]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zvol.c
ddt: move entry compression into ddt_zap
[mirror_zfs.git] / module / zfs / zvol.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 *
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40 */
41
42 /*
43 * Note on locking of zvol state structures.
44 *
45 * These structures are used to maintain internal state used to emulate block
46 * devices on top of zvols. In particular, management of device minor number
47 * operations - create, remove, rename, and set_snapdev - involves access to
48 * these structures. The zvol_state_lock is primarily used to protect the
49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50 * of the zvol_state_t structures, as well as to make sure that when the
51 * time comes to remove the structure from the list, it is not in use, and
52 * therefore, it can be taken off zvol_state_list and freed.
53 *
54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55 * e.g. for the duration of receive and rollback operations. This lock can be
56 * held for significant periods of time. Given that it is undesirable to hold
57 * mutexes for long periods of time, the following lock ordering applies:
58 * - take zvol_state_lock if necessary, to protect zvol_state_list
59 * - take zv_suspend_lock if necessary, by the code path in question
60 * - take zv_state_lock to protect zvol_state_t
61 *
62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63 * single-threaded (to preserve order of minor operations), and are executed
64 * through the zvol_task_cb that dispatches the specific operations. Therefore,
65 * these operations are serialized per pool. Consequently, we can be certain
66 * that for a given zvol, there is only one operation at a time in progress.
67 * That is why one can be sure that first, zvol_state_t for a given zvol is
68 * allocated and placed on zvol_state_list, and then other minor operations
69 * for this zvol are going to proceed in the order of issue.
70 *
71 */
72
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 #include <sys/zvol_impl.h>
88
89 unsigned int zvol_inhibit_dev = 0;
90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
91
92 struct hlist_head *zvol_htable;
93 static list_t zvol_state_list;
94 krwlock_t zvol_state_lock;
95
96 typedef enum {
97 ZVOL_ASYNC_REMOVE_MINORS,
98 ZVOL_ASYNC_RENAME_MINORS,
99 ZVOL_ASYNC_SET_SNAPDEV,
100 ZVOL_ASYNC_SET_VOLMODE,
101 ZVOL_ASYNC_MAX
102 } zvol_async_op_t;
103
104 typedef struct {
105 zvol_async_op_t op;
106 char name1[MAXNAMELEN];
107 char name2[MAXNAMELEN];
108 uint64_t value;
109 } zvol_task_t;
110
111 uint64_t
112 zvol_name_hash(const char *name)
113 {
114 uint64_t crc = -1ULL;
115 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
116 for (const uint8_t *p = (const uint8_t *)name; *p != 0; p++)
117 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
118 return (crc);
119 }
120
121 /*
122 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
123 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
124 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
125 * before zv_state_lock. The mode argument indicates the mode (including none)
126 * for zv_suspend_lock to be taken.
127 */
128 zvol_state_t *
129 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
130 {
131 zvol_state_t *zv;
132 struct hlist_node *p = NULL;
133
134 rw_enter(&zvol_state_lock, RW_READER);
135 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
136 zv = hlist_entry(p, zvol_state_t, zv_hlink);
137 mutex_enter(&zv->zv_state_lock);
138 if (zv->zv_hash == hash && strcmp(zv->zv_name, name) == 0) {
139 /*
140 * this is the right zvol, take the locks in the
141 * right order
142 */
143 if (mode != RW_NONE &&
144 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
145 mutex_exit(&zv->zv_state_lock);
146 rw_enter(&zv->zv_suspend_lock, mode);
147 mutex_enter(&zv->zv_state_lock);
148 /*
149 * zvol cannot be renamed as we continue
150 * to hold zvol_state_lock
151 */
152 ASSERT(zv->zv_hash == hash &&
153 strcmp(zv->zv_name, name) == 0);
154 }
155 rw_exit(&zvol_state_lock);
156 return (zv);
157 }
158 mutex_exit(&zv->zv_state_lock);
159 }
160 rw_exit(&zvol_state_lock);
161
162 return (NULL);
163 }
164
165 /*
166 * Find a zvol_state_t given the name.
167 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
168 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
169 * before zv_state_lock. The mode argument indicates the mode (including none)
170 * for zv_suspend_lock to be taken.
171 */
172 static zvol_state_t *
173 zvol_find_by_name(const char *name, int mode)
174 {
175 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
176 }
177
178 /*
179 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
180 */
181 void
182 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
183 {
184 zfs_creat_t *zct = arg;
185 nvlist_t *nvprops = zct->zct_props;
186 int error;
187 uint64_t volblocksize, volsize;
188
189 VERIFY(nvlist_lookup_uint64(nvprops,
190 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
191 if (nvlist_lookup_uint64(nvprops,
192 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
193 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
194
195 /*
196 * These properties must be removed from the list so the generic
197 * property setting step won't apply to them.
198 */
199 VERIFY(nvlist_remove_all(nvprops,
200 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
201 (void) nvlist_remove_all(nvprops,
202 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
203
204 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
205 DMU_OT_NONE, 0, tx);
206 ASSERT(error == 0);
207
208 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
209 DMU_OT_NONE, 0, tx);
210 ASSERT(error == 0);
211
212 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
213 ASSERT(error == 0);
214 }
215
216 /*
217 * ZFS_IOC_OBJSET_STATS entry point.
218 */
219 int
220 zvol_get_stats(objset_t *os, nvlist_t *nv)
221 {
222 int error;
223 dmu_object_info_t *doi;
224 uint64_t val;
225
226 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
227 if (error)
228 return (SET_ERROR(error));
229
230 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
231 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
232 error = dmu_object_info(os, ZVOL_OBJ, doi);
233
234 if (error == 0) {
235 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
236 doi->doi_data_block_size);
237 }
238
239 kmem_free(doi, sizeof (dmu_object_info_t));
240
241 return (SET_ERROR(error));
242 }
243
244 /*
245 * Sanity check volume size.
246 */
247 int
248 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
249 {
250 if (volsize == 0)
251 return (SET_ERROR(EINVAL));
252
253 if (volsize % blocksize != 0)
254 return (SET_ERROR(EINVAL));
255
256 #ifdef _ILP32
257 if (volsize - 1 > SPEC_MAXOFFSET_T)
258 return (SET_ERROR(EOVERFLOW));
259 #endif
260 return (0);
261 }
262
263 /*
264 * Ensure the zap is flushed then inform the VFS of the capacity change.
265 */
266 static int
267 zvol_update_volsize(uint64_t volsize, objset_t *os)
268 {
269 dmu_tx_t *tx;
270 int error;
271 uint64_t txg;
272
273 tx = dmu_tx_create(os);
274 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
275 dmu_tx_mark_netfree(tx);
276 error = dmu_tx_assign(tx, TXG_WAIT);
277 if (error) {
278 dmu_tx_abort(tx);
279 return (SET_ERROR(error));
280 }
281 txg = dmu_tx_get_txg(tx);
282
283 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
284 &volsize, tx);
285 dmu_tx_commit(tx);
286
287 txg_wait_synced(dmu_objset_pool(os), txg);
288
289 if (error == 0)
290 error = dmu_free_long_range(os,
291 ZVOL_OBJ, volsize, DMU_OBJECT_END);
292
293 return (error);
294 }
295
296 /*
297 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
298 * size will result in a udev "change" event being generated.
299 */
300 int
301 zvol_set_volsize(const char *name, uint64_t volsize)
302 {
303 objset_t *os = NULL;
304 uint64_t readonly;
305 int error;
306 boolean_t owned = B_FALSE;
307
308 error = dsl_prop_get_integer(name,
309 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
310 if (error != 0)
311 return (SET_ERROR(error));
312 if (readonly)
313 return (SET_ERROR(EROFS));
314
315 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
316
317 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
318 RW_READ_HELD(&zv->zv_suspend_lock)));
319
320 if (zv == NULL || zv->zv_objset == NULL) {
321 if (zv != NULL)
322 rw_exit(&zv->zv_suspend_lock);
323 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
324 FTAG, &os)) != 0) {
325 if (zv != NULL)
326 mutex_exit(&zv->zv_state_lock);
327 return (SET_ERROR(error));
328 }
329 owned = B_TRUE;
330 if (zv != NULL)
331 zv->zv_objset = os;
332 } else {
333 os = zv->zv_objset;
334 }
335
336 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
337
338 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
339 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
340 goto out;
341
342 error = zvol_update_volsize(volsize, os);
343 if (error == 0 && zv != NULL) {
344 zv->zv_volsize = volsize;
345 zv->zv_changed = 1;
346 }
347 out:
348 kmem_free(doi, sizeof (dmu_object_info_t));
349
350 if (owned) {
351 dmu_objset_disown(os, B_TRUE, FTAG);
352 if (zv != NULL)
353 zv->zv_objset = NULL;
354 } else {
355 rw_exit(&zv->zv_suspend_lock);
356 }
357
358 if (zv != NULL)
359 mutex_exit(&zv->zv_state_lock);
360
361 if (error == 0 && zv != NULL)
362 zvol_os_update_volsize(zv, volsize);
363
364 return (SET_ERROR(error));
365 }
366
367 /*
368 * Update volthreading.
369 */
370 int
371 zvol_set_volthreading(const char *name, boolean_t value)
372 {
373 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
374 if (zv == NULL)
375 return (ENOENT);
376 zv->zv_threading = value;
377 mutex_exit(&zv->zv_state_lock);
378 return (0);
379 }
380
381 /*
382 * Update zvol ro property.
383 */
384 int
385 zvol_set_ro(const char *name, boolean_t value)
386 {
387 zvol_state_t *zv = zvol_find_by_name(name, RW_NONE);
388 if (zv == NULL)
389 return (-1);
390 if (value) {
391 zvol_os_set_disk_ro(zv, 1);
392 zv->zv_flags |= ZVOL_RDONLY;
393 } else {
394 zvol_os_set_disk_ro(zv, 0);
395 zv->zv_flags &= ~ZVOL_RDONLY;
396 }
397 mutex_exit(&zv->zv_state_lock);
398 return (0);
399 }
400
401 /*
402 * Sanity check volume block size.
403 */
404 int
405 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
406 {
407 /* Record sizes above 128k need the feature to be enabled */
408 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
409 spa_t *spa;
410 int error;
411
412 if ((error = spa_open(name, &spa, FTAG)) != 0)
413 return (error);
414
415 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
416 spa_close(spa, FTAG);
417 return (SET_ERROR(ENOTSUP));
418 }
419
420 /*
421 * We don't allow setting the property above 1MB,
422 * unless the tunable has been changed.
423 */
424 if (volblocksize > zfs_max_recordsize)
425 return (SET_ERROR(EDOM));
426
427 spa_close(spa, FTAG);
428 }
429
430 if (volblocksize < SPA_MINBLOCKSIZE ||
431 volblocksize > SPA_MAXBLOCKSIZE ||
432 !ISP2(volblocksize))
433 return (SET_ERROR(EDOM));
434
435 return (0);
436 }
437
438 /*
439 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
440 * implement DKIOCFREE/free-long-range.
441 */
442 static int
443 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
444 {
445 zvol_state_t *zv = arg1;
446 lr_truncate_t *lr = arg2;
447 uint64_t offset, length;
448
449 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
450
451 if (byteswap)
452 byteswap_uint64_array(lr, sizeof (*lr));
453
454 offset = lr->lr_offset;
455 length = lr->lr_length;
456
457 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
458 dmu_tx_mark_netfree(tx);
459 int error = dmu_tx_assign(tx, TXG_WAIT);
460 if (error != 0) {
461 dmu_tx_abort(tx);
462 } else {
463 (void) zil_replaying(zv->zv_zilog, tx);
464 dmu_tx_commit(tx);
465 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
466 length);
467 }
468
469 return (error);
470 }
471
472 /*
473 * Replay a TX_WRITE ZIL transaction that didn't get committed
474 * after a system failure
475 */
476 static int
477 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
478 {
479 zvol_state_t *zv = arg1;
480 lr_write_t *lr = arg2;
481 objset_t *os = zv->zv_objset;
482 char *data = (char *)(lr + 1); /* data follows lr_write_t */
483 uint64_t offset, length;
484 dmu_tx_t *tx;
485 int error;
486
487 ASSERT3U(lr->lr_common.lrc_reclen, >=, sizeof (*lr));
488
489 if (byteswap)
490 byteswap_uint64_array(lr, sizeof (*lr));
491
492 offset = lr->lr_offset;
493 length = lr->lr_length;
494
495 /* If it's a dmu_sync() block, write the whole block */
496 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
497 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
498 if (length < blocksize) {
499 offset -= offset % blocksize;
500 length = blocksize;
501 }
502 }
503
504 tx = dmu_tx_create(os);
505 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
506 error = dmu_tx_assign(tx, TXG_WAIT);
507 if (error) {
508 dmu_tx_abort(tx);
509 } else {
510 dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
511 (void) zil_replaying(zv->zv_zilog, tx);
512 dmu_tx_commit(tx);
513 }
514
515 return (error);
516 }
517
518 static int
519 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
520 {
521 (void) arg1, (void) arg2, (void) byteswap;
522 return (SET_ERROR(ENOTSUP));
523 }
524
525 /*
526 * Callback vectors for replaying records.
527 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
528 */
529 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
530 zvol_replay_err, /* no such transaction type */
531 zvol_replay_err, /* TX_CREATE */
532 zvol_replay_err, /* TX_MKDIR */
533 zvol_replay_err, /* TX_MKXATTR */
534 zvol_replay_err, /* TX_SYMLINK */
535 zvol_replay_err, /* TX_REMOVE */
536 zvol_replay_err, /* TX_RMDIR */
537 zvol_replay_err, /* TX_LINK */
538 zvol_replay_err, /* TX_RENAME */
539 zvol_replay_write, /* TX_WRITE */
540 zvol_replay_truncate, /* TX_TRUNCATE */
541 zvol_replay_err, /* TX_SETATTR */
542 zvol_replay_err, /* TX_ACL */
543 zvol_replay_err, /* TX_CREATE_ATTR */
544 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
545 zvol_replay_err, /* TX_MKDIR_ACL */
546 zvol_replay_err, /* TX_MKDIR_ATTR */
547 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
548 zvol_replay_err, /* TX_WRITE2 */
549 zvol_replay_err, /* TX_SETSAXATTR */
550 zvol_replay_err, /* TX_RENAME_EXCHANGE */
551 zvol_replay_err, /* TX_RENAME_WHITEOUT */
552 zvol_replay_err, /* TX_CLONE_RANGE */
553 };
554
555 /*
556 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
557 *
558 * We store data in the log buffers if it's small enough.
559 * Otherwise we will later flush the data out via dmu_sync().
560 */
561 static const ssize_t zvol_immediate_write_sz = 32768;
562
563 void
564 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
565 uint64_t size, boolean_t commit)
566 {
567 uint32_t blocksize = zv->zv_volblocksize;
568 zilog_t *zilog = zv->zv_zilog;
569 itx_wr_state_t write_state;
570 uint64_t sz = size;
571
572 if (zil_replaying(zilog, tx))
573 return;
574
575 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
576 write_state = WR_INDIRECT;
577 else if (!spa_has_slogs(zilog->zl_spa) &&
578 size >= blocksize && blocksize > zvol_immediate_write_sz)
579 write_state = WR_INDIRECT;
580 else if (commit)
581 write_state = WR_COPIED;
582 else
583 write_state = WR_NEED_COPY;
584
585 while (size) {
586 itx_t *itx;
587 lr_write_t *lr;
588 itx_wr_state_t wr_state = write_state;
589 ssize_t len = size;
590
591 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
592 wr_state = WR_NEED_COPY;
593 else if (wr_state == WR_INDIRECT)
594 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
595
596 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
597 (wr_state == WR_COPIED ? len : 0));
598 lr = (lr_write_t *)&itx->itx_lr;
599 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
600 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
601 zil_itx_destroy(itx);
602 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
603 lr = (lr_write_t *)&itx->itx_lr;
604 wr_state = WR_NEED_COPY;
605 }
606
607 itx->itx_wr_state = wr_state;
608 lr->lr_foid = ZVOL_OBJ;
609 lr->lr_offset = offset;
610 lr->lr_length = len;
611 lr->lr_blkoff = 0;
612 BP_ZERO(&lr->lr_blkptr);
613
614 itx->itx_private = zv;
615
616 (void) zil_itx_assign(zilog, itx, tx);
617
618 offset += len;
619 size -= len;
620 }
621
622 if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
623 dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
624 }
625 }
626
627 /*
628 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
629 */
630 void
631 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len)
632 {
633 itx_t *itx;
634 lr_truncate_t *lr;
635 zilog_t *zilog = zv->zv_zilog;
636
637 if (zil_replaying(zilog, tx))
638 return;
639
640 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
641 lr = (lr_truncate_t *)&itx->itx_lr;
642 lr->lr_foid = ZVOL_OBJ;
643 lr->lr_offset = off;
644 lr->lr_length = len;
645
646 zil_itx_assign(zilog, itx, tx);
647 }
648
649
650 static void
651 zvol_get_done(zgd_t *zgd, int error)
652 {
653 (void) error;
654 if (zgd->zgd_db)
655 dmu_buf_rele(zgd->zgd_db, zgd);
656
657 zfs_rangelock_exit(zgd->zgd_lr);
658
659 kmem_free(zgd, sizeof (zgd_t));
660 }
661
662 /*
663 * Get data to generate a TX_WRITE intent log record.
664 */
665 int
666 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
667 struct lwb *lwb, zio_t *zio)
668 {
669 zvol_state_t *zv = arg;
670 uint64_t offset = lr->lr_offset;
671 uint64_t size = lr->lr_length;
672 dmu_buf_t *db;
673 zgd_t *zgd;
674 int error;
675
676 ASSERT3P(lwb, !=, NULL);
677 ASSERT3U(size, !=, 0);
678
679 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
680 zgd->zgd_lwb = lwb;
681
682 /*
683 * Write records come in two flavors: immediate and indirect.
684 * For small writes it's cheaper to store the data with the
685 * log record (immediate); for large writes it's cheaper to
686 * sync the data and get a pointer to it (indirect) so that
687 * we don't have to write the data twice.
688 */
689 if (buf != NULL) { /* immediate write */
690 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
691 size, RL_READER);
692 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
693 DMU_READ_NO_PREFETCH);
694 } else { /* indirect write */
695 ASSERT3P(zio, !=, NULL);
696 /*
697 * Have to lock the whole block to ensure when it's written out
698 * and its checksum is being calculated that no one can change
699 * the data. Contrarily to zfs_get_data we need not re-check
700 * blocksize after we get the lock because it cannot be changed.
701 */
702 size = zv->zv_volblocksize;
703 offset = P2ALIGN_TYPED(offset, size, uint64_t);
704 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
705 size, RL_READER);
706 error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
707 &db);
708 if (error == 0) {
709 blkptr_t *bp = &lr->lr_blkptr;
710
711 zgd->zgd_db = db;
712 zgd->zgd_bp = bp;
713
714 ASSERT(db != NULL);
715 ASSERT(db->db_offset == offset);
716 ASSERT(db->db_size == size);
717
718 error = dmu_sync(zio, lr->lr_common.lrc_txg,
719 zvol_get_done, zgd);
720
721 if (error == 0)
722 return (0);
723 }
724 }
725
726 zvol_get_done(zgd, error);
727
728 return (SET_ERROR(error));
729 }
730
731 /*
732 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
733 */
734
735 void
736 zvol_insert(zvol_state_t *zv)
737 {
738 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
739 list_insert_head(&zvol_state_list, zv);
740 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
741 }
742
743 /*
744 * Simply remove the zvol from to list of zvols.
745 */
746 static void
747 zvol_remove(zvol_state_t *zv)
748 {
749 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
750 list_remove(&zvol_state_list, zv);
751 hlist_del(&zv->zv_hlink);
752 }
753
754 /*
755 * Setup zv after we just own the zv->objset
756 */
757 static int
758 zvol_setup_zv(zvol_state_t *zv)
759 {
760 uint64_t volsize;
761 int error;
762 uint64_t ro;
763 objset_t *os = zv->zv_objset;
764
765 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
766 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
767
768 zv->zv_zilog = NULL;
769 zv->zv_flags &= ~ZVOL_WRITTEN_TO;
770
771 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
772 if (error)
773 return (SET_ERROR(error));
774
775 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
776 if (error)
777 return (SET_ERROR(error));
778
779 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
780 if (error)
781 return (SET_ERROR(error));
782
783 zvol_os_set_capacity(zv, volsize >> 9);
784 zv->zv_volsize = volsize;
785
786 if (ro || dmu_objset_is_snapshot(os) ||
787 !spa_writeable(dmu_objset_spa(os))) {
788 zvol_os_set_disk_ro(zv, 1);
789 zv->zv_flags |= ZVOL_RDONLY;
790 } else {
791 zvol_os_set_disk_ro(zv, 0);
792 zv->zv_flags &= ~ZVOL_RDONLY;
793 }
794 return (0);
795 }
796
797 /*
798 * Shutdown every zv_objset related stuff except zv_objset itself.
799 * The is the reverse of zvol_setup_zv.
800 */
801 static void
802 zvol_shutdown_zv(zvol_state_t *zv)
803 {
804 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
805 RW_LOCK_HELD(&zv->zv_suspend_lock));
806
807 if (zv->zv_flags & ZVOL_WRITTEN_TO) {
808 ASSERT(zv->zv_zilog != NULL);
809 zil_close(zv->zv_zilog);
810 }
811
812 zv->zv_zilog = NULL;
813
814 dnode_rele(zv->zv_dn, zv);
815 zv->zv_dn = NULL;
816
817 /*
818 * Evict cached data. We must write out any dirty data before
819 * disowning the dataset.
820 */
821 if (zv->zv_flags & ZVOL_WRITTEN_TO)
822 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
823 (void) dmu_objset_evict_dbufs(zv->zv_objset);
824 }
825
826 /*
827 * return the proper tag for rollback and recv
828 */
829 void *
830 zvol_tag(zvol_state_t *zv)
831 {
832 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
833 return (zv->zv_open_count > 0 ? zv : NULL);
834 }
835
836 /*
837 * Suspend the zvol for recv and rollback.
838 */
839 zvol_state_t *
840 zvol_suspend(const char *name)
841 {
842 zvol_state_t *zv;
843
844 zv = zvol_find_by_name(name, RW_WRITER);
845
846 if (zv == NULL)
847 return (NULL);
848
849 /* block all I/O, release in zvol_resume. */
850 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
851 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
852
853 atomic_inc(&zv->zv_suspend_ref);
854
855 if (zv->zv_open_count > 0)
856 zvol_shutdown_zv(zv);
857
858 /*
859 * do not hold zv_state_lock across suspend/resume to
860 * avoid locking up zvol lookups
861 */
862 mutex_exit(&zv->zv_state_lock);
863
864 /* zv_suspend_lock is released in zvol_resume() */
865 return (zv);
866 }
867
868 int
869 zvol_resume(zvol_state_t *zv)
870 {
871 int error = 0;
872
873 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
874
875 mutex_enter(&zv->zv_state_lock);
876
877 if (zv->zv_open_count > 0) {
878 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
879 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
880 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
881 dmu_objset_rele(zv->zv_objset, zv);
882
883 error = zvol_setup_zv(zv);
884 }
885
886 mutex_exit(&zv->zv_state_lock);
887
888 rw_exit(&zv->zv_suspend_lock);
889 /*
890 * We need this because we don't hold zvol_state_lock while releasing
891 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
892 * zv_suspend_lock to determine it is safe to free because rwlock is
893 * not inherent atomic.
894 */
895 atomic_dec(&zv->zv_suspend_ref);
896
897 return (SET_ERROR(error));
898 }
899
900 int
901 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
902 {
903 objset_t *os;
904 int error;
905
906 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
907 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
908 ASSERT(mutex_owned(&spa_namespace_lock));
909
910 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
911 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
912 if (error)
913 return (SET_ERROR(error));
914
915 zv->zv_objset = os;
916
917 error = zvol_setup_zv(zv);
918 if (error) {
919 dmu_objset_disown(os, 1, zv);
920 zv->zv_objset = NULL;
921 }
922
923 return (error);
924 }
925
926 void
927 zvol_last_close(zvol_state_t *zv)
928 {
929 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
930 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
931
932 zvol_shutdown_zv(zv);
933
934 dmu_objset_disown(zv->zv_objset, 1, zv);
935 zv->zv_objset = NULL;
936 }
937
938 typedef struct minors_job {
939 list_t *list;
940 list_node_t link;
941 /* input */
942 char *name;
943 /* output */
944 int error;
945 } minors_job_t;
946
947 /*
948 * Prefetch zvol dnodes for the minors_job
949 */
950 static void
951 zvol_prefetch_minors_impl(void *arg)
952 {
953 minors_job_t *job = arg;
954 char *dsname = job->name;
955 objset_t *os = NULL;
956
957 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
958 FTAG, &os);
959 if (job->error == 0) {
960 dmu_prefetch_dnode(os, ZVOL_OBJ, ZIO_PRIORITY_SYNC_READ);
961 dmu_objset_disown(os, B_TRUE, FTAG);
962 }
963 }
964
965 /*
966 * Mask errors to continue dmu_objset_find() traversal
967 */
968 static int
969 zvol_create_snap_minor_cb(const char *dsname, void *arg)
970 {
971 minors_job_t *j = arg;
972 list_t *minors_list = j->list;
973 const char *name = j->name;
974
975 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
976
977 /* skip the designated dataset */
978 if (name && strcmp(dsname, name) == 0)
979 return (0);
980
981 /* at this point, the dsname should name a snapshot */
982 if (strchr(dsname, '@') == 0) {
983 dprintf("zvol_create_snap_minor_cb(): "
984 "%s is not a snapshot name\n", dsname);
985 } else {
986 minors_job_t *job;
987 char *n = kmem_strdup(dsname);
988 if (n == NULL)
989 return (0);
990
991 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
992 job->name = n;
993 job->list = minors_list;
994 job->error = 0;
995 list_insert_tail(minors_list, job);
996 /* don't care if dispatch fails, because job->error is 0 */
997 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
998 TQ_SLEEP);
999 }
1000
1001 return (0);
1002 }
1003
1004 /*
1005 * If spa_keystore_load_wkey() is called for an encrypted zvol,
1006 * we need to look for any clones also using the key. This function
1007 * is "best effort" - so we just skip over it if there are failures.
1008 */
1009 static void
1010 zvol_add_clones(const char *dsname, list_t *minors_list)
1011 {
1012 /* Also check if it has clones */
1013 dsl_dir_t *dd = NULL;
1014 dsl_pool_t *dp = NULL;
1015
1016 if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1017 return;
1018
1019 if (!spa_feature_is_enabled(dp->dp_spa,
1020 SPA_FEATURE_ENCRYPTION))
1021 goto out;
1022
1023 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1024 goto out;
1025
1026 if (dsl_dir_phys(dd)->dd_clones == 0)
1027 goto out;
1028
1029 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1030 zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
1031 objset_t *mos = dd->dd_pool->dp_meta_objset;
1032
1033 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1034 zap_cursor_retrieve(zc, za) == 0;
1035 zap_cursor_advance(zc)) {
1036 dsl_dataset_t *clone;
1037 minors_job_t *job;
1038
1039 if (dsl_dataset_hold_obj(dd->dd_pool,
1040 za->za_first_integer, FTAG, &clone) == 0) {
1041
1042 char name[ZFS_MAX_DATASET_NAME_LEN];
1043 dsl_dataset_name(clone, name);
1044
1045 char *n = kmem_strdup(name);
1046 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1047 job->name = n;
1048 job->list = minors_list;
1049 job->error = 0;
1050 list_insert_tail(minors_list, job);
1051
1052 dsl_dataset_rele(clone, FTAG);
1053 }
1054 }
1055 zap_cursor_fini(zc);
1056 kmem_free(za, sizeof (zap_attribute_t));
1057 kmem_free(zc, sizeof (zap_cursor_t));
1058
1059 out:
1060 if (dd != NULL)
1061 dsl_dir_rele(dd, FTAG);
1062 dsl_pool_rele(dp, FTAG);
1063 }
1064
1065 /*
1066 * Mask errors to continue dmu_objset_find() traversal
1067 */
1068 static int
1069 zvol_create_minors_cb(const char *dsname, void *arg)
1070 {
1071 uint64_t snapdev;
1072 int error;
1073 list_t *minors_list = arg;
1074
1075 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1076
1077 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1078 if (error)
1079 return (0);
1080
1081 /*
1082 * Given the name and the 'snapdev' property, create device minor nodes
1083 * with the linkages to zvols/snapshots as needed.
1084 * If the name represents a zvol, create a minor node for the zvol, then
1085 * check if its snapshots are 'visible', and if so, iterate over the
1086 * snapshots and create device minor nodes for those.
1087 */
1088 if (strchr(dsname, '@') == 0) {
1089 minors_job_t *job;
1090 char *n = kmem_strdup(dsname);
1091 if (n == NULL)
1092 return (0);
1093
1094 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1095 job->name = n;
1096 job->list = minors_list;
1097 job->error = 0;
1098 list_insert_tail(minors_list, job);
1099 /* don't care if dispatch fails, because job->error is 0 */
1100 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1101 TQ_SLEEP);
1102
1103 zvol_add_clones(dsname, minors_list);
1104
1105 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1106 /*
1107 * traverse snapshots only, do not traverse children,
1108 * and skip the 'dsname'
1109 */
1110 (void) dmu_objset_find(dsname,
1111 zvol_create_snap_minor_cb, (void *)job,
1112 DS_FIND_SNAPSHOTS);
1113 }
1114 } else {
1115 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1116 dsname);
1117 }
1118
1119 return (0);
1120 }
1121
1122 /*
1123 * Create minors for the specified dataset, including children and snapshots.
1124 * Pay attention to the 'snapdev' property and iterate over the snapshots
1125 * only if they are 'visible'. This approach allows one to assure that the
1126 * snapshot metadata is read from disk only if it is needed.
1127 *
1128 * The name can represent a dataset to be recursively scanned for zvols and
1129 * their snapshots, or a single zvol snapshot. If the name represents a
1130 * dataset, the scan is performed in two nested stages:
1131 * - scan the dataset for zvols, and
1132 * - for each zvol, create a minor node, then check if the zvol's snapshots
1133 * are 'visible', and only then iterate over the snapshots if needed
1134 *
1135 * If the name represents a snapshot, a check is performed if the snapshot is
1136 * 'visible' (which also verifies that the parent is a zvol), and if so,
1137 * a minor node for that snapshot is created.
1138 */
1139 void
1140 zvol_create_minors_recursive(const char *name)
1141 {
1142 list_t minors_list;
1143 minors_job_t *job;
1144
1145 if (zvol_inhibit_dev)
1146 return;
1147
1148 /*
1149 * This is the list for prefetch jobs. Whenever we found a match
1150 * during dmu_objset_find, we insert a minors_job to the list and do
1151 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1152 * any lock because all list operation is done on the current thread.
1153 *
1154 * We will use this list to do zvol_os_create_minor after prefetch
1155 * so we don't have to traverse using dmu_objset_find again.
1156 */
1157 list_create(&minors_list, sizeof (minors_job_t),
1158 offsetof(minors_job_t, link));
1159
1160
1161 if (strchr(name, '@') != NULL) {
1162 uint64_t snapdev;
1163
1164 int error = dsl_prop_get_integer(name, "snapdev",
1165 &snapdev, NULL);
1166
1167 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1168 (void) zvol_os_create_minor(name);
1169 } else {
1170 fstrans_cookie_t cookie = spl_fstrans_mark();
1171 (void) dmu_objset_find(name, zvol_create_minors_cb,
1172 &minors_list, DS_FIND_CHILDREN);
1173 spl_fstrans_unmark(cookie);
1174 }
1175
1176 taskq_wait_outstanding(system_taskq, 0);
1177
1178 /*
1179 * Prefetch is completed, we can do zvol_os_create_minor
1180 * sequentially.
1181 */
1182 while ((job = list_remove_head(&minors_list)) != NULL) {
1183 if (!job->error)
1184 (void) zvol_os_create_minor(job->name);
1185 kmem_strfree(job->name);
1186 kmem_free(job, sizeof (minors_job_t));
1187 }
1188
1189 list_destroy(&minors_list);
1190 }
1191
1192 void
1193 zvol_create_minor(const char *name)
1194 {
1195 /*
1196 * Note: the dsl_pool_config_lock must not be held.
1197 * Minor node creation needs to obtain the zvol_state_lock.
1198 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1199 * config lock. Therefore, we can't have the config lock now if
1200 * we are going to wait for the zvol_state_lock, because it
1201 * would be a lock order inversion which could lead to deadlock.
1202 */
1203
1204 if (zvol_inhibit_dev)
1205 return;
1206
1207 if (strchr(name, '@') != NULL) {
1208 uint64_t snapdev;
1209
1210 int error = dsl_prop_get_integer(name,
1211 "snapdev", &snapdev, NULL);
1212
1213 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1214 (void) zvol_os_create_minor(name);
1215 } else {
1216 (void) zvol_os_create_minor(name);
1217 }
1218 }
1219
1220 /*
1221 * Remove minors for specified dataset including children and snapshots.
1222 */
1223
1224 static void
1225 zvol_free_task(void *arg)
1226 {
1227 zvol_os_free(arg);
1228 }
1229
1230 void
1231 zvol_remove_minors_impl(const char *name)
1232 {
1233 zvol_state_t *zv, *zv_next;
1234 int namelen = ((name) ? strlen(name) : 0);
1235 taskqid_t t;
1236 list_t free_list;
1237
1238 if (zvol_inhibit_dev)
1239 return;
1240
1241 list_create(&free_list, sizeof (zvol_state_t),
1242 offsetof(zvol_state_t, zv_next));
1243
1244 rw_enter(&zvol_state_lock, RW_WRITER);
1245
1246 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1247 zv_next = list_next(&zvol_state_list, zv);
1248
1249 mutex_enter(&zv->zv_state_lock);
1250 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1251 (strncmp(zv->zv_name, name, namelen) == 0 &&
1252 (zv->zv_name[namelen] == '/' ||
1253 zv->zv_name[namelen] == '@'))) {
1254 /*
1255 * By holding zv_state_lock here, we guarantee that no
1256 * one is currently using this zv
1257 */
1258
1259 /* If in use, leave alone */
1260 if (zv->zv_open_count > 0 ||
1261 atomic_read(&zv->zv_suspend_ref)) {
1262 mutex_exit(&zv->zv_state_lock);
1263 continue;
1264 }
1265
1266 zvol_remove(zv);
1267
1268 /*
1269 * Cleared while holding zvol_state_lock as a writer
1270 * which will prevent zvol_open() from opening it.
1271 */
1272 zvol_os_clear_private(zv);
1273
1274 /* Drop zv_state_lock before zvol_free() */
1275 mutex_exit(&zv->zv_state_lock);
1276
1277 /* Try parallel zv_free, if failed do it in place */
1278 t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1279 TQ_SLEEP);
1280 if (t == TASKQID_INVALID)
1281 list_insert_head(&free_list, zv);
1282 } else {
1283 mutex_exit(&zv->zv_state_lock);
1284 }
1285 }
1286 rw_exit(&zvol_state_lock);
1287
1288 /* Drop zvol_state_lock before calling zvol_free() */
1289 while ((zv = list_remove_head(&free_list)) != NULL)
1290 zvol_os_free(zv);
1291 }
1292
1293 /* Remove minor for this specific volume only */
1294 static void
1295 zvol_remove_minor_impl(const char *name)
1296 {
1297 zvol_state_t *zv = NULL, *zv_next;
1298
1299 if (zvol_inhibit_dev)
1300 return;
1301
1302 rw_enter(&zvol_state_lock, RW_WRITER);
1303
1304 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1305 zv_next = list_next(&zvol_state_list, zv);
1306
1307 mutex_enter(&zv->zv_state_lock);
1308 if (strcmp(zv->zv_name, name) == 0) {
1309 /*
1310 * By holding zv_state_lock here, we guarantee that no
1311 * one is currently using this zv
1312 */
1313
1314 /* If in use, leave alone */
1315 if (zv->zv_open_count > 0 ||
1316 atomic_read(&zv->zv_suspend_ref)) {
1317 mutex_exit(&zv->zv_state_lock);
1318 continue;
1319 }
1320 zvol_remove(zv);
1321
1322 zvol_os_clear_private(zv);
1323 mutex_exit(&zv->zv_state_lock);
1324 break;
1325 } else {
1326 mutex_exit(&zv->zv_state_lock);
1327 }
1328 }
1329
1330 /* Drop zvol_state_lock before calling zvol_free() */
1331 rw_exit(&zvol_state_lock);
1332
1333 if (zv != NULL)
1334 zvol_os_free(zv);
1335 }
1336
1337 /*
1338 * Rename minors for specified dataset including children and snapshots.
1339 */
1340 static void
1341 zvol_rename_minors_impl(const char *oldname, const char *newname)
1342 {
1343 zvol_state_t *zv, *zv_next;
1344 int oldnamelen;
1345
1346 if (zvol_inhibit_dev)
1347 return;
1348
1349 oldnamelen = strlen(oldname);
1350
1351 rw_enter(&zvol_state_lock, RW_READER);
1352
1353 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1354 zv_next = list_next(&zvol_state_list, zv);
1355
1356 mutex_enter(&zv->zv_state_lock);
1357
1358 if (strcmp(zv->zv_name, oldname) == 0) {
1359 zvol_os_rename_minor(zv, newname);
1360 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1361 (zv->zv_name[oldnamelen] == '/' ||
1362 zv->zv_name[oldnamelen] == '@')) {
1363 char *name = kmem_asprintf("%s%c%s", newname,
1364 zv->zv_name[oldnamelen],
1365 zv->zv_name + oldnamelen + 1);
1366 zvol_os_rename_minor(zv, name);
1367 kmem_strfree(name);
1368 }
1369
1370 mutex_exit(&zv->zv_state_lock);
1371 }
1372
1373 rw_exit(&zvol_state_lock);
1374 }
1375
1376 typedef struct zvol_snapdev_cb_arg {
1377 uint64_t snapdev;
1378 } zvol_snapdev_cb_arg_t;
1379
1380 static int
1381 zvol_set_snapdev_cb(const char *dsname, void *param)
1382 {
1383 zvol_snapdev_cb_arg_t *arg = param;
1384
1385 if (strchr(dsname, '@') == NULL)
1386 return (0);
1387
1388 switch (arg->snapdev) {
1389 case ZFS_SNAPDEV_VISIBLE:
1390 (void) zvol_os_create_minor(dsname);
1391 break;
1392 case ZFS_SNAPDEV_HIDDEN:
1393 (void) zvol_remove_minor_impl(dsname);
1394 break;
1395 }
1396
1397 return (0);
1398 }
1399
1400 static void
1401 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1402 {
1403 zvol_snapdev_cb_arg_t arg = {snapdev};
1404 fstrans_cookie_t cookie = spl_fstrans_mark();
1405 /*
1406 * The zvol_set_snapdev_sync() sets snapdev appropriately
1407 * in the dataset hierarchy. Here, we only scan snapshots.
1408 */
1409 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1410 spl_fstrans_unmark(cookie);
1411 }
1412
1413 static void
1414 zvol_set_volmode_impl(char *name, uint64_t volmode)
1415 {
1416 fstrans_cookie_t cookie;
1417 uint64_t old_volmode;
1418 zvol_state_t *zv;
1419
1420 if (strchr(name, '@') != NULL)
1421 return;
1422
1423 /*
1424 * It's unfortunate we need to remove minors before we create new ones:
1425 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1426 * could be different when we set, for instance, volmode from "geom"
1427 * to "dev" (or vice versa).
1428 */
1429 zv = zvol_find_by_name(name, RW_NONE);
1430 if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1431 return;
1432 if (zv != NULL) {
1433 old_volmode = zv->zv_volmode;
1434 mutex_exit(&zv->zv_state_lock);
1435 if (old_volmode == volmode)
1436 return;
1437 zvol_wait_close(zv);
1438 }
1439 cookie = spl_fstrans_mark();
1440 switch (volmode) {
1441 case ZFS_VOLMODE_NONE:
1442 (void) zvol_remove_minor_impl(name);
1443 break;
1444 case ZFS_VOLMODE_GEOM:
1445 case ZFS_VOLMODE_DEV:
1446 (void) zvol_remove_minor_impl(name);
1447 (void) zvol_os_create_minor(name);
1448 break;
1449 case ZFS_VOLMODE_DEFAULT:
1450 (void) zvol_remove_minor_impl(name);
1451 if (zvol_volmode == ZFS_VOLMODE_NONE)
1452 break;
1453 else /* if zvol_volmode is invalid defaults to "geom" */
1454 (void) zvol_os_create_minor(name);
1455 break;
1456 }
1457 spl_fstrans_unmark(cookie);
1458 }
1459
1460 static zvol_task_t *
1461 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1462 uint64_t value)
1463 {
1464 zvol_task_t *task;
1465
1466 /* Never allow tasks on hidden names. */
1467 if (name1[0] == '$')
1468 return (NULL);
1469
1470 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1471 task->op = op;
1472 task->value = value;
1473
1474 strlcpy(task->name1, name1, sizeof (task->name1));
1475 if (name2 != NULL)
1476 strlcpy(task->name2, name2, sizeof (task->name2));
1477
1478 return (task);
1479 }
1480
1481 static void
1482 zvol_task_free(zvol_task_t *task)
1483 {
1484 kmem_free(task, sizeof (zvol_task_t));
1485 }
1486
1487 /*
1488 * The worker thread function performed asynchronously.
1489 */
1490 static void
1491 zvol_task_cb(void *arg)
1492 {
1493 zvol_task_t *task = arg;
1494
1495 switch (task->op) {
1496 case ZVOL_ASYNC_REMOVE_MINORS:
1497 zvol_remove_minors_impl(task->name1);
1498 break;
1499 case ZVOL_ASYNC_RENAME_MINORS:
1500 zvol_rename_minors_impl(task->name1, task->name2);
1501 break;
1502 case ZVOL_ASYNC_SET_SNAPDEV:
1503 zvol_set_snapdev_impl(task->name1, task->value);
1504 break;
1505 case ZVOL_ASYNC_SET_VOLMODE:
1506 zvol_set_volmode_impl(task->name1, task->value);
1507 break;
1508 default:
1509 VERIFY(0);
1510 break;
1511 }
1512
1513 zvol_task_free(task);
1514 }
1515
1516 typedef struct zvol_set_prop_int_arg {
1517 const char *zsda_name;
1518 uint64_t zsda_value;
1519 zprop_source_t zsda_source;
1520 zfs_prop_t zsda_prop;
1521 } zvol_set_prop_int_arg_t;
1522
1523 /*
1524 * Sanity check the dataset for safe use by the sync task. No additional
1525 * conditions are imposed.
1526 */
1527 static int
1528 zvol_set_common_check(void *arg, dmu_tx_t *tx)
1529 {
1530 zvol_set_prop_int_arg_t *zsda = arg;
1531 dsl_pool_t *dp = dmu_tx_pool(tx);
1532 dsl_dir_t *dd;
1533 int error;
1534
1535 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1536 if (error != 0)
1537 return (error);
1538
1539 dsl_dir_rele(dd, FTAG);
1540
1541 return (error);
1542 }
1543
1544 static int
1545 zvol_set_common_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1546 {
1547 zvol_set_prop_int_arg_t *zsda = arg;
1548 char dsname[ZFS_MAX_DATASET_NAME_LEN];
1549 zvol_task_t *task;
1550 uint64_t prop;
1551
1552 const char *prop_name = zfs_prop_to_name(zsda->zsda_prop);
1553 dsl_dataset_name(ds, dsname);
1554
1555 if (dsl_prop_get_int_ds(ds, prop_name, &prop) != 0)
1556 return (0);
1557
1558 switch (zsda->zsda_prop) {
1559 case ZFS_PROP_VOLMODE:
1560 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname,
1561 NULL, prop);
1562 break;
1563 case ZFS_PROP_SNAPDEV:
1564 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname,
1565 NULL, prop);
1566 break;
1567 default:
1568 task = NULL;
1569 break;
1570 }
1571
1572 if (task == NULL)
1573 return (0);
1574
1575 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1576 task, TQ_SLEEP);
1577 return (0);
1578 }
1579
1580 /*
1581 * Traverse all child datasets and apply the property appropriately.
1582 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1583 * dataset and read the effective "property" on every child in the callback
1584 * function: this is because the value is not guaranteed to be the same in the
1585 * whole dataset hierarchy.
1586 */
1587 static void
1588 zvol_set_common_sync(void *arg, dmu_tx_t *tx)
1589 {
1590 zvol_set_prop_int_arg_t *zsda = arg;
1591 dsl_pool_t *dp = dmu_tx_pool(tx);
1592 dsl_dir_t *dd;
1593 dsl_dataset_t *ds;
1594 int error;
1595
1596 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1597
1598 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1599 if (error == 0) {
1600 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(zsda->zsda_prop),
1601 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1602 &zsda->zsda_value, tx);
1603 dsl_dataset_rele(ds, FTAG);
1604 }
1605
1606 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_common_sync_cb,
1607 zsda, DS_FIND_CHILDREN);
1608
1609 dsl_dir_rele(dd, FTAG);
1610 }
1611
1612 int
1613 zvol_set_common(const char *ddname, zfs_prop_t prop, zprop_source_t source,
1614 uint64_t val)
1615 {
1616 zvol_set_prop_int_arg_t zsda;
1617
1618 zsda.zsda_name = ddname;
1619 zsda.zsda_source = source;
1620 zsda.zsda_value = val;
1621 zsda.zsda_prop = prop;
1622
1623 return (dsl_sync_task(ddname, zvol_set_common_check,
1624 zvol_set_common_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1625 }
1626
1627 void
1628 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1629 {
1630 zvol_task_t *task;
1631 taskqid_t id;
1632
1633 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1634 if (task == NULL)
1635 return;
1636
1637 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1638 if ((async == B_FALSE) && (id != TASKQID_INVALID))
1639 taskq_wait_id(spa->spa_zvol_taskq, id);
1640 }
1641
1642 void
1643 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1644 boolean_t async)
1645 {
1646 zvol_task_t *task;
1647 taskqid_t id;
1648
1649 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1650 if (task == NULL)
1651 return;
1652
1653 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1654 if ((async == B_FALSE) && (id != TASKQID_INVALID))
1655 taskq_wait_id(spa->spa_zvol_taskq, id);
1656 }
1657
1658 boolean_t
1659 zvol_is_zvol(const char *name)
1660 {
1661
1662 return (zvol_os_is_zvol(name));
1663 }
1664
1665 int
1666 zvol_init_impl(void)
1667 {
1668 int i;
1669
1670 list_create(&zvol_state_list, sizeof (zvol_state_t),
1671 offsetof(zvol_state_t, zv_next));
1672 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1673
1674 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1675 KM_SLEEP);
1676 for (i = 0; i < ZVOL_HT_SIZE; i++)
1677 INIT_HLIST_HEAD(&zvol_htable[i]);
1678
1679 return (0);
1680 }
1681
1682 void
1683 zvol_fini_impl(void)
1684 {
1685 zvol_remove_minors_impl(NULL);
1686
1687 /*
1688 * The call to "zvol_remove_minors_impl" may dispatch entries to
1689 * the system_taskq, but it doesn't wait for those entries to
1690 * complete before it returns. Thus, we must wait for all of the
1691 * removals to finish, before we can continue.
1692 */
1693 taskq_wait_outstanding(system_taskq, 0);
1694
1695 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1696 list_destroy(&zvol_state_list);
1697 rw_destroy(&zvol_state_lock);
1698 }