]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zvol.c
Introduce read/write kstats per dataset
[mirror_zfs.git] / module / zfs / zvol.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 *
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
40 */
41
42 /*
43 * Note on locking of zvol state structures.
44 *
45 * These structures are used to maintain internal state used to emulate block
46 * devices on top of zvols. In particular, management of device minor number
47 * operations - create, remove, rename, and set_snapdev - involves access to
48 * these structures. The zvol_state_lock is primarily used to protect the
49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50 * of the zvol_state_t structures, as well as to make sure that when the
51 * time comes to remove the structure from the list, it is not in use, and
52 * therefore, it can be taken off zvol_state_list and freed.
53 *
54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55 * e.g. for the duration of receive and rollback operations. This lock can be
56 * held for significant periods of time. Given that it is undesirable to hold
57 * mutexes for long periods of time, the following lock ordering applies:
58 * - take zvol_state_lock if necessary, to protect zvol_state_list
59 * - take zv_suspend_lock if necessary, by the code path in question
60 * - take zv_state_lock to protect zvol_state_t
61 *
62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63 * single-threaded (to preserve order of minor operations), and are executed
64 * through the zvol_task_cb that dispatches the specific operations. Therefore,
65 * these operations are serialized per pool. Consequently, we can be certain
66 * that for a given zvol, there is only one operation at a time in progress.
67 * That is why one can be sure that first, zvol_state_t for a given zvol is
68 * allocated and placed on zvol_state_list, and then other minor operations
69 * for this zvol are going to proceed in the order of issue.
70 *
71 * It is also worth keeping in mind that once add_disk() is called, the zvol is
72 * announced to the world, and zvol_open()/zvol_release() can be called at any
73 * time. Incidentally, add_disk() itself calls zvol_open()->zvol_first_open()
74 * and zvol_release()->zvol_last_close() directly as well.
75 */
76
77 #include <sys/dataset_kstats.h>
78 #include <sys/dbuf.h>
79 #include <sys/dmu_traverse.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_prop.h>
82 #include <sys/dsl_dir.h>
83 #include <sys/zap.h>
84 #include <sys/zfeature.h>
85 #include <sys/zil_impl.h>
86 #include <sys/dmu_tx.h>
87 #include <sys/zio.h>
88 #include <sys/zfs_rlock.h>
89 #include <sys/zfs_znode.h>
90 #include <sys/spa_impl.h>
91 #include <sys/zvol.h>
92
93 #include <linux/blkdev_compat.h>
94 #include <linux/task_io_accounting_ops.h>
95
96 unsigned int zvol_inhibit_dev = 0;
97 unsigned int zvol_major = ZVOL_MAJOR;
98 unsigned int zvol_threads = 32;
99 unsigned int zvol_request_sync = 0;
100 unsigned int zvol_prefetch_bytes = (128 * 1024);
101 unsigned long zvol_max_discard_blocks = 16384;
102 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
103
104 static taskq_t *zvol_taskq;
105 static krwlock_t zvol_state_lock;
106 static list_t zvol_state_list;
107
108 #define ZVOL_HT_SIZE 1024
109 static struct hlist_head *zvol_htable;
110 #define ZVOL_HT_HEAD(hash) (&zvol_htable[(hash) & (ZVOL_HT_SIZE-1)])
111
112 static struct ida zvol_ida;
113
114 /*
115 * The in-core state of each volume.
116 */
117 struct zvol_state {
118 char zv_name[MAXNAMELEN]; /* name */
119 uint64_t zv_volsize; /* advertised space */
120 uint64_t zv_volblocksize; /* volume block size */
121 objset_t *zv_objset; /* objset handle */
122 uint32_t zv_flags; /* ZVOL_* flags */
123 uint32_t zv_open_count; /* open counts */
124 uint32_t zv_changed; /* disk changed */
125 zilog_t *zv_zilog; /* ZIL handle */
126 zfs_rlock_t zv_range_lock; /* range lock */
127 dnode_t *zv_dn; /* dnode hold */
128 dev_t zv_dev; /* device id */
129 struct gendisk *zv_disk; /* generic disk */
130 struct request_queue *zv_queue; /* request queue */
131 dataset_kstats_t zv_kstat; /* zvol kstats */
132 list_node_t zv_next; /* next zvol_state_t linkage */
133 uint64_t zv_hash; /* name hash */
134 struct hlist_node zv_hlink; /* hash link */
135 kmutex_t zv_state_lock; /* protects zvol_state_t */
136 atomic_t zv_suspend_ref; /* refcount for suspend */
137 krwlock_t zv_suspend_lock; /* suspend lock */
138 };
139
140 typedef enum {
141 ZVOL_ASYNC_CREATE_MINORS,
142 ZVOL_ASYNC_REMOVE_MINORS,
143 ZVOL_ASYNC_RENAME_MINORS,
144 ZVOL_ASYNC_SET_SNAPDEV,
145 ZVOL_ASYNC_SET_VOLMODE,
146 ZVOL_ASYNC_MAX
147 } zvol_async_op_t;
148
149 typedef struct {
150 zvol_async_op_t op;
151 char pool[MAXNAMELEN];
152 char name1[MAXNAMELEN];
153 char name2[MAXNAMELEN];
154 zprop_source_t source;
155 uint64_t value;
156 } zvol_task_t;
157
158 #define ZVOL_RDONLY 0x1
159
160 static uint64_t
161 zvol_name_hash(const char *name)
162 {
163 int i;
164 uint64_t crc = -1ULL;
165 uint8_t *p = (uint8_t *)name;
166 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
167 for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
168 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
169 }
170 return (crc);
171 }
172
173 /*
174 * Find a zvol_state_t given the full major+minor dev_t. If found,
175 * return with zv_state_lock taken, otherwise, return (NULL) without
176 * taking zv_state_lock.
177 */
178 static zvol_state_t *
179 zvol_find_by_dev(dev_t dev)
180 {
181 zvol_state_t *zv;
182
183 rw_enter(&zvol_state_lock, RW_READER);
184 for (zv = list_head(&zvol_state_list); zv != NULL;
185 zv = list_next(&zvol_state_list, zv)) {
186 mutex_enter(&zv->zv_state_lock);
187 if (zv->zv_dev == dev) {
188 rw_exit(&zvol_state_lock);
189 return (zv);
190 }
191 mutex_exit(&zv->zv_state_lock);
192 }
193 rw_exit(&zvol_state_lock);
194
195 return (NULL);
196 }
197
198 /*
199 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
200 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
201 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
202 * before zv_state_lock. The mode argument indicates the mode (including none)
203 * for zv_suspend_lock to be taken.
204 */
205 static zvol_state_t *
206 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
207 {
208 zvol_state_t *zv;
209 struct hlist_node *p = NULL;
210
211 rw_enter(&zvol_state_lock, RW_READER);
212 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
213 zv = hlist_entry(p, zvol_state_t, zv_hlink);
214 mutex_enter(&zv->zv_state_lock);
215 if (zv->zv_hash == hash &&
216 strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
217 /*
218 * this is the right zvol, take the locks in the
219 * right order
220 */
221 if (mode != RW_NONE &&
222 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
223 mutex_exit(&zv->zv_state_lock);
224 rw_enter(&zv->zv_suspend_lock, mode);
225 mutex_enter(&zv->zv_state_lock);
226 /*
227 * zvol cannot be renamed as we continue
228 * to hold zvol_state_lock
229 */
230 ASSERT(zv->zv_hash == hash &&
231 strncmp(zv->zv_name, name, MAXNAMELEN)
232 == 0);
233 }
234 rw_exit(&zvol_state_lock);
235 return (zv);
236 }
237 mutex_exit(&zv->zv_state_lock);
238 }
239 rw_exit(&zvol_state_lock);
240
241 return (NULL);
242 }
243
244 /*
245 * Find a zvol_state_t given the name.
246 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
247 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
248 * before zv_state_lock. The mode argument indicates the mode (including none)
249 * for zv_suspend_lock to be taken.
250 */
251 static zvol_state_t *
252 zvol_find_by_name(const char *name, int mode)
253 {
254 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
255 }
256
257
258 /*
259 * Given a path, return TRUE if path is a ZVOL.
260 */
261 boolean_t
262 zvol_is_zvol(const char *device)
263 {
264 struct block_device *bdev;
265 unsigned int major;
266
267 bdev = vdev_lookup_bdev(device);
268 if (IS_ERR(bdev))
269 return (B_FALSE);
270
271 major = MAJOR(bdev->bd_dev);
272 bdput(bdev);
273
274 if (major == zvol_major)
275 return (B_TRUE);
276
277 return (B_FALSE);
278 }
279
280 /*
281 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
282 */
283 void
284 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
285 {
286 zfs_creat_t *zct = arg;
287 nvlist_t *nvprops = zct->zct_props;
288 int error;
289 uint64_t volblocksize, volsize;
290
291 VERIFY(nvlist_lookup_uint64(nvprops,
292 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
293 if (nvlist_lookup_uint64(nvprops,
294 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
295 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
296
297 /*
298 * These properties must be removed from the list so the generic
299 * property setting step won't apply to them.
300 */
301 VERIFY(nvlist_remove_all(nvprops,
302 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
303 (void) nvlist_remove_all(nvprops,
304 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
305
306 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
307 DMU_OT_NONE, 0, tx);
308 ASSERT(error == 0);
309
310 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
311 DMU_OT_NONE, 0, tx);
312 ASSERT(error == 0);
313
314 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
315 ASSERT(error == 0);
316 }
317
318 /*
319 * ZFS_IOC_OBJSET_STATS entry point.
320 */
321 int
322 zvol_get_stats(objset_t *os, nvlist_t *nv)
323 {
324 int error;
325 dmu_object_info_t *doi;
326 uint64_t val;
327
328 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
329 if (error)
330 return (SET_ERROR(error));
331
332 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
333 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
334 error = dmu_object_info(os, ZVOL_OBJ, doi);
335
336 if (error == 0) {
337 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
338 doi->doi_data_block_size);
339 }
340
341 kmem_free(doi, sizeof (dmu_object_info_t));
342
343 return (SET_ERROR(error));
344 }
345
346 /*
347 * Sanity check volume size.
348 */
349 int
350 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
351 {
352 if (volsize == 0)
353 return (SET_ERROR(EINVAL));
354
355 if (volsize % blocksize != 0)
356 return (SET_ERROR(EINVAL));
357
358 #ifdef _ILP32
359 if (volsize - 1 > SPEC_MAXOFFSET_T)
360 return (SET_ERROR(EOVERFLOW));
361 #endif
362 return (0);
363 }
364
365 /*
366 * Ensure the zap is flushed then inform the VFS of the capacity change.
367 */
368 static int
369 zvol_update_volsize(uint64_t volsize, objset_t *os)
370 {
371 dmu_tx_t *tx;
372 int error;
373 uint64_t txg;
374
375 tx = dmu_tx_create(os);
376 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
377 dmu_tx_mark_netfree(tx);
378 error = dmu_tx_assign(tx, TXG_WAIT);
379 if (error) {
380 dmu_tx_abort(tx);
381 return (SET_ERROR(error));
382 }
383 txg = dmu_tx_get_txg(tx);
384
385 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
386 &volsize, tx);
387 dmu_tx_commit(tx);
388
389 txg_wait_synced(dmu_objset_pool(os), txg);
390
391 if (error == 0)
392 error = dmu_free_long_range(os,
393 ZVOL_OBJ, volsize, DMU_OBJECT_END);
394
395 return (error);
396 }
397
398 /*
399 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
400 * size will result in a udev "change" event being generated.
401 */
402 int
403 zvol_set_volsize(const char *name, uint64_t volsize)
404 {
405 objset_t *os = NULL;
406 struct gendisk *disk = NULL;
407 uint64_t readonly;
408 int error;
409 boolean_t owned = B_FALSE;
410
411 error = dsl_prop_get_integer(name,
412 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
413 if (error != 0)
414 return (SET_ERROR(error));
415 if (readonly)
416 return (SET_ERROR(EROFS));
417
418 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
419
420 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
421 RW_READ_HELD(&zv->zv_suspend_lock)));
422
423 if (zv == NULL || zv->zv_objset == NULL) {
424 if (zv != NULL)
425 rw_exit(&zv->zv_suspend_lock);
426 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
427 FTAG, &os)) != 0) {
428 if (zv != NULL)
429 mutex_exit(&zv->zv_state_lock);
430 return (SET_ERROR(error));
431 }
432 owned = B_TRUE;
433 if (zv != NULL)
434 zv->zv_objset = os;
435 } else {
436 os = zv->zv_objset;
437 }
438
439 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
440
441 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
442 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
443 goto out;
444
445 error = zvol_update_volsize(volsize, os);
446 if (error == 0 && zv != NULL) {
447 zv->zv_volsize = volsize;
448 zv->zv_changed = 1;
449 disk = zv->zv_disk;
450 }
451 out:
452 kmem_free(doi, sizeof (dmu_object_info_t));
453
454 if (owned) {
455 dmu_objset_disown(os, B_TRUE, FTAG);
456 if (zv != NULL)
457 zv->zv_objset = NULL;
458 } else {
459 rw_exit(&zv->zv_suspend_lock);
460 }
461
462 if (zv != NULL)
463 mutex_exit(&zv->zv_state_lock);
464
465 if (disk != NULL)
466 revalidate_disk(disk);
467
468 return (SET_ERROR(error));
469 }
470
471 /*
472 * Sanity check volume block size.
473 */
474 int
475 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
476 {
477 /* Record sizes above 128k need the feature to be enabled */
478 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
479 spa_t *spa;
480 int error;
481
482 if ((error = spa_open(name, &spa, FTAG)) != 0)
483 return (error);
484
485 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
486 spa_close(spa, FTAG);
487 return (SET_ERROR(ENOTSUP));
488 }
489
490 /*
491 * We don't allow setting the property above 1MB,
492 * unless the tunable has been changed.
493 */
494 if (volblocksize > zfs_max_recordsize)
495 return (SET_ERROR(EDOM));
496
497 spa_close(spa, FTAG);
498 }
499
500 if (volblocksize < SPA_MINBLOCKSIZE ||
501 volblocksize > SPA_MAXBLOCKSIZE ||
502 !ISP2(volblocksize))
503 return (SET_ERROR(EDOM));
504
505 return (0);
506 }
507
508 /*
509 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
510 */
511 int
512 zvol_set_volblocksize(const char *name, uint64_t volblocksize)
513 {
514 zvol_state_t *zv;
515 dmu_tx_t *tx;
516 int error;
517
518 zv = zvol_find_by_name(name, RW_READER);
519
520 if (zv == NULL)
521 return (SET_ERROR(ENXIO));
522
523 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
524 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
525
526 if (zv->zv_flags & ZVOL_RDONLY) {
527 mutex_exit(&zv->zv_state_lock);
528 rw_exit(&zv->zv_suspend_lock);
529 return (SET_ERROR(EROFS));
530 }
531
532 tx = dmu_tx_create(zv->zv_objset);
533 dmu_tx_hold_bonus(tx, ZVOL_OBJ);
534 error = dmu_tx_assign(tx, TXG_WAIT);
535 if (error) {
536 dmu_tx_abort(tx);
537 } else {
538 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
539 volblocksize, 0, tx);
540 if (error == ENOTSUP)
541 error = SET_ERROR(EBUSY);
542 dmu_tx_commit(tx);
543 if (error == 0)
544 zv->zv_volblocksize = volblocksize;
545 }
546
547 mutex_exit(&zv->zv_state_lock);
548 rw_exit(&zv->zv_suspend_lock);
549
550 return (SET_ERROR(error));
551 }
552
553 /*
554 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
555 * implement DKIOCFREE/free-long-range.
556 */
557 static int
558 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
559 {
560 zvol_state_t *zv = arg1;
561 lr_truncate_t *lr = arg2;
562 uint64_t offset, length;
563
564 if (byteswap)
565 byteswap_uint64_array(lr, sizeof (*lr));
566
567 offset = lr->lr_offset;
568 length = lr->lr_length;
569
570 return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length));
571 }
572
573 /*
574 * Replay a TX_WRITE ZIL transaction that didn't get committed
575 * after a system failure
576 */
577 static int
578 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
579 {
580 zvol_state_t *zv = arg1;
581 lr_write_t *lr = arg2;
582 objset_t *os = zv->zv_objset;
583 char *data = (char *)(lr + 1); /* data follows lr_write_t */
584 uint64_t offset, length;
585 dmu_tx_t *tx;
586 int error;
587
588 if (byteswap)
589 byteswap_uint64_array(lr, sizeof (*lr));
590
591 offset = lr->lr_offset;
592 length = lr->lr_length;
593
594 /* If it's a dmu_sync() block, write the whole block */
595 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
596 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
597 if (length < blocksize) {
598 offset -= offset % blocksize;
599 length = blocksize;
600 }
601 }
602
603 tx = dmu_tx_create(os);
604 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
605 error = dmu_tx_assign(tx, TXG_WAIT);
606 if (error) {
607 dmu_tx_abort(tx);
608 } else {
609 dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
610 dmu_tx_commit(tx);
611 }
612
613 return (error);
614 }
615
616 static int
617 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
618 {
619 return (SET_ERROR(ENOTSUP));
620 }
621
622 /*
623 * Callback vectors for replaying records.
624 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
625 */
626 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
627 zvol_replay_err, /* no such transaction type */
628 zvol_replay_err, /* TX_CREATE */
629 zvol_replay_err, /* TX_MKDIR */
630 zvol_replay_err, /* TX_MKXATTR */
631 zvol_replay_err, /* TX_SYMLINK */
632 zvol_replay_err, /* TX_REMOVE */
633 zvol_replay_err, /* TX_RMDIR */
634 zvol_replay_err, /* TX_LINK */
635 zvol_replay_err, /* TX_RENAME */
636 zvol_replay_write, /* TX_WRITE */
637 zvol_replay_truncate, /* TX_TRUNCATE */
638 zvol_replay_err, /* TX_SETATTR */
639 zvol_replay_err, /* TX_ACL */
640 zvol_replay_err, /* TX_CREATE_ATTR */
641 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
642 zvol_replay_err, /* TX_MKDIR_ACL */
643 zvol_replay_err, /* TX_MKDIR_ATTR */
644 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
645 zvol_replay_err, /* TX_WRITE2 */
646 };
647
648 /*
649 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
650 *
651 * We store data in the log buffers if it's small enough.
652 * Otherwise we will later flush the data out via dmu_sync().
653 */
654 ssize_t zvol_immediate_write_sz = 32768;
655
656 static void
657 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
658 uint64_t size, int sync)
659 {
660 uint32_t blocksize = zv->zv_volblocksize;
661 zilog_t *zilog = zv->zv_zilog;
662 itx_wr_state_t write_state;
663
664 if (zil_replaying(zilog, tx))
665 return;
666
667 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
668 write_state = WR_INDIRECT;
669 else if (!spa_has_slogs(zilog->zl_spa) &&
670 size >= blocksize && blocksize > zvol_immediate_write_sz)
671 write_state = WR_INDIRECT;
672 else if (sync)
673 write_state = WR_COPIED;
674 else
675 write_state = WR_NEED_COPY;
676
677 while (size) {
678 itx_t *itx;
679 lr_write_t *lr;
680 itx_wr_state_t wr_state = write_state;
681 ssize_t len = size;
682
683 if (wr_state == WR_COPIED && size > ZIL_MAX_COPIED_DATA)
684 wr_state = WR_NEED_COPY;
685 else if (wr_state == WR_INDIRECT)
686 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
687
688 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
689 (wr_state == WR_COPIED ? len : 0));
690 lr = (lr_write_t *)&itx->itx_lr;
691 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
692 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
693 zil_itx_destroy(itx);
694 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
695 lr = (lr_write_t *)&itx->itx_lr;
696 wr_state = WR_NEED_COPY;
697 }
698
699 itx->itx_wr_state = wr_state;
700 lr->lr_foid = ZVOL_OBJ;
701 lr->lr_offset = offset;
702 lr->lr_length = len;
703 lr->lr_blkoff = 0;
704 BP_ZERO(&lr->lr_blkptr);
705
706 itx->itx_private = zv;
707 itx->itx_sync = sync;
708
709 (void) zil_itx_assign(zilog, itx, tx);
710
711 offset += len;
712 size -= len;
713 }
714 }
715
716 typedef struct zv_request {
717 zvol_state_t *zv;
718 struct bio *bio;
719 rl_t *rl;
720 } zv_request_t;
721
722 static void
723 uio_from_bio(uio_t *uio, struct bio *bio)
724 {
725 uio->uio_bvec = &bio->bi_io_vec[BIO_BI_IDX(bio)];
726 uio->uio_skip = BIO_BI_SKIP(bio);
727 uio->uio_resid = BIO_BI_SIZE(bio);
728 uio->uio_iovcnt = bio->bi_vcnt - BIO_BI_IDX(bio);
729 uio->uio_loffset = BIO_BI_SECTOR(bio) << 9;
730 uio->uio_limit = MAXOFFSET_T;
731 uio->uio_segflg = UIO_BVEC;
732 }
733
734 static void
735 zvol_write(void *arg)
736 {
737 int error = 0;
738
739 zv_request_t *zvr = arg;
740 struct bio *bio = zvr->bio;
741 uio_t uio;
742 uio_from_bio(&uio, bio);
743
744 zvol_state_t *zv = zvr->zv;
745 ASSERT(zv && zv->zv_open_count > 0);
746
747 ssize_t start_resid = uio.uio_resid;
748 unsigned long start_jif = jiffies;
749 blk_generic_start_io_acct(zv->zv_queue, WRITE, bio_sectors(bio),
750 &zv->zv_disk->part0);
751
752 boolean_t sync =
753 bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
754
755 uint64_t volsize = zv->zv_volsize;
756 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
757 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
758 uint64_t off = uio.uio_loffset;
759 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
760
761 if (bytes > volsize - off) /* don't write past the end */
762 bytes = volsize - off;
763
764 dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
765
766 /* This will only fail for ENOSPC */
767 error = dmu_tx_assign(tx, TXG_WAIT);
768 if (error) {
769 dmu_tx_abort(tx);
770 break;
771 }
772 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
773 if (error == 0) {
774 zvol_log_write(zv, tx, off, bytes, sync);
775 }
776 dmu_tx_commit(tx);
777
778 if (error)
779 break;
780 }
781 zfs_range_unlock(zvr->rl);
782
783 int64_t nwritten = start_resid - uio.uio_resid;
784 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
785 task_io_account_write(nwritten);
786
787 if (sync)
788 zil_commit(zv->zv_zilog, ZVOL_OBJ);
789
790 rw_exit(&zv->zv_suspend_lock);
791 blk_generic_end_io_acct(zv->zv_queue, WRITE, &zv->zv_disk->part0,
792 start_jif);
793 BIO_END_IO(bio, -error);
794 kmem_free(zvr, sizeof (zv_request_t));
795 }
796
797 /*
798 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
799 */
800 static void
801 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
802 boolean_t sync)
803 {
804 itx_t *itx;
805 lr_truncate_t *lr;
806 zilog_t *zilog = zv->zv_zilog;
807
808 if (zil_replaying(zilog, tx))
809 return;
810
811 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
812 lr = (lr_truncate_t *)&itx->itx_lr;
813 lr->lr_foid = ZVOL_OBJ;
814 lr->lr_offset = off;
815 lr->lr_length = len;
816
817 itx->itx_sync = sync;
818 zil_itx_assign(zilog, itx, tx);
819 }
820
821 static void
822 zvol_discard(void *arg)
823 {
824 zv_request_t *zvr = arg;
825 struct bio *bio = zvr->bio;
826 zvol_state_t *zv = zvr->zv;
827 uint64_t start = BIO_BI_SECTOR(bio) << 9;
828 uint64_t size = BIO_BI_SIZE(bio);
829 uint64_t end = start + size;
830 boolean_t sync;
831 int error = 0;
832 dmu_tx_t *tx;
833 unsigned long start_jif;
834
835 ASSERT(zv && zv->zv_open_count > 0);
836
837 start_jif = jiffies;
838 blk_generic_start_io_acct(zv->zv_queue, WRITE, bio_sectors(bio),
839 &zv->zv_disk->part0);
840
841 sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
842
843 if (end > zv->zv_volsize) {
844 error = SET_ERROR(EIO);
845 goto unlock;
846 }
847
848 /*
849 * Align the request to volume block boundaries when a secure erase is
850 * not required. This will prevent dnode_free_range() from zeroing out
851 * the unaligned parts which is slow (read-modify-write) and useless
852 * since we are not freeing any space by doing so.
853 */
854 if (!bio_is_secure_erase(bio)) {
855 start = P2ROUNDUP(start, zv->zv_volblocksize);
856 end = P2ALIGN(end, zv->zv_volblocksize);
857 size = end - start;
858 }
859
860 if (start >= end)
861 goto unlock;
862
863 tx = dmu_tx_create(zv->zv_objset);
864 dmu_tx_mark_netfree(tx);
865 error = dmu_tx_assign(tx, TXG_WAIT);
866 if (error != 0) {
867 dmu_tx_abort(tx);
868 } else {
869 zvol_log_truncate(zv, tx, start, size, B_TRUE);
870 dmu_tx_commit(tx);
871 error = dmu_free_long_range(zv->zv_objset,
872 ZVOL_OBJ, start, size);
873 }
874 unlock:
875 zfs_range_unlock(zvr->rl);
876 if (error == 0 && sync)
877 zil_commit(zv->zv_zilog, ZVOL_OBJ);
878
879 rw_exit(&zv->zv_suspend_lock);
880 blk_generic_end_io_acct(zv->zv_queue, WRITE, &zv->zv_disk->part0,
881 start_jif);
882 BIO_END_IO(bio, -error);
883 kmem_free(zvr, sizeof (zv_request_t));
884 }
885
886 static void
887 zvol_read(void *arg)
888 {
889 int error = 0;
890
891 zv_request_t *zvr = arg;
892 struct bio *bio = zvr->bio;
893 uio_t uio;
894 uio_from_bio(&uio, bio);
895
896 zvol_state_t *zv = zvr->zv;
897 ASSERT(zv && zv->zv_open_count > 0);
898
899 ssize_t start_resid = uio.uio_resid;
900 unsigned long start_jif = jiffies;
901 blk_generic_start_io_acct(zv->zv_queue, READ, bio_sectors(bio),
902 &zv->zv_disk->part0);
903
904 uint64_t volsize = zv->zv_volsize;
905 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
906 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
907
908 /* don't read past the end */
909 if (bytes > volsize - uio.uio_loffset)
910 bytes = volsize - uio.uio_loffset;
911
912 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
913 if (error) {
914 /* convert checksum errors into IO errors */
915 if (error == ECKSUM)
916 error = SET_ERROR(EIO);
917 break;
918 }
919 }
920 zfs_range_unlock(zvr->rl);
921
922 int64_t nread = start_resid - uio.uio_resid;
923 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
924 task_io_account_read(nread);
925
926 rw_exit(&zv->zv_suspend_lock);
927 blk_generic_end_io_acct(zv->zv_queue, READ, &zv->zv_disk->part0,
928 start_jif);
929 BIO_END_IO(bio, -error);
930 kmem_free(zvr, sizeof (zv_request_t));
931 }
932
933 static MAKE_REQUEST_FN_RET
934 zvol_request(struct request_queue *q, struct bio *bio)
935 {
936 zvol_state_t *zv = q->queuedata;
937 fstrans_cookie_t cookie = spl_fstrans_mark();
938 uint64_t offset = BIO_BI_SECTOR(bio) << 9;
939 uint64_t size = BIO_BI_SIZE(bio);
940 int rw = bio_data_dir(bio);
941 zv_request_t *zvr;
942
943 if (bio_has_data(bio) && offset + size > zv->zv_volsize) {
944 printk(KERN_INFO
945 "%s: bad access: offset=%llu, size=%lu\n",
946 zv->zv_disk->disk_name,
947 (long long unsigned)offset,
948 (long unsigned)size);
949
950 BIO_END_IO(bio, -SET_ERROR(EIO));
951 goto out;
952 }
953
954 if (rw == WRITE) {
955 boolean_t need_sync = B_FALSE;
956
957 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
958 BIO_END_IO(bio, -SET_ERROR(EROFS));
959 goto out;
960 }
961
962 /*
963 * To be released in the I/O function. See the comment on
964 * zfs_range_lock below.
965 */
966 rw_enter(&zv->zv_suspend_lock, RW_READER);
967
968 /* bio marked as FLUSH need to flush before write */
969 if (bio_is_flush(bio))
970 zil_commit(zv->zv_zilog, ZVOL_OBJ);
971
972 /* Some requests are just for flush and nothing else. */
973 if (size == 0) {
974 rw_exit(&zv->zv_suspend_lock);
975 BIO_END_IO(bio, 0);
976 goto out;
977 }
978
979 zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
980 zvr->zv = zv;
981 zvr->bio = bio;
982
983 /*
984 * To be released in the I/O function. Since the I/O functions
985 * are asynchronous, we take it here synchronously to make
986 * sure overlapped I/Os are properly ordered.
987 */
988 zvr->rl = zfs_range_lock(&zv->zv_range_lock, offset, size,
989 RL_WRITER);
990 /*
991 * Sync writes and discards execute zil_commit() which may need
992 * to take a RL_READER lock on the whole block being modified
993 * via its zillog->zl_get_data(): to avoid circular dependency
994 * issues with taskq threads execute these requests
995 * synchronously here in zvol_request().
996 */
997 need_sync = bio_is_fua(bio) ||
998 zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
999 if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
1000 if (zvol_request_sync || need_sync ||
1001 taskq_dispatch(zvol_taskq, zvol_discard, zvr,
1002 TQ_SLEEP) == TASKQID_INVALID)
1003 zvol_discard(zvr);
1004 } else {
1005 if (zvol_request_sync || need_sync ||
1006 taskq_dispatch(zvol_taskq, zvol_write, zvr,
1007 TQ_SLEEP) == TASKQID_INVALID)
1008 zvol_write(zvr);
1009 }
1010 } else {
1011 zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
1012 zvr->zv = zv;
1013 zvr->bio = bio;
1014
1015 rw_enter(&zv->zv_suspend_lock, RW_READER);
1016
1017 zvr->rl = zfs_range_lock(&zv->zv_range_lock, offset, size,
1018 RL_READER);
1019 if (zvol_request_sync || taskq_dispatch(zvol_taskq,
1020 zvol_read, zvr, TQ_SLEEP) == TASKQID_INVALID)
1021 zvol_read(zvr);
1022 }
1023
1024 out:
1025 spl_fstrans_unmark(cookie);
1026 #ifdef HAVE_MAKE_REQUEST_FN_RET_INT
1027 return (0);
1028 #elif defined(HAVE_MAKE_REQUEST_FN_RET_QC)
1029 return (BLK_QC_T_NONE);
1030 #endif
1031 }
1032
1033 static void
1034 zvol_get_done(zgd_t *zgd, int error)
1035 {
1036 if (zgd->zgd_db)
1037 dmu_buf_rele(zgd->zgd_db, zgd);
1038
1039 zfs_range_unlock(zgd->zgd_rl);
1040
1041 if (error == 0 && zgd->zgd_bp)
1042 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1043
1044 kmem_free(zgd, sizeof (zgd_t));
1045 }
1046
1047 /*
1048 * Get data to generate a TX_WRITE intent log record.
1049 */
1050 static int
1051 zvol_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1052 {
1053 zvol_state_t *zv = arg;
1054 uint64_t offset = lr->lr_offset;
1055 uint64_t size = lr->lr_length;
1056 dmu_buf_t *db;
1057 zgd_t *zgd;
1058 int error;
1059
1060 ASSERT3P(lwb, !=, NULL);
1061 ASSERT3P(zio, !=, NULL);
1062 ASSERT3U(size, !=, 0);
1063
1064 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1065 zgd->zgd_lwb = lwb;
1066
1067 /*
1068 * Write records come in two flavors: immediate and indirect.
1069 * For small writes it's cheaper to store the data with the
1070 * log record (immediate); for large writes it's cheaper to
1071 * sync the data and get a pointer to it (indirect) so that
1072 * we don't have to write the data twice.
1073 */
1074 if (buf != NULL) { /* immediate write */
1075 zgd->zgd_rl = zfs_range_lock(&zv->zv_range_lock, offset, size,
1076 RL_READER);
1077 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
1078 DMU_READ_NO_PREFETCH);
1079 } else { /* indirect write */
1080 /*
1081 * Have to lock the whole block to ensure when it's written out
1082 * and its checksum is being calculated that no one can change
1083 * the data. Contrarily to zfs_get_data we need not re-check
1084 * blocksize after we get the lock because it cannot be changed.
1085 */
1086 size = zv->zv_volblocksize;
1087 offset = P2ALIGN_TYPED(offset, size, uint64_t);
1088 zgd->zgd_rl = zfs_range_lock(&zv->zv_range_lock, offset, size,
1089 RL_READER);
1090 error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
1091 DMU_READ_NO_PREFETCH);
1092 if (error == 0) {
1093 blkptr_t *bp = &lr->lr_blkptr;
1094
1095 zgd->zgd_db = db;
1096 zgd->zgd_bp = bp;
1097
1098 ASSERT(db != NULL);
1099 ASSERT(db->db_offset == offset);
1100 ASSERT(db->db_size == size);
1101
1102 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1103 zvol_get_done, zgd);
1104
1105 if (error == 0)
1106 return (0);
1107 }
1108 }
1109
1110 zvol_get_done(zgd, error);
1111
1112 return (SET_ERROR(error));
1113 }
1114
1115 /*
1116 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1117 */
1118 static void
1119 zvol_insert(zvol_state_t *zv)
1120 {
1121 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1122 ASSERT3U(MINOR(zv->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
1123 list_insert_head(&zvol_state_list, zv);
1124 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1125 }
1126
1127 /*
1128 * Simply remove the zvol from to list of zvols.
1129 */
1130 static void
1131 zvol_remove(zvol_state_t *zv)
1132 {
1133 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1134 list_remove(&zvol_state_list, zv);
1135 hlist_del(&zv->zv_hlink);
1136 }
1137
1138 /*
1139 * Setup zv after we just own the zv->objset
1140 */
1141 static int
1142 zvol_setup_zv(zvol_state_t *zv)
1143 {
1144 uint64_t volsize;
1145 int error;
1146 uint64_t ro;
1147 objset_t *os = zv->zv_objset;
1148
1149 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1150 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
1151
1152 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
1153 if (error)
1154 return (SET_ERROR(error));
1155
1156 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1157 if (error)
1158 return (SET_ERROR(error));
1159
1160 error = dnode_hold(os, ZVOL_OBJ, FTAG, &zv->zv_dn);
1161 if (error)
1162 return (SET_ERROR(error));
1163
1164 set_capacity(zv->zv_disk, volsize >> 9);
1165 zv->zv_volsize = volsize;
1166 zv->zv_zilog = zil_open(os, zvol_get_data);
1167
1168 if (ro || dmu_objset_is_snapshot(os) ||
1169 !spa_writeable(dmu_objset_spa(os))) {
1170 set_disk_ro(zv->zv_disk, 1);
1171 zv->zv_flags |= ZVOL_RDONLY;
1172 } else {
1173 set_disk_ro(zv->zv_disk, 0);
1174 zv->zv_flags &= ~ZVOL_RDONLY;
1175 }
1176 return (0);
1177 }
1178
1179 /*
1180 * Shutdown every zv_objset related stuff except zv_objset itself.
1181 * The is the reverse of zvol_setup_zv.
1182 */
1183 static void
1184 zvol_shutdown_zv(zvol_state_t *zv)
1185 {
1186 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
1187 RW_LOCK_HELD(&zv->zv_suspend_lock));
1188
1189 zil_close(zv->zv_zilog);
1190 zv->zv_zilog = NULL;
1191
1192 dnode_rele(zv->zv_dn, FTAG);
1193 zv->zv_dn = NULL;
1194
1195 /*
1196 * Evict cached data
1197 */
1198 if (dsl_dataset_is_dirty(dmu_objset_ds(zv->zv_objset)) &&
1199 !(zv->zv_flags & ZVOL_RDONLY))
1200 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1201 (void) dmu_objset_evict_dbufs(zv->zv_objset);
1202 }
1203
1204 /*
1205 * return the proper tag for rollback and recv
1206 */
1207 void *
1208 zvol_tag(zvol_state_t *zv)
1209 {
1210 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1211 return (zv->zv_open_count > 0 ? zv : NULL);
1212 }
1213
1214 /*
1215 * Suspend the zvol for recv and rollback.
1216 */
1217 zvol_state_t *
1218 zvol_suspend(const char *name)
1219 {
1220 zvol_state_t *zv;
1221
1222 zv = zvol_find_by_name(name, RW_WRITER);
1223
1224 if (zv == NULL)
1225 return (NULL);
1226
1227 /* block all I/O, release in zvol_resume. */
1228 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1229 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1230
1231 atomic_inc(&zv->zv_suspend_ref);
1232
1233 if (zv->zv_open_count > 0)
1234 zvol_shutdown_zv(zv);
1235
1236 /*
1237 * do not hold zv_state_lock across suspend/resume to
1238 * avoid locking up zvol lookups
1239 */
1240 mutex_exit(&zv->zv_state_lock);
1241
1242 /* zv_suspend_lock is released in zvol_resume() */
1243 return (zv);
1244 }
1245
1246 int
1247 zvol_resume(zvol_state_t *zv)
1248 {
1249 int error = 0;
1250
1251 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1252
1253 mutex_enter(&zv->zv_state_lock);
1254
1255 if (zv->zv_open_count > 0) {
1256 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
1257 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
1258 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
1259 dmu_objset_rele(zv->zv_objset, zv);
1260
1261 error = zvol_setup_zv(zv);
1262 }
1263
1264 mutex_exit(&zv->zv_state_lock);
1265
1266 rw_exit(&zv->zv_suspend_lock);
1267 /*
1268 * We need this because we don't hold zvol_state_lock while releasing
1269 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1270 * zv_suspend_lock to determine it is safe to free because rwlock is
1271 * not inherent atomic.
1272 */
1273 atomic_dec(&zv->zv_suspend_ref);
1274
1275 return (SET_ERROR(error));
1276 }
1277
1278 static int
1279 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
1280 {
1281 objset_t *os;
1282 int error, locked = 0;
1283 boolean_t ro;
1284
1285 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1286 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1287
1288 /*
1289 * In all other cases the spa_namespace_lock is taken before the
1290 * bdev->bd_mutex lock. But in this case the Linux __blkdev_get()
1291 * function calls fops->open() with the bdev->bd_mutex lock held.
1292 * This deadlock can be easily observed with zvols used as vdevs.
1293 *
1294 * To avoid a potential lock inversion deadlock we preemptively
1295 * try to take the spa_namespace_lock(). Normally it will not
1296 * be contended and this is safe because spa_open_common() handles
1297 * the case where the caller already holds the spa_namespace_lock.
1298 *
1299 * When it is contended we risk a lock inversion if we were to
1300 * block waiting for the lock. Luckily, the __blkdev_get()
1301 * function allows us to return -ERESTARTSYS which will result in
1302 * bdev->bd_mutex being dropped, reacquired, and fops->open() being
1303 * called again. This process can be repeated safely until both
1304 * locks are acquired.
1305 */
1306 if (!mutex_owned(&spa_namespace_lock)) {
1307 locked = mutex_tryenter(&spa_namespace_lock);
1308 if (!locked)
1309 return (-SET_ERROR(ERESTARTSYS));
1310 }
1311
1312 ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
1313 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
1314 if (error)
1315 goto out_mutex;
1316
1317 zv->zv_objset = os;
1318
1319 error = zvol_setup_zv(zv);
1320
1321 if (error) {
1322 dmu_objset_disown(os, 1, zv);
1323 zv->zv_objset = NULL;
1324 }
1325
1326 out_mutex:
1327 if (locked)
1328 mutex_exit(&spa_namespace_lock);
1329 return (SET_ERROR(-error));
1330 }
1331
1332 static void
1333 zvol_last_close(zvol_state_t *zv)
1334 {
1335 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1336 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1337
1338 zvol_shutdown_zv(zv);
1339
1340 dmu_objset_disown(zv->zv_objset, 1, zv);
1341 zv->zv_objset = NULL;
1342 }
1343
1344 static int
1345 zvol_open(struct block_device *bdev, fmode_t flag)
1346 {
1347 zvol_state_t *zv;
1348 int error = 0;
1349 boolean_t drop_suspend = B_TRUE;
1350
1351 rw_enter(&zvol_state_lock, RW_READER);
1352 /*
1353 * Obtain a copy of private_data under the zvol_state_lock to make
1354 * sure that either the result of zvol free code path setting
1355 * bdev->bd_disk->private_data to NULL is observed, or zvol_free()
1356 * is not called on this zv because of the positive zv_open_count.
1357 */
1358 zv = bdev->bd_disk->private_data;
1359 if (zv == NULL) {
1360 rw_exit(&zvol_state_lock);
1361 return (SET_ERROR(-ENXIO));
1362 }
1363
1364 mutex_enter(&zv->zv_state_lock);
1365 /*
1366 * make sure zvol is not suspended during first open
1367 * (hold zv_suspend_lock) and respect proper lock acquisition
1368 * ordering - zv_suspend_lock before zv_state_lock
1369 */
1370 if (zv->zv_open_count == 0) {
1371 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
1372 mutex_exit(&zv->zv_state_lock);
1373 rw_enter(&zv->zv_suspend_lock, RW_READER);
1374 mutex_enter(&zv->zv_state_lock);
1375 /* check to see if zv_suspend_lock is needed */
1376 if (zv->zv_open_count != 0) {
1377 rw_exit(&zv->zv_suspend_lock);
1378 drop_suspend = B_FALSE;
1379 }
1380 }
1381 } else {
1382 drop_suspend = B_FALSE;
1383 }
1384 rw_exit(&zvol_state_lock);
1385
1386 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1387 ASSERT(zv->zv_open_count != 0 || RW_READ_HELD(&zv->zv_suspend_lock));
1388
1389 if (zv->zv_open_count == 0) {
1390 error = zvol_first_open(zv, !(flag & FMODE_WRITE));
1391 if (error)
1392 goto out_mutex;
1393 }
1394
1395 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
1396 error = -EROFS;
1397 goto out_open_count;
1398 }
1399
1400 zv->zv_open_count++;
1401
1402 mutex_exit(&zv->zv_state_lock);
1403 if (drop_suspend)
1404 rw_exit(&zv->zv_suspend_lock);
1405
1406 check_disk_change(bdev);
1407
1408 return (0);
1409
1410 out_open_count:
1411 if (zv->zv_open_count == 0)
1412 zvol_last_close(zv);
1413
1414 out_mutex:
1415 mutex_exit(&zv->zv_state_lock);
1416 if (drop_suspend)
1417 rw_exit(&zv->zv_suspend_lock);
1418 if (error == -ERESTARTSYS)
1419 schedule();
1420
1421 return (SET_ERROR(error));
1422 }
1423
1424 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1425 static void
1426 #else
1427 static int
1428 #endif
1429 zvol_release(struct gendisk *disk, fmode_t mode)
1430 {
1431 zvol_state_t *zv;
1432 boolean_t drop_suspend = B_TRUE;
1433
1434 rw_enter(&zvol_state_lock, RW_READER);
1435 zv = disk->private_data;
1436
1437 mutex_enter(&zv->zv_state_lock);
1438 ASSERT(zv->zv_open_count > 0);
1439 /*
1440 * make sure zvol is not suspended during last close
1441 * (hold zv_suspend_lock) and respect proper lock acquisition
1442 * ordering - zv_suspend_lock before zv_state_lock
1443 */
1444 if (zv->zv_open_count == 1) {
1445 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
1446 mutex_exit(&zv->zv_state_lock);
1447 rw_enter(&zv->zv_suspend_lock, RW_READER);
1448 mutex_enter(&zv->zv_state_lock);
1449 /* check to see if zv_suspend_lock is needed */
1450 if (zv->zv_open_count != 1) {
1451 rw_exit(&zv->zv_suspend_lock);
1452 drop_suspend = B_FALSE;
1453 }
1454 }
1455 } else {
1456 drop_suspend = B_FALSE;
1457 }
1458 rw_exit(&zvol_state_lock);
1459
1460 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1461 ASSERT(zv->zv_open_count != 1 || RW_READ_HELD(&zv->zv_suspend_lock));
1462
1463 zv->zv_open_count--;
1464 if (zv->zv_open_count == 0)
1465 zvol_last_close(zv);
1466
1467 mutex_exit(&zv->zv_state_lock);
1468
1469 if (drop_suspend)
1470 rw_exit(&zv->zv_suspend_lock);
1471
1472 #ifndef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1473 return (0);
1474 #endif
1475 }
1476
1477 static int
1478 zvol_ioctl(struct block_device *bdev, fmode_t mode,
1479 unsigned int cmd, unsigned long arg)
1480 {
1481 zvol_state_t *zv = bdev->bd_disk->private_data;
1482 int error = 0;
1483
1484 ASSERT3U(zv->zv_open_count, >, 0);
1485
1486 switch (cmd) {
1487 case BLKFLSBUF:
1488 fsync_bdev(bdev);
1489 invalidate_bdev(bdev);
1490 rw_enter(&zv->zv_suspend_lock, RW_READER);
1491
1492 if (dsl_dataset_is_dirty(dmu_objset_ds(zv->zv_objset)) &&
1493 !(zv->zv_flags & ZVOL_RDONLY))
1494 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1495
1496 rw_exit(&zv->zv_suspend_lock);
1497 break;
1498
1499 case BLKZNAME:
1500 mutex_enter(&zv->zv_state_lock);
1501 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
1502 mutex_exit(&zv->zv_state_lock);
1503 break;
1504
1505 default:
1506 error = -ENOTTY;
1507 break;
1508 }
1509
1510 return (SET_ERROR(error));
1511 }
1512
1513 #ifdef CONFIG_COMPAT
1514 static int
1515 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
1516 unsigned cmd, unsigned long arg)
1517 {
1518 return (zvol_ioctl(bdev, mode, cmd, arg));
1519 }
1520 #else
1521 #define zvol_compat_ioctl NULL
1522 #endif
1523
1524 /*
1525 * Linux 2.6.38 preferred interface.
1526 */
1527 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1528 static unsigned int
1529 zvol_check_events(struct gendisk *disk, unsigned int clearing)
1530 {
1531 unsigned int mask = 0;
1532
1533 rw_enter(&zvol_state_lock, RW_READER);
1534
1535 zvol_state_t *zv = disk->private_data;
1536 if (zv != NULL) {
1537 mutex_enter(&zv->zv_state_lock);
1538 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1539 zv->zv_changed = 0;
1540 mutex_exit(&zv->zv_state_lock);
1541 }
1542
1543 rw_exit(&zvol_state_lock);
1544
1545 return (mask);
1546 }
1547 #else
1548 static int zvol_media_changed(struct gendisk *disk)
1549 {
1550 int changed = 0;
1551
1552 rw_enter(&zvol_state_lock, RW_READER);
1553
1554 zvol_state_t *zv = disk->private_data;
1555 if (zv != NULL) {
1556 mutex_enter(&zv->zv_state_lock);
1557 changed = zv->zv_changed;
1558 zv->zv_changed = 0;
1559 mutex_exit(&zv->zv_state_lock);
1560 }
1561
1562 rw_exit(&zvol_state_lock);
1563
1564 return (changed);
1565 }
1566 #endif
1567
1568 static int zvol_revalidate_disk(struct gendisk *disk)
1569 {
1570 rw_enter(&zvol_state_lock, RW_READER);
1571
1572 zvol_state_t *zv = disk->private_data;
1573 if (zv != NULL) {
1574 mutex_enter(&zv->zv_state_lock);
1575 set_capacity(zv->zv_disk, zv->zv_volsize >> SECTOR_BITS);
1576 mutex_exit(&zv->zv_state_lock);
1577 }
1578
1579 rw_exit(&zvol_state_lock);
1580
1581 return (0);
1582 }
1583
1584 /*
1585 * Provide a simple virtual geometry for legacy compatibility. For devices
1586 * smaller than 1 MiB a small head and sector count is used to allow very
1587 * tiny devices. For devices over 1 Mib a standard head and sector count
1588 * is used to keep the cylinders count reasonable.
1589 */
1590 static int
1591 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1592 {
1593 zvol_state_t *zv = bdev->bd_disk->private_data;
1594 sector_t sectors;
1595
1596 ASSERT3U(zv->zv_open_count, >, 0);
1597
1598 sectors = get_capacity(zv->zv_disk);
1599
1600 if (sectors > 2048) {
1601 geo->heads = 16;
1602 geo->sectors = 63;
1603 } else {
1604 geo->heads = 2;
1605 geo->sectors = 4;
1606 }
1607
1608 geo->start = 0;
1609 geo->cylinders = sectors / (geo->heads * geo->sectors);
1610
1611 return (0);
1612 }
1613
1614 static struct kobject *
1615 zvol_probe(dev_t dev, int *part, void *arg)
1616 {
1617 zvol_state_t *zv;
1618 struct kobject *kobj;
1619
1620 zv = zvol_find_by_dev(dev);
1621 kobj = zv ? get_disk_and_module(zv->zv_disk) : NULL;
1622 ASSERT(zv == NULL || MUTEX_HELD(&zv->zv_state_lock));
1623 if (zv)
1624 mutex_exit(&zv->zv_state_lock);
1625
1626 return (kobj);
1627 }
1628
1629 static struct block_device_operations zvol_ops = {
1630 .open = zvol_open,
1631 .release = zvol_release,
1632 .ioctl = zvol_ioctl,
1633 .compat_ioctl = zvol_compat_ioctl,
1634 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1635 .check_events = zvol_check_events,
1636 #else
1637 .media_changed = zvol_media_changed,
1638 #endif
1639 .revalidate_disk = zvol_revalidate_disk,
1640 .getgeo = zvol_getgeo,
1641 .owner = THIS_MODULE,
1642 };
1643
1644 /*
1645 * Allocate memory for a new zvol_state_t and setup the required
1646 * request queue and generic disk structures for the block device.
1647 */
1648 static zvol_state_t *
1649 zvol_alloc(dev_t dev, const char *name)
1650 {
1651 zvol_state_t *zv;
1652 uint64_t volmode;
1653
1654 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1655 return (NULL);
1656
1657 if (volmode == ZFS_VOLMODE_DEFAULT)
1658 volmode = zvol_volmode;
1659
1660 if (volmode == ZFS_VOLMODE_NONE)
1661 return (NULL);
1662
1663 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1664
1665 list_link_init(&zv->zv_next);
1666
1667 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1668
1669 zv->zv_queue = blk_alloc_queue(GFP_ATOMIC);
1670 if (zv->zv_queue == NULL)
1671 goto out_kmem;
1672
1673 blk_queue_make_request(zv->zv_queue, zvol_request);
1674 blk_queue_set_write_cache(zv->zv_queue, B_TRUE, B_TRUE);
1675
1676 /* Limit read-ahead to a single page to prevent over-prefetching. */
1677 blk_queue_set_read_ahead(zv->zv_queue, 1);
1678
1679 /* Disable write merging in favor of the ZIO pipeline. */
1680 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zv->zv_queue);
1681
1682 zv->zv_disk = alloc_disk(ZVOL_MINORS);
1683 if (zv->zv_disk == NULL)
1684 goto out_queue;
1685
1686 zv->zv_queue->queuedata = zv;
1687 zv->zv_dev = dev;
1688 zv->zv_open_count = 0;
1689 strlcpy(zv->zv_name, name, MAXNAMELEN);
1690
1691 zfs_rlock_init(&zv->zv_range_lock);
1692 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1693
1694 zv->zv_disk->major = zvol_major;
1695 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1696 zv->zv_disk->events = DISK_EVENT_MEDIA_CHANGE;
1697 #endif
1698
1699 if (volmode == ZFS_VOLMODE_DEV) {
1700 /*
1701 * ZFS_VOLMODE_DEV disable partitioning on ZVOL devices: set
1702 * gendisk->minors = 1 as noted in include/linux/genhd.h.
1703 * Also disable extended partition numbers (GENHD_FL_EXT_DEVT)
1704 * and suppresses partition scanning (GENHD_FL_NO_PART_SCAN)
1705 * setting gendisk->flags accordingly.
1706 */
1707 zv->zv_disk->minors = 1;
1708 #if defined(GENHD_FL_EXT_DEVT)
1709 zv->zv_disk->flags &= ~GENHD_FL_EXT_DEVT;
1710 #endif
1711 #if defined(GENHD_FL_NO_PART_SCAN)
1712 zv->zv_disk->flags |= GENHD_FL_NO_PART_SCAN;
1713 #endif
1714 }
1715 zv->zv_disk->first_minor = (dev & MINORMASK);
1716 zv->zv_disk->fops = &zvol_ops;
1717 zv->zv_disk->private_data = zv;
1718 zv->zv_disk->queue = zv->zv_queue;
1719 snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
1720 ZVOL_DEV_NAME, (dev & MINORMASK));
1721
1722 return (zv);
1723
1724 out_queue:
1725 blk_cleanup_queue(zv->zv_queue);
1726 out_kmem:
1727 kmem_free(zv, sizeof (zvol_state_t));
1728
1729 return (NULL);
1730 }
1731
1732 /*
1733 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1734 * At this time, the structure is not opened by anyone, is taken off
1735 * the zvol_state_list, and has its private data set to NULL.
1736 * The zvol_state_lock is dropped.
1737 */
1738 static void
1739 zvol_free(void *arg)
1740 {
1741 zvol_state_t *zv = arg;
1742
1743 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1744 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1745 ASSERT(zv->zv_open_count == 0);
1746 ASSERT(zv->zv_disk->private_data == NULL);
1747
1748 rw_destroy(&zv->zv_suspend_lock);
1749 zfs_rlock_destroy(&zv->zv_range_lock);
1750
1751 del_gendisk(zv->zv_disk);
1752 blk_cleanup_queue(zv->zv_queue);
1753 put_disk(zv->zv_disk);
1754
1755 ida_simple_remove(&zvol_ida, MINOR(zv->zv_dev) >> ZVOL_MINOR_BITS);
1756
1757 mutex_destroy(&zv->zv_state_lock);
1758 dataset_kstats_destroy(&zv->zv_kstat);
1759
1760 kmem_free(zv, sizeof (zvol_state_t));
1761 }
1762
1763 /*
1764 * Create a block device minor node and setup the linkage between it
1765 * and the specified volume. Once this function returns the block
1766 * device is live and ready for use.
1767 */
1768 static int
1769 zvol_create_minor_impl(const char *name)
1770 {
1771 zvol_state_t *zv;
1772 objset_t *os;
1773 dmu_object_info_t *doi;
1774 uint64_t volsize;
1775 uint64_t len;
1776 unsigned minor = 0;
1777 int error = 0;
1778 int idx;
1779 uint64_t hash = zvol_name_hash(name);
1780
1781 if (zvol_inhibit_dev)
1782 return (0);
1783
1784 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1785 if (idx < 0)
1786 return (SET_ERROR(-idx));
1787 minor = idx << ZVOL_MINOR_BITS;
1788
1789 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1790 if (zv) {
1791 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1792 mutex_exit(&zv->zv_state_lock);
1793 ida_simple_remove(&zvol_ida, idx);
1794 return (SET_ERROR(EEXIST));
1795 }
1796
1797 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1798
1799 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1800 if (error)
1801 goto out_doi;
1802
1803 error = dmu_object_info(os, ZVOL_OBJ, doi);
1804 if (error)
1805 goto out_dmu_objset_disown;
1806
1807 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1808 if (error)
1809 goto out_dmu_objset_disown;
1810
1811 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1812 if (zv == NULL) {
1813 error = SET_ERROR(EAGAIN);
1814 goto out_dmu_objset_disown;
1815 }
1816 zv->zv_hash = hash;
1817
1818 if (dmu_objset_is_snapshot(os))
1819 zv->zv_flags |= ZVOL_RDONLY;
1820
1821 zv->zv_volblocksize = doi->doi_data_block_size;
1822 zv->zv_volsize = volsize;
1823 zv->zv_objset = os;
1824
1825 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1826
1827 blk_queue_max_hw_sectors(zv->zv_queue, (DMU_MAX_ACCESS / 4) >> 9);
1828 blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
1829 blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
1830 blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
1831 blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
1832 blk_queue_max_discard_sectors(zv->zv_queue,
1833 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1834 blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
1835 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_queue);
1836 #ifdef QUEUE_FLAG_NONROT
1837 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_queue);
1838 #endif
1839 #ifdef QUEUE_FLAG_ADD_RANDOM
1840 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_queue);
1841 #endif
1842
1843 if (spa_writeable(dmu_objset_spa(os))) {
1844 if (zil_replay_disable)
1845 zil_destroy(dmu_objset_zil(os), B_FALSE);
1846 else
1847 zil_replay(os, zv, zvol_replay_vector);
1848 }
1849 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1850 dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1851
1852 /*
1853 * When udev detects the addition of the device it will immediately
1854 * invoke blkid(8) to determine the type of content on the device.
1855 * Prefetching the blocks commonly scanned by blkid(8) will speed
1856 * up this process.
1857 */
1858 len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
1859 if (len > 0) {
1860 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1861 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1862 ZIO_PRIORITY_SYNC_READ);
1863 }
1864
1865 zv->zv_objset = NULL;
1866 out_dmu_objset_disown:
1867 dmu_objset_disown(os, B_TRUE, FTAG);
1868 out_doi:
1869 kmem_free(doi, sizeof (dmu_object_info_t));
1870
1871 if (error == 0) {
1872 rw_enter(&zvol_state_lock, RW_WRITER);
1873 zvol_insert(zv);
1874 rw_exit(&zvol_state_lock);
1875 add_disk(zv->zv_disk);
1876 } else {
1877 ida_simple_remove(&zvol_ida, idx);
1878 }
1879
1880 return (SET_ERROR(error));
1881 }
1882
1883 /*
1884 * Rename a block device minor mode for the specified volume.
1885 */
1886 static void
1887 zvol_rename_minor(zvol_state_t *zv, const char *newname)
1888 {
1889 int readonly = get_disk_ro(zv->zv_disk);
1890
1891 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1892 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1893
1894 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1895
1896 /* move to new hashtable entry */
1897 zv->zv_hash = zvol_name_hash(zv->zv_name);
1898 hlist_del(&zv->zv_hlink);
1899 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1900
1901 /*
1902 * The block device's read-only state is briefly changed causing
1903 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1904 * the name change and fixes the symlinks. This does not change
1905 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1906 * changes. This would normally be done using kobject_uevent() but
1907 * that is a GPL-only symbol which is why we need this workaround.
1908 */
1909 set_disk_ro(zv->zv_disk, !readonly);
1910 set_disk_ro(zv->zv_disk, readonly);
1911 }
1912
1913 typedef struct minors_job {
1914 list_t *list;
1915 list_node_t link;
1916 /* input */
1917 char *name;
1918 /* output */
1919 int error;
1920 } minors_job_t;
1921
1922 /*
1923 * Prefetch zvol dnodes for the minors_job
1924 */
1925 static void
1926 zvol_prefetch_minors_impl(void *arg)
1927 {
1928 minors_job_t *job = arg;
1929 char *dsname = job->name;
1930 objset_t *os = NULL;
1931
1932 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1933 FTAG, &os);
1934 if (job->error == 0) {
1935 dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
1936 dmu_objset_disown(os, B_TRUE, FTAG);
1937 }
1938 }
1939
1940 /*
1941 * Mask errors to continue dmu_objset_find() traversal
1942 */
1943 static int
1944 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1945 {
1946 minors_job_t *j = arg;
1947 list_t *minors_list = j->list;
1948 const char *name = j->name;
1949
1950 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1951
1952 /* skip the designated dataset */
1953 if (name && strcmp(dsname, name) == 0)
1954 return (0);
1955
1956 /* at this point, the dsname should name a snapshot */
1957 if (strchr(dsname, '@') == 0) {
1958 dprintf("zvol_create_snap_minor_cb(): "
1959 "%s is not a shapshot name\n", dsname);
1960 } else {
1961 minors_job_t *job;
1962 char *n = strdup(dsname);
1963 if (n == NULL)
1964 return (0);
1965
1966 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1967 job->name = n;
1968 job->list = minors_list;
1969 job->error = 0;
1970 list_insert_tail(minors_list, job);
1971 /* don't care if dispatch fails, because job->error is 0 */
1972 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1973 TQ_SLEEP);
1974 }
1975
1976 return (0);
1977 }
1978
1979 /*
1980 * Mask errors to continue dmu_objset_find() traversal
1981 */
1982 static int
1983 zvol_create_minors_cb(const char *dsname, void *arg)
1984 {
1985 uint64_t snapdev;
1986 int error;
1987 list_t *minors_list = arg;
1988
1989 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1990
1991 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1992 if (error)
1993 return (0);
1994
1995 /*
1996 * Given the name and the 'snapdev' property, create device minor nodes
1997 * with the linkages to zvols/snapshots as needed.
1998 * If the name represents a zvol, create a minor node for the zvol, then
1999 * check if its snapshots are 'visible', and if so, iterate over the
2000 * snapshots and create device minor nodes for those.
2001 */
2002 if (strchr(dsname, '@') == 0) {
2003 minors_job_t *job;
2004 char *n = strdup(dsname);
2005 if (n == NULL)
2006 return (0);
2007
2008 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
2009 job->name = n;
2010 job->list = minors_list;
2011 job->error = 0;
2012 list_insert_tail(minors_list, job);
2013 /* don't care if dispatch fails, because job->error is 0 */
2014 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
2015 TQ_SLEEP);
2016
2017 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
2018 /*
2019 * traverse snapshots only, do not traverse children,
2020 * and skip the 'dsname'
2021 */
2022 error = dmu_objset_find((char *)dsname,
2023 zvol_create_snap_minor_cb, (void *)job,
2024 DS_FIND_SNAPSHOTS);
2025 }
2026 } else {
2027 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
2028 dsname);
2029 }
2030
2031 return (0);
2032 }
2033
2034 /*
2035 * Create minors for the specified dataset, including children and snapshots.
2036 * Pay attention to the 'snapdev' property and iterate over the snapshots
2037 * only if they are 'visible'. This approach allows one to assure that the
2038 * snapshot metadata is read from disk only if it is needed.
2039 *
2040 * The name can represent a dataset to be recursively scanned for zvols and
2041 * their snapshots, or a single zvol snapshot. If the name represents a
2042 * dataset, the scan is performed in two nested stages:
2043 * - scan the dataset for zvols, and
2044 * - for each zvol, create a minor node, then check if the zvol's snapshots
2045 * are 'visible', and only then iterate over the snapshots if needed
2046 *
2047 * If the name represents a snapshot, a check is performed if the snapshot is
2048 * 'visible' (which also verifies that the parent is a zvol), and if so,
2049 * a minor node for that snapshot is created.
2050 */
2051 static int
2052 zvol_create_minors_impl(const char *name)
2053 {
2054 int error = 0;
2055 fstrans_cookie_t cookie;
2056 char *atp, *parent;
2057 list_t minors_list;
2058 minors_job_t *job;
2059
2060 if (zvol_inhibit_dev)
2061 return (0);
2062
2063 /*
2064 * This is the list for prefetch jobs. Whenever we found a match
2065 * during dmu_objset_find, we insert a minors_job to the list and do
2066 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
2067 * any lock because all list operation is done on the current thread.
2068 *
2069 * We will use this list to do zvol_create_minor_impl after prefetch
2070 * so we don't have to traverse using dmu_objset_find again.
2071 */
2072 list_create(&minors_list, sizeof (minors_job_t),
2073 offsetof(minors_job_t, link));
2074
2075 parent = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2076 (void) strlcpy(parent, name, MAXPATHLEN);
2077
2078 if ((atp = strrchr(parent, '@')) != NULL) {
2079 uint64_t snapdev;
2080
2081 *atp = '\0';
2082 error = dsl_prop_get_integer(parent, "snapdev",
2083 &snapdev, NULL);
2084
2085 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
2086 error = zvol_create_minor_impl(name);
2087 } else {
2088 cookie = spl_fstrans_mark();
2089 error = dmu_objset_find(parent, zvol_create_minors_cb,
2090 &minors_list, DS_FIND_CHILDREN);
2091 spl_fstrans_unmark(cookie);
2092 }
2093
2094 kmem_free(parent, MAXPATHLEN);
2095 taskq_wait_outstanding(system_taskq, 0);
2096
2097 /*
2098 * Prefetch is completed, we can do zvol_create_minor_impl
2099 * sequentially.
2100 */
2101 while ((job = list_head(&minors_list)) != NULL) {
2102 list_remove(&minors_list, job);
2103 if (!job->error)
2104 zvol_create_minor_impl(job->name);
2105 strfree(job->name);
2106 kmem_free(job, sizeof (minors_job_t));
2107 }
2108
2109 list_destroy(&minors_list);
2110
2111 return (SET_ERROR(error));
2112 }
2113
2114 /*
2115 * Remove minors for specified dataset including children and snapshots.
2116 */
2117 static void
2118 zvol_remove_minors_impl(const char *name)
2119 {
2120 zvol_state_t *zv, *zv_next;
2121 int namelen = ((name) ? strlen(name) : 0);
2122 taskqid_t t, tid = TASKQID_INVALID;
2123 list_t free_list;
2124
2125 if (zvol_inhibit_dev)
2126 return;
2127
2128 list_create(&free_list, sizeof (zvol_state_t),
2129 offsetof(zvol_state_t, zv_next));
2130
2131 rw_enter(&zvol_state_lock, RW_WRITER);
2132
2133 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2134 zv_next = list_next(&zvol_state_list, zv);
2135
2136 mutex_enter(&zv->zv_state_lock);
2137 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
2138 (strncmp(zv->zv_name, name, namelen) == 0 &&
2139 (zv->zv_name[namelen] == '/' ||
2140 zv->zv_name[namelen] == '@'))) {
2141 /*
2142 * By holding zv_state_lock here, we guarantee that no
2143 * one is currently using this zv
2144 */
2145
2146 /* If in use, leave alone */
2147 if (zv->zv_open_count > 0 ||
2148 atomic_read(&zv->zv_suspend_ref)) {
2149 mutex_exit(&zv->zv_state_lock);
2150 continue;
2151 }
2152
2153 zvol_remove(zv);
2154
2155 /*
2156 * Cleared while holding zvol_state_lock as a writer
2157 * which will prevent zvol_open() from opening it.
2158 */
2159 zv->zv_disk->private_data = NULL;
2160
2161 /* Drop zv_state_lock before zvol_free() */
2162 mutex_exit(&zv->zv_state_lock);
2163
2164 /* Try parallel zv_free, if failed do it in place */
2165 t = taskq_dispatch(system_taskq, zvol_free, zv,
2166 TQ_SLEEP);
2167 if (t == TASKQID_INVALID)
2168 list_insert_head(&free_list, zv);
2169 else
2170 tid = t;
2171 } else {
2172 mutex_exit(&zv->zv_state_lock);
2173 }
2174 }
2175 rw_exit(&zvol_state_lock);
2176
2177 /* Drop zvol_state_lock before calling zvol_free() */
2178 while ((zv = list_head(&free_list)) != NULL) {
2179 list_remove(&free_list, zv);
2180 zvol_free(zv);
2181 }
2182
2183 if (tid != TASKQID_INVALID)
2184 taskq_wait_outstanding(system_taskq, tid);
2185 }
2186
2187 /* Remove minor for this specific volume only */
2188 static void
2189 zvol_remove_minor_impl(const char *name)
2190 {
2191 zvol_state_t *zv = NULL, *zv_next;
2192
2193 if (zvol_inhibit_dev)
2194 return;
2195
2196 rw_enter(&zvol_state_lock, RW_WRITER);
2197
2198 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2199 zv_next = list_next(&zvol_state_list, zv);
2200
2201 mutex_enter(&zv->zv_state_lock);
2202 if (strcmp(zv->zv_name, name) == 0) {
2203 /*
2204 * By holding zv_state_lock here, we guarantee that no
2205 * one is currently using this zv
2206 */
2207
2208 /* If in use, leave alone */
2209 if (zv->zv_open_count > 0 ||
2210 atomic_read(&zv->zv_suspend_ref)) {
2211 mutex_exit(&zv->zv_state_lock);
2212 continue;
2213 }
2214 zvol_remove(zv);
2215
2216 /*
2217 * Cleared while holding zvol_state_lock as a writer
2218 * which will prevent zvol_open() from opening it.
2219 */
2220 zv->zv_disk->private_data = NULL;
2221
2222 mutex_exit(&zv->zv_state_lock);
2223 break;
2224 } else {
2225 mutex_exit(&zv->zv_state_lock);
2226 }
2227 }
2228
2229 /* Drop zvol_state_lock before calling zvol_free() */
2230 rw_exit(&zvol_state_lock);
2231
2232 if (zv != NULL)
2233 zvol_free(zv);
2234 }
2235
2236 /*
2237 * Rename minors for specified dataset including children and snapshots.
2238 */
2239 static void
2240 zvol_rename_minors_impl(const char *oldname, const char *newname)
2241 {
2242 zvol_state_t *zv, *zv_next;
2243 int oldnamelen, newnamelen;
2244
2245 if (zvol_inhibit_dev)
2246 return;
2247
2248 oldnamelen = strlen(oldname);
2249 newnamelen = strlen(newname);
2250
2251 rw_enter(&zvol_state_lock, RW_READER);
2252
2253 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2254 zv_next = list_next(&zvol_state_list, zv);
2255
2256 mutex_enter(&zv->zv_state_lock);
2257
2258 /* If in use, leave alone */
2259 if (zv->zv_open_count > 0) {
2260 mutex_exit(&zv->zv_state_lock);
2261 continue;
2262 }
2263
2264 if (strcmp(zv->zv_name, oldname) == 0) {
2265 zvol_rename_minor(zv, newname);
2266 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
2267 (zv->zv_name[oldnamelen] == '/' ||
2268 zv->zv_name[oldnamelen] == '@')) {
2269 char *name = kmem_asprintf("%s%c%s", newname,
2270 zv->zv_name[oldnamelen],
2271 zv->zv_name + oldnamelen + 1);
2272 zvol_rename_minor(zv, name);
2273 kmem_free(name, strlen(name + 1));
2274 }
2275
2276 mutex_exit(&zv->zv_state_lock);
2277 }
2278
2279 rw_exit(&zvol_state_lock);
2280 }
2281
2282 typedef struct zvol_snapdev_cb_arg {
2283 uint64_t snapdev;
2284 } zvol_snapdev_cb_arg_t;
2285
2286 static int
2287 zvol_set_snapdev_cb(const char *dsname, void *param)
2288 {
2289 zvol_snapdev_cb_arg_t *arg = param;
2290
2291 if (strchr(dsname, '@') == NULL)
2292 return (0);
2293
2294 switch (arg->snapdev) {
2295 case ZFS_SNAPDEV_VISIBLE:
2296 (void) zvol_create_minor_impl(dsname);
2297 break;
2298 case ZFS_SNAPDEV_HIDDEN:
2299 (void) zvol_remove_minor_impl(dsname);
2300 break;
2301 }
2302
2303 return (0);
2304 }
2305
2306 static void
2307 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
2308 {
2309 zvol_snapdev_cb_arg_t arg = {snapdev};
2310 fstrans_cookie_t cookie = spl_fstrans_mark();
2311 /*
2312 * The zvol_set_snapdev_sync() sets snapdev appropriately
2313 * in the dataset hierarchy. Here, we only scan snapshots.
2314 */
2315 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
2316 spl_fstrans_unmark(cookie);
2317 }
2318
2319 typedef struct zvol_volmode_cb_arg {
2320 uint64_t volmode;
2321 } zvol_volmode_cb_arg_t;
2322
2323 static void
2324 zvol_set_volmode_impl(char *name, uint64_t volmode)
2325 {
2326 fstrans_cookie_t cookie = spl_fstrans_mark();
2327
2328 if (strchr(name, '@') != NULL)
2329 return;
2330
2331 /*
2332 * It's unfortunate we need to remove minors before we create new ones:
2333 * this is necessary because our backing gendisk (zvol_state->zv_disk)
2334 * coule be different when we set, for instance, volmode from "geom"
2335 * to "dev" (or vice versa).
2336 * A possible optimization is to modify our consumers so we don't get
2337 * called when "volmode" does not change.
2338 */
2339 switch (volmode) {
2340 case ZFS_VOLMODE_NONE:
2341 (void) zvol_remove_minor_impl(name);
2342 break;
2343 case ZFS_VOLMODE_GEOM:
2344 case ZFS_VOLMODE_DEV:
2345 (void) zvol_remove_minor_impl(name);
2346 (void) zvol_create_minor_impl(name);
2347 break;
2348 case ZFS_VOLMODE_DEFAULT:
2349 (void) zvol_remove_minor_impl(name);
2350 if (zvol_volmode == ZFS_VOLMODE_NONE)
2351 break;
2352 else /* if zvol_volmode is invalid defaults to "geom" */
2353 (void) zvol_create_minor_impl(name);
2354 break;
2355 }
2356
2357 spl_fstrans_unmark(cookie);
2358 }
2359
2360 static zvol_task_t *
2361 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
2362 uint64_t value)
2363 {
2364 zvol_task_t *task;
2365 char *delim;
2366
2367 /* Never allow tasks on hidden names. */
2368 if (name1[0] == '$')
2369 return (NULL);
2370
2371 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2372 task->op = op;
2373 task->value = value;
2374 delim = strchr(name1, '/');
2375 strlcpy(task->pool, name1, delim ? (delim - name1 + 1) : MAXNAMELEN);
2376
2377 strlcpy(task->name1, name1, MAXNAMELEN);
2378 if (name2 != NULL)
2379 strlcpy(task->name2, name2, MAXNAMELEN);
2380
2381 return (task);
2382 }
2383
2384 static void
2385 zvol_task_free(zvol_task_t *task)
2386 {
2387 kmem_free(task, sizeof (zvol_task_t));
2388 }
2389
2390 /*
2391 * The worker thread function performed asynchronously.
2392 */
2393 static void
2394 zvol_task_cb(void *param)
2395 {
2396 zvol_task_t *task = (zvol_task_t *)param;
2397
2398 switch (task->op) {
2399 case ZVOL_ASYNC_CREATE_MINORS:
2400 (void) zvol_create_minors_impl(task->name1);
2401 break;
2402 case ZVOL_ASYNC_REMOVE_MINORS:
2403 zvol_remove_minors_impl(task->name1);
2404 break;
2405 case ZVOL_ASYNC_RENAME_MINORS:
2406 zvol_rename_minors_impl(task->name1, task->name2);
2407 break;
2408 case ZVOL_ASYNC_SET_SNAPDEV:
2409 zvol_set_snapdev_impl(task->name1, task->value);
2410 break;
2411 case ZVOL_ASYNC_SET_VOLMODE:
2412 zvol_set_volmode_impl(task->name1, task->value);
2413 break;
2414 default:
2415 VERIFY(0);
2416 break;
2417 }
2418
2419 zvol_task_free(task);
2420 }
2421
2422 typedef struct zvol_set_prop_int_arg {
2423 const char *zsda_name;
2424 uint64_t zsda_value;
2425 zprop_source_t zsda_source;
2426 dmu_tx_t *zsda_tx;
2427 } zvol_set_prop_int_arg_t;
2428
2429 /*
2430 * Sanity check the dataset for safe use by the sync task. No additional
2431 * conditions are imposed.
2432 */
2433 static int
2434 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
2435 {
2436 zvol_set_prop_int_arg_t *zsda = arg;
2437 dsl_pool_t *dp = dmu_tx_pool(tx);
2438 dsl_dir_t *dd;
2439 int error;
2440
2441 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
2442 if (error != 0)
2443 return (error);
2444
2445 dsl_dir_rele(dd, FTAG);
2446
2447 return (error);
2448 }
2449
2450 /* ARGSUSED */
2451 static int
2452 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2453 {
2454 char dsname[MAXNAMELEN];
2455 zvol_task_t *task;
2456 uint64_t snapdev;
2457
2458 dsl_dataset_name(ds, dsname);
2459 if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
2460 return (0);
2461 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
2462 if (task == NULL)
2463 return (0);
2464
2465 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
2466 task, TQ_SLEEP);
2467 return (0);
2468 }
2469
2470 /*
2471 * Traverse all child datasets and apply snapdev appropriately.
2472 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
2473 * dataset and read the effective "snapdev" on every child in the callback
2474 * function: this is because the value is not guaranteed to be the same in the
2475 * whole dataset hierarchy.
2476 */
2477 static void
2478 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
2479 {
2480 zvol_set_prop_int_arg_t *zsda = arg;
2481 dsl_pool_t *dp = dmu_tx_pool(tx);
2482 dsl_dir_t *dd;
2483 dsl_dataset_t *ds;
2484 int error;
2485
2486 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2487 zsda->zsda_tx = tx;
2488
2489 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2490 if (error == 0) {
2491 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
2492 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2493 &zsda->zsda_value, zsda->zsda_tx);
2494 dsl_dataset_rele(ds, FTAG);
2495 }
2496 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
2497 zsda, DS_FIND_CHILDREN);
2498
2499 dsl_dir_rele(dd, FTAG);
2500 }
2501
2502 int
2503 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
2504 {
2505 zvol_set_prop_int_arg_t zsda;
2506
2507 zsda.zsda_name = ddname;
2508 zsda.zsda_source = source;
2509 zsda.zsda_value = snapdev;
2510
2511 return (dsl_sync_task(ddname, zvol_set_snapdev_check,
2512 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2513 }
2514
2515 /*
2516 * Sanity check the dataset for safe use by the sync task. No additional
2517 * conditions are imposed.
2518 */
2519 static int
2520 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
2521 {
2522 zvol_set_prop_int_arg_t *zsda = arg;
2523 dsl_pool_t *dp = dmu_tx_pool(tx);
2524 dsl_dir_t *dd;
2525 int error;
2526
2527 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
2528 if (error != 0)
2529 return (error);
2530
2531 dsl_dir_rele(dd, FTAG);
2532
2533 return (error);
2534 }
2535
2536 /* ARGSUSED */
2537 static int
2538 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2539 {
2540 char dsname[MAXNAMELEN];
2541 zvol_task_t *task;
2542 uint64_t volmode;
2543
2544 dsl_dataset_name(ds, dsname);
2545 if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
2546 return (0);
2547 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
2548 if (task == NULL)
2549 return (0);
2550
2551 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
2552 task, TQ_SLEEP);
2553 return (0);
2554 }
2555
2556 /*
2557 * Traverse all child datasets and apply volmode appropriately.
2558 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
2559 * dataset and read the effective "volmode" on every child in the callback
2560 * function: this is because the value is not guaranteed to be the same in the
2561 * whole dataset hierarchy.
2562 */
2563 static void
2564 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
2565 {
2566 zvol_set_prop_int_arg_t *zsda = arg;
2567 dsl_pool_t *dp = dmu_tx_pool(tx);
2568 dsl_dir_t *dd;
2569 dsl_dataset_t *ds;
2570 int error;
2571
2572 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2573 zsda->zsda_tx = tx;
2574
2575 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2576 if (error == 0) {
2577 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
2578 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2579 &zsda->zsda_value, zsda->zsda_tx);
2580 dsl_dataset_rele(ds, FTAG);
2581 }
2582
2583 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
2584 zsda, DS_FIND_CHILDREN);
2585
2586 dsl_dir_rele(dd, FTAG);
2587 }
2588
2589 int
2590 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
2591 {
2592 zvol_set_prop_int_arg_t zsda;
2593
2594 zsda.zsda_name = ddname;
2595 zsda.zsda_source = source;
2596 zsda.zsda_value = volmode;
2597
2598 return (dsl_sync_task(ddname, zvol_set_volmode_check,
2599 zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2600 }
2601
2602 void
2603 zvol_create_minors(spa_t *spa, const char *name, boolean_t async)
2604 {
2605 zvol_task_t *task;
2606 taskqid_t id;
2607
2608 task = zvol_task_alloc(ZVOL_ASYNC_CREATE_MINORS, name, NULL, ~0ULL);
2609 if (task == NULL)
2610 return;
2611
2612 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2613 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2614 taskq_wait_id(spa->spa_zvol_taskq, id);
2615 }
2616
2617 void
2618 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
2619 {
2620 zvol_task_t *task;
2621 taskqid_t id;
2622
2623 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
2624 if (task == NULL)
2625 return;
2626
2627 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2628 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2629 taskq_wait_id(spa->spa_zvol_taskq, id);
2630 }
2631
2632 void
2633 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
2634 boolean_t async)
2635 {
2636 zvol_task_t *task;
2637 taskqid_t id;
2638
2639 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
2640 if (task == NULL)
2641 return;
2642
2643 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2644 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2645 taskq_wait_id(spa->spa_zvol_taskq, id);
2646 }
2647
2648 int
2649 zvol_init(void)
2650 {
2651 int threads = MIN(MAX(zvol_threads, 1), 1024);
2652 int i, error;
2653
2654 list_create(&zvol_state_list, sizeof (zvol_state_t),
2655 offsetof(zvol_state_t, zv_next));
2656 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
2657 ida_init(&zvol_ida);
2658
2659 zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
2660 threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
2661 if (zvol_taskq == NULL) {
2662 printk(KERN_INFO "ZFS: taskq_create() failed\n");
2663 error = -ENOMEM;
2664 goto out;
2665 }
2666
2667 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
2668 KM_SLEEP);
2669 if (!zvol_htable) {
2670 error = -ENOMEM;
2671 goto out_taskq;
2672 }
2673 for (i = 0; i < ZVOL_HT_SIZE; i++)
2674 INIT_HLIST_HEAD(&zvol_htable[i]);
2675
2676 error = register_blkdev(zvol_major, ZVOL_DRIVER);
2677 if (error) {
2678 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
2679 goto out_free;
2680 }
2681
2682 blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
2683 THIS_MODULE, zvol_probe, NULL, NULL);
2684
2685 return (0);
2686
2687 out_free:
2688 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2689 out_taskq:
2690 taskq_destroy(zvol_taskq);
2691 out:
2692 ida_destroy(&zvol_ida);
2693 rw_destroy(&zvol_state_lock);
2694 list_destroy(&zvol_state_list);
2695
2696 return (SET_ERROR(error));
2697 }
2698
2699 void
2700 zvol_fini(void)
2701 {
2702 zvol_remove_minors_impl(NULL);
2703
2704 blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
2705 unregister_blkdev(zvol_major, ZVOL_DRIVER);
2706 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2707
2708 taskq_destroy(zvol_taskq);
2709 list_destroy(&zvol_state_list);
2710 rw_destroy(&zvol_state_lock);
2711
2712 ida_destroy(&zvol_ida);
2713 }
2714
2715 /* BEGIN CSTYLED */
2716 module_param(zvol_inhibit_dev, uint, 0644);
2717 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
2718
2719 module_param(zvol_major, uint, 0444);
2720 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
2721
2722 module_param(zvol_threads, uint, 0444);
2723 MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
2724
2725 module_param(zvol_request_sync, uint, 0644);
2726 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
2727
2728 module_param(zvol_max_discard_blocks, ulong, 0444);
2729 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
2730
2731 module_param(zvol_prefetch_bytes, uint, 0644);
2732 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
2733
2734 module_param(zvol_volmode, uint, 0644);
2735 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
2736 /* END CSTYLED */