]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zpl_file.c
Add I/O Read/Write Accounting
[mirror_zfs.git] / module / zfs / zpl_file.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 */
24
25
26 #include <sys/zfs_vfsops.h>
27 #include <sys/zfs_vnops.h>
28 #include <sys/zfs_znode.h>
29 #include <sys/zpl.h>
30
31
32 static int
33 zpl_open(struct inode *ip, struct file *filp)
34 {
35 cred_t *cr = CRED();
36 int error;
37
38 crhold(cr);
39 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
40 crfree(cr);
41 ASSERT3S(error, <=, 0);
42
43 if (error)
44 return (error);
45
46 return generic_file_open(ip, filp);
47 }
48
49 static int
50 zpl_release(struct inode *ip, struct file *filp)
51 {
52 cred_t *cr = CRED();
53 int error;
54
55 if (ITOZ(ip)->z_atime_dirty)
56 mark_inode_dirty(ip);
57
58 crhold(cr);
59 error = -zfs_close(ip, filp->f_flags, cr);
60 crfree(cr);
61 ASSERT3S(error, <=, 0);
62
63 return (error);
64 }
65
66 static int
67 zpl_iterate(struct file *filp, struct dir_context *ctx)
68 {
69 struct dentry *dentry = filp->f_path.dentry;
70 cred_t *cr = CRED();
71 int error;
72
73 crhold(cr);
74 error = -zfs_readdir(dentry->d_inode, ctx, cr);
75 crfree(cr);
76 ASSERT3S(error, <=, 0);
77
78 return (error);
79 }
80
81 #if !defined(HAVE_VFS_ITERATE)
82 static int
83 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
84 {
85 struct dir_context ctx = DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
86 int error;
87
88 error = zpl_iterate(filp, &ctx);
89 filp->f_pos = ctx.pos;
90
91 return (error);
92 }
93 #endif /* HAVE_VFS_ITERATE */
94
95 #if defined(HAVE_FSYNC_WITH_DENTRY)
96 /*
97 * Linux 2.6.x - 2.6.34 API,
98 * Through 2.6.34 the nfsd kernel server would pass a NULL 'file struct *'
99 * to the fops->fsync() hook. For this reason, we must be careful not to
100 * use filp unconditionally.
101 */
102 static int
103 zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
104 {
105 cred_t *cr = CRED();
106 int error;
107
108 crhold(cr);
109 error = -zfs_fsync(dentry->d_inode, datasync, cr);
110 crfree(cr);
111 ASSERT3S(error, <=, 0);
112
113 return (error);
114 }
115
116 #elif defined(HAVE_FSYNC_WITHOUT_DENTRY)
117 /*
118 * Linux 2.6.35 - 3.0 API,
119 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
120 * redundant. The dentry is still accessible via filp->f_path.dentry,
121 * and we are guaranteed that filp will never be NULL.
122 */
123 static int
124 zpl_fsync(struct file *filp, int datasync)
125 {
126 struct inode *inode = filp->f_mapping->host;
127 cred_t *cr = CRED();
128 int error;
129
130 crhold(cr);
131 error = -zfs_fsync(inode, datasync, cr);
132 crfree(cr);
133 ASSERT3S(error, <=, 0);
134
135 return (error);
136 }
137
138 #elif defined(HAVE_FSYNC_RANGE)
139 /*
140 * Linux 3.1 - 3.x API,
141 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
142 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
143 * lock is no longer held by the caller, for zfs we don't require the lock
144 * to be held so we don't acquire it.
145 */
146 static int
147 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
148 {
149 struct inode *inode = filp->f_mapping->host;
150 cred_t *cr = CRED();
151 int error;
152
153 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
154 if (error)
155 return (error);
156
157 crhold(cr);
158 error = -zfs_fsync(inode, datasync, cr);
159 crfree(cr);
160 ASSERT3S(error, <=, 0);
161
162 return (error);
163 }
164 #else
165 #error "Unsupported fops->fsync() implementation"
166 #endif
167
168 ssize_t
169 zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
170 uio_seg_t segment, int flags, cred_t *cr)
171 {
172 int error;
173 ssize_t read;
174 struct iovec iov;
175 uio_t uio;
176
177 iov.iov_base = (void *)buf;
178 iov.iov_len = len;
179
180 uio.uio_iov = &iov;
181 uio.uio_resid = len;
182 uio.uio_iovcnt = 1;
183 uio.uio_loffset = pos;
184 uio.uio_limit = MAXOFFSET_T;
185 uio.uio_segflg = segment;
186
187 error = -zfs_read(ip, &uio, flags, cr);
188 if (error < 0)
189 return (error);
190
191 read = len - uio.uio_resid;
192 task_io_account_read(read);
193
194 return (read);
195 }
196
197 static ssize_t
198 zpl_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
199 {
200 cred_t *cr = CRED();
201 ssize_t read;
202
203 crhold(cr);
204 read = zpl_read_common(filp->f_mapping->host, buf, len, *ppos,
205 UIO_USERSPACE, filp->f_flags, cr);
206 crfree(cr);
207
208 if (read < 0)
209 return (read);
210
211 *ppos += read;
212 return (read);
213 }
214
215 ssize_t
216 zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t pos,
217 uio_seg_t segment, int flags, cred_t *cr)
218 {
219 int error;
220 ssize_t wrote;
221 struct iovec iov;
222 uio_t uio;
223
224 iov.iov_base = (void *)buf;
225 iov.iov_len = len;
226
227 uio.uio_iov = &iov;
228 uio.uio_resid = len,
229 uio.uio_iovcnt = 1;
230 uio.uio_loffset = pos;
231 uio.uio_limit = MAXOFFSET_T;
232 uio.uio_segflg = segment;
233
234 error = -zfs_write(ip, &uio, flags, cr);
235 if (error < 0)
236 return (error);
237
238 wrote = len - uio.uio_resid;
239 task_io_account_write(wrote);
240
241 return (wrote);
242 }
243
244 static ssize_t
245 zpl_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
246 {
247 cred_t *cr = CRED();
248 ssize_t wrote;
249
250 crhold(cr);
251 wrote = zpl_write_common(filp->f_mapping->host, buf, len, *ppos,
252 UIO_USERSPACE, filp->f_flags, cr);
253 crfree(cr);
254
255 if (wrote < 0)
256 return (wrote);
257
258 *ppos += wrote;
259 return (wrote);
260 }
261
262 static loff_t
263 zpl_llseek(struct file *filp, loff_t offset, int whence)
264 {
265 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
266 if (whence == SEEK_DATA || whence == SEEK_HOLE) {
267 struct inode *ip = filp->f_mapping->host;
268 loff_t maxbytes = ip->i_sb->s_maxbytes;
269 loff_t error;
270
271 spl_inode_lock(ip);
272 error = -zfs_holey(ip, whence, &offset);
273 if (error == 0)
274 error = lseek_execute(filp, ip, offset, maxbytes);
275 spl_inode_unlock(ip);
276
277 return (error);
278 }
279 #endif /* SEEK_HOLE && SEEK_DATA */
280
281 return generic_file_llseek(filp, offset, whence);
282 }
283
284 /*
285 * It's worth taking a moment to describe how mmap is implemented
286 * for zfs because it differs considerably from other Linux filesystems.
287 * However, this issue is handled the same way under OpenSolaris.
288 *
289 * The issue is that by design zfs bypasses the Linux page cache and
290 * leaves all caching up to the ARC. This has been shown to work
291 * well for the common read(2)/write(2) case. However, mmap(2)
292 * is problem because it relies on being tightly integrated with the
293 * page cache. To handle this we cache mmap'ed files twice, once in
294 * the ARC and a second time in the page cache. The code is careful
295 * to keep both copies synchronized.
296 *
297 * When a file with an mmap'ed region is written to using write(2)
298 * both the data in the ARC and existing pages in the page cache
299 * are updated. For a read(2) data will be read first from the page
300 * cache then the ARC if needed. Neither a write(2) or read(2) will
301 * will ever result in new pages being added to the page cache.
302 *
303 * New pages are added to the page cache only via .readpage() which
304 * is called when the vfs needs to read a page off disk to back the
305 * virtual memory region. These pages may be modified without
306 * notifying the ARC and will be written out periodically via
307 * .writepage(). This will occur due to either a sync or the usual
308 * page aging behavior. Note because a read(2) of a mmap'ed file
309 * will always check the page cache first even when the ARC is out
310 * of date correct data will still be returned.
311 *
312 * While this implementation ensures correct behavior it does have
313 * have some drawbacks. The most obvious of which is that it
314 * increases the required memory footprint when access mmap'ed
315 * files. It also adds additional complexity to the code keeping
316 * both caches synchronized.
317 *
318 * Longer term it may be possible to cleanly resolve this wart by
319 * mapping page cache pages directly on to the ARC buffers. The
320 * Linux address space operations are flexible enough to allow
321 * selection of which pages back a particular index. The trick
322 * would be working out the details of which subsystem is in
323 * charge, the ARC, the page cache, or both. It may also prove
324 * helpful to move the ARC buffers to a scatter-gather lists
325 * rather than a vmalloc'ed region.
326 */
327 static int
328 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
329 {
330 struct inode *ip = filp->f_mapping->host;
331 znode_t *zp = ITOZ(ip);
332 int error;
333
334 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
335 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
336 if (error)
337 return (error);
338
339 error = generic_file_mmap(filp, vma);
340 if (error)
341 return (error);
342
343 mutex_enter(&zp->z_lock);
344 zp->z_is_mapped = 1;
345 mutex_exit(&zp->z_lock);
346
347 return (error);
348 }
349
350 /*
351 * Populate a page with data for the Linux page cache. This function is
352 * only used to support mmap(2). There will be an identical copy of the
353 * data in the ARC which is kept up to date via .write() and .writepage().
354 *
355 * Current this function relies on zpl_read_common() and the O_DIRECT
356 * flag to read in a page. This works but the more correct way is to
357 * update zfs_fillpage() to be Linux friendly and use that interface.
358 */
359 static int
360 zpl_readpage(struct file *filp, struct page *pp)
361 {
362 struct inode *ip;
363 struct page *pl[1];
364 int error = 0;
365
366 ASSERT(PageLocked(pp));
367 ip = pp->mapping->host;
368 pl[0] = pp;
369
370 error = -zfs_getpage(ip, pl, 1);
371
372 if (error) {
373 SetPageError(pp);
374 ClearPageUptodate(pp);
375 } else {
376 ClearPageError(pp);
377 SetPageUptodate(pp);
378 flush_dcache_page(pp);
379 }
380
381 unlock_page(pp);
382 return error;
383 }
384
385 /*
386 * Populate a set of pages with data for the Linux page cache. This
387 * function will only be called for read ahead and never for demand
388 * paging. For simplicity, the code relies on read_cache_pages() to
389 * correctly lock each page for IO and call zpl_readpage().
390 */
391 static int
392 zpl_readpages(struct file *filp, struct address_space *mapping,
393 struct list_head *pages, unsigned nr_pages)
394 {
395 return (read_cache_pages(mapping, pages,
396 (filler_t *)zpl_readpage, filp));
397 }
398
399 int
400 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
401 {
402 struct address_space *mapping = data;
403
404 ASSERT(PageLocked(pp));
405 ASSERT(!PageWriteback(pp));
406 ASSERT(!(current->flags & PF_NOFS));
407
408 /*
409 * Annotate this call path with a flag that indicates that it is
410 * unsafe to use KM_SLEEP during memory allocations due to the
411 * potential for a deadlock. KM_PUSHPAGE should be used instead.
412 */
413 current->flags |= PF_NOFS;
414 (void) zfs_putpage(mapping->host, pp, wbc);
415 current->flags &= ~PF_NOFS;
416
417 return (0);
418 }
419
420 static int
421 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
422 {
423 return write_cache_pages(mapping, wbc, zpl_putpage, mapping);
424 }
425
426 /*
427 * Write out dirty pages to the ARC, this function is only required to
428 * support mmap(2). Mapped pages may be dirtied by memory operations
429 * which never call .write(). These dirty pages are kept in sync with
430 * the ARC buffers via this hook.
431 */
432 static int
433 zpl_writepage(struct page *pp, struct writeback_control *wbc)
434 {
435 return zpl_putpage(pp, wbc, pp->mapping);
436 }
437
438 /*
439 * The only flag combination which matches the behavior of zfs_space()
440 * is FALLOC_FL_PUNCH_HOLE. This flag was introduced in the 2.6.38 kernel.
441 */
442 long
443 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
444 {
445 cred_t *cr = CRED();
446 int error = -EOPNOTSUPP;
447
448 if (mode & FALLOC_FL_KEEP_SIZE)
449 return (-EOPNOTSUPP);
450
451 crhold(cr);
452
453 #ifdef FALLOC_FL_PUNCH_HOLE
454 if (mode & FALLOC_FL_PUNCH_HOLE) {
455 flock64_t bf;
456
457 bf.l_type = F_WRLCK;
458 bf.l_whence = 0;
459 bf.l_start = offset;
460 bf.l_len = len;
461 bf.l_pid = 0;
462
463 error = -zfs_space(ip, F_FREESP, &bf, FWRITE, offset, cr);
464 }
465 #endif /* FALLOC_FL_PUNCH_HOLE */
466
467 crfree(cr);
468
469 ASSERT3S(error, <=, 0);
470 return (error);
471 }
472
473 #ifdef HAVE_FILE_FALLOCATE
474 static long
475 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
476 {
477 return zpl_fallocate_common(filp->f_path.dentry->d_inode,
478 mode, offset, len);
479 }
480 #endif /* HAVE_FILE_FALLOCATE */
481
482 static long
483 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
484 {
485 switch (cmd) {
486 case ZFS_IOC_GETFLAGS:
487 case ZFS_IOC_SETFLAGS:
488 return (-EOPNOTSUPP);
489 default:
490 return (-ENOTTY);
491 }
492 }
493
494 #ifdef CONFIG_COMPAT
495 static long
496 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
497 {
498 return zpl_ioctl(filp, cmd, arg);
499 }
500 #endif /* CONFIG_COMPAT */
501
502
503 const struct address_space_operations zpl_address_space_operations = {
504 .readpages = zpl_readpages,
505 .readpage = zpl_readpage,
506 .writepage = zpl_writepage,
507 .writepages = zpl_writepages,
508 };
509
510 const struct file_operations zpl_file_operations = {
511 .open = zpl_open,
512 .release = zpl_release,
513 .llseek = zpl_llseek,
514 .read = zpl_read,
515 .write = zpl_write,
516 .mmap = zpl_mmap,
517 .fsync = zpl_fsync,
518 #ifdef HAVE_FILE_FALLOCATE
519 .fallocate = zpl_fallocate,
520 #endif /* HAVE_FILE_FALLOCATE */
521 .unlocked_ioctl = zpl_ioctl,
522 #ifdef CONFIG_COMPAT
523 .compat_ioctl = zpl_compat_ioctl,
524 #endif
525 };
526
527 const struct file_operations zpl_dir_file_operations = {
528 .llseek = generic_file_llseek,
529 .read = generic_read_dir,
530 #ifdef HAVE_VFS_ITERATE
531 .iterate = zpl_iterate,
532 #else
533 .readdir = zpl_readdir,
534 #endif
535 .fsync = zpl_fsync,
536 .unlocked_ioctl = zpl_ioctl,
537 #ifdef CONFIG_COMPAT
538 .compat_ioctl = zpl_compat_ioctl,
539 #endif
540 };