]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zpl_file.c
Add support 32 bit FS_IOC32_{GET|SET}FLAGS compat ioctls
[mirror_zfs.git] / module / zfs / zpl_file.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
24 */
25
26
27 #ifdef CONFIG_COMPAT
28 #include <linux/compat.h>
29 #endif
30 #include <sys/dmu_objset.h>
31 #include <sys/zfs_vfsops.h>
32 #include <sys/zfs_vnops.h>
33 #include <sys/zfs_znode.h>
34 #include <sys/zpl.h>
35
36
37 static int
38 zpl_open(struct inode *ip, struct file *filp)
39 {
40 cred_t *cr = CRED();
41 int error;
42 fstrans_cookie_t cookie;
43
44 error = generic_file_open(ip, filp);
45 if (error)
46 return (error);
47
48 crhold(cr);
49 cookie = spl_fstrans_mark();
50 error = -zfs_open(ip, filp->f_mode, filp->f_flags, cr);
51 spl_fstrans_unmark(cookie);
52 crfree(cr);
53 ASSERT3S(error, <=, 0);
54
55 return (error);
56 }
57
58 static int
59 zpl_release(struct inode *ip, struct file *filp)
60 {
61 cred_t *cr = CRED();
62 int error;
63 fstrans_cookie_t cookie;
64
65 cookie = spl_fstrans_mark();
66 if (ITOZ(ip)->z_atime_dirty)
67 zfs_mark_inode_dirty(ip);
68
69 crhold(cr);
70 error = -zfs_close(ip, filp->f_flags, cr);
71 spl_fstrans_unmark(cookie);
72 crfree(cr);
73 ASSERT3S(error, <=, 0);
74
75 return (error);
76 }
77
78 static int
79 zpl_iterate(struct file *filp, struct dir_context *ctx)
80 {
81 struct dentry *dentry = filp->f_path.dentry;
82 cred_t *cr = CRED();
83 int error;
84 fstrans_cookie_t cookie;
85
86 crhold(cr);
87 cookie = spl_fstrans_mark();
88 error = -zfs_readdir(dentry->d_inode, ctx, cr);
89 spl_fstrans_unmark(cookie);
90 crfree(cr);
91 ASSERT3S(error, <=, 0);
92
93 return (error);
94 }
95
96 #if !defined(HAVE_VFS_ITERATE)
97 static int
98 zpl_readdir(struct file *filp, void *dirent, filldir_t filldir)
99 {
100 struct dir_context ctx = DIR_CONTEXT_INIT(dirent, filldir, filp->f_pos);
101 int error;
102
103 error = zpl_iterate(filp, &ctx);
104 filp->f_pos = ctx.pos;
105
106 return (error);
107 }
108 #endif /* HAVE_VFS_ITERATE */
109
110 #if defined(HAVE_FSYNC_WITH_DENTRY)
111 /*
112 * Linux 2.6.x - 2.6.34 API,
113 * Through 2.6.34 the nfsd kernel server would pass a NULL 'file struct *'
114 * to the fops->fsync() hook. For this reason, we must be careful not to
115 * use filp unconditionally.
116 */
117 static int
118 zpl_fsync(struct file *filp, struct dentry *dentry, int datasync)
119 {
120 cred_t *cr = CRED();
121 int error;
122 fstrans_cookie_t cookie;
123
124 crhold(cr);
125 cookie = spl_fstrans_mark();
126 error = -zfs_fsync(dentry->d_inode, datasync, cr);
127 spl_fstrans_unmark(cookie);
128 crfree(cr);
129 ASSERT3S(error, <=, 0);
130
131 return (error);
132 }
133
134 static int
135 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
136 {
137 struct file *filp = kiocb->ki_filp;
138 return (zpl_fsync(filp, filp->f_path.dentry, datasync));
139 }
140 #elif defined(HAVE_FSYNC_WITHOUT_DENTRY)
141 /*
142 * Linux 2.6.35 - 3.0 API,
143 * As of 2.6.35 the dentry argument to the fops->fsync() hook was deemed
144 * redundant. The dentry is still accessible via filp->f_path.dentry,
145 * and we are guaranteed that filp will never be NULL.
146 */
147 static int
148 zpl_fsync(struct file *filp, int datasync)
149 {
150 struct inode *inode = filp->f_mapping->host;
151 cred_t *cr = CRED();
152 int error;
153 fstrans_cookie_t cookie;
154
155 crhold(cr);
156 cookie = spl_fstrans_mark();
157 error = -zfs_fsync(inode, datasync, cr);
158 spl_fstrans_unmark(cookie);
159 crfree(cr);
160 ASSERT3S(error, <=, 0);
161
162 return (error);
163 }
164
165 static int
166 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
167 {
168 return (zpl_fsync(kiocb->ki_filp, datasync));
169 }
170 #elif defined(HAVE_FSYNC_RANGE)
171 /*
172 * Linux 3.1 - 3.x API,
173 * As of 3.1 the responsibility to call filemap_write_and_wait_range() has
174 * been pushed down in to the .fsync() vfs hook. Additionally, the i_mutex
175 * lock is no longer held by the caller, for zfs we don't require the lock
176 * to be held so we don't acquire it.
177 */
178 static int
179 zpl_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
180 {
181 struct inode *inode = filp->f_mapping->host;
182 cred_t *cr = CRED();
183 int error;
184 fstrans_cookie_t cookie;
185
186 error = filemap_write_and_wait_range(inode->i_mapping, start, end);
187 if (error)
188 return (error);
189
190 crhold(cr);
191 cookie = spl_fstrans_mark();
192 error = -zfs_fsync(inode, datasync, cr);
193 spl_fstrans_unmark(cookie);
194 crfree(cr);
195 ASSERT3S(error, <=, 0);
196
197 return (error);
198 }
199
200 static int
201 zpl_aio_fsync(struct kiocb *kiocb, int datasync)
202 {
203 return (zpl_fsync(kiocb->ki_filp, kiocb->ki_pos, -1, datasync));
204 }
205 #else
206 #error "Unsupported fops->fsync() implementation"
207 #endif
208
209 static ssize_t
210 zpl_read_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
211 unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
212 cred_t *cr, size_t skip)
213 {
214 ssize_t read;
215 uio_t uio;
216 int error;
217 fstrans_cookie_t cookie;
218
219 uio.uio_iov = iovp;
220 uio.uio_skip = skip;
221 uio.uio_resid = count;
222 uio.uio_iovcnt = nr_segs;
223 uio.uio_loffset = *ppos;
224 uio.uio_limit = MAXOFFSET_T;
225 uio.uio_segflg = segment;
226
227 cookie = spl_fstrans_mark();
228 error = -zfs_read(ip, &uio, flags, cr);
229 spl_fstrans_unmark(cookie);
230 if (error < 0)
231 return (error);
232
233 read = count - uio.uio_resid;
234 *ppos += read;
235 task_io_account_read(read);
236
237 return (read);
238 }
239
240 inline ssize_t
241 zpl_read_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
242 uio_seg_t segment, int flags, cred_t *cr)
243 {
244 struct iovec iov;
245
246 iov.iov_base = (void *)buf;
247 iov.iov_len = len;
248
249 return (zpl_read_common_iovec(ip, &iov, len, 1, ppos, segment,
250 flags, cr, 0));
251 }
252
253 static ssize_t
254 zpl_read(struct file *filp, char __user *buf, size_t len, loff_t *ppos)
255 {
256 cred_t *cr = CRED();
257 ssize_t read;
258
259 crhold(cr);
260 read = zpl_read_common(filp->f_mapping->host, buf, len, ppos,
261 UIO_USERSPACE, filp->f_flags, cr);
262 crfree(cr);
263
264 return (read);
265 }
266
267 static ssize_t
268 zpl_iter_read_common(struct kiocb *kiocb, const struct iovec *iovp,
269 unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
270 {
271 cred_t *cr = CRED();
272 struct file *filp = kiocb->ki_filp;
273 ssize_t read;
274
275 crhold(cr);
276 read = zpl_read_common_iovec(filp->f_mapping->host, iovp, count,
277 nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
278 crfree(cr);
279
280 return (read);
281 }
282
283 #if defined(HAVE_VFS_RW_ITERATE)
284 static ssize_t
285 zpl_iter_read(struct kiocb *kiocb, struct iov_iter *to)
286 {
287 ssize_t ret;
288 uio_seg_t seg = UIO_USERSPACE;
289 if (to->type & ITER_KVEC)
290 seg = UIO_SYSSPACE;
291 if (to->type & ITER_BVEC)
292 seg = UIO_BVEC;
293 ret = zpl_iter_read_common(kiocb, to->iov, to->nr_segs,
294 iov_iter_count(to), seg, to->iov_offset);
295 if (ret > 0)
296 iov_iter_advance(to, ret);
297 return (ret);
298 }
299 #else
300 static ssize_t
301 zpl_aio_read(struct kiocb *kiocb, const struct iovec *iovp,
302 unsigned long nr_segs, loff_t pos)
303 {
304 return (zpl_iter_read_common(kiocb, iovp, nr_segs, kiocb->ki_nbytes,
305 UIO_USERSPACE, 0));
306 }
307 #endif /* HAVE_VFS_RW_ITERATE */
308
309 static ssize_t
310 zpl_write_common_iovec(struct inode *ip, const struct iovec *iovp, size_t count,
311 unsigned long nr_segs, loff_t *ppos, uio_seg_t segment, int flags,
312 cred_t *cr, size_t skip)
313 {
314 ssize_t wrote;
315 uio_t uio;
316 int error;
317 fstrans_cookie_t cookie;
318
319 if (flags & O_APPEND)
320 *ppos = i_size_read(ip);
321
322 uio.uio_iov = iovp;
323 uio.uio_skip = skip;
324 uio.uio_resid = count;
325 uio.uio_iovcnt = nr_segs;
326 uio.uio_loffset = *ppos;
327 uio.uio_limit = MAXOFFSET_T;
328 uio.uio_segflg = segment;
329
330 cookie = spl_fstrans_mark();
331 error = -zfs_write(ip, &uio, flags, cr);
332 spl_fstrans_unmark(cookie);
333 if (error < 0)
334 return (error);
335
336 wrote = count - uio.uio_resid;
337 *ppos += wrote;
338 task_io_account_write(wrote);
339
340 return (wrote);
341 }
342 inline ssize_t
343 zpl_write_common(struct inode *ip, const char *buf, size_t len, loff_t *ppos,
344 uio_seg_t segment, int flags, cred_t *cr)
345 {
346 struct iovec iov;
347
348 iov.iov_base = (void *)buf;
349 iov.iov_len = len;
350
351 return (zpl_write_common_iovec(ip, &iov, len, 1, ppos, segment,
352 flags, cr, 0));
353 }
354
355 static ssize_t
356 zpl_write(struct file *filp, const char __user *buf, size_t len, loff_t *ppos)
357 {
358 cred_t *cr = CRED();
359 ssize_t wrote;
360
361 crhold(cr);
362 wrote = zpl_write_common(filp->f_mapping->host, buf, len, ppos,
363 UIO_USERSPACE, filp->f_flags, cr);
364 crfree(cr);
365
366 return (wrote);
367 }
368
369 static ssize_t
370 zpl_iter_write_common(struct kiocb *kiocb, const struct iovec *iovp,
371 unsigned long nr_segs, size_t count, uio_seg_t seg, size_t skip)
372 {
373 cred_t *cr = CRED();
374 struct file *filp = kiocb->ki_filp;
375 ssize_t wrote;
376
377 crhold(cr);
378 wrote = zpl_write_common_iovec(filp->f_mapping->host, iovp, count,
379 nr_segs, &kiocb->ki_pos, seg, filp->f_flags, cr, skip);
380 crfree(cr);
381
382 return (wrote);
383 }
384
385 #if defined(HAVE_VFS_RW_ITERATE)
386 static ssize_t
387 zpl_iter_write(struct kiocb *kiocb, struct iov_iter *from)
388 {
389 ssize_t ret;
390 uio_seg_t seg = UIO_USERSPACE;
391 if (from->type & ITER_KVEC)
392 seg = UIO_SYSSPACE;
393 if (from->type & ITER_BVEC)
394 seg = UIO_BVEC;
395 ret = zpl_iter_write_common(kiocb, from->iov, from->nr_segs,
396 iov_iter_count(from), seg, from->iov_offset);
397 if (ret > 0)
398 iov_iter_advance(from, ret);
399 return (ret);
400 }
401 #else
402 static ssize_t
403 zpl_aio_write(struct kiocb *kiocb, const struct iovec *iovp,
404 unsigned long nr_segs, loff_t pos)
405 {
406 return (zpl_iter_write_common(kiocb, iovp, nr_segs, kiocb->ki_nbytes,
407 UIO_USERSPACE, 0));
408 }
409 #endif /* HAVE_VFS_RW_ITERATE */
410
411 static loff_t
412 zpl_llseek(struct file *filp, loff_t offset, int whence)
413 {
414 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
415 fstrans_cookie_t cookie;
416
417 if (whence == SEEK_DATA || whence == SEEK_HOLE) {
418 struct inode *ip = filp->f_mapping->host;
419 loff_t maxbytes = ip->i_sb->s_maxbytes;
420 loff_t error;
421
422 spl_inode_lock(ip);
423 cookie = spl_fstrans_mark();
424 error = -zfs_holey(ip, whence, &offset);
425 spl_fstrans_unmark(cookie);
426 if (error == 0)
427 error = lseek_execute(filp, ip, offset, maxbytes);
428 spl_inode_unlock(ip);
429
430 return (error);
431 }
432 #endif /* SEEK_HOLE && SEEK_DATA */
433
434 return (generic_file_llseek(filp, offset, whence));
435 }
436
437 /*
438 * It's worth taking a moment to describe how mmap is implemented
439 * for zfs because it differs considerably from other Linux filesystems.
440 * However, this issue is handled the same way under OpenSolaris.
441 *
442 * The issue is that by design zfs bypasses the Linux page cache and
443 * leaves all caching up to the ARC. This has been shown to work
444 * well for the common read(2)/write(2) case. However, mmap(2)
445 * is problem because it relies on being tightly integrated with the
446 * page cache. To handle this we cache mmap'ed files twice, once in
447 * the ARC and a second time in the page cache. The code is careful
448 * to keep both copies synchronized.
449 *
450 * When a file with an mmap'ed region is written to using write(2)
451 * both the data in the ARC and existing pages in the page cache
452 * are updated. For a read(2) data will be read first from the page
453 * cache then the ARC if needed. Neither a write(2) or read(2) will
454 * will ever result in new pages being added to the page cache.
455 *
456 * New pages are added to the page cache only via .readpage() which
457 * is called when the vfs needs to read a page off disk to back the
458 * virtual memory region. These pages may be modified without
459 * notifying the ARC and will be written out periodically via
460 * .writepage(). This will occur due to either a sync or the usual
461 * page aging behavior. Note because a read(2) of a mmap'ed file
462 * will always check the page cache first even when the ARC is out
463 * of date correct data will still be returned.
464 *
465 * While this implementation ensures correct behavior it does have
466 * have some drawbacks. The most obvious of which is that it
467 * increases the required memory footprint when access mmap'ed
468 * files. It also adds additional complexity to the code keeping
469 * both caches synchronized.
470 *
471 * Longer term it may be possible to cleanly resolve this wart by
472 * mapping page cache pages directly on to the ARC buffers. The
473 * Linux address space operations are flexible enough to allow
474 * selection of which pages back a particular index. The trick
475 * would be working out the details of which subsystem is in
476 * charge, the ARC, the page cache, or both. It may also prove
477 * helpful to move the ARC buffers to a scatter-gather lists
478 * rather than a vmalloc'ed region.
479 */
480 static int
481 zpl_mmap(struct file *filp, struct vm_area_struct *vma)
482 {
483 struct inode *ip = filp->f_mapping->host;
484 znode_t *zp = ITOZ(ip);
485 int error;
486 fstrans_cookie_t cookie;
487
488 cookie = spl_fstrans_mark();
489 error = -zfs_map(ip, vma->vm_pgoff, (caddr_t *)vma->vm_start,
490 (size_t)(vma->vm_end - vma->vm_start), vma->vm_flags);
491 spl_fstrans_unmark(cookie);
492 if (error)
493 return (error);
494
495 error = generic_file_mmap(filp, vma);
496 if (error)
497 return (error);
498
499 mutex_enter(&zp->z_lock);
500 zp->z_is_mapped = 1;
501 mutex_exit(&zp->z_lock);
502
503 return (error);
504 }
505
506 /*
507 * Populate a page with data for the Linux page cache. This function is
508 * only used to support mmap(2). There will be an identical copy of the
509 * data in the ARC which is kept up to date via .write() and .writepage().
510 *
511 * Current this function relies on zpl_read_common() and the O_DIRECT
512 * flag to read in a page. This works but the more correct way is to
513 * update zfs_fillpage() to be Linux friendly and use that interface.
514 */
515 static int
516 zpl_readpage(struct file *filp, struct page *pp)
517 {
518 struct inode *ip;
519 struct page *pl[1];
520 int error = 0;
521 fstrans_cookie_t cookie;
522
523 ASSERT(PageLocked(pp));
524 ip = pp->mapping->host;
525 pl[0] = pp;
526
527 cookie = spl_fstrans_mark();
528 error = -zfs_getpage(ip, pl, 1);
529 spl_fstrans_unmark(cookie);
530
531 if (error) {
532 SetPageError(pp);
533 ClearPageUptodate(pp);
534 } else {
535 ClearPageError(pp);
536 SetPageUptodate(pp);
537 flush_dcache_page(pp);
538 }
539
540 unlock_page(pp);
541 return (error);
542 }
543
544 /*
545 * Populate a set of pages with data for the Linux page cache. This
546 * function will only be called for read ahead and never for demand
547 * paging. For simplicity, the code relies on read_cache_pages() to
548 * correctly lock each page for IO and call zpl_readpage().
549 */
550 static int
551 zpl_readpages(struct file *filp, struct address_space *mapping,
552 struct list_head *pages, unsigned nr_pages)
553 {
554 return (read_cache_pages(mapping, pages,
555 (filler_t *)zpl_readpage, filp));
556 }
557
558 int
559 zpl_putpage(struct page *pp, struct writeback_control *wbc, void *data)
560 {
561 struct address_space *mapping = data;
562 fstrans_cookie_t cookie;
563
564 ASSERT(PageLocked(pp));
565 ASSERT(!PageWriteback(pp));
566
567 cookie = spl_fstrans_mark();
568 (void) zfs_putpage(mapping->host, pp, wbc);
569 spl_fstrans_unmark(cookie);
570
571 return (0);
572 }
573
574 static int
575 zpl_writepages(struct address_space *mapping, struct writeback_control *wbc)
576 {
577 znode_t *zp = ITOZ(mapping->host);
578 zfs_sb_t *zsb = ITOZSB(mapping->host);
579 enum writeback_sync_modes sync_mode;
580 int result;
581
582 ZFS_ENTER(zsb);
583 if (zsb->z_os->os_sync == ZFS_SYNC_ALWAYS)
584 wbc->sync_mode = WB_SYNC_ALL;
585 ZFS_EXIT(zsb);
586 sync_mode = wbc->sync_mode;
587
588 /*
589 * We don't want to run write_cache_pages() in SYNC mode here, because
590 * that would make putpage() wait for a single page to be committed to
591 * disk every single time, resulting in atrocious performance. Instead
592 * we run it once in non-SYNC mode so that the ZIL gets all the data,
593 * and then we commit it all in one go.
594 */
595 wbc->sync_mode = WB_SYNC_NONE;
596 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
597 if (sync_mode != wbc->sync_mode) {
598 ZFS_ENTER(zsb);
599 ZFS_VERIFY_ZP(zp);
600 if (zsb->z_log != NULL)
601 zil_commit(zsb->z_log, zp->z_id);
602 ZFS_EXIT(zsb);
603
604 /*
605 * We need to call write_cache_pages() again (we can't just
606 * return after the commit) because the previous call in
607 * non-SYNC mode does not guarantee that we got all the dirty
608 * pages (see the implementation of write_cache_pages() for
609 * details). That being said, this is a no-op in most cases.
610 */
611 wbc->sync_mode = sync_mode;
612 result = write_cache_pages(mapping, wbc, zpl_putpage, mapping);
613 }
614 return (result);
615 }
616
617 /*
618 * Write out dirty pages to the ARC, this function is only required to
619 * support mmap(2). Mapped pages may be dirtied by memory operations
620 * which never call .write(). These dirty pages are kept in sync with
621 * the ARC buffers via this hook.
622 */
623 static int
624 zpl_writepage(struct page *pp, struct writeback_control *wbc)
625 {
626 if (ITOZSB(pp->mapping->host)->z_os->os_sync == ZFS_SYNC_ALWAYS)
627 wbc->sync_mode = WB_SYNC_ALL;
628
629 return (zpl_putpage(pp, wbc, pp->mapping));
630 }
631
632 /*
633 * The only flag combination which matches the behavior of zfs_space()
634 * is FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE. The FALLOC_FL_PUNCH_HOLE
635 * flag was introduced in the 2.6.38 kernel.
636 */
637 #if defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE)
638 long
639 zpl_fallocate_common(struct inode *ip, int mode, loff_t offset, loff_t len)
640 {
641 int error = -EOPNOTSUPP;
642
643 #if defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE)
644 cred_t *cr = CRED();
645 flock64_t bf;
646 loff_t olen;
647 fstrans_cookie_t cookie;
648
649 if (mode != (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
650 return (error);
651
652 crhold(cr);
653
654 if (offset < 0 || len <= 0)
655 return (-EINVAL);
656
657 spl_inode_lock(ip);
658 olen = i_size_read(ip);
659
660 if (offset > olen) {
661 spl_inode_unlock(ip);
662 return (0);
663 }
664 if (offset + len > olen)
665 len = olen - offset;
666 bf.l_type = F_WRLCK;
667 bf.l_whence = 0;
668 bf.l_start = offset;
669 bf.l_len = len;
670 bf.l_pid = 0;
671
672 cookie = spl_fstrans_mark();
673 error = -zfs_space(ip, F_FREESP, &bf, FWRITE, offset, cr);
674 spl_fstrans_unmark(cookie);
675 spl_inode_unlock(ip);
676
677 crfree(cr);
678 #endif /* defined(FALLOC_FL_PUNCH_HOLE) && defined(FALLOC_FL_KEEP_SIZE) */
679
680 ASSERT3S(error, <=, 0);
681 return (error);
682 }
683 #endif /* defined(HAVE_FILE_FALLOCATE) || defined(HAVE_INODE_FALLOCATE) */
684
685 #ifdef HAVE_FILE_FALLOCATE
686 static long
687 zpl_fallocate(struct file *filp, int mode, loff_t offset, loff_t len)
688 {
689 return zpl_fallocate_common(filp->f_path.dentry->d_inode,
690 mode, offset, len);
691 }
692 #endif /* HAVE_FILE_FALLOCATE */
693
694 /*
695 * Map zfs file z_pflags (xvattr_t) to linux file attributes. Only file
696 * attributes common to both Linux and Solaris are mapped.
697 */
698 static int
699 zpl_ioctl_getflags(struct file *filp, void __user *arg)
700 {
701 struct inode *ip = file_inode(filp);
702 unsigned int ioctl_flags = 0;
703 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
704 int error;
705
706 if (zfs_flags & ZFS_IMMUTABLE)
707 ioctl_flags |= FS_IMMUTABLE_FL;
708
709 if (zfs_flags & ZFS_APPENDONLY)
710 ioctl_flags |= FS_APPEND_FL;
711
712 if (zfs_flags & ZFS_NODUMP)
713 ioctl_flags |= FS_NODUMP_FL;
714
715 ioctl_flags &= FS_FL_USER_VISIBLE;
716
717 error = copy_to_user(arg, &ioctl_flags, sizeof (ioctl_flags));
718
719 return (error);
720 }
721
722 /*
723 * fchange() is a helper macro to detect if we have been asked to change a
724 * flag. This is ugly, but the requirement that we do this is a consequence of
725 * how the Linux file attribute interface was designed. Another consequence is
726 * that concurrent modification of files suffers from a TOCTOU race. Neither
727 * are things we can fix without modifying the kernel-userland interface, which
728 * is outside of our jurisdiction.
729 */
730
731 #define fchange(f0, f1, b0, b1) ((((f0) & (b0)) == (b0)) != \
732 (((b1) & (f1)) == (f1)))
733
734 static int
735 zpl_ioctl_setflags(struct file *filp, void __user *arg)
736 {
737 struct inode *ip = file_inode(filp);
738 uint64_t zfs_flags = ITOZ(ip)->z_pflags;
739 unsigned int ioctl_flags;
740 cred_t *cr = CRED();
741 xvattr_t xva;
742 xoptattr_t *xoap;
743 int error;
744 fstrans_cookie_t cookie;
745
746 if (copy_from_user(&ioctl_flags, arg, sizeof (ioctl_flags)))
747 return (-EFAULT);
748
749 if ((ioctl_flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | FS_NODUMP_FL)))
750 return (-EOPNOTSUPP);
751
752 if ((ioctl_flags & ~(FS_FL_USER_MODIFIABLE)))
753 return (-EACCES);
754
755 if ((fchange(ioctl_flags, zfs_flags, FS_IMMUTABLE_FL, ZFS_IMMUTABLE) ||
756 fchange(ioctl_flags, zfs_flags, FS_APPEND_FL, ZFS_APPENDONLY)) &&
757 !capable(CAP_LINUX_IMMUTABLE))
758 return (-EACCES);
759
760 if (!zpl_inode_owner_or_capable(ip))
761 return (-EACCES);
762
763 xva_init(&xva);
764 xoap = xva_getxoptattr(&xva);
765
766 XVA_SET_REQ(&xva, XAT_IMMUTABLE);
767 if (ioctl_flags & FS_IMMUTABLE_FL)
768 xoap->xoa_immutable = B_TRUE;
769
770 XVA_SET_REQ(&xva, XAT_APPENDONLY);
771 if (ioctl_flags & FS_APPEND_FL)
772 xoap->xoa_appendonly = B_TRUE;
773
774 XVA_SET_REQ(&xva, XAT_NODUMP);
775 if (ioctl_flags & FS_NODUMP_FL)
776 xoap->xoa_nodump = B_TRUE;
777
778 crhold(cr);
779 cookie = spl_fstrans_mark();
780 error = -zfs_setattr(ip, (vattr_t *)&xva, 0, cr);
781 spl_fstrans_unmark(cookie);
782 crfree(cr);
783
784 return (error);
785 }
786
787 static long
788 zpl_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
789 {
790 switch (cmd) {
791 case FS_IOC_GETFLAGS:
792 return (zpl_ioctl_getflags(filp, (void *)arg));
793 case FS_IOC_SETFLAGS:
794 return (zpl_ioctl_setflags(filp, (void *)arg));
795 default:
796 return (-ENOTTY);
797 }
798 }
799
800 #ifdef CONFIG_COMPAT
801 static long
802 zpl_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
803 {
804 switch (cmd) {
805 case FS_IOC32_GETFLAGS:
806 cmd = FS_IOC_GETFLAGS;
807 break;
808 case FS_IOC32_SETFLAGS:
809 cmd = FS_IOC_SETFLAGS;
810 break;
811 default:
812 return (-ENOTTY);
813 }
814 return (zpl_ioctl(filp, cmd, (unsigned long)compat_ptr(arg)));
815 }
816 #endif /* CONFIG_COMPAT */
817
818
819 const struct address_space_operations zpl_address_space_operations = {
820 .readpages = zpl_readpages,
821 .readpage = zpl_readpage,
822 .writepage = zpl_writepage,
823 .writepages = zpl_writepages,
824 };
825
826 const struct file_operations zpl_file_operations = {
827 .open = zpl_open,
828 .release = zpl_release,
829 .llseek = zpl_llseek,
830 .read = zpl_read,
831 .write = zpl_write,
832 #ifdef HAVE_VFS_RW_ITERATE
833 .read_iter = zpl_iter_read,
834 .write_iter = zpl_iter_write,
835 #else
836 .aio_read = zpl_aio_read,
837 .aio_write = zpl_aio_write,
838 #endif
839 .mmap = zpl_mmap,
840 .fsync = zpl_fsync,
841 .aio_fsync = zpl_aio_fsync,
842 #ifdef HAVE_FILE_FALLOCATE
843 .fallocate = zpl_fallocate,
844 #endif /* HAVE_FILE_FALLOCATE */
845 .unlocked_ioctl = zpl_ioctl,
846 #ifdef CONFIG_COMPAT
847 .compat_ioctl = zpl_compat_ioctl,
848 #endif
849 };
850
851 const struct file_operations zpl_dir_file_operations = {
852 .llseek = generic_file_llseek,
853 .read = generic_read_dir,
854 #ifdef HAVE_VFS_ITERATE
855 .iterate = zpl_iterate,
856 #else
857 .readdir = zpl_readdir,
858 #endif
859 .fsync = zpl_fsync,
860 .unlocked_ioctl = zpl_ioctl,
861 #ifdef CONFIG_COMPAT
862 .compat_ioctl = zpl_compat_ioctl,
863 #endif
864 };