]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zio_inject.c
New upstream version 0.7.2
[mirror_zfs-debian.git] / module / zfs / zio_inject.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2017, Intel Corporation.
25 */
26
27 /*
28 * ZFS fault injection
29 *
30 * To handle fault injection, we keep track of a series of zinject_record_t
31 * structures which describe which logical block(s) should be injected with a
32 * fault. These are kept in a global list. Each record corresponds to a given
33 * spa_t and maintains a special hold on the spa_t so that it cannot be deleted
34 * or exported while the injection record exists.
35 *
36 * Device level injection is done using the 'zi_guid' field. If this is set, it
37 * means that the error is destined for a particular device, not a piece of
38 * data.
39 *
40 * This is a rather poor data structure and algorithm, but we don't expect more
41 * than a few faults at any one time, so it should be sufficient for our needs.
42 */
43
44 #include <sys/arc.h>
45 #include <sys/zio.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/fs/zfs.h>
50
51 uint32_t zio_injection_enabled = 0;
52
53 /*
54 * Data describing each zinject handler registered on the system, and
55 * contains the list node linking the handler in the global zinject
56 * handler list.
57 */
58 typedef struct inject_handler {
59 int zi_id;
60 spa_t *zi_spa;
61 zinject_record_t zi_record;
62 uint64_t *zi_lanes;
63 int zi_next_lane;
64 list_node_t zi_link;
65 } inject_handler_t;
66
67 /*
68 * List of all zinject handlers registered on the system, protected by
69 * the inject_lock defined below.
70 */
71 static list_t inject_handlers;
72
73 /*
74 * This protects insertion into, and traversal of, the inject handler
75 * list defined above; as well as the inject_delay_count. Any time a
76 * handler is inserted or removed from the list, this lock should be
77 * taken as a RW_WRITER; and any time traversal is done over the list
78 * (without modification to it) this lock should be taken as a RW_READER.
79 */
80 static krwlock_t inject_lock;
81
82 /*
83 * This holds the number of zinject delay handlers that have been
84 * registered on the system. It is protected by the inject_lock defined
85 * above. Thus modifications to this count must be a RW_WRITER of the
86 * inject_lock, and reads of this count must be (at least) a RW_READER
87 * of the lock.
88 */
89 static int inject_delay_count = 0;
90
91 /*
92 * This lock is used only in zio_handle_io_delay(), refer to the comment
93 * in that function for more details.
94 */
95 static kmutex_t inject_delay_mtx;
96
97 /*
98 * Used to assign unique identifying numbers to each new zinject handler.
99 */
100 static int inject_next_id = 1;
101
102 /*
103 * Test if the requested frequency was triggered
104 */
105 static boolean_t
106 freq_triggered(uint32_t frequency)
107 {
108 /*
109 * zero implies always (100%)
110 */
111 if (frequency == 0)
112 return (B_TRUE);
113
114 /*
115 * Note: we still handle legacy (unscaled) frequecy values
116 */
117 uint32_t maximum = (frequency <= 100) ? 100 : ZI_PERCENTAGE_MAX;
118
119 return (spa_get_random(maximum) < frequency);
120 }
121
122 /*
123 * Returns true if the given record matches the I/O in progress.
124 */
125 static boolean_t
126 zio_match_handler(zbookmark_phys_t *zb, uint64_t type,
127 zinject_record_t *record, int error)
128 {
129 /*
130 * Check for a match against the MOS, which is based on type
131 */
132 if (zb->zb_objset == DMU_META_OBJSET &&
133 record->zi_objset == DMU_META_OBJSET &&
134 record->zi_object == DMU_META_DNODE_OBJECT) {
135 if (record->zi_type == DMU_OT_NONE ||
136 type == record->zi_type)
137 return (freq_triggered(record->zi_freq));
138 else
139 return (B_FALSE);
140 }
141
142 /*
143 * Check for an exact match.
144 */
145 if (zb->zb_objset == record->zi_objset &&
146 zb->zb_object == record->zi_object &&
147 zb->zb_level == record->zi_level &&
148 zb->zb_blkid >= record->zi_start &&
149 zb->zb_blkid <= record->zi_end &&
150 error == record->zi_error)
151 return (freq_triggered(record->zi_freq));
152
153 return (B_FALSE);
154 }
155
156 /*
157 * Panic the system when a config change happens in the function
158 * specified by tag.
159 */
160 void
161 zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type)
162 {
163 inject_handler_t *handler;
164
165 rw_enter(&inject_lock, RW_READER);
166
167 for (handler = list_head(&inject_handlers); handler != NULL;
168 handler = list_next(&inject_handlers, handler)) {
169
170 if (spa != handler->zi_spa)
171 continue;
172
173 if (handler->zi_record.zi_type == type &&
174 strcmp(tag, handler->zi_record.zi_func) == 0)
175 panic("Panic requested in function %s\n", tag);
176 }
177
178 rw_exit(&inject_lock);
179 }
180
181 /*
182 * Determine if the I/O in question should return failure. Returns the errno
183 * to be returned to the caller.
184 */
185 int
186 zio_handle_fault_injection(zio_t *zio, int error)
187 {
188 int ret = 0;
189 inject_handler_t *handler;
190
191 /*
192 * Ignore I/O not associated with any logical data.
193 */
194 if (zio->io_logical == NULL)
195 return (0);
196
197 /*
198 * Currently, we only support fault injection on reads.
199 */
200 if (zio->io_type != ZIO_TYPE_READ)
201 return (0);
202
203 rw_enter(&inject_lock, RW_READER);
204
205 for (handler = list_head(&inject_handlers); handler != NULL;
206 handler = list_next(&inject_handlers, handler)) {
207
208 if (zio->io_spa != handler->zi_spa ||
209 handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
210 continue;
211
212 /* If this handler matches, return EIO */
213 if (zio_match_handler(&zio->io_logical->io_bookmark,
214 zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
215 &handler->zi_record, error)) {
216 ret = error;
217 break;
218 }
219 }
220
221 rw_exit(&inject_lock);
222
223 return (ret);
224 }
225
226 /*
227 * Determine if the zio is part of a label update and has an injection
228 * handler associated with that portion of the label. Currently, we
229 * allow error injection in either the nvlist or the uberblock region of
230 * of the vdev label.
231 */
232 int
233 zio_handle_label_injection(zio_t *zio, int error)
234 {
235 inject_handler_t *handler;
236 vdev_t *vd = zio->io_vd;
237 uint64_t offset = zio->io_offset;
238 int label;
239 int ret = 0;
240
241 if (offset >= VDEV_LABEL_START_SIZE &&
242 offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
243 return (0);
244
245 rw_enter(&inject_lock, RW_READER);
246
247 for (handler = list_head(&inject_handlers); handler != NULL;
248 handler = list_next(&inject_handlers, handler)) {
249 uint64_t start = handler->zi_record.zi_start;
250 uint64_t end = handler->zi_record.zi_end;
251
252 if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
253 continue;
254
255 /*
256 * The injection region is the relative offsets within a
257 * vdev label. We must determine the label which is being
258 * updated and adjust our region accordingly.
259 */
260 label = vdev_label_number(vd->vdev_psize, offset);
261 start = vdev_label_offset(vd->vdev_psize, label, start);
262 end = vdev_label_offset(vd->vdev_psize, label, end);
263
264 if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
265 (offset >= start && offset <= end)) {
266 ret = error;
267 break;
268 }
269 }
270 rw_exit(&inject_lock);
271 return (ret);
272 }
273
274
275 int
276 zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
277 {
278 inject_handler_t *handler;
279 int ret = 0;
280
281 /*
282 * We skip over faults in the labels unless it's during
283 * device open (i.e. zio == NULL).
284 */
285 if (zio != NULL) {
286 uint64_t offset = zio->io_offset;
287
288 if (offset < VDEV_LABEL_START_SIZE ||
289 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
290 return (0);
291 }
292
293 rw_enter(&inject_lock, RW_READER);
294
295 for (handler = list_head(&inject_handlers); handler != NULL;
296 handler = list_next(&inject_handlers, handler)) {
297
298 if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
299 continue;
300
301 if (vd->vdev_guid == handler->zi_record.zi_guid) {
302 if (handler->zi_record.zi_failfast &&
303 (zio == NULL || (zio->io_flags &
304 (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
305 continue;
306 }
307
308 /* Handle type specific I/O failures */
309 if (zio != NULL &&
310 handler->zi_record.zi_iotype != ZIO_TYPES &&
311 handler->zi_record.zi_iotype != zio->io_type)
312 continue;
313
314 if (handler->zi_record.zi_error == error) {
315 /*
316 * limit error injection if requested
317 */
318 if (!freq_triggered(handler->zi_record.zi_freq))
319 continue;
320
321 /*
322 * For a failed open, pretend like the device
323 * has gone away.
324 */
325 if (error == ENXIO)
326 vd->vdev_stat.vs_aux =
327 VDEV_AUX_OPEN_FAILED;
328
329 /*
330 * Treat these errors as if they had been
331 * retried so that all the appropriate stats
332 * and FMA events are generated.
333 */
334 if (!handler->zi_record.zi_failfast &&
335 zio != NULL)
336 zio->io_flags |= ZIO_FLAG_IO_RETRY;
337
338 ret = error;
339 break;
340 }
341 if (handler->zi_record.zi_error == ENXIO) {
342 ret = SET_ERROR(EIO);
343 break;
344 }
345 }
346 }
347
348 rw_exit(&inject_lock);
349
350 return (ret);
351 }
352
353 /*
354 * Simulate hardware that ignores cache flushes. For requested number
355 * of seconds nix the actual writing to disk.
356 */
357 void
358 zio_handle_ignored_writes(zio_t *zio)
359 {
360 inject_handler_t *handler;
361
362 rw_enter(&inject_lock, RW_READER);
363
364 for (handler = list_head(&inject_handlers); handler != NULL;
365 handler = list_next(&inject_handlers, handler)) {
366
367 /* Ignore errors not destined for this pool */
368 if (zio->io_spa != handler->zi_spa ||
369 handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
370 continue;
371
372 /*
373 * Positive duration implies # of seconds, negative
374 * a number of txgs
375 */
376 if (handler->zi_record.zi_timer == 0) {
377 if (handler->zi_record.zi_duration > 0)
378 handler->zi_record.zi_timer = ddi_get_lbolt64();
379 else
380 handler->zi_record.zi_timer = zio->io_txg;
381 }
382
383 /* Have a "problem" writing 60% of the time */
384 if (spa_get_random(100) < 60)
385 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
386 break;
387 }
388
389 rw_exit(&inject_lock);
390 }
391
392 void
393 spa_handle_ignored_writes(spa_t *spa)
394 {
395 inject_handler_t *handler;
396
397 if (zio_injection_enabled == 0)
398 return;
399
400 rw_enter(&inject_lock, RW_READER);
401
402 for (handler = list_head(&inject_handlers); handler != NULL;
403 handler = list_next(&inject_handlers, handler)) {
404
405 if (spa != handler->zi_spa ||
406 handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
407 continue;
408
409 if (handler->zi_record.zi_duration > 0) {
410 VERIFY(handler->zi_record.zi_timer == 0 ||
411 ddi_time_after64(
412 (int64_t)handler->zi_record.zi_timer +
413 handler->zi_record.zi_duration * hz,
414 ddi_get_lbolt64()));
415 } else {
416 /* duration is negative so the subtraction here adds */
417 VERIFY(handler->zi_record.zi_timer == 0 ||
418 handler->zi_record.zi_timer -
419 handler->zi_record.zi_duration >=
420 spa_syncing_txg(spa));
421 }
422 }
423
424 rw_exit(&inject_lock);
425 }
426
427 hrtime_t
428 zio_handle_io_delay(zio_t *zio)
429 {
430 vdev_t *vd = zio->io_vd;
431 inject_handler_t *min_handler = NULL;
432 hrtime_t min_target = 0;
433 inject_handler_t *handler;
434 hrtime_t idle;
435 hrtime_t busy;
436 hrtime_t target;
437
438 rw_enter(&inject_lock, RW_READER);
439
440 /*
441 * inject_delay_count is a subset of zio_injection_enabled that
442 * is only incremented for delay handlers. These checks are
443 * mainly added to remind the reader why we're not explicitly
444 * checking zio_injection_enabled like the other functions.
445 */
446 IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
447 IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
448
449 /*
450 * If there aren't any inject delay handlers registered, then we
451 * can short circuit and simply return 0 here. A value of zero
452 * informs zio_delay_interrupt() that this request should not be
453 * delayed. This short circuit keeps us from acquiring the
454 * inject_delay_mutex unnecessarily.
455 */
456 if (inject_delay_count == 0) {
457 rw_exit(&inject_lock);
458 return (0);
459 }
460
461 /*
462 * Each inject handler has a number of "lanes" associated with
463 * it. Each lane is able to handle requests independently of one
464 * another, and at a latency defined by the inject handler
465 * record's zi_timer field. Thus if a handler in configured with
466 * a single lane with a 10ms latency, it will delay requests
467 * such that only a single request is completed every 10ms. So,
468 * if more than one request is attempted per each 10ms interval,
469 * the average latency of the requests will be greater than
470 * 10ms; but if only a single request is submitted each 10ms
471 * interval the average latency will be 10ms.
472 *
473 * We need to acquire this mutex to prevent multiple concurrent
474 * threads being assigned to the same lane of a given inject
475 * handler. The mutex allows us to perform the following two
476 * operations atomically:
477 *
478 * 1. determine the minimum handler and minimum target
479 * value of all the possible handlers
480 * 2. update that minimum handler's lane array
481 *
482 * Without atomicity, two (or more) threads could pick the same
483 * lane in step (1), and then conflict with each other in step
484 * (2). This could allow a single lane handler to process
485 * multiple requests simultaneously, which shouldn't be possible.
486 */
487 mutex_enter(&inject_delay_mtx);
488
489 for (handler = list_head(&inject_handlers);
490 handler != NULL; handler = list_next(&inject_handlers, handler)) {
491 if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
492 continue;
493
494 if (!freq_triggered(handler->zi_record.zi_freq))
495 continue;
496
497 if (vd->vdev_guid != handler->zi_record.zi_guid)
498 continue;
499
500 /*
501 * Defensive; should never happen as the array allocation
502 * occurs prior to inserting this handler on the list.
503 */
504 ASSERT3P(handler->zi_lanes, !=, NULL);
505
506 /*
507 * This should never happen, the zinject command should
508 * prevent a user from setting an IO delay with zero lanes.
509 */
510 ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
511
512 ASSERT3U(handler->zi_record.zi_nlanes, >,
513 handler->zi_next_lane);
514
515 /*
516 * We want to issue this IO to the lane that will become
517 * idle the soonest, so we compare the soonest this
518 * specific handler can complete the IO with all other
519 * handlers, to find the lowest value of all possible
520 * lanes. We then use this lane to submit the request.
521 *
522 * Since each handler has a constant value for its
523 * delay, we can just use the "next" lane for that
524 * handler; as it will always be the lane with the
525 * lowest value for that particular handler (i.e. the
526 * lane that will become idle the soonest). This saves a
527 * scan of each handler's lanes array.
528 *
529 * There's two cases to consider when determining when
530 * this specific IO request should complete. If this
531 * lane is idle, we want to "submit" the request now so
532 * it will complete after zi_timer milliseconds. Thus,
533 * we set the target to now + zi_timer.
534 *
535 * If the lane is busy, we want this request to complete
536 * zi_timer milliseconds after the lane becomes idle.
537 * Since the 'zi_lanes' array holds the time at which
538 * each lane will become idle, we use that value to
539 * determine when this request should complete.
540 */
541 idle = handler->zi_record.zi_timer + gethrtime();
542 busy = handler->zi_record.zi_timer +
543 handler->zi_lanes[handler->zi_next_lane];
544 target = MAX(idle, busy);
545
546 if (min_handler == NULL) {
547 min_handler = handler;
548 min_target = target;
549 continue;
550 }
551
552 ASSERT3P(min_handler, !=, NULL);
553 ASSERT3U(min_target, !=, 0);
554
555 /*
556 * We don't yet increment the "next lane" variable since
557 * we still might find a lower value lane in another
558 * handler during any remaining iterations. Once we're
559 * sure we've selected the absolute minimum, we'll claim
560 * the lane and increment the handler's "next lane"
561 * field below.
562 */
563
564 if (target < min_target) {
565 min_handler = handler;
566 min_target = target;
567 }
568 }
569
570 /*
571 * 'min_handler' will be NULL if no IO delays are registered for
572 * this vdev, otherwise it will point to the handler containing
573 * the lane that will become idle the soonest.
574 */
575 if (min_handler != NULL) {
576 ASSERT3U(min_target, !=, 0);
577 min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
578
579 /*
580 * If we've used all possible lanes for this handler,
581 * loop back and start using the first lane again;
582 * otherwise, just increment the lane index.
583 */
584 min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
585 min_handler->zi_record.zi_nlanes;
586 }
587
588 mutex_exit(&inject_delay_mtx);
589 rw_exit(&inject_lock);
590
591 return (min_target);
592 }
593
594 /*
595 * Create a new handler for the given record. We add it to the list, adding
596 * a reference to the spa_t in the process. We increment zio_injection_enabled,
597 * which is the switch to trigger all fault injection.
598 */
599 int
600 zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
601 {
602 inject_handler_t *handler;
603 int error;
604 spa_t *spa;
605
606 /*
607 * If this is pool-wide metadata, make sure we unload the corresponding
608 * spa_t, so that the next attempt to load it will trigger the fault.
609 * We call spa_reset() to unload the pool appropriately.
610 */
611 if (flags & ZINJECT_UNLOAD_SPA)
612 if ((error = spa_reset(name)) != 0)
613 return (error);
614
615 if (record->zi_cmd == ZINJECT_DELAY_IO) {
616 /*
617 * A value of zero for the number of lanes or for the
618 * delay time doesn't make sense.
619 */
620 if (record->zi_timer == 0 || record->zi_nlanes == 0)
621 return (SET_ERROR(EINVAL));
622
623 /*
624 * The number of lanes is directly mapped to the size of
625 * an array used by the handler. Thus, to ensure the
626 * user doesn't trigger an allocation that's "too large"
627 * we cap the number of lanes here.
628 */
629 if (record->zi_nlanes >= UINT16_MAX)
630 return (SET_ERROR(EINVAL));
631 }
632
633 if (!(flags & ZINJECT_NULL)) {
634 /*
635 * spa_inject_ref() will add an injection reference, which will
636 * prevent the pool from being removed from the namespace while
637 * still allowing it to be unloaded.
638 */
639 if ((spa = spa_inject_addref(name)) == NULL)
640 return (SET_ERROR(ENOENT));
641
642 handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
643
644 handler->zi_spa = spa;
645 handler->zi_record = *record;
646
647 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
648 handler->zi_lanes = kmem_zalloc(
649 sizeof (*handler->zi_lanes) *
650 handler->zi_record.zi_nlanes, KM_SLEEP);
651 handler->zi_next_lane = 0;
652 } else {
653 handler->zi_lanes = NULL;
654 handler->zi_next_lane = 0;
655 }
656
657 rw_enter(&inject_lock, RW_WRITER);
658
659 /*
660 * We can't move this increment into the conditional
661 * above because we need to hold the RW_WRITER lock of
662 * inject_lock, and we don't want to hold that while
663 * allocating the handler's zi_lanes array.
664 */
665 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
666 ASSERT3S(inject_delay_count, >=, 0);
667 inject_delay_count++;
668 ASSERT3S(inject_delay_count, >, 0);
669 }
670
671 *id = handler->zi_id = inject_next_id++;
672 list_insert_tail(&inject_handlers, handler);
673 atomic_inc_32(&zio_injection_enabled);
674
675 rw_exit(&inject_lock);
676 }
677
678 /*
679 * Flush the ARC, so that any attempts to read this data will end up
680 * going to the ZIO layer. Note that this is a little overkill, but
681 * we don't have the necessary ARC interfaces to do anything else, and
682 * fault injection isn't a performance critical path.
683 */
684 if (flags & ZINJECT_FLUSH_ARC)
685 /*
686 * We must use FALSE to ensure arc_flush returns, since
687 * we're not preventing concurrent ARC insertions.
688 */
689 arc_flush(NULL, FALSE);
690
691 return (0);
692 }
693
694 /*
695 * Returns the next record with an ID greater than that supplied to the
696 * function. Used to iterate over all handlers in the system.
697 */
698 int
699 zio_inject_list_next(int *id, char *name, size_t buflen,
700 zinject_record_t *record)
701 {
702 inject_handler_t *handler;
703 int ret;
704
705 mutex_enter(&spa_namespace_lock);
706 rw_enter(&inject_lock, RW_READER);
707
708 for (handler = list_head(&inject_handlers); handler != NULL;
709 handler = list_next(&inject_handlers, handler))
710 if (handler->zi_id > *id)
711 break;
712
713 if (handler) {
714 *record = handler->zi_record;
715 *id = handler->zi_id;
716 (void) strncpy(name, spa_name(handler->zi_spa), buflen);
717 ret = 0;
718 } else {
719 ret = SET_ERROR(ENOENT);
720 }
721
722 rw_exit(&inject_lock);
723 mutex_exit(&spa_namespace_lock);
724
725 return (ret);
726 }
727
728 /*
729 * Clear the fault handler with the given identifier, or return ENOENT if none
730 * exists.
731 */
732 int
733 zio_clear_fault(int id)
734 {
735 inject_handler_t *handler;
736
737 rw_enter(&inject_lock, RW_WRITER);
738
739 for (handler = list_head(&inject_handlers); handler != NULL;
740 handler = list_next(&inject_handlers, handler))
741 if (handler->zi_id == id)
742 break;
743
744 if (handler == NULL) {
745 rw_exit(&inject_lock);
746 return (SET_ERROR(ENOENT));
747 }
748
749 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
750 ASSERT3S(inject_delay_count, >, 0);
751 inject_delay_count--;
752 ASSERT3S(inject_delay_count, >=, 0);
753 }
754
755 list_remove(&inject_handlers, handler);
756 rw_exit(&inject_lock);
757
758 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
759 ASSERT3P(handler->zi_lanes, !=, NULL);
760 kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
761 handler->zi_record.zi_nlanes);
762 } else {
763 ASSERT3P(handler->zi_lanes, ==, NULL);
764 }
765
766 spa_inject_delref(handler->zi_spa);
767 kmem_free(handler, sizeof (inject_handler_t));
768 atomic_dec_32(&zio_injection_enabled);
769
770 return (0);
771 }
772
773 void
774 zio_inject_init(void)
775 {
776 rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
777 mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
778 list_create(&inject_handlers, sizeof (inject_handler_t),
779 offsetof(inject_handler_t, zi_link));
780 }
781
782 void
783 zio_inject_fini(void)
784 {
785 list_destroy(&inject_handlers);
786 mutex_destroy(&inject_delay_mtx);
787 rw_destroy(&inject_lock);
788 }
789
790 #if defined(_KERNEL) && defined(HAVE_SPL)
791 EXPORT_SYMBOL(zio_injection_enabled);
792 EXPORT_SYMBOL(zio_inject_fault);
793 EXPORT_SYMBOL(zio_inject_list_next);
794 EXPORT_SYMBOL(zio_clear_fault);
795 EXPORT_SYMBOL(zio_handle_fault_injection);
796 EXPORT_SYMBOL(zio_handle_device_injection);
797 EXPORT_SYMBOL(zio_handle_label_injection);
798 #endif