(!(zio->io_bp_override && do_raw));
3142
3143 /*
3144 * Note: we compare the original data, not the transformed data,
3145 * because when zio->io_bp is an override bp, we will not have
3146 * pushed the I/O transforms. That's an important optimization
3147 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3148 * However, we should never get a raw, override zio so in these
3149 * cases we can compare the io_abd directly. This is useful because
3150 * it allows us to do dedup verification even if we don't have access
3151 * to the original data (for instance, if the encryption keys aren't
3152 * loaded).
3153 */
3154
3155 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3156 zio_t *lio = dde->dde_lead_zio[p];
3157
3158 if (lio != NULL && do_raw) {
3159 return (lio->io_size != zio->io_size ||
3160 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3161 } else if (lio != NULL) {
3162 return (lio->io_orig_size != zio->io_orig_size ||
3163 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3164 }
3165 }
3166
3167 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3168 ddt_phys_t *ddp = &dde->dde_phys[p];
3169
3170 if (ddp->ddp_phys_birth != 0 && do_raw) {
3171 blkptr_t blk = *zio->io_bp;
3172 uint64_t psize;
3173 abd_t *tmpabd;
3174 int error;
3175
3176 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3177 psize = BP_GET_PSIZE(&blk);
3178
3179 if (psize != zio->io_size)
3180 return (B_TRUE);
3181
3182 ddt_exit(ddt);
3183
3184 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3185
3186 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3187 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3188 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3189 ZIO_FLAG_RAW, &zio->io_bookmark));
3190
3191 if (error == 0) {
3192 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3193 error = SET_ERROR(ENOENT);
3194 }
3195
3196 abd_free(tmpabd);
3197 ddt_enter(ddt);
3198 return (error != 0);
3199 } else if (ddp->ddp_phys_birth != 0) {
3200 arc_buf_t *abuf = NULL;
3201 arc_flags_t aflags = ARC_FLAG_WAIT;
3202 blkptr_t blk = *zio->io_bp;
3203 int error;
3204
3205 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3206
3207 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3208 return (B_TRUE);
3209
3210 ddt_exit(ddt);
3211
3212 error = arc_read(NULL, spa, &blk,
3213 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3214 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3215 &aflags, &zio->io_bookmark);
3216
3217 if (error == 0) {
3218 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3219 zio->io_orig_size) != 0)
3220 error = SET_ERROR(ENOENT);
3221 arc_buf_destroy(abuf, &abuf);
3222 }
3223
3224 ddt_enter(ddt);
3225 return (error != 0);
3226 }
3227 }
3228
3229 return (B_FALSE);
3230 }
3231
3232 static void
3233 zio_ddt_child_write_ready(zio_t *zio)
3234 {
3235 int p = zio->io_prop.zp_copies;
3236 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3237 ddt_entry_t *dde = zio->io_private;
3238 ddt_phys_t *ddp = &dde->dde_phys[p];
3239 zio_t *pio;
3240
3241 if (zio->io_error)
3242 return;
3243
3244 ddt_enter(ddt);
3245
3246 ASSERT(dde->dde_lead_zio[p] == zio);
3247
3248 ddt_phys_fill(ddp, zio->io_bp);
3249
3250 zio_link_t *zl = NULL;
3251 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3252 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3253
3254 ddt_exit(ddt);
3255 }
3256
3257 static void
3258 zio_ddt_child_write_done(zio_t *zio)
3259 {
3260 int p = zio->io_prop.zp_copies;
3261 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3262 ddt_entry_t *dde = zio->io_private;
3263 ddt_phys_t *ddp = &dde->dde_phys[p];
3264
3265 ddt_enter(ddt);
3266
3267 ASSERT(ddp->ddp_refcnt == 0);
3268 ASSERT(dde->dde_lead_zio[p] == zio);
3269 dde->dde_lead_zio[p] = NULL;
3270
3271 if (zio->io_error == 0) {
3272 zio_link_t *zl = NULL;
3273 while (zio_walk_parents(zio, &zl) != NULL)
3274 ddt_phys_addref(ddp);
3275 } else {
3276 ddt_phys_clear(ddp);
3277 }
3278
3279 ddt_exit(ddt);
3280 }
3281
3282 static zio_t *
3283 zio_ddt_write(zio_t *zio)
3284 {
3285 spa_t *spa = zio->io_spa;
3286 blkptr_t *bp = zio->io_bp;
3287 uint64_t txg = zio->io_txg;
3288 zio_prop_t *zp = &zio->io_prop;
3289 int p = zp->zp_copies;
3290 zio_t *cio = NULL;
3291 ddt_t *ddt = ddt_select(spa, bp);
3292 ddt_entry_t *dde;
3293 ddt_phys_t *ddp;
3294
3295 ASSERT(BP_GET_DEDUP(bp));
3296 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3297 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3298 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3299
3300 ddt_enter(ddt);
3301 dde = ddt_lookup(ddt, bp, B_TRUE);
3302 ddp = &dde->dde_phys[p];
3303
3304 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3305 /*
3306 * If we're using a weak checksum, upgrade to a strong checksum
3307 * and try again. If we're already using a strong checksum,
3308 * we can't resolve it, so just convert to an ordinary write.
3309 * (And automatically e-mail a paper to Nature?)
3310 */
3311 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3312 ZCHECKSUM_FLAG_DEDUP)) {
3313 zp->zp_checksum = spa_dedup_checksum(spa);
3314 zio_pop_transforms(zio);
3315 zio->io_stage = ZIO_STAGE_OPEN;
3316 BP_ZERO(bp);
3317 } else {
3318 zp->zp_dedup = B_FALSE;
3319 BP_SET_DEDUP(bp, B_FALSE);
3320 }
3321 ASSERT(!BP_GET_DEDUP(bp));
3322 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3323 ddt_exit(ddt);
3324 return (zio);
3325 }
3326
3327 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3328 if (ddp->ddp_phys_birth != 0)
3329 ddt_bp_fill(ddp, bp, txg);
3330 if (dde->dde_lead_zio[p] != NULL)
3331 zio_add_child(zio, dde->dde_lead_zio[p]);
3332 else
3333 ddt_phys_addref(ddp);
3334 } else if (zio->io_bp_override) {
3335 ASSERT(bp->blk_birth == txg);
3336 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3337 ddt_phys_fill(ddp, bp);
3338 ddt_phys_addref(ddp);
3339 } else {
3340 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3341 zio->io_orig_size, zio->io_orig_size, zp,
3342 zio_ddt_child_write_ready, NULL, NULL,
3343 zio_ddt_child_write_done, dde, zio->io_priority,
3344 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3345
3346 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3347 dde->dde_lead_zio[p] = cio;
3348 }
3349
3350 ddt_exit(ddt);
3351
3352 zio_nowait(cio);
3353
3354 return (zio);
3355 }
3356
3357 ddt_entry_t *freedde; /* for debugging */
3358
3359 static zio_t *
3360 zio_ddt_free(zio_t *zio)
3361 {
3362 spa_t *spa = zio->io_spa;
3363 blkptr_t *bp = zio->io_bp;
3364 ddt_t *ddt = ddt_select(spa, bp);
3365 ddt_entry_t *dde;
3366 ddt_phys_t *ddp;
3367
3368 ASSERT(BP_GET_DEDUP(bp));
3369 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3370
3371 ddt_enter(ddt);
3372 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3373 if (dde) {
3374 ddp = ddt_phys_select(dde, bp);
3375 if (ddp)
3376 ddt_phys_decref(ddp);
3377 }
3378 ddt_exit(ddt);
3379
3380 return (zio);
3381 }
3382
3383 /*
3384 * ==========================================================================
3385 * Allocate and free blocks
3386 * ==========================================================================
3387 */
3388
3389 static zio_t *
3390 zio_io_to_allocate(spa_t *spa, int allocator)
3391 {
3392 zio_t *zio;
3393
3394 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3395
3396 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3397 if (zio == NULL)
3398 return (NULL);
3399
3400 ASSERT(IO_IS_ALLOCATING(zio));
3401
3402 /*
3403 * Try to place a reservation for this zio. If we're unable to
3404 * reserve then we throttle.
3405 */
3406 ASSERT3U(zio->io_allocator, ==, allocator);
3407 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3408 zio->io_prop.zp_copies, allocator, zio, 0)) {
3409 return (NULL);
3410 }
3411
3412 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3413 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3414
3415 return (zio);
3416 }
3417
3418 static zio_t *
3419 zio_dva_throttle(zio_t *zio)
3420 {
3421 spa_t *spa = zio->io_spa;
3422 zio_t *nio;
3423 metaslab_class_t *mc;
3424
3425 /* locate an appropriate allocation class */
3426 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3427 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3428
3429 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3430 !mc->mc_alloc_throttle_enabled ||
3431 zio->io_child_type == ZIO_CHILD_GANG ||
3432 zio->io_flags & ZIO_FLAG_NODATA) {
3433 return (zio);
3434 }
3435
3436 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3437 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3438 ASSERT3U(zio->io_queued_timestamp, >, 0);
3439 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3440
3441 zbookmark_phys_t *bm = &zio->io_bookmark;
3442 /*
3443 * We want to try to use as many allocators as possible to help improve
3444 * performance, but we also want logically adjacent IOs to be physically
3445 * adjacent to improve sequential read performance. We chunk each object
3446 * into 2^20 block regions, and then hash based on the objset, object,
3447 * level, and region to accomplish both of these goals.
3448 */
3449 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3450 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3451 zio->io_allocator = allocator;
3452 zio->io_metaslab_class = mc;
3453 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3454 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3455 nio = zio_io_to_allocate(spa, allocator);
3456 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3457 return (nio);
3458 }
3459
3460 static void
3461 zio_allocate_dispatch(spa_t *spa, int allocator)
3462 {
3463 zio_t *zio;
3464
3465 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3466 zio = zio_io_to_allocate(spa, allocator);
3467 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3468 if (zio == NULL)
3469 return;
3470
3471 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3472 ASSERT0(zio->io_error);
3473 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3474 }
3475
3476 static zio_t *
3477 zio_dva_allocate(zio_t *zio)
3478 {
3479 spa_t *spa = zio->io_spa;
3480 metaslab_class_t *mc;
3481 blkptr_t *bp = zio->io_bp;
3482 int error;
3483 int flags = 0;
3484
3485 if (zio->io_gang_leader == NULL) {
3486 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3487 zio->io_gang_leader = zio;
3488 }
3489
3490 ASSERT(BP_IS_HOLE(bp));
3491 ASSERT0(BP_GET_NDVAS(bp));
3492 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3493 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3494 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3495
3496 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3497 if (zio->io_flags & ZIO_FLAG_NODATA)
3498 flags |= METASLAB_DONT_THROTTLE;
3499 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3500 flags |= METASLAB_GANG_CHILD;
3501 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3502 flags |= METASLAB_ASYNC_ALLOC;
3503
3504 /*
3505 * if not already chosen, locate an appropriate allocation class
3506 */
3507 mc = zio->io_metaslab_class;
3508 if (mc == NULL) {
3509 mc = spa_preferred_class(spa, zio->io_size,
3510 zio->io_prop.zp_type, zio->io_prop.zp_level,
3511 zio->io_prop.zp_zpl_smallblk);
3512 zio->io_metaslab_class = mc;
3513 }
3514
3515 /*
3516 * Try allocating the block in the usual metaslab class.
3517 * If that's full, allocate it in the normal class.
3518 * If that's full, allocate as a gang block,
3519 * and if all are full, the allocation fails (which shouldn't happen).
3520 *
3521 * Note that we do not fall back on embedded slog (ZIL) space, to
3522 * preserve unfragmented slog space, which is critical for decent
3523 * sync write performance. If a log allocation fails, we will fall
3524 * back to spa_sync() which is abysmal for performance.
3525 */
3526 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3527 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3528 &zio->io_alloc_list, zio, zio->io_allocator);
3529
3530 /*
3531 * Fallback to normal class when an alloc class is full
3532 */
3533 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3534 /*
3535 * If throttling, transfer reservation over to normal class.
3536 * The io_allocator slot can remain the same even though we
3537 * are switching classes.
3538 */
3539 if (mc->mc_alloc_throttle_enabled &&
3540 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3541 metaslab_class_throttle_unreserve(mc,
3542 zio->io_prop.zp_copies, zio->io_allocator, zio);
3543 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3544
3545 VERIFY(metaslab_class_throttle_reserve(
3546 spa_normal_class(spa),
3547 zio->io_prop.zp_copies, zio->io_allocator, zio,
3548 flags | METASLAB_MUST_RESERVE));
3549 }
3550 zio->io_metaslab_class = mc = spa_normal_class(spa);
3551 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3552 zfs_dbgmsg("%s: metaslab allocation failure, "
3553 "trying normal class: zio %px, size %llu, error %d",
3554 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3555 error);
3556 }
3557
3558 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3559 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3560 &zio->io_alloc_list, zio, zio->io_allocator);
3561 }
3562
3563 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3564 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3565 zfs_dbgmsg("%s: metaslab allocation failure, "
3566 "trying ganging: zio %px, size %llu, error %d",
3567 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3568 error);
3569 }
3570 return (zio_write_gang_block(zio, mc));
3571 }
3572 if (error != 0) {
3573 if (error != ENOSPC ||
3574 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3575 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3576 "size %llu, error %d",
3577 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3578 error);
3579 }
3580 zio->io_error = error;
3581 }
3582
3583 return (zio);
3584 }
3585
3586 static zio_t *
3587 zio_dva_free(zio_t *zio)
3588 {
3589 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3590
3591 return (zio);
3592 }
3593
3594 static zio_t *
3595 zio_dva_claim(zio_t *zio)
3596 {
3597 int error;
3598
3599 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3600 if (error)
3601 zio->io_error = error;
3602
3603 return (zio);
3604 }
3605
3606 /*
3607 * Undo an allocation. This is used by zio_done() when an I/O fails
3608 * and we want to give back the block we just allocated.
3609 * This handles both normal blocks and gang blocks.
3610 */
3611 static void
3612 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3613 {
3614 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3615 ASSERT(zio->io_bp_override == NULL);
3616
3617 if (!BP_IS_HOLE(bp))
3618 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3619
3620 if (gn != NULL) {
3621 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3622 zio_dva_unallocate(zio, gn->gn_child[g],
3623 &gn->gn_gbh->zg_blkptr[g]);
3624 }
3625 }
3626 }
3627
3628 /*
3629 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3630 */
3631 int
3632 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3633 uint64_t size, boolean_t *slog)
3634 {
3635 int error = 1;
3636 zio_alloc_list_t io_alloc_list;
3637
3638 ASSERT(txg > spa_syncing_txg(spa));
3639
3640 metaslab_trace_init(&io_alloc_list);
3641
3642 /*
3643 * Block pointer fields are useful to metaslabs for stats and debugging.
3644 * Fill in the obvious ones before calling into metaslab_alloc().
3645 */
3646 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3647 BP_SET_PSIZE(new_bp, size);
3648 BP_SET_LEVEL(new_bp, 0);
3649
3650 /*
3651 * When allocating a zil block, we don't have information about
3652 * the final destination of the block except the objset it's part
3653 * of, so we just hash the objset ID to pick the allocator to get
3654 * some parallelism.
3655 */
3656 int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3657 int allocator = (uint_t)cityhash4(0, 0, 0,
3658 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3659 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3660 txg, NULL, flags, &io_alloc_list, NULL, allocator);
3661 *slog = (error == 0);
3662 if (error != 0) {
3663 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3664 new_bp, 1, txg, NULL, flags,
3665 &io_alloc_list, NULL, allocator);
3666 }
3667 if (error != 0) {
3668 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3669 new_bp, 1, txg, NULL, flags,
3670 &io_alloc_list, NULL, allocator);
3671 }
3672 metaslab_trace_fini(&io_alloc_list);
3673
3674 if (error == 0) {
3675 BP_SET_LSIZE(new_bp, size);
3676 BP_SET_PSIZE(new_bp, size);
3677 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3678 BP_SET_CHECKSUM(new_bp,
3679 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3680 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3681 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3682 BP_SET_LEVEL(new_bp, 0);
3683 BP_SET_DEDUP(new_bp, 0);
3684 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3685
3686 /*
3687 * encrypted blocks will require an IV and salt. We generate
3688 * these now since we will not be rewriting the bp at
3689 * rewrite time.
3690 */
3691 if (os->os_encrypted) {
3692 uint8_t iv[ZIO_DATA_IV_LEN];
3693 uint8_t salt[ZIO_DATA_SALT_LEN];
3694
3695 BP_SET_CRYPT(new_bp, B_TRUE);
3696 VERIFY0(spa_crypt_get_salt(spa,
3697 dmu_objset_id(os), salt));
3698 VERIFY0(zio_crypt_generate_iv(iv));
3699
3700 zio_crypt_encode_params_bp(new_bp, salt, iv);
3701 }
3702 } else {
3703 zfs_dbgmsg("%s: zil block allocation failure: "
3704 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3705 error);
3706 }
3707
3708 return (error);
3709 }
3710
3711 /*
3712 * ==========================================================================
3713 * Read and write to physical devices
3714 * ==========================================================================
3715 */
3716
3717 /*
3718 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3719 * stops after this stage and will resume upon I/O completion.
3720 * However, there are instances where the vdev layer may need to
3721 * continue the pipeline when an I/O was not issued. Since the I/O
3722 * that was sent to the vdev layer might be different than the one
3723 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3724 * force the underlying vdev layers to call either zio_execute() or
3725 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3726 */
3727 static zio_t *
3728 zio_vdev_io_start(zio_t *zio)
3729 {
3730 vdev_t *vd = zio->io_vd;
3731 uint64_t align;
3732 spa_t *spa = zio->io_spa;
3733
3734 zio->io_delay = 0;
3735
3736 ASSERT(zio->io_error == 0);
3737 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3738
3739 if (vd == NULL) {
3740 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3741 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3742
3743 /*
3744 * The mirror_ops handle multiple DVAs in a single BP.
3745 */
3746 vdev_mirror_ops.vdev_op_io_start(zio);
3747 return (NULL);
3748 }
3749
3750 ASSERT3P(zio->io_logical, !=, zio);
3751 if (zio->io_type == ZIO_TYPE_WRITE) {
3752 ASSERT(spa->spa_trust_config);
3753
3754 /*
3755 * Note: the code can handle other kinds of writes,
3756 * but we don't expect them.
3757 */
3758 if (zio->io_vd->vdev_noalloc) {
3759 ASSERT(zio->io_flags &
3760 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3761 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3762 }
3763 }
3764
3765 align = 1ULL << vd->vdev_top->vdev_ashift;
3766
3767 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3768 P2PHASE(zio->io_size, align) != 0) {
3769 /* Transform logical writes to be a full physical block size. */
3770 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3771 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3772 ASSERT(vd == vd->vdev_top);
3773 if (zio->io_type == ZIO_TYPE_WRITE) {
3774 abd_copy(abuf, zio->io_abd, zio->io_size);
3775 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3776 }
3777 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3778 }
3779
3780 /*
3781 * If this is not a physical io, make sure that it is properly aligned
3782 * before proceeding.
3783 */
3784 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3785 ASSERT0(P2PHASE(zio->io_offset, align));
3786 ASSERT0(P2PHASE(zio->io_size, align));
3787 } else {
3788 /*
3789 * For physical writes, we allow 512b aligned writes and assume
3790 * the device will perform a read-modify-write as necessary.
3791 */
3792 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3793 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3794 }
3795
3796 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3797
3798 /*
3799 * If this is a repair I/O, and there's no self-healing involved --
3800 * that is, we're just resilvering what we expect to resilver --
3801 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3802 * This prevents spurious resilvering.
3803 *
3804 * There are a few ways that we can end up creating these spurious
3805 * resilver i/os:
3806 *
3807 * 1. A resilver i/o will be issued if any DVA in the BP has a
3808 * dirty DTL. The mirror code will issue resilver writes to
3809 * each DVA, including the one(s) that are not on vdevs with dirty
3810 * DTLs.
3811 *
3812 * 2. With nested replication, which happens when we have a
3813 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3814 * For example, given mirror(replacing(A+B), C), it's likely that
3815 * only A is out of date (it's the new device). In this case, we'll
3816 * read from C, then use the data to resilver A+B -- but we don't
3817 * actually want to resilver B, just A. The top-level mirror has no
3818 * way to know this, so instead we just discard unnecessary repairs
3819 * as we work our way down the vdev tree.
3820 *
3821 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3822 * The same logic applies to any form of nested replication: ditto
3823 * + mirror, RAID-Z + replacing, etc.
3824 *
3825 * However, indirect vdevs point off to other vdevs which may have
3826 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3827 * will be properly bypassed instead.
3828 *
3829 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3830 * a dRAID spare vdev. For example, when a dRAID spare is first
3831 * used, its spare blocks need to be written to but the leaf vdev's
3832 * of such blocks can have empty DTL_PARTIAL.
3833 *
3834 * There seemed no clean way to allow such writes while bypassing
3835 * spurious ones. At this point, just avoid all bypassing for dRAID
3836 * for correctness.
3837 */
3838 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3839 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3840 zio->io_txg != 0 && /* not a delegated i/o */
3841 vd->vdev_ops != &vdev_indirect_ops &&
3842 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3843 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3844 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3845 zio_vdev_io_bypass(zio);
3846 return (zio);
3847 }
3848
3849 /*
3850 * Select the next best leaf I/O to process. Distributed spares are
3851 * excluded since they dispatch the I/O directly to a leaf vdev after
3852 * applying the dRAID mapping.
3853 */
3854 if (vd->vdev_ops->vdev_op_leaf &&
3855 vd->vdev_ops != &vdev_draid_spare_ops &&
3856 (zio->io_type == ZIO_TYPE_READ ||
3857 zio->io_type == ZIO_TYPE_WRITE ||
3858 zio->io_type == ZIO_TYPE_TRIM)) {
3859
3860 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3861 return (zio);
3862
3863 if ((zio = vdev_queue_io(zio)) == NULL)
3864 return (NULL);
3865
3866 if (!vdev_accessible(vd, zio)) {
3867 zio->io_error = SET_ERROR(ENXIO);
3868 zio_interrupt(zio);
3869 return (NULL);
3870 }
3871 zio->io_delay = gethrtime();
3872 }
3873
3874 vd->vdev_ops->vdev_op_io_start(zio);
3875 return (NULL);
3876 }
3877
3878 static zio_t *
3879 zio_vdev_io_done(zio_t *zio)
3880 {
3881 vdev_t *vd = zio->io_vd;
3882 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3883 boolean_t unexpected_error = B_FALSE;
3884
3885 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3886 return (NULL);
3887 }
3888
3889 ASSERT(zio->io_type == ZIO_TYPE_READ ||
3890 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3891
3892 if (zio->io_delay)
3893 zio->io_delay = gethrtime() - zio->io_delay;
3894
3895 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3896 vd->vdev_ops != &vdev_draid_spare_ops) {
3897 vdev_queue_io_done(zio);
3898
3899 if (zio->io_type == ZIO_TYPE_WRITE)
3900 vdev_cache_write(zio);
3901
3902 if (zio_injection_enabled && zio->io_error == 0)
3903 zio->io_error = zio_handle_device_injections(vd, zio,
3904 EIO, EILSEQ);
3905
3906 if (zio_injection_enabled && zio->io_error == 0)
3907 zio->io_error = zio_handle_label_injection(zio, EIO);
3908
3909 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3910 if (!vdev_accessible(vd, zio)) {
3911 zio->io_error = SET_ERROR(ENXIO);
3912 } else {
3913 unexpected_error = B_TRUE;
3914 }
3915 }
3916 }
3917
3918 ops->vdev_op_io_done(zio);
3919
3920 if (unexpected_error)
3921 VERIFY(vdev_probe(vd, zio) == NULL);
3922
3923 return (zio);
3924 }
3925
3926 /*
3927 * This function is used to change the priority of an existing zio that is
3928 * currently in-flight. This is used by the arc to upgrade priority in the
3929 * event that a demand read is made for a block that is currently queued
3930 * as a scrub or async read IO. Otherwise, the high priority read request
3931 * would end up having to wait for the lower priority IO.
3932 */
3933 void
3934 zio_change_priority(zio_t *pio, zio_priority_t priority)
3935 {
3936 zio_t *cio, *cio_next;
3937 zio_link_t *zl = NULL;
3938
3939 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3940
3941 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3942 vdev_queue_change_io_priority(pio, priority);
3943 } else {
3944 pio->io_priority = priority;
3945 }
3946
3947 mutex_enter(&pio->io_lock);
3948 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3949 cio_next = zio_walk_children(pio, &zl);
3950 zio_change_priority(cio, priority);
3951 }
3952 mutex_exit(&pio->io_lock);
3953 }
3954
3955 /*
3956 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3957 * disk, and use that to finish the checksum ereport later.
3958 */
3959 static void
3960 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3961 const abd_t *good_buf)
3962 {
3963 /* no processing needed */
3964 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3965 }
3966
3967 void
3968 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3969 {
3970 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3971
3972 abd_copy(abd, zio->io_abd, zio->io_size);
3973
3974 zcr->zcr_cbinfo = zio->io_size;
3975 zcr->zcr_cbdata = abd;
3976 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3977 zcr->zcr_free = zio_abd_free;
3978 }
3979
3980 static zio_t *
3981 zio_vdev_io_assess(zio_t *zio)
3982 {
3983 vdev_t *vd = zio->io_vd;
3984
3985 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3986 return (NULL);
3987 }
3988
3989 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3990 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3991
3992 if (zio->io_vsd != NULL) {
3993 zio->io_vsd_ops->vsd_free(zio);
3994 zio->io_vsd = NULL;
3995 }
3996
3997 if (zio_injection_enabled && zio->io_error == 0)
3998 zio->io_error = zio_handle_fault_injection(zio, EIO);
3999
4000 /*
4001 * If the I/O failed, determine whether we should attempt to retry it.
4002 *
4003 * On retry, we cut in line in the issue queue, since we don't want
4004 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4005 */
4006 if (zio->io_error && vd == NULL &&
4007 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4008 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
4009 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
4010 zio->io_error = 0;
4011 zio->io_flags |= ZIO_FLAG_IO_RETRY |
4012 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4013 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4014 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4015 zio_requeue_io_start_cut_in_line);
4016 return (NULL);
4017 }
4018
4019 /*
4020 * If we got an error on a leaf device, convert it to ENXIO
4021 * if the device is not accessible at all.
4022 */
4023 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4024 !vdev_accessible(vd, zio))
4025 zio->io_error = SET_ERROR(ENXIO);
4026
4027 /*
4028 * If we can't write to an interior vdev (mirror or RAID-Z),
4029 * set vdev_cant_write so that we stop trying to allocate from it.
4030 */
4031 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4032 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4033 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4034 "cant_write=TRUE due to write failure with ENXIO",
4035 zio);
4036 vd->vdev_cant_write = B_TRUE;
4037 }
4038
4039 /*
4040 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4041 * attempts will ever succeed. In this case we set a persistent
4042 * boolean flag so that we don't bother with it in the future.
4043 */
4044 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4045 zio->io_type == ZIO_TYPE_IOCTL &&
4046 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4047 vd->vdev_nowritecache = B_TRUE;
4048
4049 if (zio->io_error)
4050 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4051
4052 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4053 zio->io_physdone != NULL) {
4054 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4055 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4056 zio->io_physdone(zio->io_logical);
4057 }
4058
4059 return (zio);
4060 }
4061
4062 void
4063 zio_vdev_io_reissue(zio_t *zio)
4064 {
4065 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4066 ASSERT(zio->io_error == 0);
4067
4068 zio->io_stage >>= 1;
4069 }
4070
4071 void
4072 zio_vdev_io_redone(zio_t *zio)
4073 {
4074 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4075
4076 zio->io_stage >>= 1;
4077 }
4078
4079 void
4080 zio_vdev_io_bypass(zio_t *zio)
4081 {
4082 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4083 ASSERT(zio->io_error == 0);
4084
4085 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4086 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4087 }
4088
4089 /*
4090 * ==========================================================================
4091 * Encrypt and store encryption parameters
4092 * ==========================================================================
4093 */
4094
4095
4096 /*
4097 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4098 * managing the storage of encryption parameters and passing them to the
4099 * lower-level encryption functions.
4100 */
4101 static zio_t *
4102 zio_encrypt(zio_t *zio)
4103 {
4104 zio_prop_t *zp = &zio->io_prop;
4105 spa_t *spa = zio->io_spa;
4106 blkptr_t *bp = zio->io_bp;
4107 uint64_t psize = BP_GET_PSIZE(bp);
4108 uint64_t dsobj = zio->io_bookmark.zb_objset;
4109 dmu_object_type_t ot = BP_GET_TYPE(bp);
4110 void *enc_buf = NULL;
4111 abd_t *eabd = NULL;
4112 uint8_t salt[ZIO_DATA_SALT_LEN];
4113 uint8_t iv[ZIO_DATA_IV_LEN];
4114 uint8_t mac[ZIO_DATA_MAC_LEN];
4115 boolean_t no_crypt = B_FALSE;
4116
4117 /* the root zio already encrypted the data */
4118 if (zio->io_child_type == ZIO_CHILD_GANG)
4119 return (zio);
4120
4121 /* only ZIL blocks are re-encrypted on rewrite */
4122 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4123 return (zio);
4124
4125 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4126 BP_SET_CRYPT(bp, B_FALSE);
4127 return (zio);
4128 }
4129
4130 /* if we are doing raw encryption set the provided encryption params */
4131 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4132 ASSERT0(BP_GET_LEVEL(bp));
4133 BP_SET_CRYPT(bp, B_TRUE);
4134 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4135 if (ot != DMU_OT_OBJSET)
4136 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4137
4138 /* dnode blocks must be written out in the provided byteorder */
4139 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4140 ot == DMU_OT_DNODE) {
4141 void *bswap_buf = zio_buf_alloc(psize);
4142 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4143
4144 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4145 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4146 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4147 psize);
4148
4149 abd_take_ownership_of_buf(babd, B_TRUE);
4150 zio_push_transform(zio, babd, psize, psize, NULL);
4151 }
4152
4153 if (DMU_OT_IS_ENCRYPTED(ot))
4154 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4155 return (zio);
4156 }
4157
4158 /* indirect blocks only maintain a cksum of the lower level MACs */
4159 if (BP_GET_LEVEL(bp) > 0) {
4160 BP_SET_CRYPT(bp, B_TRUE);
4161 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4162 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4163 mac));
4164 zio_crypt_encode_mac_bp(bp, mac);
4165 return (zio);
4166 }
4167
4168 /*
4169 * Objset blocks are a special case since they have 2 256-bit MACs
4170 * embedded within them.
4171 */
4172 if (ot == DMU_OT_OBJSET) {
4173 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4174 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4175 BP_SET_CRYPT(bp, B_TRUE);
4176 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4177 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4178 return (zio);
4179 }
4180
4181 /* unencrypted object types are only authenticated with a MAC */
4182 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4183 BP_SET_CRYPT(bp, B_TRUE);
4184 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4185 zio->io_abd, psize, mac));
4186 zio_crypt_encode_mac_bp(bp, mac);
4187 return (zio);
4188 }
4189
4190 /*
4191 * Later passes of sync-to-convergence may decide to rewrite data
4192 * in place to avoid more disk reallocations. This presents a problem
4193 * for encryption because this constitutes rewriting the new data with
4194 * the same encryption key and IV. However, this only applies to blocks
4195 * in the MOS (particularly the spacemaps) and we do not encrypt the
4196 * MOS. We assert that the zio is allocating or an intent log write
4197 * to enforce this.
4198 */
4199 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4200 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4201 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4202 ASSERT3U(psize, !=, 0);
4203
4204 enc_buf = zio_buf_alloc(psize);
4205 eabd = abd_get_from_buf(enc_buf, psize);
4206 abd_take_ownership_of_buf(eabd, B_TRUE);
4207
4208 /*
4209 * For an explanation of what encryption parameters are stored
4210 * where, see the block comment in zio_crypt.c.
4211 */
4212 if (ot == DMU_OT_INTENT_LOG) {
4213 zio_crypt_decode_params_bp(bp, salt, iv);
4214 } else {
4215 BP_SET_CRYPT(bp, B_TRUE);
4216 }
4217
4218 /* Perform the encryption. This should not fail */
4219 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4220 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4221 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4222
4223 /* encode encryption metadata into the bp */
4224 if (ot == DMU_OT_INTENT_LOG) {
4225 /*
4226 * ZIL blocks store the MAC in the embedded checksum, so the
4227 * transform must always be applied.
4228 */
4229 zio_crypt_encode_mac_zil(enc_buf, mac);
4230 zio_push_transform(zio, eabd, psize, psize, NULL);
4231 } else {
4232 BP_SET_CRYPT(bp, B_TRUE);
4233 zio_crypt_encode_params_bp(bp, salt, iv);
4234 zio_crypt_encode_mac_bp(bp, mac);
4235
4236 if (no_crypt) {
4237 ASSERT3U(ot, ==, DMU_OT_DNODE);
4238 abd_free(eabd);
4239 } else {
4240 zio_push_transform(zio, eabd, psize, psize, NULL);
4241 }
4242 }
4243
4244 return (zio);
4245 }
4246
4247 /*
4248 * ==========================================================================
4249 * Generate and verify checksums
4250 * ==========================================================================
4251 */
4252 static zio_t *
4253 zio_checksum_generate(zio_t *zio)
4254 {
4255 blkptr_t *bp = zio->io_bp;
4256 enum zio_checksum checksum;
4257
4258 if (bp == NULL) {
4259 /*
4260 * This is zio_write_phys().
4261 * We're either generating a label checksum, or none at all.
4262 */
4263 checksum = zio->io_prop.zp_checksum;
4264
4265 if (checksum == ZIO_CHECKSUM_OFF)
4266 return (zio);
4267
4268 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4269 } else {
4270 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4271 ASSERT(!IO_IS_ALLOCATING(zio));
4272 checksum = ZIO_CHECKSUM_GANG_HEADER;
4273 } else {
4274 checksum = BP_GET_CHECKSUM(bp);
4275 }
4276 }
4277
4278 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4279
4280 return (zio);
4281 }
4282
4283 static zio_t *
4284 zio_checksum_verify(zio_t *zio)
4285 {
4286 zio_bad_cksum_t info;
4287 blkptr_t *bp = zio->io_bp;
4288 int error;
4289
4290 ASSERT(zio->io_vd != NULL);
4291
4292 if (bp == NULL) {
4293 /*
4294 * This is zio_read_phys().
4295 * We're either verifying a label checksum, or nothing at all.
4296 */
4297 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4298 return (zio);
4299
4300 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4301 }
4302
4303 if ((error = zio_checksum_error(zio, &info)) != 0) {
4304 zio->io_error = error;
4305 if (error == ECKSUM &&
4306 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4307 (void) zfs_ereport_start_checksum(zio->io_spa,
4308 zio->io_vd, &zio->io_bookmark, zio,
4309 zio->io_offset, zio->io_size, &info);
4310 mutex_enter(&zio->io_vd->vdev_stat_lock);
4311 zio->io_vd->vdev_stat.vs_checksum_errors++;
4312 mutex_exit(&zio->io_vd->vdev_stat_lock);
4313 }
4314 }
4315
4316 return (zio);
4317 }
4318
4319 /*
4320 * Called by RAID-Z to ensure we don't compute the checksum twice.
4321 */
4322 void
4323 zio_checksum_verified(zio_t *zio)
4324 {
4325 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4326 }
4327
4328 /*
4329 * ==========================================================================
4330 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4331 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4332 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4333 * indicate errors that are specific to one I/O, and most likely permanent.
4334 * Any other error is presumed to be worse because we weren't expecting it.
4335 * ==========================================================================
4336 */
4337 int
4338 zio_worst_error(int e1, int e2)
4339 {
4340 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4341 int r1, r2;
4342
4343 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4344 if (e1 == zio_error_rank[r1])
4345 break;
4346
4347 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4348 if (e2 == zio_error_rank[r2])
4349 break;
4350
4351 return (r1 > r2 ? e1 : e2);
4352 }
4353
4354 /*
4355 * ==========================================================================
4356 * I/O completion
4357 * ==========================================================================
4358 */
4359 static zio_t *
4360 zio_ready(zio_t *zio)
4361 {
4362 blkptr_t *bp = zio->io_bp;
4363 zio_t *pio, *pio_next;
4364 zio_link_t *zl = NULL;
4365
4366 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4367 ZIO_WAIT_READY)) {
4368 return (NULL);
4369 }
4370
4371 if (zio->io_ready) {
4372 ASSERT(IO_IS_ALLOCATING(zio));
4373 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4374 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4375 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4376
4377 zio->io_ready(zio);
4378 }
4379
4380 if (bp != NULL && bp != &zio->io_bp_copy)
4381 zio->io_bp_copy = *bp;
4382
4383 if (zio->io_error != 0) {
4384 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4385
4386 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4387 ASSERT(IO_IS_ALLOCATING(zio));
4388 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4389 ASSERT(zio->io_metaslab_class != NULL);
4390
4391 /*
4392 * We were unable to allocate anything, unreserve and
4393 * issue the next I/O to allocate.
4394 */
4395 metaslab_class_throttle_unreserve(
4396 zio->io_metaslab_class, zio->io_prop.zp_copies,
4397 zio->io_allocator, zio);
4398 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4399 }
4400 }
4401
4402 mutex_enter(&zio->io_lock);
4403 zio->io_state[ZIO_WAIT_READY] = 1;
4404 pio = zio_walk_parents(zio, &zl);
4405 mutex_exit(&zio->io_lock);
4406
4407 /*
4408 * As we notify zio's parents, new parents could be added.
4409 * New parents go to the head of zio's io_parent_list, however,
4410 * so we will (correctly) not notify them. The remainder of zio's
4411 * io_parent_list, from 'pio_next' onward, cannot change because
4412 * all parents must wait for us to be done before they can be done.
4413 */
4414 for (; pio != NULL; pio = pio_next) {
4415 pio_next = zio_walk_parents(zio, &zl);
4416 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4417 }
4418
4419 if (zio->io_flags & ZIO_FLAG_NODATA) {
4420 if (BP_IS_GANG(bp)) {
4421 zio->io_flags &= ~ZIO_FLAG_NODATA;
4422 } else {
4423 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4424 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4425 }
4426 }
4427
4428 if (zio_injection_enabled &&
4429 zio->io_spa->spa_syncing_txg == zio->io_txg)
4430 zio_handle_ignored_writes(zio);
4431
4432 return (zio);
4433 }
4434
4435 /*
4436 * Update the allocation throttle accounting.
4437 */
4438 static void
4439 zio_dva_throttle_done(zio_t *zio)
4440 {
4441 zio_t *lio __maybe_unused = zio->io_logical;
4442 zio_t *pio = zio_unique_parent(zio);
4443 vdev_t *vd = zio->io_vd;
4444 int flags = METASLAB_ASYNC_ALLOC;
4445
4446 ASSERT3P(zio->io_bp, !=, NULL);
4447 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4448 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4449 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4450 ASSERT(vd != NULL);
4451 ASSERT3P(vd, ==, vd->vdev_top);
4452 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4453 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4454 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4455 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4456 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4457
4458 /*
4459 * Parents of gang children can have two flavors -- ones that
4460 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4461 * and ones that allocated the constituent blocks. The allocation
4462 * throttle needs to know the allocating parent zio so we must find
4463 * it here.
4464 */
4465 if (pio->io_child_type == ZIO_CHILD_GANG) {
4466 /*
4467 * If our parent is a rewrite gang child then our grandparent
4468 * would have been the one that performed the allocation.
4469 */
4470 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4471 pio = zio_unique_parent(pio);
4472 flags |= METASLAB_GANG_CHILD;
4473 }
4474
4475 ASSERT(IO_IS_ALLOCATING(pio));
4476 ASSERT3P(zio, !=, zio->io_logical);
4477 ASSERT(zio->io_logical != NULL);
4478 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4479 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4480 ASSERT(zio->io_metaslab_class != NULL);
4481
4482 mutex_enter(&pio->io_lock);
4483 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4484 pio->io_allocator, B_TRUE);
4485 mutex_exit(&pio->io_lock);
4486
4487 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4488 pio->io_allocator, pio);
4489
4490 /*
4491 * Call into the pipeline to see if there is more work that
4492 * needs to be done. If there is work to be done it will be
4493 * dispatched to another taskq thread.
4494 */
4495 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4496 }
4497
4498 static zio_t *
4499 zio_done(zio_t *zio)
4500 {
4501 /*
4502 * Always attempt to keep stack usage minimal here since
4503 * we can be called recursively up to 19 levels deep.
4504 */
4505 const uint64_t psize = zio->io_size;
4506 zio_t *pio, *pio_next;
4507 zio_link_t *zl = NULL;
4508
4509 /*
4510 * If our children haven't all completed,
4511 * wait for them and then repeat this pipeline stage.
4512 */
4513 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4514 return (NULL);
4515 }
4516
4517 /*
4518 * If the allocation throttle is enabled, then update the accounting.
4519 * We only track child I/Os that are part of an allocating async
4520 * write. We must do this since the allocation is performed
4521 * by the logical I/O but the actual write is done by child I/Os.
4522 */
4523 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4524 zio->io_child_type == ZIO_CHILD_VDEV) {
4525 ASSERT(zio->io_metaslab_class != NULL);
4526 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4527 zio_dva_throttle_done(zio);
4528 }
4529
4530 /*
4531 * If the allocation throttle is enabled, verify that
4532 * we have decremented the refcounts for every I/O that was throttled.
4533 */
4534 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4535 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4536 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4537 ASSERT(zio->io_bp != NULL);
4538
4539 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4540 zio->io_allocator);
4541 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4542 mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4543 }
4544
4545
4546 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4547 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4548 ASSERT(zio->io_children[c][w] == 0);
4549
4550 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4551 ASSERT(zio->io_bp->blk_pad[0] == 0);
4552 ASSERT(zio->io_bp->blk_pad[1] == 0);
4553 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4554 sizeof (blkptr_t)) == 0 ||
4555 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4556 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4557 zio->io_bp_override == NULL &&
4558 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4559 ASSERT3U(zio->io_prop.zp_copies, <=,
4560 BP_GET_NDVAS(zio->io_bp));
4561 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4562 (BP_COUNT_GANG(zio->io_bp) ==
4563 BP_GET_NDVAS(zio->io_bp)));
4564 }
4565 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4566 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4567 }
4568
4569 /*
4570 * If there were child vdev/gang/ddt errors, they apply to us now.
4571 */
4572 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4573 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4574 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4575
4576 /*
4577 * If the I/O on the transformed data was successful, generate any
4578 * checksum reports now while we still have the transformed data.
4579 */
4580 if (zio->io_error == 0) {
4581 while (zio->io_cksum_report != NULL) {
4582 zio_cksum_report_t *zcr = zio->io_cksum_report;
4583 uint64_t align = zcr->zcr_align;
4584 uint64_t asize = P2ROUNDUP(psize, align);
4585 abd_t *adata = zio->io_abd;
4586
4587 if (adata != NULL && asize != psize) {
4588 adata = abd_alloc(asize, B_TRUE);
4589 abd_copy(adata, zio->io_abd, psize);
4590 abd_zero_off(adata, psize, asize - psize);
4591 }
4592
4593 zio->io_cksum_report = zcr->zcr_next;
4594 zcr->zcr_next = NULL;
4595 zcr->zcr_finish(zcr, adata);
4596 zfs_ereport_free_checksum(zcr);
4597
4598 if (adata != NULL && asize != psize)
4599 abd_free(adata);
4600 }
4601 }
4602
4603 zio_pop_transforms(zio); /* note: may set zio->io_error */
4604
4605 vdev_stat_update(zio, psize);
4606
4607 /*
4608 * If this I/O is attached to a particular vdev is slow, exceeding
4609 * 30 seconds to complete, post an error described the I/O delay.
4610 * We ignore these errors if the device is currently unavailable.
4611 */
4612 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4613 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4614 /*
4615 * We want to only increment our slow IO counters if
4616 * the IO is valid (i.e. not if the drive is removed).
4617 *
4618 * zfs_ereport_post() will also do these checks, but
4619 * it can also ratelimit and have other failures, so we
4620 * need to increment the slow_io counters independent
4621 * of it.
4622 */
4623 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4624 zio->io_spa, zio->io_vd, zio)) {
4625 mutex_enter(&zio->io_vd->vdev_stat_lock);
4626 zio->io_vd->vdev_stat.vs_slow_ios++;
4627 mutex_exit(&zio->io_vd->vdev_stat_lock);
4628
4629 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4630 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4631 zio, 0);
4632 }
4633 }
4634 }
4635
4636 if (zio->io_error) {
4637 /*
4638 * If this I/O is attached to a particular vdev,
4639 * generate an error message describing the I/O failure
4640 * at the block level. We ignore these errors if the
4641 * device is currently unavailable.
4642 */
4643 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4644 !vdev_is_dead(zio->io_vd)) {
4645 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4646 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4647 if (ret != EALREADY) {
4648 mutex_enter(&zio->io_vd->vdev_stat_lock);
4649 if (zio->io_type == ZIO_TYPE_READ)
4650 zio->io_vd->vdev_stat.vs_read_errors++;
4651 else if (zio->io_type == ZIO_TYPE_WRITE)
4652 zio->io_vd->vdev_stat.vs_write_errors++;
4653 mutex_exit(&zio->io_vd->vdev_stat_lock);
4654 }
4655 }
4656
4657 if ((zio->io_error == EIO || !(zio->io_flags &
4658 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4659 zio == zio->io_logical) {
4660 /*
4661 * For logical I/O requests, tell the SPA to log the
4662 * error and generate a logical data ereport.
4663 */
4664 spa_log_error(zio->io_spa, &zio->io_bookmark);
4665 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4666 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4667 }
4668 }
4669
4670 if (zio->io_error && zio == zio->io_logical) {
4671 /*
4672 * Determine whether zio should be reexecuted. This will
4673 * propagate all the way to the root via zio_notify_parent().
4674 */
4675 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4676 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4677
4678 if (IO_IS_ALLOCATING(zio) &&
4679 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4680 if (zio->io_error != ENOSPC)
4681 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4682 else
4683 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4684 }
4685
4686 if ((zio->io_type == ZIO_TYPE_READ ||
4687 zio->io_type == ZIO_TYPE_FREE) &&
4688 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4689 zio->io_error == ENXIO &&
4690 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4691 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4692 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4693
4694 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4695 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4696
4697 /*
4698 * Here is a possibly good place to attempt to do
4699 * either combinatorial reconstruction or error correction
4700 * based on checksums. It also might be a good place
4701 * to send out preliminary ereports before we suspend
4702 * processing.
4703 */
4704 }
4705
4706 /*
4707 * If there were logical child errors, they apply to us now.
4708 * We defer this until now to avoid conflating logical child
4709 * errors with errors that happened to the zio itself when
4710 * updating vdev stats and reporting FMA events above.
4711 */
4712 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4713
4714 if ((zio->io_error || zio->io_reexecute) &&
4715 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4716 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4717 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4718
4719 zio_gang_tree_free(&zio->io_gang_tree);
4720
4721 /*
4722 * Godfather I/Os should never suspend.
4723 */
4724 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4725 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4726 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4727
4728 if (zio->io_reexecute) {
4729 /*
4730 * This is a logical I/O that wants to reexecute.
4731 *
4732 * Reexecute is top-down. When an i/o fails, if it's not
4733 * the root, it simply notifies its parent and sticks around.
4734 * The parent, seeing that it still has children in zio_done(),
4735 * does the same. This percolates all the way up to the root.
4736 * The root i/o will reexecute or suspend the entire tree.
4737 *
4738 * This approach ensures that zio_reexecute() honors
4739 * all the original i/o dependency relationships, e.g.
4740 * parents not executing until children are ready.
4741 */
4742 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4743
4744 zio->io_gang_leader = NULL;
4745
4746 mutex_enter(&zio->io_lock);
4747 zio->io_state[ZIO_WAIT_DONE] = 1;
4748 mutex_exit(&zio->io_lock);
4749
4750 /*
4751 * "The Godfather" I/O monitors its children but is
4752 * not a true parent to them. It will track them through
4753 * the pipeline but severs its ties whenever they get into
4754 * trouble (e.g. suspended). This allows "The Godfather"
4755 * I/O to return status without blocking.
4756 */
4757 zl = NULL;
4758 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4759 pio = pio_next) {
4760 zio_link_t *remove_zl = zl;
4761 pio_next = zio_walk_parents(zio, &zl);
4762
4763 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4764 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4765 zio_remove_child(pio, zio, remove_zl);
4766 /*
4767 * This is a rare code path, so we don't
4768 * bother with "next_to_execute".
4769 */
4770 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4771 NULL);
4772 }
4773 }
4774
4775 if ((pio = zio_unique_parent(zio)) != NULL) {
4776 /*
4777 * We're not a root i/o, so there's nothing to do
4778 * but notify our parent. Don't propagate errors
4779 * upward since we haven't permanently failed yet.
4780 */
4781 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4782 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4783 /*
4784 * This is a rare code path, so we don't bother with
4785 * "next_to_execute".
4786 */
4787 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4788 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4789 /*
4790 * We'd fail again if we reexecuted now, so suspend
4791 * until conditions improve (e.g. device comes online).
4792 */
4793 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4794 } else {
4795 /*
4796 * Reexecution is potentially a huge amount of work.
4797 * Hand it off to the otherwise-unused claim taskq.
4798 */
4799 ASSERT(taskq_empty_ent(&zio->io_tqent));
4800 spa_taskq_dispatch_ent(zio->io_spa,
4801 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4802 zio_reexecute, zio, 0, &zio->io_tqent);
4803 }
4804 return (NULL);
4805 }
4806
4807 ASSERT(zio->io_child_count == 0);
4808 ASSERT(zio->io_reexecute == 0);
4809 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4810
4811 /*
4812 * Report any checksum errors, since the I/O is complete.
4813 */
4814 while (zio->io_cksum_report != NULL) {
4815 zio_cksum_report_t *zcr = zio->io_cksum_report;
4816 zio->io_cksum_report = zcr->zcr_next;
4817 zcr->zcr_next = NULL;
4818 zcr->zcr_finish(zcr, NULL);
4819 zfs_ereport_free_checksum(zcr);
4820 }
4821
4822 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4823 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4824 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4825 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4826 }
4827
4828 /*
4829 * It is the responsibility of the done callback to ensure that this
4830 * particular zio is no longer discoverable for adoption, and as
4831 * such, cannot acquire any new parents.
4832 */
4833 if (zio->io_done)
4834 zio->io_done(zio);
4835
4836 mutex_enter(&zio->io_lock);
4837 zio->io_state[ZIO_WAIT_DONE] = 1;
4838 mutex_exit(&zio->io_lock);
4839
4840 /*
4841 * We are done executing this zio. We may want to execute a parent
4842 * next. See the comment in zio_notify_parent().
4843 */
4844 zio_t *next_to_execute = NULL;
4845 zl = NULL;
4846 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4847 zio_link_t *remove_zl = zl;
4848 pio_next = zio_walk_parents(zio, &zl);
4849 zio_remove_child(pio, zio, remove_zl);
4850 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4851 }
4852
4853 if (zio->io_waiter != NULL) {
4854 mutex_enter(&zio->io_lock);
4855 zio->io_executor = NULL;
4856 cv_broadcast(&zio->io_cv);
4857 mutex_exit(&zio->io_lock);
4858 } else {
4859 zio_destroy(zio);
4860 }
4861
4862 return (next_to_execute);
4863 }
4864
4865 /*
4866 * ==========================================================================
4867 * I/O pipeline definition
4868 * ==========================================================================
4869 */
4870 static zio_pipe_stage_t *zio_pipeline[] = {
4871 NULL,
4872 zio_read_bp_init,
4873 zio_write_bp_init,
4874 zio_free_bp_init,
4875 zio_issue_async,
4876 zio_write_compress,
4877 zio_encrypt,
4878 zio_checksum_generate,
4879 zio_nop_write,
4880 zio_ddt_read_start,
4881 zio_ddt_read_done,
4882 zio_ddt_write,
4883 zio_ddt_free,
4884 zio_gang_assemble,
4885 zio_gang_issue,
4886 zio_dva_throttle,
4887 zio_dva_allocate,
4888 zio_dva_free,
4889 zio_dva_claim,
4890 zio_ready,
4891 zio_vdev_io_start,
4892 zio_vdev_io_done,
4893 zio_vdev_io_assess,
4894 zio_checksum_verify,
4895 zio_done
4896 };
4897
4898
4899
4900
4901 /*
4902 * Compare two zbookmark_phys_t's to see which we would reach first in a
4903 * pre-order traversal of the object tree.
4904 *
4905 * This is simple in every case aside from the meta-dnode object. For all other
4906 * objects, we traverse them in order (object 1 before object 2, and so on).
4907 * However, all of these objects are traversed while traversing object 0, since
4908 * the data it points to is the list of objects. Thus, we need to convert to a
4909 * canonical representation so we can compare meta-dnode bookmarks to
4910 * non-meta-dnode bookmarks.
4911 *
4912 * We do this by calculating "equivalents" for each field of the zbookmark.
4913 * zbookmarks outside of the meta-dnode use their own object and level, and
4914 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4915 * blocks this bookmark refers to) by multiplying their blkid by their span
4916 * (the number of L0 blocks contained within one block at their level).
4917 * zbookmarks inside the meta-dnode calculate their object equivalent
4918 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4919 * level + 1<<31 (any value larger than a level could ever be) for their level.
4920 * This causes them to always compare before a bookmark in their object
4921 * equivalent, compare appropriately to bookmarks in other objects, and to
4922 * compare appropriately to other bookmarks in the meta-dnode.
4923 */
4924 int
4925 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4926 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4927 {
4928 /*
4929 * These variables represent the "equivalent" values for the zbookmark,
4930 * after converting zbookmarks inside the meta dnode to their
4931 * normal-object equivalents.
4932 */
4933 uint64_t zb1obj, zb2obj;
4934 uint64_t zb1L0, zb2L0;
4935 uint64_t zb1level, zb2level;
4936
4937 if (zb1->zb_object == zb2->zb_object &&
4938 zb1->zb_level == zb2->zb_level &&
4939 zb1->zb_blkid == zb2->zb_blkid)
4940 return (0);
4941
4942 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4943 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4944
4945 /*
4946 * BP_SPANB calculates the span in blocks.
4947 */
4948 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4949 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4950
4951 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4952 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4953 zb1L0 = 0;
4954 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4955 } else {
4956 zb1obj = zb1->zb_object;
4957 zb1level = zb1->zb_level;
4958 }
4959
4960 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4961 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4962 zb2L0 = 0;
4963 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4964 } else {
4965 zb2obj = zb2->zb_object;
4966 zb2level = zb2->zb_level;
4967 }
4968
4969 /* Now that we have a canonical representation, do the comparison. */
4970 if (zb1obj != zb2obj)
4971 return (zb1obj < zb2obj ? -1 : 1);
4972 else if (zb1L0 != zb2L0)
4973 return (zb1L0 < zb2L0 ? -1 : 1);
4974 else if (zb1level != zb2level)
4975 return (zb1level > zb2level ? -1 : 1);
4976 /*
4977 * This can (theoretically) happen if the bookmarks have the same object
4978 * and level, but different blkids, if the block sizes are not the same.
4979 * There is presently no way to change the indirect block sizes
4980 */
4981 return (0);
4982 }
4983
4984 /*
4985 * This function checks the following: given that last_block is the place that
4986 * our traversal stopped last time, does that guarantee that we've visited
4987 * every node under subtree_root? Therefore, we can't just use the raw output
4988 * of zbookmark_compare. We have to pass in a modified version of
4989 * subtree_root; by incrementing the block id, and then checking whether
4990 * last_block is before or equal to that, we can tell whether or not having
4991 * visited last_block implies that all of subtree_root's children have been
4992 * visited.
4993 */
4994 boolean_t
4995 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4996 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4997 {
4998 zbookmark_phys_t mod_zb = *subtree_root;
4999 mod_zb.zb_blkid++;
5000 ASSERT0(last_block->zb_level);
5001
5002 /* The objset_phys_t isn't before anything. */
5003 if (dnp == NULL)
5004 return (B_FALSE);
5005
5006 /*
5007 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5008 * data block size in sectors, because that variable is only used if
5009 * the bookmark refers to a block in the meta-dnode. Since we don't
5010 * know without examining it what object it refers to, and there's no
5011 * harm in passing in this value in other cases, we always pass it in.
5012 *
5013 * We pass in 0 for the indirect block size shift because zb2 must be
5014 * level 0. The indirect block size is only used to calculate the span
5015 * of the bookmark, but since the bookmark must be level 0, the span is
5016 * always 1, so the math works out.
5017 *
5018 * If you make changes to how the zbookmark_compare code works, be sure
5019 * to make sure that this code still works afterwards.
5020 */
5021 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5022 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5023 last_block) <= 0);
5024 }
5025
5026 /*
5027 * This function is similar to zbookmark_subtree_completed(), but returns true
5028 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5029 */
5030 boolean_t
5031 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5032 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5033 {
5034 ASSERT0(last_block->zb_level);
5035 if (dnp == NULL)
5036 return (B_FALSE);
5037 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5038 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5039 last_block) >= 0);
5040 }
5041
5042 EXPORT_SYMBOL(zio_type_name);
5043 EXPORT_SYMBOL(zio_buf_alloc);
5044 EXPORT_SYMBOL(zio_data_buf_alloc);
5045 EXPORT_SYMBOL(zio_buf_free);
5046 EXPORT_SYMBOL(zio_data_buf_free);
5047
5048 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5049 "Max I/O completion time (milliseconds) before marking it as slow");
5050
5051 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5052 "Prioritize requeued I/O");
5053
5054 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW,
5055 "Defer frees starting in this pass");
5056
5057 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
5058 "Don't compress starting in this pass");
5059
5060 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
5061 "Rewrite new bps starting in this pass");
5062
5063 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5064 "Throttle block allocations in the ZIO pipeline");
5065
5066 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5067 "Log all slow ZIOs, not just those with vdevs");