]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio_inject.c
Fix typo/etc in module/zfs/zfs_ctldir.c
[mirror_zfs.git] / module / zfs / zio_inject.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2017, Intel Corporation.
25 */
26
27 /*
28 * ZFS fault injection
29 *
30 * To handle fault injection, we keep track of a series of zinject_record_t
31 * structures which describe which logical block(s) should be injected with a
32 * fault. These are kept in a global list. Each record corresponds to a given
33 * spa_t and maintains a special hold on the spa_t so that it cannot be deleted
34 * or exported while the injection record exists.
35 *
36 * Device level injection is done using the 'zi_guid' field. If this is set, it
37 * means that the error is destined for a particular device, not a piece of
38 * data.
39 *
40 * This is a rather poor data structure and algorithm, but we don't expect more
41 * than a few faults at any one time, so it should be sufficient for our needs.
42 */
43
44 #include <sys/arc.h>
45 #include <sys/zio.h>
46 #include <sys/zfs_ioctl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/dsl_dataset.h>
50 #include <sys/fs/zfs.h>
51
52 uint32_t zio_injection_enabled = 0;
53
54 /*
55 * Data describing each zinject handler registered on the system, and
56 * contains the list node linking the handler in the global zinject
57 * handler list.
58 */
59 typedef struct inject_handler {
60 int zi_id;
61 spa_t *zi_spa;
62 zinject_record_t zi_record;
63 uint64_t *zi_lanes;
64 int zi_next_lane;
65 list_node_t zi_link;
66 } inject_handler_t;
67
68 /*
69 * List of all zinject handlers registered on the system, protected by
70 * the inject_lock defined below.
71 */
72 static list_t inject_handlers;
73
74 /*
75 * This protects insertion into, and traversal of, the inject handler
76 * list defined above; as well as the inject_delay_count. Any time a
77 * handler is inserted or removed from the list, this lock should be
78 * taken as a RW_WRITER; and any time traversal is done over the list
79 * (without modification to it) this lock should be taken as a RW_READER.
80 */
81 static krwlock_t inject_lock;
82
83 /*
84 * This holds the number of zinject delay handlers that have been
85 * registered on the system. It is protected by the inject_lock defined
86 * above. Thus modifications to this count must be a RW_WRITER of the
87 * inject_lock, and reads of this count must be (at least) a RW_READER
88 * of the lock.
89 */
90 static int inject_delay_count = 0;
91
92 /*
93 * This lock is used only in zio_handle_io_delay(), refer to the comment
94 * in that function for more details.
95 */
96 static kmutex_t inject_delay_mtx;
97
98 /*
99 * Used to assign unique identifying numbers to each new zinject handler.
100 */
101 static int inject_next_id = 1;
102
103 /*
104 * Test if the requested frequency was triggered
105 */
106 static boolean_t
107 freq_triggered(uint32_t frequency)
108 {
109 /*
110 * zero implies always (100%)
111 */
112 if (frequency == 0)
113 return (B_TRUE);
114
115 /*
116 * Note: we still handle legacy (unscaled) frequecy values
117 */
118 uint32_t maximum = (frequency <= 100) ? 100 : ZI_PERCENTAGE_MAX;
119
120 return (spa_get_random(maximum) < frequency);
121 }
122
123 /*
124 * Returns true if the given record matches the I/O in progress.
125 */
126 static boolean_t
127 zio_match_handler(const zbookmark_phys_t *zb, uint64_t type, int dva,
128 zinject_record_t *record, int error)
129 {
130 /*
131 * Check for a match against the MOS, which is based on type
132 */
133 if (zb->zb_objset == DMU_META_OBJSET &&
134 record->zi_objset == DMU_META_OBJSET &&
135 record->zi_object == DMU_META_DNODE_OBJECT) {
136 if (record->zi_type == DMU_OT_NONE ||
137 type == record->zi_type)
138 return (freq_triggered(record->zi_freq));
139 else
140 return (B_FALSE);
141 }
142
143 /*
144 * Check for an exact match.
145 */
146 if (zb->zb_objset == record->zi_objset &&
147 zb->zb_object == record->zi_object &&
148 zb->zb_level == record->zi_level &&
149 zb->zb_blkid >= record->zi_start &&
150 zb->zb_blkid <= record->zi_end &&
151 (record->zi_dvas == 0 || (record->zi_dvas & (1ULL << dva))) &&
152 error == record->zi_error) {
153 return (freq_triggered(record->zi_freq));
154 }
155
156 return (B_FALSE);
157 }
158
159 /*
160 * Panic the system when a config change happens in the function
161 * specified by tag.
162 */
163 void
164 zio_handle_panic_injection(spa_t *spa, char *tag, uint64_t type)
165 {
166 inject_handler_t *handler;
167
168 rw_enter(&inject_lock, RW_READER);
169
170 for (handler = list_head(&inject_handlers); handler != NULL;
171 handler = list_next(&inject_handlers, handler)) {
172
173 if (spa != handler->zi_spa)
174 continue;
175
176 if (handler->zi_record.zi_type == type &&
177 strcmp(tag, handler->zi_record.zi_func) == 0)
178 panic("Panic requested in function %s\n", tag);
179 }
180
181 rw_exit(&inject_lock);
182 }
183
184 /*
185 * Inject a decryption failure. Decryption failures can occur in
186 * both the ARC and the ZIO layers.
187 */
188 int
189 zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb,
190 uint64_t type, int error)
191 {
192 int ret = 0;
193 inject_handler_t *handler;
194
195 rw_enter(&inject_lock, RW_READER);
196
197 for (handler = list_head(&inject_handlers); handler != NULL;
198 handler = list_next(&inject_handlers, handler)) {
199
200 if (spa != handler->zi_spa ||
201 handler->zi_record.zi_cmd != ZINJECT_DECRYPT_FAULT)
202 continue;
203
204 if (zio_match_handler(zb, type, ZI_NO_DVA,
205 &handler->zi_record, error)) {
206 ret = error;
207 break;
208 }
209 }
210
211 rw_exit(&inject_lock);
212 return (ret);
213 }
214
215 /*
216 * If this is a physical I/O for a vdev child determine which DVA it is
217 * for. We iterate backwards through the DVAs matching on the offset so
218 * that we end up with ZI_NO_DVA (-1) if we don't find a match.
219 */
220 static int
221 zio_match_dva(zio_t *zio)
222 {
223 int i = ZI_NO_DVA;
224
225 if (zio->io_bp != NULL && zio->io_vd != NULL &&
226 zio->io_child_type == ZIO_CHILD_VDEV) {
227 for (i = BP_GET_NDVAS(zio->io_bp) - 1; i >= 0; i--) {
228 dva_t *dva = &zio->io_bp->blk_dva[i];
229 uint64_t off = DVA_GET_OFFSET(dva);
230 vdev_t *vd = vdev_lookup_top(zio->io_spa,
231 DVA_GET_VDEV(dva));
232
233 /* Compensate for vdev label added to leaves */
234 if (zio->io_vd->vdev_ops->vdev_op_leaf)
235 off += VDEV_LABEL_START_SIZE;
236
237 if (zio->io_vd == vd && zio->io_offset == off)
238 break;
239 }
240 }
241
242 return (i);
243 }
244
245
246 /*
247 * Determine if the I/O in question should return failure. Returns the errno
248 * to be returned to the caller.
249 */
250 int
251 zio_handle_fault_injection(zio_t *zio, int error)
252 {
253 int ret = 0;
254 inject_handler_t *handler;
255
256 /*
257 * Ignore I/O not associated with any logical data.
258 */
259 if (zio->io_logical == NULL)
260 return (0);
261
262 /*
263 * Currently, we only support fault injection on reads.
264 */
265 if (zio->io_type != ZIO_TYPE_READ)
266 return (0);
267
268 rw_enter(&inject_lock, RW_READER);
269
270 for (handler = list_head(&inject_handlers); handler != NULL;
271 handler = list_next(&inject_handlers, handler)) {
272 if (zio->io_spa != handler->zi_spa ||
273 handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
274 continue;
275
276 /* If this handler matches, return the specified error */
277 if (zio_match_handler(&zio->io_logical->io_bookmark,
278 zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
279 zio_match_dva(zio), &handler->zi_record, error)) {
280 ret = error;
281 break;
282 }
283 }
284
285 rw_exit(&inject_lock);
286
287 return (ret);
288 }
289
290 /*
291 * Determine if the zio is part of a label update and has an injection
292 * handler associated with that portion of the label. Currently, we
293 * allow error injection in either the nvlist or the uberblock region of
294 * of the vdev label.
295 */
296 int
297 zio_handle_label_injection(zio_t *zio, int error)
298 {
299 inject_handler_t *handler;
300 vdev_t *vd = zio->io_vd;
301 uint64_t offset = zio->io_offset;
302 int label;
303 int ret = 0;
304
305 if (offset >= VDEV_LABEL_START_SIZE &&
306 offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
307 return (0);
308
309 rw_enter(&inject_lock, RW_READER);
310
311 for (handler = list_head(&inject_handlers); handler != NULL;
312 handler = list_next(&inject_handlers, handler)) {
313 uint64_t start = handler->zi_record.zi_start;
314 uint64_t end = handler->zi_record.zi_end;
315
316 if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
317 continue;
318
319 /*
320 * The injection region is the relative offsets within a
321 * vdev label. We must determine the label which is being
322 * updated and adjust our region accordingly.
323 */
324 label = vdev_label_number(vd->vdev_psize, offset);
325 start = vdev_label_offset(vd->vdev_psize, label, start);
326 end = vdev_label_offset(vd->vdev_psize, label, end);
327
328 if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
329 (offset >= start && offset <= end)) {
330 ret = error;
331 break;
332 }
333 }
334 rw_exit(&inject_lock);
335 return (ret);
336 }
337
338 /*ARGSUSED*/
339 static int
340 zio_inject_bitflip_cb(void *data, size_t len, void *private)
341 {
342 ASSERTV(zio_t *zio = private);
343 uint8_t *buffer = data;
344 uint_t byte = spa_get_random(len);
345
346 ASSERT(zio->io_type == ZIO_TYPE_READ);
347
348 /* flip a single random bit in an abd data buffer */
349 buffer[byte] ^= 1 << spa_get_random(8);
350
351 return (1); /* stop after first flip */
352 }
353
354 static int
355 zio_handle_device_injection_impl(vdev_t *vd, zio_t *zio, int err1, int err2)
356 {
357 inject_handler_t *handler;
358 int ret = 0;
359
360 /*
361 * We skip over faults in the labels unless it's during
362 * device open (i.e. zio == NULL).
363 */
364 if (zio != NULL) {
365 uint64_t offset = zio->io_offset;
366
367 if (offset < VDEV_LABEL_START_SIZE ||
368 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
369 return (0);
370 }
371
372 rw_enter(&inject_lock, RW_READER);
373
374 for (handler = list_head(&inject_handlers); handler != NULL;
375 handler = list_next(&inject_handlers, handler)) {
376
377 if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
378 continue;
379
380 if (vd->vdev_guid == handler->zi_record.zi_guid) {
381 if (handler->zi_record.zi_failfast &&
382 (zio == NULL || (zio->io_flags &
383 (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
384 continue;
385 }
386
387 /* Handle type specific I/O failures */
388 if (zio != NULL &&
389 handler->zi_record.zi_iotype != ZIO_TYPES &&
390 handler->zi_record.zi_iotype != zio->io_type)
391 continue;
392
393 if (handler->zi_record.zi_error == err1 ||
394 handler->zi_record.zi_error == err2) {
395 /*
396 * limit error injection if requested
397 */
398 if (!freq_triggered(handler->zi_record.zi_freq))
399 continue;
400
401 /*
402 * For a failed open, pretend like the device
403 * has gone away.
404 */
405 if (err1 == ENXIO)
406 vd->vdev_stat.vs_aux =
407 VDEV_AUX_OPEN_FAILED;
408
409 /*
410 * Treat these errors as if they had been
411 * retried so that all the appropriate stats
412 * and FMA events are generated.
413 */
414 if (!handler->zi_record.zi_failfast &&
415 zio != NULL)
416 zio->io_flags |= ZIO_FLAG_IO_RETRY;
417
418 /*
419 * EILSEQ means flip a bit after a read
420 */
421 if (handler->zi_record.zi_error == EILSEQ) {
422 if (zio == NULL)
423 break;
424
425 /* locate buffer data and flip a bit */
426 (void) abd_iterate_func(zio->io_abd, 0,
427 zio->io_size, zio_inject_bitflip_cb,
428 zio);
429 break;
430 }
431
432 ret = handler->zi_record.zi_error;
433 break;
434 }
435 if (handler->zi_record.zi_error == ENXIO) {
436 ret = SET_ERROR(EIO);
437 break;
438 }
439 }
440 }
441
442 rw_exit(&inject_lock);
443
444 return (ret);
445 }
446
447 int
448 zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
449 {
450 return (zio_handle_device_injection_impl(vd, zio, error, INT_MAX));
451 }
452
453 int
454 zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2)
455 {
456 return (zio_handle_device_injection_impl(vd, zio, err1, err2));
457 }
458
459 /*
460 * Simulate hardware that ignores cache flushes. For requested number
461 * of seconds nix the actual writing to disk.
462 */
463 void
464 zio_handle_ignored_writes(zio_t *zio)
465 {
466 inject_handler_t *handler;
467
468 rw_enter(&inject_lock, RW_READER);
469
470 for (handler = list_head(&inject_handlers); handler != NULL;
471 handler = list_next(&inject_handlers, handler)) {
472
473 /* Ignore errors not destined for this pool */
474 if (zio->io_spa != handler->zi_spa ||
475 handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
476 continue;
477
478 /*
479 * Positive duration implies # of seconds, negative
480 * a number of txgs
481 */
482 if (handler->zi_record.zi_timer == 0) {
483 if (handler->zi_record.zi_duration > 0)
484 handler->zi_record.zi_timer = ddi_get_lbolt64();
485 else
486 handler->zi_record.zi_timer = zio->io_txg;
487 }
488
489 /* Have a "problem" writing 60% of the time */
490 if (spa_get_random(100) < 60)
491 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
492 break;
493 }
494
495 rw_exit(&inject_lock);
496 }
497
498 void
499 spa_handle_ignored_writes(spa_t *spa)
500 {
501 inject_handler_t *handler;
502
503 if (zio_injection_enabled == 0)
504 return;
505
506 rw_enter(&inject_lock, RW_READER);
507
508 for (handler = list_head(&inject_handlers); handler != NULL;
509 handler = list_next(&inject_handlers, handler)) {
510
511 if (spa != handler->zi_spa ||
512 handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
513 continue;
514
515 if (handler->zi_record.zi_duration > 0) {
516 VERIFY(handler->zi_record.zi_timer == 0 ||
517 ddi_time_after64(
518 (int64_t)handler->zi_record.zi_timer +
519 handler->zi_record.zi_duration * hz,
520 ddi_get_lbolt64()));
521 } else {
522 /* duration is negative so the subtraction here adds */
523 VERIFY(handler->zi_record.zi_timer == 0 ||
524 handler->zi_record.zi_timer -
525 handler->zi_record.zi_duration >=
526 spa_syncing_txg(spa));
527 }
528 }
529
530 rw_exit(&inject_lock);
531 }
532
533 hrtime_t
534 zio_handle_io_delay(zio_t *zio)
535 {
536 vdev_t *vd = zio->io_vd;
537 inject_handler_t *min_handler = NULL;
538 hrtime_t min_target = 0;
539
540 rw_enter(&inject_lock, RW_READER);
541
542 /*
543 * inject_delay_count is a subset of zio_injection_enabled that
544 * is only incremented for delay handlers. These checks are
545 * mainly added to remind the reader why we're not explicitly
546 * checking zio_injection_enabled like the other functions.
547 */
548 IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
549 IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
550
551 /*
552 * If there aren't any inject delay handlers registered, then we
553 * can short circuit and simply return 0 here. A value of zero
554 * informs zio_delay_interrupt() that this request should not be
555 * delayed. This short circuit keeps us from acquiring the
556 * inject_delay_mutex unnecessarily.
557 */
558 if (inject_delay_count == 0) {
559 rw_exit(&inject_lock);
560 return (0);
561 }
562
563 /*
564 * Each inject handler has a number of "lanes" associated with
565 * it. Each lane is able to handle requests independently of one
566 * another, and at a latency defined by the inject handler
567 * record's zi_timer field. Thus if a handler in configured with
568 * a single lane with a 10ms latency, it will delay requests
569 * such that only a single request is completed every 10ms. So,
570 * if more than one request is attempted per each 10ms interval,
571 * the average latency of the requests will be greater than
572 * 10ms; but if only a single request is submitted each 10ms
573 * interval the average latency will be 10ms.
574 *
575 * We need to acquire this mutex to prevent multiple concurrent
576 * threads being assigned to the same lane of a given inject
577 * handler. The mutex allows us to perform the following two
578 * operations atomically:
579 *
580 * 1. determine the minimum handler and minimum target
581 * value of all the possible handlers
582 * 2. update that minimum handler's lane array
583 *
584 * Without atomicity, two (or more) threads could pick the same
585 * lane in step (1), and then conflict with each other in step
586 * (2). This could allow a single lane handler to process
587 * multiple requests simultaneously, which shouldn't be possible.
588 */
589 mutex_enter(&inject_delay_mtx);
590
591 for (inject_handler_t *handler = list_head(&inject_handlers);
592 handler != NULL; handler = list_next(&inject_handlers, handler)) {
593 if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
594 continue;
595
596 if (!freq_triggered(handler->zi_record.zi_freq))
597 continue;
598
599 if (vd->vdev_guid != handler->zi_record.zi_guid)
600 continue;
601
602 /*
603 * Defensive; should never happen as the array allocation
604 * occurs prior to inserting this handler on the list.
605 */
606 ASSERT3P(handler->zi_lanes, !=, NULL);
607
608 /*
609 * This should never happen, the zinject command should
610 * prevent a user from setting an IO delay with zero lanes.
611 */
612 ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
613
614 ASSERT3U(handler->zi_record.zi_nlanes, >,
615 handler->zi_next_lane);
616
617 /*
618 * We want to issue this IO to the lane that will become
619 * idle the soonest, so we compare the soonest this
620 * specific handler can complete the IO with all other
621 * handlers, to find the lowest value of all possible
622 * lanes. We then use this lane to submit the request.
623 *
624 * Since each handler has a constant value for its
625 * delay, we can just use the "next" lane for that
626 * handler; as it will always be the lane with the
627 * lowest value for that particular handler (i.e. the
628 * lane that will become idle the soonest). This saves a
629 * scan of each handler's lanes array.
630 *
631 * There's two cases to consider when determining when
632 * this specific IO request should complete. If this
633 * lane is idle, we want to "submit" the request now so
634 * it will complete after zi_timer milliseconds. Thus,
635 * we set the target to now + zi_timer.
636 *
637 * If the lane is busy, we want this request to complete
638 * zi_timer milliseconds after the lane becomes idle.
639 * Since the 'zi_lanes' array holds the time at which
640 * each lane will become idle, we use that value to
641 * determine when this request should complete.
642 */
643 hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
644 hrtime_t busy = handler->zi_record.zi_timer +
645 handler->zi_lanes[handler->zi_next_lane];
646 hrtime_t target = MAX(idle, busy);
647
648 if (min_handler == NULL) {
649 min_handler = handler;
650 min_target = target;
651 continue;
652 }
653
654 ASSERT3P(min_handler, !=, NULL);
655 ASSERT3U(min_target, !=, 0);
656
657 /*
658 * We don't yet increment the "next lane" variable since
659 * we still might find a lower value lane in another
660 * handler during any remaining iterations. Once we're
661 * sure we've selected the absolute minimum, we'll claim
662 * the lane and increment the handler's "next lane"
663 * field below.
664 */
665
666 if (target < min_target) {
667 min_handler = handler;
668 min_target = target;
669 }
670 }
671
672 /*
673 * 'min_handler' will be NULL if no IO delays are registered for
674 * this vdev, otherwise it will point to the handler containing
675 * the lane that will become idle the soonest.
676 */
677 if (min_handler != NULL) {
678 ASSERT3U(min_target, !=, 0);
679 min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
680
681 /*
682 * If we've used all possible lanes for this handler,
683 * loop back and start using the first lane again;
684 * otherwise, just increment the lane index.
685 */
686 min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
687 min_handler->zi_record.zi_nlanes;
688 }
689
690 mutex_exit(&inject_delay_mtx);
691 rw_exit(&inject_lock);
692
693 return (min_target);
694 }
695
696 static int
697 zio_calculate_range(const char *pool, zinject_record_t *record)
698 {
699 dsl_pool_t *dp;
700 dsl_dataset_t *ds;
701 objset_t *os = NULL;
702 dnode_t *dn = NULL;
703 int error;
704
705 /*
706 * Obtain the dnode for object using pool, objset, and object
707 */
708 error = dsl_pool_hold(pool, FTAG, &dp);
709 if (error)
710 return (error);
711
712 error = dsl_dataset_hold_obj(dp, record->zi_objset, FTAG, &ds);
713 dsl_pool_rele(dp, FTAG);
714 if (error)
715 return (error);
716
717 error = dmu_objset_from_ds(ds, &os);
718 dsl_dataset_rele(ds, FTAG);
719 if (error)
720 return (error);
721
722 error = dnode_hold(os, record->zi_object, FTAG, &dn);
723 if (error)
724 return (error);
725
726 /*
727 * Translate the range into block IDs
728 */
729 if (record->zi_start != 0 || record->zi_end != -1ULL) {
730 record->zi_start >>= dn->dn_datablkshift;
731 record->zi_end >>= dn->dn_datablkshift;
732 }
733 if (record->zi_level > 0) {
734 if (record->zi_level >= dn->dn_nlevels) {
735 dnode_rele(dn, FTAG);
736 return (SET_ERROR(EDOM));
737 }
738
739 if (record->zi_start != 0 || record->zi_end != 0) {
740 int shift = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
741
742 for (int level = record->zi_level; level > 0; level--) {
743 record->zi_start >>= shift;
744 record->zi_end >>= shift;
745 }
746 }
747 }
748
749 dnode_rele(dn, FTAG);
750 return (0);
751 }
752
753 /*
754 * Create a new handler for the given record. We add it to the list, adding
755 * a reference to the spa_t in the process. We increment zio_injection_enabled,
756 * which is the switch to trigger all fault injection.
757 */
758 int
759 zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
760 {
761 inject_handler_t *handler;
762 int error;
763 spa_t *spa;
764
765 /*
766 * If this is pool-wide metadata, make sure we unload the corresponding
767 * spa_t, so that the next attempt to load it will trigger the fault.
768 * We call spa_reset() to unload the pool appropriately.
769 */
770 if (flags & ZINJECT_UNLOAD_SPA)
771 if ((error = spa_reset(name)) != 0)
772 return (error);
773
774 if (record->zi_cmd == ZINJECT_DELAY_IO) {
775 /*
776 * A value of zero for the number of lanes or for the
777 * delay time doesn't make sense.
778 */
779 if (record->zi_timer == 0 || record->zi_nlanes == 0)
780 return (SET_ERROR(EINVAL));
781
782 /*
783 * The number of lanes is directly mapped to the size of
784 * an array used by the handler. Thus, to ensure the
785 * user doesn't trigger an allocation that's "too large"
786 * we cap the number of lanes here.
787 */
788 if (record->zi_nlanes >= UINT16_MAX)
789 return (SET_ERROR(EINVAL));
790 }
791
792 /*
793 * If the supplied range was in bytes -- calculate the actual blkid
794 */
795 if (flags & ZINJECT_CALC_RANGE) {
796 error = zio_calculate_range(name, record);
797 if (error != 0)
798 return (error);
799 }
800
801 if (!(flags & ZINJECT_NULL)) {
802 /*
803 * spa_inject_ref() will add an injection reference, which will
804 * prevent the pool from being removed from the namespace while
805 * still allowing it to be unloaded.
806 */
807 if ((spa = spa_inject_addref(name)) == NULL)
808 return (SET_ERROR(ENOENT));
809
810 handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
811
812 handler->zi_spa = spa;
813 handler->zi_record = *record;
814
815 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
816 handler->zi_lanes = kmem_zalloc(
817 sizeof (*handler->zi_lanes) *
818 handler->zi_record.zi_nlanes, KM_SLEEP);
819 handler->zi_next_lane = 0;
820 } else {
821 handler->zi_lanes = NULL;
822 handler->zi_next_lane = 0;
823 }
824
825 rw_enter(&inject_lock, RW_WRITER);
826
827 /*
828 * We can't move this increment into the conditional
829 * above because we need to hold the RW_WRITER lock of
830 * inject_lock, and we don't want to hold that while
831 * allocating the handler's zi_lanes array.
832 */
833 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
834 ASSERT3S(inject_delay_count, >=, 0);
835 inject_delay_count++;
836 ASSERT3S(inject_delay_count, >, 0);
837 }
838
839 *id = handler->zi_id = inject_next_id++;
840 list_insert_tail(&inject_handlers, handler);
841 atomic_inc_32(&zio_injection_enabled);
842
843 rw_exit(&inject_lock);
844 }
845
846 /*
847 * Flush the ARC, so that any attempts to read this data will end up
848 * going to the ZIO layer. Note that this is a little overkill, but
849 * we don't have the necessary ARC interfaces to do anything else, and
850 * fault injection isn't a performance critical path.
851 */
852 if (flags & ZINJECT_FLUSH_ARC)
853 /*
854 * We must use FALSE to ensure arc_flush returns, since
855 * we're not preventing concurrent ARC insertions.
856 */
857 arc_flush(NULL, FALSE);
858
859 return (0);
860 }
861
862 /*
863 * Returns the next record with an ID greater than that supplied to the
864 * function. Used to iterate over all handlers in the system.
865 */
866 int
867 zio_inject_list_next(int *id, char *name, size_t buflen,
868 zinject_record_t *record)
869 {
870 inject_handler_t *handler;
871 int ret;
872
873 mutex_enter(&spa_namespace_lock);
874 rw_enter(&inject_lock, RW_READER);
875
876 for (handler = list_head(&inject_handlers); handler != NULL;
877 handler = list_next(&inject_handlers, handler))
878 if (handler->zi_id > *id)
879 break;
880
881 if (handler) {
882 *record = handler->zi_record;
883 *id = handler->zi_id;
884 (void) strncpy(name, spa_name(handler->zi_spa), buflen);
885 ret = 0;
886 } else {
887 ret = SET_ERROR(ENOENT);
888 }
889
890 rw_exit(&inject_lock);
891 mutex_exit(&spa_namespace_lock);
892
893 return (ret);
894 }
895
896 /*
897 * Clear the fault handler with the given identifier, or return ENOENT if none
898 * exists.
899 */
900 int
901 zio_clear_fault(int id)
902 {
903 inject_handler_t *handler;
904
905 rw_enter(&inject_lock, RW_WRITER);
906
907 for (handler = list_head(&inject_handlers); handler != NULL;
908 handler = list_next(&inject_handlers, handler))
909 if (handler->zi_id == id)
910 break;
911
912 if (handler == NULL) {
913 rw_exit(&inject_lock);
914 return (SET_ERROR(ENOENT));
915 }
916
917 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
918 ASSERT3S(inject_delay_count, >, 0);
919 inject_delay_count--;
920 ASSERT3S(inject_delay_count, >=, 0);
921 }
922
923 list_remove(&inject_handlers, handler);
924 rw_exit(&inject_lock);
925
926 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
927 ASSERT3P(handler->zi_lanes, !=, NULL);
928 kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
929 handler->zi_record.zi_nlanes);
930 } else {
931 ASSERT3P(handler->zi_lanes, ==, NULL);
932 }
933
934 spa_inject_delref(handler->zi_spa);
935 kmem_free(handler, sizeof (inject_handler_t));
936 atomic_dec_32(&zio_injection_enabled);
937
938 return (0);
939 }
940
941 void
942 zio_inject_init(void)
943 {
944 rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
945 mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
946 list_create(&inject_handlers, sizeof (inject_handler_t),
947 offsetof(inject_handler_t, zi_link));
948 }
949
950 void
951 zio_inject_fini(void)
952 {
953 list_destroy(&inject_handlers);
954 mutex_destroy(&inject_delay_mtx);
955 rw_destroy(&inject_lock);
956 }
957
958 #if defined(_KERNEL)
959 EXPORT_SYMBOL(zio_injection_enabled);
960 EXPORT_SYMBOL(zio_inject_fault);
961 EXPORT_SYMBOL(zio_inject_list_next);
962 EXPORT_SYMBOL(zio_clear_fault);
963 EXPORT_SYMBOL(zio_handle_fault_injection);
964 EXPORT_SYMBOL(zio_handle_device_injection);
965 EXPORT_SYMBOL(zio_handle_label_injection);
966 #endif