]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zpl_super.c
Fix typo/etc in module/zfs/zfs_ctldir.c
[mirror_zfs.git] / module / zfs / zpl_super.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2011, Lawrence Livermore National Security, LLC.
23 */
24
25
26 #include <sys/zfs_vfsops.h>
27 #include <sys/zfs_vnops.h>
28 #include <sys/zfs_znode.h>
29 #include <sys/zfs_ctldir.h>
30 #include <sys/zpl.h>
31
32
33 static struct inode *
34 zpl_inode_alloc(struct super_block *sb)
35 {
36 struct inode *ip;
37
38 VERIFY3S(zfs_inode_alloc(sb, &ip), ==, 0);
39 inode_set_iversion(ip, 1);
40
41 return (ip);
42 }
43
44 static void
45 zpl_inode_destroy(struct inode *ip)
46 {
47 ASSERT(atomic_read(&ip->i_count) == 0);
48 zfs_inode_destroy(ip);
49 }
50
51 /*
52 * Called from __mark_inode_dirty() to reflect that something in the
53 * inode has changed. We use it to ensure the znode system attributes
54 * are always strictly update to date with respect to the inode.
55 */
56 #ifdef HAVE_DIRTY_INODE_WITH_FLAGS
57 static void
58 zpl_dirty_inode(struct inode *ip, int flags)
59 {
60 fstrans_cookie_t cookie;
61
62 cookie = spl_fstrans_mark();
63 zfs_dirty_inode(ip, flags);
64 spl_fstrans_unmark(cookie);
65 }
66 #else
67 static void
68 zpl_dirty_inode(struct inode *ip)
69 {
70 fstrans_cookie_t cookie;
71
72 cookie = spl_fstrans_mark();
73 zfs_dirty_inode(ip, 0);
74 spl_fstrans_unmark(cookie);
75 }
76 #endif /* HAVE_DIRTY_INODE_WITH_FLAGS */
77
78 /*
79 * When ->drop_inode() is called its return value indicates if the
80 * inode should be evicted from the inode cache. If the inode is
81 * unhashed and has no links the default policy is to evict it
82 * immediately.
83 *
84 * Prior to 2.6.36 this eviction was accomplished by the vfs calling
85 * ->delete_inode(). It was ->delete_inode()'s responsibility to
86 * truncate the inode pages and call clear_inode(). The call to
87 * clear_inode() synchronously invalidates all the buffers and
88 * calls ->clear_inode(). It was ->clear_inode()'s responsibility
89 * to cleanup and filesystem specific data before freeing the inode.
90 *
91 * This elaborate mechanism was replaced by ->evict_inode() which
92 * does the job of both ->delete_inode() and ->clear_inode(). It
93 * will be called exactly once, and when it returns the inode must
94 * be in a state where it can simply be freed.i
95 *
96 * The ->evict_inode() callback must minimally truncate the inode pages,
97 * and call clear_inode(). For 2.6.35 and later kernels this will
98 * simply update the inode state, with the sync occurring before the
99 * truncate in evict(). For earlier kernels clear_inode() maps to
100 * end_writeback() which is responsible for completing all outstanding
101 * write back. In either case, once this is done it is safe to cleanup
102 * any remaining inode specific data via zfs_inactive().
103 * remaining filesystem specific data.
104 */
105 #ifdef HAVE_EVICT_INODE
106 static void
107 zpl_evict_inode(struct inode *ip)
108 {
109 fstrans_cookie_t cookie;
110
111 cookie = spl_fstrans_mark();
112 truncate_setsize(ip, 0);
113 clear_inode(ip);
114 zfs_inactive(ip);
115 spl_fstrans_unmark(cookie);
116 }
117
118 #else
119
120 static void
121 zpl_drop_inode(struct inode *ip)
122 {
123 generic_delete_inode(ip);
124 }
125
126 static void
127 zpl_clear_inode(struct inode *ip)
128 {
129 fstrans_cookie_t cookie;
130
131 cookie = spl_fstrans_mark();
132 zfs_inactive(ip);
133 spl_fstrans_unmark(cookie);
134 }
135
136 static void
137 zpl_inode_delete(struct inode *ip)
138 {
139 truncate_setsize(ip, 0);
140 clear_inode(ip);
141 }
142 #endif /* HAVE_EVICT_INODE */
143
144 static void
145 zpl_put_super(struct super_block *sb)
146 {
147 fstrans_cookie_t cookie;
148 int error;
149
150 cookie = spl_fstrans_mark();
151 error = -zfs_umount(sb);
152 spl_fstrans_unmark(cookie);
153 ASSERT3S(error, <=, 0);
154 }
155
156 static int
157 zpl_sync_fs(struct super_block *sb, int wait)
158 {
159 fstrans_cookie_t cookie;
160 cred_t *cr = CRED();
161 int error;
162
163 crhold(cr);
164 cookie = spl_fstrans_mark();
165 error = -zfs_sync(sb, wait, cr);
166 spl_fstrans_unmark(cookie);
167 crfree(cr);
168 ASSERT3S(error, <=, 0);
169
170 return (error);
171 }
172
173 static int
174 zpl_statfs(struct dentry *dentry, struct kstatfs *statp)
175 {
176 fstrans_cookie_t cookie;
177 int error;
178
179 cookie = spl_fstrans_mark();
180 error = -zfs_statvfs(dentry, statp);
181 spl_fstrans_unmark(cookie);
182 ASSERT3S(error, <=, 0);
183
184 /*
185 * If required by a 32-bit system call, dynamically scale the
186 * block size up to 16MiB and decrease the block counts. This
187 * allows for a maximum size of 64EiB to be reported. The file
188 * counts must be artificially capped at 2^32-1.
189 */
190 if (unlikely(zpl_is_32bit_api())) {
191 while (statp->f_blocks > UINT32_MAX &&
192 statp->f_bsize < SPA_MAXBLOCKSIZE) {
193 statp->f_frsize <<= 1;
194 statp->f_bsize <<= 1;
195
196 statp->f_blocks >>= 1;
197 statp->f_bfree >>= 1;
198 statp->f_bavail >>= 1;
199 }
200
201 uint64_t usedobjs = statp->f_files - statp->f_ffree;
202 statp->f_ffree = MIN(statp->f_ffree, UINT32_MAX - usedobjs);
203 statp->f_files = statp->f_ffree + usedobjs;
204 }
205
206 return (error);
207 }
208
209 static int
210 zpl_remount_fs(struct super_block *sb, int *flags, char *data)
211 {
212 zfs_mnt_t zm = { .mnt_osname = NULL, .mnt_data = data };
213 fstrans_cookie_t cookie;
214 int error;
215
216 cookie = spl_fstrans_mark();
217 error = -zfs_remount(sb, flags, &zm);
218 spl_fstrans_unmark(cookie);
219 ASSERT3S(error, <=, 0);
220
221 return (error);
222 }
223
224 static int
225 __zpl_show_options(struct seq_file *seq, zfsvfs_t *zfsvfs)
226 {
227 seq_printf(seq, ",%s",
228 zfsvfs->z_flags & ZSB_XATTR ? "xattr" : "noxattr");
229
230 #ifdef CONFIG_FS_POSIX_ACL
231 switch (zfsvfs->z_acl_type) {
232 case ZFS_ACLTYPE_POSIXACL:
233 seq_puts(seq, ",posixacl");
234 break;
235 default:
236 seq_puts(seq, ",noacl");
237 break;
238 }
239 #endif /* CONFIG_FS_POSIX_ACL */
240
241 return (0);
242 }
243
244 #ifdef HAVE_SHOW_OPTIONS_WITH_DENTRY
245 static int
246 zpl_show_options(struct seq_file *seq, struct dentry *root)
247 {
248 return (__zpl_show_options(seq, root->d_sb->s_fs_info));
249 }
250 #else
251 static int
252 zpl_show_options(struct seq_file *seq, struct vfsmount *vfsp)
253 {
254 return (__zpl_show_options(seq, vfsp->mnt_sb->s_fs_info));
255 }
256 #endif /* HAVE_SHOW_OPTIONS_WITH_DENTRY */
257
258 static int
259 zpl_fill_super(struct super_block *sb, void *data, int silent)
260 {
261 zfs_mnt_t *zm = (zfs_mnt_t *)data;
262 fstrans_cookie_t cookie;
263 int error;
264
265 cookie = spl_fstrans_mark();
266 error = -zfs_domount(sb, zm, silent);
267 spl_fstrans_unmark(cookie);
268 ASSERT3S(error, <=, 0);
269
270 return (error);
271 }
272
273 static int
274 zpl_test_super(struct super_block *s, void *data)
275 {
276 zfsvfs_t *zfsvfs = s->s_fs_info;
277 objset_t *os = data;
278
279 if (zfsvfs == NULL)
280 return (0);
281
282 return (os == zfsvfs->z_os);
283 }
284
285 static struct super_block *
286 zpl_mount_impl(struct file_system_type *fs_type, int flags, zfs_mnt_t *zm)
287 {
288 struct super_block *s;
289 objset_t *os;
290 int err;
291
292 err = dmu_objset_hold(zm->mnt_osname, FTAG, &os);
293 if (err)
294 return (ERR_PTR(-err));
295
296 /*
297 * The dsl pool lock must be released prior to calling sget().
298 * It is possible sget() may block on the lock in grab_super()
299 * while deactivate_super() holds that same lock and waits for
300 * a txg sync. If the dsl_pool lock is held over over sget()
301 * this can prevent the pool sync and cause a deadlock.
302 */
303 dsl_pool_rele(dmu_objset_pool(os), FTAG);
304 s = zpl_sget(fs_type, zpl_test_super, set_anon_super, flags, os);
305 dsl_dataset_rele(dmu_objset_ds(os), FTAG);
306
307 if (IS_ERR(s))
308 return (ERR_CAST(s));
309
310 if (s->s_root == NULL) {
311 err = zpl_fill_super(s, zm, flags & SB_SILENT ? 1 : 0);
312 if (err) {
313 deactivate_locked_super(s);
314 return (ERR_PTR(err));
315 }
316 s->s_flags |= SB_ACTIVE;
317 } else if ((flags ^ s->s_flags) & SB_RDONLY) {
318 deactivate_locked_super(s);
319 return (ERR_PTR(-EBUSY));
320 }
321
322 return (s);
323 }
324
325 #ifdef HAVE_FST_MOUNT
326 static struct dentry *
327 zpl_mount(struct file_system_type *fs_type, int flags,
328 const char *osname, void *data)
329 {
330 zfs_mnt_t zm = { .mnt_osname = osname, .mnt_data = data };
331
332 struct super_block *sb = zpl_mount_impl(fs_type, flags, &zm);
333 if (IS_ERR(sb))
334 return (ERR_CAST(sb));
335
336 return (dget(sb->s_root));
337 }
338 #else
339 static int
340 zpl_get_sb(struct file_system_type *fs_type, int flags,
341 const char *osname, void *data, struct vfsmount *mnt)
342 {
343 zfs_mnt_t zm = { .mnt_osname = osname, .mnt_data = data };
344
345 struct super_block *sb = zpl_mount_impl(fs_type, flags, &zm);
346 if (IS_ERR(sb))
347 return (PTR_ERR(sb));
348
349 (void) simple_set_mnt(mnt, sb);
350
351 return (0);
352 }
353 #endif /* HAVE_FST_MOUNT */
354
355 static void
356 zpl_kill_sb(struct super_block *sb)
357 {
358 zfs_preumount(sb);
359 kill_anon_super(sb);
360
361 #ifdef HAVE_S_INSTANCES_LIST_HEAD
362 sb->s_instances.next = &(zpl_fs_type.fs_supers);
363 #endif /* HAVE_S_INSTANCES_LIST_HEAD */
364 }
365
366 void
367 zpl_prune_sb(int64_t nr_to_scan, void *arg)
368 {
369 struct super_block *sb = (struct super_block *)arg;
370 int objects = 0;
371
372 (void) -zfs_prune(sb, nr_to_scan, &objects);
373 }
374
375 #ifdef HAVE_NR_CACHED_OBJECTS
376 static int
377 zpl_nr_cached_objects(struct super_block *sb)
378 {
379 return (0);
380 }
381 #endif /* HAVE_NR_CACHED_OBJECTS */
382
383 #ifdef HAVE_FREE_CACHED_OBJECTS
384 static void
385 zpl_free_cached_objects(struct super_block *sb, int nr_to_scan)
386 {
387 /* noop */
388 }
389 #endif /* HAVE_FREE_CACHED_OBJECTS */
390
391 const struct super_operations zpl_super_operations = {
392 .alloc_inode = zpl_inode_alloc,
393 .destroy_inode = zpl_inode_destroy,
394 .dirty_inode = zpl_dirty_inode,
395 .write_inode = NULL,
396 #ifdef HAVE_EVICT_INODE
397 .evict_inode = zpl_evict_inode,
398 #else
399 .drop_inode = zpl_drop_inode,
400 .clear_inode = zpl_clear_inode,
401 .delete_inode = zpl_inode_delete,
402 #endif /* HAVE_EVICT_INODE */
403 .put_super = zpl_put_super,
404 .sync_fs = zpl_sync_fs,
405 .statfs = zpl_statfs,
406 .remount_fs = zpl_remount_fs,
407 .show_options = zpl_show_options,
408 .show_stats = NULL,
409 #ifdef HAVE_NR_CACHED_OBJECTS
410 .nr_cached_objects = zpl_nr_cached_objects,
411 #endif /* HAVE_NR_CACHED_OBJECTS */
412 #ifdef HAVE_FREE_CACHED_OBJECTS
413 .free_cached_objects = zpl_free_cached_objects,
414 #endif /* HAVE_FREE_CACHED_OBJECTS */
415 };
416
417 struct file_system_type zpl_fs_type = {
418 .owner = THIS_MODULE,
419 .name = ZFS_DRIVER,
420 #ifdef HAVE_FST_MOUNT
421 .mount = zpl_mount,
422 #else
423 .get_sb = zpl_get_sb,
424 #endif /* HAVE_FST_MOUNT */
425 .kill_sb = zpl_kill_sb,
426 };