]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zpl_file.c
Revert Fix zpl_writepage() deadlock
[mirror_zfs.git] / module / zfs / zpl_file.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 */
24
25
26 #include <sys/zfs_vfsops.h>
27 #include <sys/zfs_vnops.h>
28 #include <sys/zfs_znode.h>
29 #include <sys/zpl.h>
30
31
32 static int
33 zpl_open(struct inode *ip, struct file *filp)
34 {
35 cred_t *cr = CRED();
36 int error;
37
38 crhold(cr);
39 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
40 crfree(cr);
41 ASSERT3S(error, <=, 0);
42
43 if (error)
44 return (error);
45
46 return generic_file_open(ip, filp);
47 }
48
49 static int
50 zpl_release(struct inode *ip, struct file *filp)
51 {
52 cred_t *cr = CRED();
53 int error;
54
55 crhold(cr);
56 error = -zfs_close(ip, filp->f_flags, cr);
57 crfree(cr);
58 ASSERT3S(error, <=, 0);
59
60 return (error);
61 }
62
63 static int
64 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
65 {
66 struct dentry *dentry = filp->f_path.dentry;
67 cred_t *cr = CRED();
68 int error;
69
70 crhold(cr);
71 error = -zfs_readdir(dentry->d_inode, dirent, filldir,
72 &filp->f_pos, cr);
73 crfree(cr);
74 ASSERT3S(error, <=, 0);
75
76 return (error);
77 }
78
79 #if defined(HAVE_FSYNC_WITH_DENTRY)
80 /*
81 * Linux 2.6.x - 2.6.34 API,
82 * Through 2.6.34 the nfsd kernel server would pass a NULL 'file struct *'
83 * to the fops->fsync() hook. For this reason, we must be careful not to
84 * use filp unconditionally.
85 */
86 static int
87 zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
88 {
89 cred_t *cr = CRED();
90 int error;
91
92 crhold(cr);
93 error = -zfs_fsync(dentry->d_inode, datasync, cr);
94 crfree(cr);
95 ASSERT3S(error, <=, 0);
96
97 return (error);
98 }
99
100 #elif defined(HAVE_FSYNC_WITHOUT_DENTRY)
101 /*
102 * Linux 2.6.35 - 3.0 API,
103 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
104 * redundant. The dentry is still accessible via filp->f_path.dentry,
105 * and we are guaranteed that filp will never be NULL.
106 */
107 static int
108 zpl_fsync(struct file *filp, int datasync)
109 {
110 struct inode *inode = filp->f_mapping->host;
111 cred_t *cr = CRED();
112 int error;
113
114 crhold(cr);
115 error = -zfs_fsync(inode, datasync, cr);
116 crfree(cr);
117 ASSERT3S(error, <=, 0);
118
119 return (error);
120 }
121
122 #elif defined(HAVE_FSYNC_RANGE)
123 /*
124 * Linux 3.1 - 3.x API,
125 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
126 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
127 * lock is no longer held by the caller, for zfs we don't require the lock
128 * to be held so we don't acquire it.
129 */
130 static int
131 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
132 {
133 struct inode *inode = filp->f_mapping->host;
134 cred_t *cr = CRED();
135 int error;
136
137 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
138 if (error)
139 return (error);
140
141 crhold(cr);
142 error = -zfs_fsync(inode, datasync, cr);
143 crfree(cr);
144 ASSERT3S(error, <=, 0);
145
146 return (error);
147 }
148 #else
149 #error "Unsupported fops->fsync() implementation"
150 #endif
151
152 ssize_t
153 zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
154 uio_seg_t segment, int flags, cred_t *cr)
155 {
156 int error;
157 struct iovec iov;
158 uio_t uio;
159
160 iov.iov_base = (void *)buf;
161 iov.iov_len = len;
162
163 uio.uio_iov = &iov;
164 uio.uio_resid = len;
165 uio.uio_iovcnt = 1;
166 uio.uio_loffset = pos;
167 uio.uio_limit = MAXOFFSET_T;
168 uio.uio_segflg = segment;
169
170 error = -zfs_read(ip, &uio, flags, cr);
171 if (error < 0)
172 return (error);
173
174 return (len - uio.uio_resid);
175 }
176
177 static ssize_t
178 zpl_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
179 {
180 cred_t *cr = CRED();
181 ssize_t read;
182
183 crhold(cr);
184 read = zpl_read_common(filp->f_mapping->host, buf, len, *ppos,
185 UIO_USERSPACE, filp->f_flags, cr);
186 crfree(cr);
187
188 if (read < 0)
189 return (read);
190
191 *ppos += read;
192 return (read);
193 }
194
195 ssize_t
196 zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
197 uio_seg_t segment, int flags, cred_t *cr)
198 {
199 int error;
200 struct iovec iov;
201 uio_t uio;
202
203 iov.iov_base = (void *)buf;
204 iov.iov_len = len;
205
206 uio.uio_iov = &iov;
207 uio.uio_resid = len,
208 uio.uio_iovcnt = 1;
209 uio.uio_loffset = pos;
210 uio.uio_limit = MAXOFFSET_T;
211 uio.uio_segflg = segment;
212
213 error = -zfs_write(ip, &uio, flags, cr);
214 if (error < 0)
215 return (error);
216
217 return (len - uio.uio_resid);
218 }
219
220 static ssize_t
221 zpl_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
222 {
223 cred_t *cr = CRED();
224 ssize_t wrote;
225
226 crhold(cr);
227 wrote = zpl_write_common(filp->f_mapping->host, buf, len, *ppos,
228 UIO_USERSPACE, filp->f_flags, cr);
229 crfree(cr);
230
231 if (wrote < 0)
232 return (wrote);
233
234 *ppos += wrote;
235 return (wrote);
236 }
237
238 /*
239 * It's worth taking a moment to describe how mmap is implemented
240 * for zfs because it differs considerably from other Linux filesystems.
241 * However, this issue is handled the same way under OpenSolaris.
242 *
243 * The issue is that by design zfs bypasses the Linux page cache and
244 * leaves all caching up to the ARC. This has been shown to work
245 * well for the common read(2)/write(2) case. However, mmap(2)
246 * is problem because it relies on being tightly integrated with the
247 * page cache. To handle this we cache mmap'ed files twice, once in
248 * the ARC and a second time in the page cache. The code is careful
249 * to keep both copies synchronized.
250 *
251 * When a file with an mmap'ed region is written to using write(2)
252 * both the data in the ARC and existing pages in the page cache
253 * are updated. For a read(2) data will be read first from the page
254 * cache then the ARC if needed. Neither a write(2) or read(2) will
255 * will ever result in new pages being added to the page cache.
256 *
257 * New pages are added to the page cache only via .readpage() which
258 * is called when the vfs needs to read a page off disk to back the
259 * virtual memory region. These pages may be modified without
260 * notifying the ARC and will be written out periodically via
261 * .writepage(). This will occur due to either a sync or the usual
262 * page aging behavior. Note because a read(2) of a mmap'ed file
263 * will always check the page cache first even when the ARC is out
264 * of date correct data will still be returned.
265 *
266 * While this implementation ensures correct behavior it does have
267 * have some drawbacks. The most obvious of which is that it
268 * increases the required memory footprint when access mmap'ed
269 * files. It also adds additional complexity to the code keeping
270 * both caches synchronized.
271 *
272 * Longer term it may be possible to cleanly resolve this wart by
273 * mapping page cache pages directly on to the ARC buffers. The
274 * Linux address space operations are flexible enough to allow
275 * selection of which pages back a particular index. The trick
276 * would be working out the details of which subsystem is in
277 * charge, the ARC, the page cache, or both. It may also prove
278 * helpful to move the ARC buffers to a scatter-gather lists
279 * rather than a vmalloc'ed region.
280 */
281 static int
282 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
283 {
284 struct inode *ip = filp->f_mapping->host;
285 znode_t *zp = ITOZ(ip);
286 int error;
287
288 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
289 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
290 if (error)
291 return (error);
292
293 error = generic_file_mmap(filp, vma);
294 if (error)
295 return (error);
296
297 mutex_enter(&zp->z_lock);
298 zp->z_is_mapped = 1;
299 mutex_exit(&zp->z_lock);
300
301 return (error);
302 }
303
304 /*
305 * Populate a page with data for the Linux page cache. This function is
306 * only used to support mmap(2). There will be an identical copy of the
307 * data in the ARC which is kept up to date via .write() and .writepage().
308 *
309 * Current this function relies on zpl_read_common() and the O_DIRECT
310 * flag to read in a page. This works but the more correct way is to
311 * update zfs_fillpage() to be Linux friendly and use that interface.
312 */
313 static int
314 zpl_readpage(struct file *filp, struct page *pp)
315 {
316 struct inode *ip;
317 struct page *pl[1];
318 int error = 0;
319
320 ASSERT(PageLocked(pp));
321 ip = pp->mapping->host;
322 pl[0] = pp;
323
324 error = -zfs_getpage(ip, pl, 1);
325
326 if (error) {
327 SetPageError(pp);
328 ClearPageUptodate(pp);
329 } else {
330 ClearPageError(pp);
331 SetPageUptodate(pp);
332 flush_dcache_page(pp);
333 }
334
335 unlock_page(pp);
336 return error;
337 }
338
339 /*
340 * Populate a set of pages with data for the Linux page cache. This
341 * function will only be called for read ahead and never for demand
342 * paging. For simplicity, the code relies on read_cache_pages() to
343 * correctly lock each page for IO and call zpl_readpage().
344 */
345 static int
346 zpl_readpages(struct file *filp, struct address_space *mapping,
347 struct list_head *pages, unsigned nr_pages)
348 {
349 return (read_cache_pages(mapping, pages,
350 (filler_t *)zpl_readpage, filp));
351 }
352
353 int
354 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
355 {
356 struct address_space *mapping = data;
357
358 ASSERT(PageLocked(pp));
359 ASSERT(!PageWriteback(pp));
360
361 (void) zfs_putpage(mapping->host, pp, wbc);
362
363 return (0);
364 }
365
366 static int
367 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
368 {
369 return write_cache_pages(mapping, wbc, zpl_putpage, mapping);
370 }
371
372 /*
373 * Write out dirty pages to the ARC, this function is only required to
374 * support mmap(2). Mapped pages may be dirtied by memory operations
375 * which never call .write(). These dirty pages are kept in sync with
376 * the ARC buffers via this hook.
377 */
378 static int
379 zpl_writepage(struct page *pp, struct writeback_control *wbc)
380 {
381 return zpl_putpage(pp, wbc, pp->mapping);
382 }
383
384 /*
385 * The only flag combination which matches the behavior of zfs_space()
386 * is FALLOC_FL_PUNCH_HOLE. This flag was introduced in the 2.6.38 kernel.
387 */
388 long
389 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
390 {
391 cred_t *cr = CRED();
392 int error = -EOPNOTSUPP;
393
394 if (mode & FALLOC_FL_KEEP_SIZE)
395 return (-EOPNOTSUPP);
396
397 crhold(cr);
398
399 #ifdef FALLOC_FL_PUNCH_HOLE
400 if (mode & FALLOC_FL_PUNCH_HOLE) {
401 flock64_t bf;
402
403 bf.l_type = F_WRLCK;
404 bf.l_whence = 0;
405 bf.l_start = offset;
406 bf.l_len = len;
407 bf.l_pid = 0;
408
409 error = -zfs_space(ip, F_FREESP, &bf, FWRITE, offset, cr);
410 }
411 #endif /* FALLOC_FL_PUNCH_HOLE */
412
413 crfree(cr);
414
415 ASSERT3S(error, <=, 0);
416 return (error);
417 }
418
419 #ifdef HAVE_FILE_FALLOCATE
420 static long
421 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
422 {
423 return zpl_fallocate_common(filp->f_path.dentry->d_inode,
424 mode, offset, len);
425 }
426 #endif /* HAVE_FILE_FALLOCATE */
427
428 const struct address_space_operations zpl_address_space_operations = {
429 .readpages = zpl_readpages,
430 .readpage = zpl_readpage,
431 .writepage = zpl_writepage,
432 .writepages = zpl_writepages,
433 };
434
435 const struct file_operations zpl_file_operations = {
436 .open = zpl_open,
437 .release = zpl_release,
438 .llseek = generic_file_llseek,
439 .read = zpl_read,
440 .write = zpl_write,
441 .readdir = zpl_readdir,
442 .mmap = zpl_mmap,
443 .fsync = zpl_fsync,
444 #ifdef HAVE_FILE_FALLOCATE
445 .fallocate = zpl_fallocate,
446 #endif /* HAVE_FILE_FALLOCATE */
447 };
448
449 const struct file_operations zpl_dir_file_operations = {
450 .llseek = generic_file_llseek,
451 .read = generic_read_dir,
452 .readdir = zpl_readdir,
453 .fsync = zpl_fsync,
454 };