]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zvol.c
Fix typos in module/zfs/
[mirror_zfs.git] / module / zfs / zvol.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 *
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40 */
41
42 /*
43 * Note on locking of zvol state structures.
44 *
45 * These structures are used to maintain internal state used to emulate block
46 * devices on top of zvols. In particular, management of device minor number
47 * operations - create, remove, rename, and set_snapdev - involves access to
48 * these structures. The zvol_state_lock is primarily used to protect the
49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50 * of the zvol_state_t structures, as well as to make sure that when the
51 * time comes to remove the structure from the list, it is not in use, and
52 * therefore, it can be taken off zvol_state_list and freed.
53 *
54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55 * e.g. for the duration of receive and rollback operations. This lock can be
56 * held for significant periods of time. Given that it is undesirable to hold
57 * mutexes for long periods of time, the following lock ordering applies:
58 * - take zvol_state_lock if necessary, to protect zvol_state_list
59 * - take zv_suspend_lock if necessary, by the code path in question
60 * - take zv_state_lock to protect zvol_state_t
61 *
62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63 * single-threaded (to preserve order of minor operations), and are executed
64 * through the zvol_task_cb that dispatches the specific operations. Therefore,
65 * these operations are serialized per pool. Consequently, we can be certain
66 * that for a given zvol, there is only one operation at a time in progress.
67 * That is why one can be sure that first, zvol_state_t for a given zvol is
68 * allocated and placed on zvol_state_list, and then other minor operations
69 * for this zvol are going to proceed in the order of issue.
70 *
71 * It is also worth keeping in mind that once add_disk() is called, the zvol is
72 * announced to the world, and zvol_open()/zvol_release() can be called at any
73 * time. Incidentally, add_disk() itself calls zvol_open()->zvol_first_open()
74 * and zvol_release()->zvol_last_close() directly as well.
75 */
76
77 #include <sys/dataset_kstats.h>
78 #include <sys/dbuf.h>
79 #include <sys/dmu_traverse.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_prop.h>
82 #include <sys/dsl_dir.h>
83 #include <sys/zap.h>
84 #include <sys/zfeature.h>
85 #include <sys/zil_impl.h>
86 #include <sys/dmu_tx.h>
87 #include <sys/zio.h>
88 #include <sys/zfs_rlock.h>
89 #include <sys/spa_impl.h>
90 #include <sys/zvol.h>
91
92 #include <linux/blkdev_compat.h>
93 #include <linux/task_io_accounting_ops.h>
94
95 unsigned int zvol_inhibit_dev = 0;
96 unsigned int zvol_major = ZVOL_MAJOR;
97 unsigned int zvol_threads = 32;
98 unsigned int zvol_request_sync = 0;
99 unsigned int zvol_prefetch_bytes = (128 * 1024);
100 unsigned long zvol_max_discard_blocks = 16384;
101 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
102
103 static taskq_t *zvol_taskq;
104 static krwlock_t zvol_state_lock;
105 static list_t zvol_state_list;
106
107 #define ZVOL_HT_SIZE 1024
108 static struct hlist_head *zvol_htable;
109 #define ZVOL_HT_HEAD(hash) (&zvol_htable[(hash) & (ZVOL_HT_SIZE-1)])
110
111 static struct ida zvol_ida;
112
113 /*
114 * The in-core state of each volume.
115 */
116 struct zvol_state {
117 char zv_name[MAXNAMELEN]; /* name */
118 uint64_t zv_volsize; /* advertised space */
119 uint64_t zv_volblocksize; /* volume block size */
120 objset_t *zv_objset; /* objset handle */
121 uint32_t zv_flags; /* ZVOL_* flags */
122 uint32_t zv_open_count; /* open counts */
123 uint32_t zv_changed; /* disk changed */
124 zilog_t *zv_zilog; /* ZIL handle */
125 rangelock_t zv_rangelock; /* for range locking */
126 dnode_t *zv_dn; /* dnode hold */
127 dev_t zv_dev; /* device id */
128 struct gendisk *zv_disk; /* generic disk */
129 struct request_queue *zv_queue; /* request queue */
130 dataset_kstats_t zv_kstat; /* zvol kstats */
131 list_node_t zv_next; /* next zvol_state_t linkage */
132 uint64_t zv_hash; /* name hash */
133 struct hlist_node zv_hlink; /* hash link */
134 kmutex_t zv_state_lock; /* protects zvol_state_t */
135 atomic_t zv_suspend_ref; /* refcount for suspend */
136 krwlock_t zv_suspend_lock; /* suspend lock */
137 };
138
139 typedef enum {
140 ZVOL_ASYNC_CREATE_MINORS,
141 ZVOL_ASYNC_REMOVE_MINORS,
142 ZVOL_ASYNC_RENAME_MINORS,
143 ZVOL_ASYNC_SET_SNAPDEV,
144 ZVOL_ASYNC_SET_VOLMODE,
145 ZVOL_ASYNC_MAX
146 } zvol_async_op_t;
147
148 typedef struct {
149 zvol_async_op_t op;
150 char pool[MAXNAMELEN];
151 char name1[MAXNAMELEN];
152 char name2[MAXNAMELEN];
153 zprop_source_t source;
154 uint64_t value;
155 } zvol_task_t;
156
157 #define ZVOL_RDONLY 0x1
158 /*
159 * Whether the zvol has been written to (as opposed to ZVOL_RDONLY, which
160 * specifies whether or not the zvol _can_ be written to)
161 */
162 #define ZVOL_WRITTEN_TO 0x2
163
164 static uint64_t
165 zvol_name_hash(const char *name)
166 {
167 int i;
168 uint64_t crc = -1ULL;
169 uint8_t *p = (uint8_t *)name;
170 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
171 for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
172 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
173 }
174 return (crc);
175 }
176
177 /*
178 * Find a zvol_state_t given the full major+minor dev_t. If found,
179 * return with zv_state_lock taken, otherwise, return (NULL) without
180 * taking zv_state_lock.
181 */
182 static zvol_state_t *
183 zvol_find_by_dev(dev_t dev)
184 {
185 zvol_state_t *zv;
186
187 rw_enter(&zvol_state_lock, RW_READER);
188 for (zv = list_head(&zvol_state_list); zv != NULL;
189 zv = list_next(&zvol_state_list, zv)) {
190 mutex_enter(&zv->zv_state_lock);
191 if (zv->zv_dev == dev) {
192 rw_exit(&zvol_state_lock);
193 return (zv);
194 }
195 mutex_exit(&zv->zv_state_lock);
196 }
197 rw_exit(&zvol_state_lock);
198
199 return (NULL);
200 }
201
202 /*
203 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
204 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
205 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
206 * before zv_state_lock. The mode argument indicates the mode (including none)
207 * for zv_suspend_lock to be taken.
208 */
209 static zvol_state_t *
210 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
211 {
212 zvol_state_t *zv;
213 struct hlist_node *p = NULL;
214
215 rw_enter(&zvol_state_lock, RW_READER);
216 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
217 zv = hlist_entry(p, zvol_state_t, zv_hlink);
218 mutex_enter(&zv->zv_state_lock);
219 if (zv->zv_hash == hash &&
220 strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
221 /*
222 * this is the right zvol, take the locks in the
223 * right order
224 */
225 if (mode != RW_NONE &&
226 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
227 mutex_exit(&zv->zv_state_lock);
228 rw_enter(&zv->zv_suspend_lock, mode);
229 mutex_enter(&zv->zv_state_lock);
230 /*
231 * zvol cannot be renamed as we continue
232 * to hold zvol_state_lock
233 */
234 ASSERT(zv->zv_hash == hash &&
235 strncmp(zv->zv_name, name, MAXNAMELEN)
236 == 0);
237 }
238 rw_exit(&zvol_state_lock);
239 return (zv);
240 }
241 mutex_exit(&zv->zv_state_lock);
242 }
243 rw_exit(&zvol_state_lock);
244
245 return (NULL);
246 }
247
248 /*
249 * Find a zvol_state_t given the name.
250 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
251 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
252 * before zv_state_lock. The mode argument indicates the mode (including none)
253 * for zv_suspend_lock to be taken.
254 */
255 static zvol_state_t *
256 zvol_find_by_name(const char *name, int mode)
257 {
258 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
259 }
260
261
262 /*
263 * Given a path, return TRUE if path is a ZVOL.
264 */
265 boolean_t
266 zvol_is_zvol(const char *device)
267 {
268 struct block_device *bdev;
269 unsigned int major;
270
271 bdev = vdev_lookup_bdev(device);
272 if (IS_ERR(bdev))
273 return (B_FALSE);
274
275 major = MAJOR(bdev->bd_dev);
276 bdput(bdev);
277
278 if (major == zvol_major)
279 return (B_TRUE);
280
281 return (B_FALSE);
282 }
283
284 /*
285 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
286 */
287 void
288 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
289 {
290 zfs_creat_t *zct = arg;
291 nvlist_t *nvprops = zct->zct_props;
292 int error;
293 uint64_t volblocksize, volsize;
294
295 VERIFY(nvlist_lookup_uint64(nvprops,
296 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
297 if (nvlist_lookup_uint64(nvprops,
298 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
299 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
300
301 /*
302 * These properties must be removed from the list so the generic
303 * property setting step won't apply to them.
304 */
305 VERIFY(nvlist_remove_all(nvprops,
306 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
307 (void) nvlist_remove_all(nvprops,
308 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
309
310 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
311 DMU_OT_NONE, 0, tx);
312 ASSERT(error == 0);
313
314 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
315 DMU_OT_NONE, 0, tx);
316 ASSERT(error == 0);
317
318 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
319 ASSERT(error == 0);
320 }
321
322 /*
323 * ZFS_IOC_OBJSET_STATS entry point.
324 */
325 int
326 zvol_get_stats(objset_t *os, nvlist_t *nv)
327 {
328 int error;
329 dmu_object_info_t *doi;
330 uint64_t val;
331
332 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
333 if (error)
334 return (SET_ERROR(error));
335
336 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
337 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
338 error = dmu_object_info(os, ZVOL_OBJ, doi);
339
340 if (error == 0) {
341 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
342 doi->doi_data_block_size);
343 }
344
345 kmem_free(doi, sizeof (dmu_object_info_t));
346
347 return (SET_ERROR(error));
348 }
349
350 /*
351 * Sanity check volume size.
352 */
353 int
354 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
355 {
356 if (volsize == 0)
357 return (SET_ERROR(EINVAL));
358
359 if (volsize % blocksize != 0)
360 return (SET_ERROR(EINVAL));
361
362 #ifdef _ILP32
363 if (volsize - 1 > SPEC_MAXOFFSET_T)
364 return (SET_ERROR(EOVERFLOW));
365 #endif
366 return (0);
367 }
368
369 /*
370 * Ensure the zap is flushed then inform the VFS of the capacity change.
371 */
372 static int
373 zvol_update_volsize(uint64_t volsize, objset_t *os)
374 {
375 dmu_tx_t *tx;
376 int error;
377 uint64_t txg;
378
379 tx = dmu_tx_create(os);
380 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
381 dmu_tx_mark_netfree(tx);
382 error = dmu_tx_assign(tx, TXG_WAIT);
383 if (error) {
384 dmu_tx_abort(tx);
385 return (SET_ERROR(error));
386 }
387 txg = dmu_tx_get_txg(tx);
388
389 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
390 &volsize, tx);
391 dmu_tx_commit(tx);
392
393 txg_wait_synced(dmu_objset_pool(os), txg);
394
395 if (error == 0)
396 error = dmu_free_long_range(os,
397 ZVOL_OBJ, volsize, DMU_OBJECT_END);
398
399 return (error);
400 }
401
402 /*
403 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
404 * size will result in a udev "change" event being generated.
405 */
406 int
407 zvol_set_volsize(const char *name, uint64_t volsize)
408 {
409 objset_t *os = NULL;
410 struct gendisk *disk = NULL;
411 uint64_t readonly;
412 int error;
413 boolean_t owned = B_FALSE;
414
415 error = dsl_prop_get_integer(name,
416 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
417 if (error != 0)
418 return (SET_ERROR(error));
419 if (readonly)
420 return (SET_ERROR(EROFS));
421
422 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
423
424 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
425 RW_READ_HELD(&zv->zv_suspend_lock)));
426
427 if (zv == NULL || zv->zv_objset == NULL) {
428 if (zv != NULL)
429 rw_exit(&zv->zv_suspend_lock);
430 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
431 FTAG, &os)) != 0) {
432 if (zv != NULL)
433 mutex_exit(&zv->zv_state_lock);
434 return (SET_ERROR(error));
435 }
436 owned = B_TRUE;
437 if (zv != NULL)
438 zv->zv_objset = os;
439 } else {
440 os = zv->zv_objset;
441 }
442
443 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
444
445 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
446 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
447 goto out;
448
449 error = zvol_update_volsize(volsize, os);
450 if (error == 0 && zv != NULL) {
451 zv->zv_volsize = volsize;
452 zv->zv_changed = 1;
453 disk = zv->zv_disk;
454 }
455 out:
456 kmem_free(doi, sizeof (dmu_object_info_t));
457
458 if (owned) {
459 dmu_objset_disown(os, B_TRUE, FTAG);
460 if (zv != NULL)
461 zv->zv_objset = NULL;
462 } else {
463 rw_exit(&zv->zv_suspend_lock);
464 }
465
466 if (zv != NULL)
467 mutex_exit(&zv->zv_state_lock);
468
469 if (disk != NULL)
470 revalidate_disk(disk);
471
472 return (SET_ERROR(error));
473 }
474
475 /*
476 * Sanity check volume block size.
477 */
478 int
479 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
480 {
481 /* Record sizes above 128k need the feature to be enabled */
482 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
483 spa_t *spa;
484 int error;
485
486 if ((error = spa_open(name, &spa, FTAG)) != 0)
487 return (error);
488
489 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
490 spa_close(spa, FTAG);
491 return (SET_ERROR(ENOTSUP));
492 }
493
494 /*
495 * We don't allow setting the property above 1MB,
496 * unless the tunable has been changed.
497 */
498 if (volblocksize > zfs_max_recordsize)
499 return (SET_ERROR(EDOM));
500
501 spa_close(spa, FTAG);
502 }
503
504 if (volblocksize < SPA_MINBLOCKSIZE ||
505 volblocksize > SPA_MAXBLOCKSIZE ||
506 !ISP2(volblocksize))
507 return (SET_ERROR(EDOM));
508
509 return (0);
510 }
511
512 /*
513 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
514 */
515 int
516 zvol_set_volblocksize(const char *name, uint64_t volblocksize)
517 {
518 zvol_state_t *zv;
519 dmu_tx_t *tx;
520 int error;
521
522 zv = zvol_find_by_name(name, RW_READER);
523
524 if (zv == NULL)
525 return (SET_ERROR(ENXIO));
526
527 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
528 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
529
530 if (zv->zv_flags & ZVOL_RDONLY) {
531 mutex_exit(&zv->zv_state_lock);
532 rw_exit(&zv->zv_suspend_lock);
533 return (SET_ERROR(EROFS));
534 }
535
536 tx = dmu_tx_create(zv->zv_objset);
537 dmu_tx_hold_bonus(tx, ZVOL_OBJ);
538 error = dmu_tx_assign(tx, TXG_WAIT);
539 if (error) {
540 dmu_tx_abort(tx);
541 } else {
542 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
543 volblocksize, 0, tx);
544 if (error == ENOTSUP)
545 error = SET_ERROR(EBUSY);
546 dmu_tx_commit(tx);
547 if (error == 0)
548 zv->zv_volblocksize = volblocksize;
549 }
550
551 mutex_exit(&zv->zv_state_lock);
552 rw_exit(&zv->zv_suspend_lock);
553
554 return (SET_ERROR(error));
555 }
556
557 /*
558 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
559 * implement DKIOCFREE/free-long-range.
560 */
561 static int
562 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
563 {
564 zvol_state_t *zv = arg1;
565 lr_truncate_t *lr = arg2;
566 uint64_t offset, length;
567
568 if (byteswap)
569 byteswap_uint64_array(lr, sizeof (*lr));
570
571 offset = lr->lr_offset;
572 length = lr->lr_length;
573
574 return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length));
575 }
576
577 /*
578 * Replay a TX_WRITE ZIL transaction that didn't get committed
579 * after a system failure
580 */
581 static int
582 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
583 {
584 zvol_state_t *zv = arg1;
585 lr_write_t *lr = arg2;
586 objset_t *os = zv->zv_objset;
587 char *data = (char *)(lr + 1); /* data follows lr_write_t */
588 uint64_t offset, length;
589 dmu_tx_t *tx;
590 int error;
591
592 if (byteswap)
593 byteswap_uint64_array(lr, sizeof (*lr));
594
595 offset = lr->lr_offset;
596 length = lr->lr_length;
597
598 /* If it's a dmu_sync() block, write the whole block */
599 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
600 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
601 if (length < blocksize) {
602 offset -= offset % blocksize;
603 length = blocksize;
604 }
605 }
606
607 tx = dmu_tx_create(os);
608 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
609 error = dmu_tx_assign(tx, TXG_WAIT);
610 if (error) {
611 dmu_tx_abort(tx);
612 } else {
613 dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
614 dmu_tx_commit(tx);
615 }
616
617 return (error);
618 }
619
620 static int
621 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
622 {
623 return (SET_ERROR(ENOTSUP));
624 }
625
626 /*
627 * Callback vectors for replaying records.
628 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
629 */
630 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
631 zvol_replay_err, /* no such transaction type */
632 zvol_replay_err, /* TX_CREATE */
633 zvol_replay_err, /* TX_MKDIR */
634 zvol_replay_err, /* TX_MKXATTR */
635 zvol_replay_err, /* TX_SYMLINK */
636 zvol_replay_err, /* TX_REMOVE */
637 zvol_replay_err, /* TX_RMDIR */
638 zvol_replay_err, /* TX_LINK */
639 zvol_replay_err, /* TX_RENAME */
640 zvol_replay_write, /* TX_WRITE */
641 zvol_replay_truncate, /* TX_TRUNCATE */
642 zvol_replay_err, /* TX_SETATTR */
643 zvol_replay_err, /* TX_ACL */
644 zvol_replay_err, /* TX_CREATE_ATTR */
645 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
646 zvol_replay_err, /* TX_MKDIR_ACL */
647 zvol_replay_err, /* TX_MKDIR_ATTR */
648 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
649 zvol_replay_err, /* TX_WRITE2 */
650 };
651
652 /*
653 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
654 *
655 * We store data in the log buffers if it's small enough.
656 * Otherwise we will later flush the data out via dmu_sync().
657 */
658 ssize_t zvol_immediate_write_sz = 32768;
659
660 static void
661 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
662 uint64_t size, int sync)
663 {
664 uint32_t blocksize = zv->zv_volblocksize;
665 zilog_t *zilog = zv->zv_zilog;
666 itx_wr_state_t write_state;
667
668 if (zil_replaying(zilog, tx))
669 return;
670
671 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
672 write_state = WR_INDIRECT;
673 else if (!spa_has_slogs(zilog->zl_spa) &&
674 size >= blocksize && blocksize > zvol_immediate_write_sz)
675 write_state = WR_INDIRECT;
676 else if (sync)
677 write_state = WR_COPIED;
678 else
679 write_state = WR_NEED_COPY;
680
681 while (size) {
682 itx_t *itx;
683 lr_write_t *lr;
684 itx_wr_state_t wr_state = write_state;
685 ssize_t len = size;
686
687 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
688 wr_state = WR_NEED_COPY;
689 else if (wr_state == WR_INDIRECT)
690 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
691
692 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
693 (wr_state == WR_COPIED ? len : 0));
694 lr = (lr_write_t *)&itx->itx_lr;
695 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
696 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
697 zil_itx_destroy(itx);
698 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
699 lr = (lr_write_t *)&itx->itx_lr;
700 wr_state = WR_NEED_COPY;
701 }
702
703 itx->itx_wr_state = wr_state;
704 lr->lr_foid = ZVOL_OBJ;
705 lr->lr_offset = offset;
706 lr->lr_length = len;
707 lr->lr_blkoff = 0;
708 BP_ZERO(&lr->lr_blkptr);
709
710 itx->itx_private = zv;
711 itx->itx_sync = sync;
712
713 (void) zil_itx_assign(zilog, itx, tx);
714
715 offset += len;
716 size -= len;
717 }
718 }
719
720 typedef struct zv_request {
721 zvol_state_t *zv;
722 struct bio *bio;
723 locked_range_t *lr;
724 } zv_request_t;
725
726 static void
727 uio_from_bio(uio_t *uio, struct bio *bio)
728 {
729 uio->uio_bvec = &bio->bi_io_vec[BIO_BI_IDX(bio)];
730 uio->uio_iovcnt = bio->bi_vcnt - BIO_BI_IDX(bio);
731 uio->uio_loffset = BIO_BI_SECTOR(bio) << 9;
732 uio->uio_segflg = UIO_BVEC;
733 uio->uio_limit = MAXOFFSET_T;
734 uio->uio_resid = BIO_BI_SIZE(bio);
735 uio->uio_skip = BIO_BI_SKIP(bio);
736 }
737
738 static void
739 zvol_write(void *arg)
740 {
741 int error = 0;
742
743 zv_request_t *zvr = arg;
744 struct bio *bio = zvr->bio;
745 uio_t uio = { { 0 }, 0 };
746 uio_from_bio(&uio, bio);
747
748 zvol_state_t *zv = zvr->zv;
749 ASSERT(zv && zv->zv_open_count > 0);
750 ASSERT(zv->zv_zilog != NULL);
751
752 ssize_t start_resid = uio.uio_resid;
753 unsigned long start_jif = jiffies;
754 blk_generic_start_io_acct(zv->zv_queue, WRITE, bio_sectors(bio),
755 &zv->zv_disk->part0);
756
757 boolean_t sync =
758 bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
759
760 uint64_t volsize = zv->zv_volsize;
761 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
762 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
763 uint64_t off = uio.uio_loffset;
764 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
765
766 if (bytes > volsize - off) /* don't write past the end */
767 bytes = volsize - off;
768
769 dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
770
771 /* This will only fail for ENOSPC */
772 error = dmu_tx_assign(tx, TXG_WAIT);
773 if (error) {
774 dmu_tx_abort(tx);
775 break;
776 }
777 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
778 if (error == 0) {
779 zvol_log_write(zv, tx, off, bytes, sync);
780 }
781 dmu_tx_commit(tx);
782
783 if (error)
784 break;
785 }
786 rangelock_exit(zvr->lr);
787
788 int64_t nwritten = start_resid - uio.uio_resid;
789 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
790 task_io_account_write(nwritten);
791
792 if (sync)
793 zil_commit(zv->zv_zilog, ZVOL_OBJ);
794
795 rw_exit(&zv->zv_suspend_lock);
796 blk_generic_end_io_acct(zv->zv_queue, WRITE, &zv->zv_disk->part0,
797 start_jif);
798 BIO_END_IO(bio, -error);
799 kmem_free(zvr, sizeof (zv_request_t));
800 }
801
802 /*
803 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
804 */
805 static void
806 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
807 boolean_t sync)
808 {
809 itx_t *itx;
810 lr_truncate_t *lr;
811 zilog_t *zilog = zv->zv_zilog;
812
813 if (zil_replaying(zilog, tx))
814 return;
815
816 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
817 lr = (lr_truncate_t *)&itx->itx_lr;
818 lr->lr_foid = ZVOL_OBJ;
819 lr->lr_offset = off;
820 lr->lr_length = len;
821
822 itx->itx_sync = sync;
823 zil_itx_assign(zilog, itx, tx);
824 }
825
826 static void
827 zvol_discard(void *arg)
828 {
829 zv_request_t *zvr = arg;
830 struct bio *bio = zvr->bio;
831 zvol_state_t *zv = zvr->zv;
832 uint64_t start = BIO_BI_SECTOR(bio) << 9;
833 uint64_t size = BIO_BI_SIZE(bio);
834 uint64_t end = start + size;
835 boolean_t sync;
836 int error = 0;
837 dmu_tx_t *tx;
838 unsigned long start_jif;
839
840 ASSERT(zv && zv->zv_open_count > 0);
841 ASSERT(zv->zv_zilog != NULL);
842
843 start_jif = jiffies;
844 blk_generic_start_io_acct(zv->zv_queue, WRITE, bio_sectors(bio),
845 &zv->zv_disk->part0);
846
847 sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
848
849 if (end > zv->zv_volsize) {
850 error = SET_ERROR(EIO);
851 goto unlock;
852 }
853
854 /*
855 * Align the request to volume block boundaries when a secure erase is
856 * not required. This will prevent dnode_free_range() from zeroing out
857 * the unaligned parts which is slow (read-modify-write) and useless
858 * since we are not freeing any space by doing so.
859 */
860 if (!bio_is_secure_erase(bio)) {
861 start = P2ROUNDUP(start, zv->zv_volblocksize);
862 end = P2ALIGN(end, zv->zv_volblocksize);
863 size = end - start;
864 }
865
866 if (start >= end)
867 goto unlock;
868
869 tx = dmu_tx_create(zv->zv_objset);
870 dmu_tx_mark_netfree(tx);
871 error = dmu_tx_assign(tx, TXG_WAIT);
872 if (error != 0) {
873 dmu_tx_abort(tx);
874 } else {
875 zvol_log_truncate(zv, tx, start, size, B_TRUE);
876 dmu_tx_commit(tx);
877 error = dmu_free_long_range(zv->zv_objset,
878 ZVOL_OBJ, start, size);
879 }
880 unlock:
881 rangelock_exit(zvr->lr);
882
883 if (error == 0 && sync)
884 zil_commit(zv->zv_zilog, ZVOL_OBJ);
885
886 rw_exit(&zv->zv_suspend_lock);
887 blk_generic_end_io_acct(zv->zv_queue, WRITE, &zv->zv_disk->part0,
888 start_jif);
889 BIO_END_IO(bio, -error);
890 kmem_free(zvr, sizeof (zv_request_t));
891 }
892
893 static void
894 zvol_read(void *arg)
895 {
896 int error = 0;
897
898 zv_request_t *zvr = arg;
899 struct bio *bio = zvr->bio;
900 uio_t uio = { { 0 }, 0 };
901 uio_from_bio(&uio, bio);
902
903 zvol_state_t *zv = zvr->zv;
904 ASSERT(zv && zv->zv_open_count > 0);
905
906 ssize_t start_resid = uio.uio_resid;
907 unsigned long start_jif = jiffies;
908 blk_generic_start_io_acct(zv->zv_queue, READ, bio_sectors(bio),
909 &zv->zv_disk->part0);
910
911 uint64_t volsize = zv->zv_volsize;
912 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
913 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
914
915 /* don't read past the end */
916 if (bytes > volsize - uio.uio_loffset)
917 bytes = volsize - uio.uio_loffset;
918
919 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
920 if (error) {
921 /* convert checksum errors into IO errors */
922 if (error == ECKSUM)
923 error = SET_ERROR(EIO);
924 break;
925 }
926 }
927 rangelock_exit(zvr->lr);
928
929 int64_t nread = start_resid - uio.uio_resid;
930 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
931 task_io_account_read(nread);
932
933 rw_exit(&zv->zv_suspend_lock);
934 blk_generic_end_io_acct(zv->zv_queue, READ, &zv->zv_disk->part0,
935 start_jif);
936 BIO_END_IO(bio, -error);
937 kmem_free(zvr, sizeof (zv_request_t));
938 }
939
940 /* ARGSUSED */
941 static void
942 zvol_get_done(zgd_t *zgd, int error)
943 {
944 if (zgd->zgd_db)
945 dmu_buf_rele(zgd->zgd_db, zgd);
946
947 rangelock_exit(zgd->zgd_lr);
948
949 kmem_free(zgd, sizeof (zgd_t));
950 }
951
952 /*
953 * Get data to generate a TX_WRITE intent log record.
954 */
955 static int
956 zvol_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
957 {
958 zvol_state_t *zv = arg;
959 uint64_t offset = lr->lr_offset;
960 uint64_t size = lr->lr_length;
961 dmu_buf_t *db;
962 zgd_t *zgd;
963 int error;
964
965 ASSERT3P(lwb, !=, NULL);
966 ASSERT3P(zio, !=, NULL);
967 ASSERT3U(size, !=, 0);
968
969 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
970 zgd->zgd_lwb = lwb;
971
972 /*
973 * Write records come in two flavors: immediate and indirect.
974 * For small writes it's cheaper to store the data with the
975 * log record (immediate); for large writes it's cheaper to
976 * sync the data and get a pointer to it (indirect) so that
977 * we don't have to write the data twice.
978 */
979 if (buf != NULL) { /* immediate write */
980 zgd->zgd_lr = rangelock_enter(&zv->zv_rangelock, offset, size,
981 RL_READER);
982 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
983 DMU_READ_NO_PREFETCH);
984 } else { /* indirect write */
985 /*
986 * Have to lock the whole block to ensure when it's written out
987 * and its checksum is being calculated that no one can change
988 * the data. Contrarily to zfs_get_data we need not re-check
989 * blocksize after we get the lock because it cannot be changed.
990 */
991 size = zv->zv_volblocksize;
992 offset = P2ALIGN_TYPED(offset, size, uint64_t);
993 zgd->zgd_lr = rangelock_enter(&zv->zv_rangelock, offset, size,
994 RL_READER);
995 error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
996 DMU_READ_NO_PREFETCH);
997 if (error == 0) {
998 blkptr_t *bp = &lr->lr_blkptr;
999
1000 zgd->zgd_db = db;
1001 zgd->zgd_bp = bp;
1002
1003 ASSERT(db != NULL);
1004 ASSERT(db->db_offset == offset);
1005 ASSERT(db->db_size == size);
1006
1007 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1008 zvol_get_done, zgd);
1009
1010 if (error == 0)
1011 return (0);
1012 }
1013 }
1014
1015 zvol_get_done(zgd, error);
1016
1017 return (SET_ERROR(error));
1018 }
1019
1020 static MAKE_REQUEST_FN_RET
1021 zvol_request(struct request_queue *q, struct bio *bio)
1022 {
1023 zvol_state_t *zv = q->queuedata;
1024 fstrans_cookie_t cookie = spl_fstrans_mark();
1025 uint64_t offset = BIO_BI_SECTOR(bio) << 9;
1026 uint64_t size = BIO_BI_SIZE(bio);
1027 int rw = bio_data_dir(bio);
1028 zv_request_t *zvr;
1029
1030 if (bio_has_data(bio) && offset + size > zv->zv_volsize) {
1031 printk(KERN_INFO
1032 "%s: bad access: offset=%llu, size=%lu\n",
1033 zv->zv_disk->disk_name,
1034 (long long unsigned)offset,
1035 (long unsigned)size);
1036
1037 BIO_END_IO(bio, -SET_ERROR(EIO));
1038 goto out;
1039 }
1040
1041 if (rw == WRITE) {
1042 boolean_t need_sync = B_FALSE;
1043
1044 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
1045 BIO_END_IO(bio, -SET_ERROR(EROFS));
1046 goto out;
1047 }
1048
1049 /*
1050 * To be released in the I/O function. See the comment on
1051 * rangelock_enter() below.
1052 */
1053 rw_enter(&zv->zv_suspend_lock, RW_READER);
1054
1055 /*
1056 * Open a ZIL if this is the first time we have written to this
1057 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
1058 * than zv_state_lock so that we don't need to acquire an
1059 * additional lock in this path.
1060 */
1061 if (zv->zv_zilog == NULL) {
1062 rw_exit(&zv->zv_suspend_lock);
1063 rw_enter(&zv->zv_suspend_lock, RW_WRITER);
1064 if (zv->zv_zilog == NULL) {
1065 zv->zv_zilog = zil_open(zv->zv_objset,
1066 zvol_get_data);
1067 zv->zv_flags |= ZVOL_WRITTEN_TO;
1068 }
1069 rw_downgrade(&zv->zv_suspend_lock);
1070 }
1071
1072 /* bio marked as FLUSH need to flush before write */
1073 if (bio_is_flush(bio))
1074 zil_commit(zv->zv_zilog, ZVOL_OBJ);
1075
1076 /* Some requests are just for flush and nothing else. */
1077 if (size == 0) {
1078 rw_exit(&zv->zv_suspend_lock);
1079 BIO_END_IO(bio, 0);
1080 goto out;
1081 }
1082
1083 zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
1084 zvr->zv = zv;
1085 zvr->bio = bio;
1086
1087 /*
1088 * To be released in the I/O function. Since the I/O functions
1089 * are asynchronous, we take it here synchronously to make
1090 * sure overlapped I/Os are properly ordered.
1091 */
1092 zvr->lr = rangelock_enter(&zv->zv_rangelock, offset, size,
1093 RL_WRITER);
1094 /*
1095 * Sync writes and discards execute zil_commit() which may need
1096 * to take a RL_READER lock on the whole block being modified
1097 * via its zillog->zl_get_data(): to avoid circular dependency
1098 * issues with taskq threads execute these requests
1099 * synchronously here in zvol_request().
1100 */
1101 need_sync = bio_is_fua(bio) ||
1102 zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
1103 if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
1104 if (zvol_request_sync || need_sync ||
1105 taskq_dispatch(zvol_taskq, zvol_discard, zvr,
1106 TQ_SLEEP) == TASKQID_INVALID)
1107 zvol_discard(zvr);
1108 } else {
1109 if (zvol_request_sync || need_sync ||
1110 taskq_dispatch(zvol_taskq, zvol_write, zvr,
1111 TQ_SLEEP) == TASKQID_INVALID)
1112 zvol_write(zvr);
1113 }
1114 } else {
1115 /*
1116 * The SCST driver, and possibly others, may issue READ I/Os
1117 * with a length of zero bytes. These empty I/Os contain no
1118 * data and require no additional handling.
1119 */
1120 if (size == 0) {
1121 BIO_END_IO(bio, 0);
1122 goto out;
1123 }
1124
1125 zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
1126 zvr->zv = zv;
1127 zvr->bio = bio;
1128
1129 rw_enter(&zv->zv_suspend_lock, RW_READER);
1130
1131 zvr->lr = rangelock_enter(&zv->zv_rangelock, offset, size,
1132 RL_READER);
1133 if (zvol_request_sync || taskq_dispatch(zvol_taskq,
1134 zvol_read, zvr, TQ_SLEEP) == TASKQID_INVALID)
1135 zvol_read(zvr);
1136 }
1137
1138 out:
1139 spl_fstrans_unmark(cookie);
1140 #ifdef HAVE_MAKE_REQUEST_FN_RET_INT
1141 return (0);
1142 #elif defined(HAVE_MAKE_REQUEST_FN_RET_QC)
1143 return (BLK_QC_T_NONE);
1144 #endif
1145 }
1146
1147 /*
1148 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1149 */
1150 static void
1151 zvol_insert(zvol_state_t *zv)
1152 {
1153 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1154 ASSERT3U(MINOR(zv->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
1155 list_insert_head(&zvol_state_list, zv);
1156 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1157 }
1158
1159 /*
1160 * Simply remove the zvol from to list of zvols.
1161 */
1162 static void
1163 zvol_remove(zvol_state_t *zv)
1164 {
1165 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1166 list_remove(&zvol_state_list, zv);
1167 hlist_del(&zv->zv_hlink);
1168 }
1169
1170 /*
1171 * Setup zv after we just own the zv->objset
1172 */
1173 static int
1174 zvol_setup_zv(zvol_state_t *zv)
1175 {
1176 uint64_t volsize;
1177 int error;
1178 uint64_t ro;
1179 objset_t *os = zv->zv_objset;
1180
1181 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1182 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
1183
1184 zv->zv_zilog = NULL;
1185 zv->zv_flags &= ~ZVOL_WRITTEN_TO;
1186
1187 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
1188 if (error)
1189 return (SET_ERROR(error));
1190
1191 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1192 if (error)
1193 return (SET_ERROR(error));
1194
1195 error = dnode_hold(os, ZVOL_OBJ, FTAG, &zv->zv_dn);
1196 if (error)
1197 return (SET_ERROR(error));
1198
1199 set_capacity(zv->zv_disk, volsize >> 9);
1200 zv->zv_volsize = volsize;
1201
1202 if (ro || dmu_objset_is_snapshot(os) ||
1203 !spa_writeable(dmu_objset_spa(os))) {
1204 set_disk_ro(zv->zv_disk, 1);
1205 zv->zv_flags |= ZVOL_RDONLY;
1206 } else {
1207 set_disk_ro(zv->zv_disk, 0);
1208 zv->zv_flags &= ~ZVOL_RDONLY;
1209 }
1210 return (0);
1211 }
1212
1213 /*
1214 * Shutdown every zv_objset related stuff except zv_objset itself.
1215 * The is the reverse of zvol_setup_zv.
1216 */
1217 static void
1218 zvol_shutdown_zv(zvol_state_t *zv)
1219 {
1220 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
1221 RW_LOCK_HELD(&zv->zv_suspend_lock));
1222
1223 if (zv->zv_flags & ZVOL_WRITTEN_TO) {
1224 ASSERT(zv->zv_zilog != NULL);
1225 zil_close(zv->zv_zilog);
1226 }
1227
1228 zv->zv_zilog = NULL;
1229
1230 dnode_rele(zv->zv_dn, FTAG);
1231 zv->zv_dn = NULL;
1232
1233 /*
1234 * Evict cached data. We must write out any dirty data before
1235 * disowning the dataset.
1236 */
1237 if (zv->zv_flags & ZVOL_WRITTEN_TO)
1238 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1239 (void) dmu_objset_evict_dbufs(zv->zv_objset);
1240 }
1241
1242 /*
1243 * return the proper tag for rollback and recv
1244 */
1245 void *
1246 zvol_tag(zvol_state_t *zv)
1247 {
1248 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1249 return (zv->zv_open_count > 0 ? zv : NULL);
1250 }
1251
1252 /*
1253 * Suspend the zvol for recv and rollback.
1254 */
1255 zvol_state_t *
1256 zvol_suspend(const char *name)
1257 {
1258 zvol_state_t *zv;
1259
1260 zv = zvol_find_by_name(name, RW_WRITER);
1261
1262 if (zv == NULL)
1263 return (NULL);
1264
1265 /* block all I/O, release in zvol_resume. */
1266 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1267 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1268
1269 atomic_inc(&zv->zv_suspend_ref);
1270
1271 if (zv->zv_open_count > 0)
1272 zvol_shutdown_zv(zv);
1273
1274 /*
1275 * do not hold zv_state_lock across suspend/resume to
1276 * avoid locking up zvol lookups
1277 */
1278 mutex_exit(&zv->zv_state_lock);
1279
1280 /* zv_suspend_lock is released in zvol_resume() */
1281 return (zv);
1282 }
1283
1284 int
1285 zvol_resume(zvol_state_t *zv)
1286 {
1287 int error = 0;
1288
1289 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1290
1291 mutex_enter(&zv->zv_state_lock);
1292
1293 if (zv->zv_open_count > 0) {
1294 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
1295 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
1296 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
1297 dmu_objset_rele(zv->zv_objset, zv);
1298
1299 error = zvol_setup_zv(zv);
1300 }
1301
1302 mutex_exit(&zv->zv_state_lock);
1303
1304 rw_exit(&zv->zv_suspend_lock);
1305 /*
1306 * We need this because we don't hold zvol_state_lock while releasing
1307 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1308 * zv_suspend_lock to determine it is safe to free because rwlock is
1309 * not inherent atomic.
1310 */
1311 atomic_dec(&zv->zv_suspend_ref);
1312
1313 return (SET_ERROR(error));
1314 }
1315
1316 static int
1317 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
1318 {
1319 objset_t *os;
1320 int error, locked = 0;
1321 boolean_t ro;
1322
1323 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1324 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1325
1326 /*
1327 * In all other cases the spa_namespace_lock is taken before the
1328 * bdev->bd_mutex lock. But in this case the Linux __blkdev_get()
1329 * function calls fops->open() with the bdev->bd_mutex lock held.
1330 * This deadlock can be easily observed with zvols used as vdevs.
1331 *
1332 * To avoid a potential lock inversion deadlock we preemptively
1333 * try to take the spa_namespace_lock(). Normally it will not
1334 * be contended and this is safe because spa_open_common() handles
1335 * the case where the caller already holds the spa_namespace_lock.
1336 *
1337 * When it is contended we risk a lock inversion if we were to
1338 * block waiting for the lock. Luckily, the __blkdev_get()
1339 * function allows us to return -ERESTARTSYS which will result in
1340 * bdev->bd_mutex being dropped, reacquired, and fops->open() being
1341 * called again. This process can be repeated safely until both
1342 * locks are acquired.
1343 */
1344 if (!mutex_owned(&spa_namespace_lock)) {
1345 locked = mutex_tryenter(&spa_namespace_lock);
1346 if (!locked)
1347 return (-SET_ERROR(ERESTARTSYS));
1348 }
1349
1350 ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
1351 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
1352 if (error)
1353 goto out_mutex;
1354
1355 zv->zv_objset = os;
1356
1357 error = zvol_setup_zv(zv);
1358
1359 if (error) {
1360 dmu_objset_disown(os, 1, zv);
1361 zv->zv_objset = NULL;
1362 }
1363
1364 out_mutex:
1365 if (locked)
1366 mutex_exit(&spa_namespace_lock);
1367 return (SET_ERROR(-error));
1368 }
1369
1370 static void
1371 zvol_last_close(zvol_state_t *zv)
1372 {
1373 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1374 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1375
1376 zvol_shutdown_zv(zv);
1377
1378 dmu_objset_disown(zv->zv_objset, 1, zv);
1379 zv->zv_objset = NULL;
1380 }
1381
1382 static int
1383 zvol_open(struct block_device *bdev, fmode_t flag)
1384 {
1385 zvol_state_t *zv;
1386 int error = 0;
1387 boolean_t drop_suspend = B_TRUE;
1388
1389 rw_enter(&zvol_state_lock, RW_READER);
1390 /*
1391 * Obtain a copy of private_data under the zvol_state_lock to make
1392 * sure that either the result of zvol free code path setting
1393 * bdev->bd_disk->private_data to NULL is observed, or zvol_free()
1394 * is not called on this zv because of the positive zv_open_count.
1395 */
1396 zv = bdev->bd_disk->private_data;
1397 if (zv == NULL) {
1398 rw_exit(&zvol_state_lock);
1399 return (SET_ERROR(-ENXIO));
1400 }
1401
1402 mutex_enter(&zv->zv_state_lock);
1403 /*
1404 * make sure zvol is not suspended during first open
1405 * (hold zv_suspend_lock) and respect proper lock acquisition
1406 * ordering - zv_suspend_lock before zv_state_lock
1407 */
1408 if (zv->zv_open_count == 0) {
1409 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
1410 mutex_exit(&zv->zv_state_lock);
1411 rw_enter(&zv->zv_suspend_lock, RW_READER);
1412 mutex_enter(&zv->zv_state_lock);
1413 /* check to see if zv_suspend_lock is needed */
1414 if (zv->zv_open_count != 0) {
1415 rw_exit(&zv->zv_suspend_lock);
1416 drop_suspend = B_FALSE;
1417 }
1418 }
1419 } else {
1420 drop_suspend = B_FALSE;
1421 }
1422 rw_exit(&zvol_state_lock);
1423
1424 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1425 ASSERT(zv->zv_open_count != 0 || RW_READ_HELD(&zv->zv_suspend_lock));
1426
1427 if (zv->zv_open_count == 0) {
1428 error = zvol_first_open(zv, !(flag & FMODE_WRITE));
1429 if (error)
1430 goto out_mutex;
1431 }
1432
1433 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
1434 error = -EROFS;
1435 goto out_open_count;
1436 }
1437
1438 zv->zv_open_count++;
1439
1440 mutex_exit(&zv->zv_state_lock);
1441 if (drop_suspend)
1442 rw_exit(&zv->zv_suspend_lock);
1443
1444 check_disk_change(bdev);
1445
1446 return (0);
1447
1448 out_open_count:
1449 if (zv->zv_open_count == 0)
1450 zvol_last_close(zv);
1451
1452 out_mutex:
1453 mutex_exit(&zv->zv_state_lock);
1454 if (drop_suspend)
1455 rw_exit(&zv->zv_suspend_lock);
1456 if (error == -ERESTARTSYS)
1457 schedule();
1458
1459 return (SET_ERROR(error));
1460 }
1461
1462 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1463 static void
1464 #else
1465 static int
1466 #endif
1467 zvol_release(struct gendisk *disk, fmode_t mode)
1468 {
1469 zvol_state_t *zv;
1470 boolean_t drop_suspend = B_TRUE;
1471
1472 rw_enter(&zvol_state_lock, RW_READER);
1473 zv = disk->private_data;
1474
1475 mutex_enter(&zv->zv_state_lock);
1476 ASSERT(zv->zv_open_count > 0);
1477 /*
1478 * make sure zvol is not suspended during last close
1479 * (hold zv_suspend_lock) and respect proper lock acquisition
1480 * ordering - zv_suspend_lock before zv_state_lock
1481 */
1482 if (zv->zv_open_count == 1) {
1483 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
1484 mutex_exit(&zv->zv_state_lock);
1485 rw_enter(&zv->zv_suspend_lock, RW_READER);
1486 mutex_enter(&zv->zv_state_lock);
1487 /* check to see if zv_suspend_lock is needed */
1488 if (zv->zv_open_count != 1) {
1489 rw_exit(&zv->zv_suspend_lock);
1490 drop_suspend = B_FALSE;
1491 }
1492 }
1493 } else {
1494 drop_suspend = B_FALSE;
1495 }
1496 rw_exit(&zvol_state_lock);
1497
1498 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1499 ASSERT(zv->zv_open_count != 1 || RW_READ_HELD(&zv->zv_suspend_lock));
1500
1501 zv->zv_open_count--;
1502 if (zv->zv_open_count == 0)
1503 zvol_last_close(zv);
1504
1505 mutex_exit(&zv->zv_state_lock);
1506
1507 if (drop_suspend)
1508 rw_exit(&zv->zv_suspend_lock);
1509
1510 #ifndef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1511 return (0);
1512 #endif
1513 }
1514
1515 static int
1516 zvol_ioctl(struct block_device *bdev, fmode_t mode,
1517 unsigned int cmd, unsigned long arg)
1518 {
1519 zvol_state_t *zv = bdev->bd_disk->private_data;
1520 int error = 0;
1521
1522 ASSERT3U(zv->zv_open_count, >, 0);
1523
1524 switch (cmd) {
1525 case BLKFLSBUF:
1526 fsync_bdev(bdev);
1527 invalidate_bdev(bdev);
1528 rw_enter(&zv->zv_suspend_lock, RW_READER);
1529
1530 if (!(zv->zv_flags & ZVOL_RDONLY))
1531 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1532
1533 rw_exit(&zv->zv_suspend_lock);
1534 break;
1535
1536 case BLKZNAME:
1537 mutex_enter(&zv->zv_state_lock);
1538 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
1539 mutex_exit(&zv->zv_state_lock);
1540 break;
1541
1542 default:
1543 error = -ENOTTY;
1544 break;
1545 }
1546
1547 return (SET_ERROR(error));
1548 }
1549
1550 #ifdef CONFIG_COMPAT
1551 static int
1552 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
1553 unsigned cmd, unsigned long arg)
1554 {
1555 return (zvol_ioctl(bdev, mode, cmd, arg));
1556 }
1557 #else
1558 #define zvol_compat_ioctl NULL
1559 #endif
1560
1561 /*
1562 * Linux 2.6.38 preferred interface.
1563 */
1564 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1565 static unsigned int
1566 zvol_check_events(struct gendisk *disk, unsigned int clearing)
1567 {
1568 unsigned int mask = 0;
1569
1570 rw_enter(&zvol_state_lock, RW_READER);
1571
1572 zvol_state_t *zv = disk->private_data;
1573 if (zv != NULL) {
1574 mutex_enter(&zv->zv_state_lock);
1575 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1576 zv->zv_changed = 0;
1577 mutex_exit(&zv->zv_state_lock);
1578 }
1579
1580 rw_exit(&zvol_state_lock);
1581
1582 return (mask);
1583 }
1584 #else
1585 static int zvol_media_changed(struct gendisk *disk)
1586 {
1587 int changed = 0;
1588
1589 rw_enter(&zvol_state_lock, RW_READER);
1590
1591 zvol_state_t *zv = disk->private_data;
1592 if (zv != NULL) {
1593 mutex_enter(&zv->zv_state_lock);
1594 changed = zv->zv_changed;
1595 zv->zv_changed = 0;
1596 mutex_exit(&zv->zv_state_lock);
1597 }
1598
1599 rw_exit(&zvol_state_lock);
1600
1601 return (changed);
1602 }
1603 #endif
1604
1605 static int zvol_revalidate_disk(struct gendisk *disk)
1606 {
1607 rw_enter(&zvol_state_lock, RW_READER);
1608
1609 zvol_state_t *zv = disk->private_data;
1610 if (zv != NULL) {
1611 mutex_enter(&zv->zv_state_lock);
1612 set_capacity(zv->zv_disk, zv->zv_volsize >> SECTOR_BITS);
1613 mutex_exit(&zv->zv_state_lock);
1614 }
1615
1616 rw_exit(&zvol_state_lock);
1617
1618 return (0);
1619 }
1620
1621 /*
1622 * Provide a simple virtual geometry for legacy compatibility. For devices
1623 * smaller than 1 MiB a small head and sector count is used to allow very
1624 * tiny devices. For devices over 1 Mib a standard head and sector count
1625 * is used to keep the cylinders count reasonable.
1626 */
1627 static int
1628 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1629 {
1630 zvol_state_t *zv = bdev->bd_disk->private_data;
1631 sector_t sectors;
1632
1633 ASSERT3U(zv->zv_open_count, >, 0);
1634
1635 sectors = get_capacity(zv->zv_disk);
1636
1637 if (sectors > 2048) {
1638 geo->heads = 16;
1639 geo->sectors = 63;
1640 } else {
1641 geo->heads = 2;
1642 geo->sectors = 4;
1643 }
1644
1645 geo->start = 0;
1646 geo->cylinders = sectors / (geo->heads * geo->sectors);
1647
1648 return (0);
1649 }
1650
1651 static struct kobject *
1652 zvol_probe(dev_t dev, int *part, void *arg)
1653 {
1654 zvol_state_t *zv;
1655 struct kobject *kobj;
1656
1657 zv = zvol_find_by_dev(dev);
1658 kobj = zv ? get_disk_and_module(zv->zv_disk) : NULL;
1659 ASSERT(zv == NULL || MUTEX_HELD(&zv->zv_state_lock));
1660 if (zv)
1661 mutex_exit(&zv->zv_state_lock);
1662
1663 return (kobj);
1664 }
1665
1666 static struct block_device_operations zvol_ops = {
1667 .open = zvol_open,
1668 .release = zvol_release,
1669 .ioctl = zvol_ioctl,
1670 .compat_ioctl = zvol_compat_ioctl,
1671 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1672 .check_events = zvol_check_events,
1673 #else
1674 .media_changed = zvol_media_changed,
1675 #endif
1676 .revalidate_disk = zvol_revalidate_disk,
1677 .getgeo = zvol_getgeo,
1678 .owner = THIS_MODULE,
1679 };
1680
1681 /*
1682 * Allocate memory for a new zvol_state_t and setup the required
1683 * request queue and generic disk structures for the block device.
1684 */
1685 static zvol_state_t *
1686 zvol_alloc(dev_t dev, const char *name)
1687 {
1688 zvol_state_t *zv;
1689 uint64_t volmode;
1690
1691 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1692 return (NULL);
1693
1694 if (volmode == ZFS_VOLMODE_DEFAULT)
1695 volmode = zvol_volmode;
1696
1697 if (volmode == ZFS_VOLMODE_NONE)
1698 return (NULL);
1699
1700 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1701
1702 list_link_init(&zv->zv_next);
1703
1704 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1705
1706 zv->zv_queue = blk_alloc_queue(GFP_ATOMIC);
1707 if (zv->zv_queue == NULL)
1708 goto out_kmem;
1709
1710 blk_queue_make_request(zv->zv_queue, zvol_request);
1711 blk_queue_set_write_cache(zv->zv_queue, B_TRUE, B_TRUE);
1712
1713 /* Limit read-ahead to a single page to prevent over-prefetching. */
1714 blk_queue_set_read_ahead(zv->zv_queue, 1);
1715
1716 /* Disable write merging in favor of the ZIO pipeline. */
1717 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zv->zv_queue);
1718
1719 zv->zv_disk = alloc_disk(ZVOL_MINORS);
1720 if (zv->zv_disk == NULL)
1721 goto out_queue;
1722
1723 zv->zv_queue->queuedata = zv;
1724 zv->zv_dev = dev;
1725 zv->zv_open_count = 0;
1726 strlcpy(zv->zv_name, name, MAXNAMELEN);
1727
1728 rangelock_init(&zv->zv_rangelock, NULL, NULL);
1729 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1730
1731 zv->zv_disk->major = zvol_major;
1732 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1733 zv->zv_disk->events = DISK_EVENT_MEDIA_CHANGE;
1734 #endif
1735
1736 if (volmode == ZFS_VOLMODE_DEV) {
1737 /*
1738 * ZFS_VOLMODE_DEV disable partitioning on ZVOL devices: set
1739 * gendisk->minors = 1 as noted in include/linux/genhd.h.
1740 * Also disable extended partition numbers (GENHD_FL_EXT_DEVT)
1741 * and suppresses partition scanning (GENHD_FL_NO_PART_SCAN)
1742 * setting gendisk->flags accordingly.
1743 */
1744 zv->zv_disk->minors = 1;
1745 #if defined(GENHD_FL_EXT_DEVT)
1746 zv->zv_disk->flags &= ~GENHD_FL_EXT_DEVT;
1747 #endif
1748 #if defined(GENHD_FL_NO_PART_SCAN)
1749 zv->zv_disk->flags |= GENHD_FL_NO_PART_SCAN;
1750 #endif
1751 }
1752 zv->zv_disk->first_minor = (dev & MINORMASK);
1753 zv->zv_disk->fops = &zvol_ops;
1754 zv->zv_disk->private_data = zv;
1755 zv->zv_disk->queue = zv->zv_queue;
1756 snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
1757 ZVOL_DEV_NAME, (dev & MINORMASK));
1758
1759 return (zv);
1760
1761 out_queue:
1762 blk_cleanup_queue(zv->zv_queue);
1763 out_kmem:
1764 kmem_free(zv, sizeof (zvol_state_t));
1765
1766 return (NULL);
1767 }
1768
1769 /*
1770 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1771 * At this time, the structure is not opened by anyone, is taken off
1772 * the zvol_state_list, and has its private data set to NULL.
1773 * The zvol_state_lock is dropped.
1774 */
1775 static void
1776 zvol_free(void *arg)
1777 {
1778 zvol_state_t *zv = arg;
1779
1780 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1781 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1782 ASSERT(zv->zv_open_count == 0);
1783 ASSERT(zv->zv_disk->private_data == NULL);
1784
1785 rw_destroy(&zv->zv_suspend_lock);
1786 rangelock_fini(&zv->zv_rangelock);
1787
1788 del_gendisk(zv->zv_disk);
1789 blk_cleanup_queue(zv->zv_queue);
1790 put_disk(zv->zv_disk);
1791
1792 ida_simple_remove(&zvol_ida, MINOR(zv->zv_dev) >> ZVOL_MINOR_BITS);
1793
1794 mutex_destroy(&zv->zv_state_lock);
1795 dataset_kstats_destroy(&zv->zv_kstat);
1796
1797 kmem_free(zv, sizeof (zvol_state_t));
1798 }
1799
1800 /*
1801 * Create a block device minor node and setup the linkage between it
1802 * and the specified volume. Once this function returns the block
1803 * device is live and ready for use.
1804 */
1805 static int
1806 zvol_create_minor_impl(const char *name)
1807 {
1808 zvol_state_t *zv;
1809 objset_t *os;
1810 dmu_object_info_t *doi;
1811 uint64_t volsize;
1812 uint64_t len;
1813 unsigned minor = 0;
1814 int error = 0;
1815 int idx;
1816 uint64_t hash = zvol_name_hash(name);
1817
1818 if (zvol_inhibit_dev)
1819 return (0);
1820
1821 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1822 if (idx < 0)
1823 return (SET_ERROR(-idx));
1824 minor = idx << ZVOL_MINOR_BITS;
1825
1826 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1827 if (zv) {
1828 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1829 mutex_exit(&zv->zv_state_lock);
1830 ida_simple_remove(&zvol_ida, idx);
1831 return (SET_ERROR(EEXIST));
1832 }
1833
1834 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1835
1836 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1837 if (error)
1838 goto out_doi;
1839
1840 error = dmu_object_info(os, ZVOL_OBJ, doi);
1841 if (error)
1842 goto out_dmu_objset_disown;
1843
1844 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1845 if (error)
1846 goto out_dmu_objset_disown;
1847
1848 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1849 if (zv == NULL) {
1850 error = SET_ERROR(EAGAIN);
1851 goto out_dmu_objset_disown;
1852 }
1853 zv->zv_hash = hash;
1854
1855 if (dmu_objset_is_snapshot(os))
1856 zv->zv_flags |= ZVOL_RDONLY;
1857
1858 zv->zv_volblocksize = doi->doi_data_block_size;
1859 zv->zv_volsize = volsize;
1860 zv->zv_objset = os;
1861
1862 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1863
1864 blk_queue_max_hw_sectors(zv->zv_queue, (DMU_MAX_ACCESS / 4) >> 9);
1865 blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
1866 blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
1867 blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
1868 blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
1869 blk_queue_max_discard_sectors(zv->zv_queue,
1870 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1871 blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
1872 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_queue);
1873 #ifdef QUEUE_FLAG_NONROT
1874 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_queue);
1875 #endif
1876 #ifdef QUEUE_FLAG_ADD_RANDOM
1877 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_queue);
1878 #endif
1879 /* This flag was introduced in kernel version 4.12. */
1880 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1881 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_queue);
1882 #endif
1883
1884 if (spa_writeable(dmu_objset_spa(os))) {
1885 if (zil_replay_disable)
1886 zil_destroy(dmu_objset_zil(os), B_FALSE);
1887 else
1888 zil_replay(os, zv, zvol_replay_vector);
1889 }
1890 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1891 dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1892
1893 /*
1894 * When udev detects the addition of the device it will immediately
1895 * invoke blkid(8) to determine the type of content on the device.
1896 * Prefetching the blocks commonly scanned by blkid(8) will speed
1897 * up this process.
1898 */
1899 len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
1900 if (len > 0) {
1901 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1902 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1903 ZIO_PRIORITY_SYNC_READ);
1904 }
1905
1906 zv->zv_objset = NULL;
1907 out_dmu_objset_disown:
1908 dmu_objset_disown(os, B_TRUE, FTAG);
1909 out_doi:
1910 kmem_free(doi, sizeof (dmu_object_info_t));
1911
1912 if (error == 0) {
1913 rw_enter(&zvol_state_lock, RW_WRITER);
1914 zvol_insert(zv);
1915 rw_exit(&zvol_state_lock);
1916 add_disk(zv->zv_disk);
1917 } else {
1918 ida_simple_remove(&zvol_ida, idx);
1919 }
1920
1921 return (SET_ERROR(error));
1922 }
1923
1924 /*
1925 * Rename a block device minor mode for the specified volume.
1926 */
1927 static void
1928 zvol_rename_minor(zvol_state_t *zv, const char *newname)
1929 {
1930 int readonly = get_disk_ro(zv->zv_disk);
1931
1932 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1933 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1934
1935 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1936
1937 /* move to new hashtable entry */
1938 zv->zv_hash = zvol_name_hash(zv->zv_name);
1939 hlist_del(&zv->zv_hlink);
1940 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1941
1942 /*
1943 * The block device's read-only state is briefly changed causing
1944 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1945 * the name change and fixes the symlinks. This does not change
1946 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1947 * changes. This would normally be done using kobject_uevent() but
1948 * that is a GPL-only symbol which is why we need this workaround.
1949 */
1950 set_disk_ro(zv->zv_disk, !readonly);
1951 set_disk_ro(zv->zv_disk, readonly);
1952 }
1953
1954 typedef struct minors_job {
1955 list_t *list;
1956 list_node_t link;
1957 /* input */
1958 char *name;
1959 /* output */
1960 int error;
1961 } minors_job_t;
1962
1963 /*
1964 * Prefetch zvol dnodes for the minors_job
1965 */
1966 static void
1967 zvol_prefetch_minors_impl(void *arg)
1968 {
1969 minors_job_t *job = arg;
1970 char *dsname = job->name;
1971 objset_t *os = NULL;
1972
1973 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1974 FTAG, &os);
1975 if (job->error == 0) {
1976 dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
1977 dmu_objset_disown(os, B_TRUE, FTAG);
1978 }
1979 }
1980
1981 /*
1982 * Mask errors to continue dmu_objset_find() traversal
1983 */
1984 static int
1985 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1986 {
1987 minors_job_t *j = arg;
1988 list_t *minors_list = j->list;
1989 const char *name = j->name;
1990
1991 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1992
1993 /* skip the designated dataset */
1994 if (name && strcmp(dsname, name) == 0)
1995 return (0);
1996
1997 /* at this point, the dsname should name a snapshot */
1998 if (strchr(dsname, '@') == 0) {
1999 dprintf("zvol_create_snap_minor_cb(): "
2000 "%s is not a snapshot name\n", dsname);
2001 } else {
2002 minors_job_t *job;
2003 char *n = strdup(dsname);
2004 if (n == NULL)
2005 return (0);
2006
2007 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
2008 job->name = n;
2009 job->list = minors_list;
2010 job->error = 0;
2011 list_insert_tail(minors_list, job);
2012 /* don't care if dispatch fails, because job->error is 0 */
2013 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
2014 TQ_SLEEP);
2015 }
2016
2017 return (0);
2018 }
2019
2020 /*
2021 * Mask errors to continue dmu_objset_find() traversal
2022 */
2023 static int
2024 zvol_create_minors_cb(const char *dsname, void *arg)
2025 {
2026 uint64_t snapdev;
2027 int error;
2028 list_t *minors_list = arg;
2029
2030 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
2031
2032 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
2033 if (error)
2034 return (0);
2035
2036 /*
2037 * Given the name and the 'snapdev' property, create device minor nodes
2038 * with the linkages to zvols/snapshots as needed.
2039 * If the name represents a zvol, create a minor node for the zvol, then
2040 * check if its snapshots are 'visible', and if so, iterate over the
2041 * snapshots and create device minor nodes for those.
2042 */
2043 if (strchr(dsname, '@') == 0) {
2044 minors_job_t *job;
2045 char *n = strdup(dsname);
2046 if (n == NULL)
2047 return (0);
2048
2049 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
2050 job->name = n;
2051 job->list = minors_list;
2052 job->error = 0;
2053 list_insert_tail(minors_list, job);
2054 /* don't care if dispatch fails, because job->error is 0 */
2055 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
2056 TQ_SLEEP);
2057
2058 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
2059 /*
2060 * traverse snapshots only, do not traverse children,
2061 * and skip the 'dsname'
2062 */
2063 error = dmu_objset_find((char *)dsname,
2064 zvol_create_snap_minor_cb, (void *)job,
2065 DS_FIND_SNAPSHOTS);
2066 }
2067 } else {
2068 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
2069 dsname);
2070 }
2071
2072 return (0);
2073 }
2074
2075 /*
2076 * Create minors for the specified dataset, including children and snapshots.
2077 * Pay attention to the 'snapdev' property and iterate over the snapshots
2078 * only if they are 'visible'. This approach allows one to assure that the
2079 * snapshot metadata is read from disk only if it is needed.
2080 *
2081 * The name can represent a dataset to be recursively scanned for zvols and
2082 * their snapshots, or a single zvol snapshot. If the name represents a
2083 * dataset, the scan is performed in two nested stages:
2084 * - scan the dataset for zvols, and
2085 * - for each zvol, create a minor node, then check if the zvol's snapshots
2086 * are 'visible', and only then iterate over the snapshots if needed
2087 *
2088 * If the name represents a snapshot, a check is performed if the snapshot is
2089 * 'visible' (which also verifies that the parent is a zvol), and if so,
2090 * a minor node for that snapshot is created.
2091 */
2092 static int
2093 zvol_create_minors_impl(const char *name)
2094 {
2095 int error = 0;
2096 fstrans_cookie_t cookie;
2097 char *atp, *parent;
2098 list_t minors_list;
2099 minors_job_t *job;
2100
2101 if (zvol_inhibit_dev)
2102 return (0);
2103
2104 /*
2105 * This is the list for prefetch jobs. Whenever we found a match
2106 * during dmu_objset_find, we insert a minors_job to the list and do
2107 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
2108 * any lock because all list operation is done on the current thread.
2109 *
2110 * We will use this list to do zvol_create_minor_impl after prefetch
2111 * so we don't have to traverse using dmu_objset_find again.
2112 */
2113 list_create(&minors_list, sizeof (minors_job_t),
2114 offsetof(minors_job_t, link));
2115
2116 parent = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2117 (void) strlcpy(parent, name, MAXPATHLEN);
2118
2119 if ((atp = strrchr(parent, '@')) != NULL) {
2120 uint64_t snapdev;
2121
2122 *atp = '\0';
2123 error = dsl_prop_get_integer(parent, "snapdev",
2124 &snapdev, NULL);
2125
2126 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
2127 error = zvol_create_minor_impl(name);
2128 } else {
2129 cookie = spl_fstrans_mark();
2130 error = dmu_objset_find(parent, zvol_create_minors_cb,
2131 &minors_list, DS_FIND_CHILDREN);
2132 spl_fstrans_unmark(cookie);
2133 }
2134
2135 kmem_free(parent, MAXPATHLEN);
2136 taskq_wait_outstanding(system_taskq, 0);
2137
2138 /*
2139 * Prefetch is completed, we can do zvol_create_minor_impl
2140 * sequentially.
2141 */
2142 while ((job = list_head(&minors_list)) != NULL) {
2143 list_remove(&minors_list, job);
2144 if (!job->error)
2145 zvol_create_minor_impl(job->name);
2146 strfree(job->name);
2147 kmem_free(job, sizeof (minors_job_t));
2148 }
2149
2150 list_destroy(&minors_list);
2151
2152 return (SET_ERROR(error));
2153 }
2154
2155 /*
2156 * Remove minors for specified dataset including children and snapshots.
2157 */
2158 static void
2159 zvol_remove_minors_impl(const char *name)
2160 {
2161 zvol_state_t *zv, *zv_next;
2162 int namelen = ((name) ? strlen(name) : 0);
2163 taskqid_t t, tid = TASKQID_INVALID;
2164 list_t free_list;
2165
2166 if (zvol_inhibit_dev)
2167 return;
2168
2169 list_create(&free_list, sizeof (zvol_state_t),
2170 offsetof(zvol_state_t, zv_next));
2171
2172 rw_enter(&zvol_state_lock, RW_WRITER);
2173
2174 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2175 zv_next = list_next(&zvol_state_list, zv);
2176
2177 mutex_enter(&zv->zv_state_lock);
2178 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
2179 (strncmp(zv->zv_name, name, namelen) == 0 &&
2180 (zv->zv_name[namelen] == '/' ||
2181 zv->zv_name[namelen] == '@'))) {
2182 /*
2183 * By holding zv_state_lock here, we guarantee that no
2184 * one is currently using this zv
2185 */
2186
2187 /* If in use, leave alone */
2188 if (zv->zv_open_count > 0 ||
2189 atomic_read(&zv->zv_suspend_ref)) {
2190 mutex_exit(&zv->zv_state_lock);
2191 continue;
2192 }
2193
2194 zvol_remove(zv);
2195
2196 /*
2197 * Cleared while holding zvol_state_lock as a writer
2198 * which will prevent zvol_open() from opening it.
2199 */
2200 zv->zv_disk->private_data = NULL;
2201
2202 /* Drop zv_state_lock before zvol_free() */
2203 mutex_exit(&zv->zv_state_lock);
2204
2205 /* Try parallel zv_free, if failed do it in place */
2206 t = taskq_dispatch(system_taskq, zvol_free, zv,
2207 TQ_SLEEP);
2208 if (t == TASKQID_INVALID)
2209 list_insert_head(&free_list, zv);
2210 else
2211 tid = t;
2212 } else {
2213 mutex_exit(&zv->zv_state_lock);
2214 }
2215 }
2216 rw_exit(&zvol_state_lock);
2217
2218 /* Drop zvol_state_lock before calling zvol_free() */
2219 while ((zv = list_head(&free_list)) != NULL) {
2220 list_remove(&free_list, zv);
2221 zvol_free(zv);
2222 }
2223
2224 if (tid != TASKQID_INVALID)
2225 taskq_wait_outstanding(system_taskq, tid);
2226 }
2227
2228 /* Remove minor for this specific volume only */
2229 static void
2230 zvol_remove_minor_impl(const char *name)
2231 {
2232 zvol_state_t *zv = NULL, *zv_next;
2233
2234 if (zvol_inhibit_dev)
2235 return;
2236
2237 rw_enter(&zvol_state_lock, RW_WRITER);
2238
2239 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2240 zv_next = list_next(&zvol_state_list, zv);
2241
2242 mutex_enter(&zv->zv_state_lock);
2243 if (strcmp(zv->zv_name, name) == 0) {
2244 /*
2245 * By holding zv_state_lock here, we guarantee that no
2246 * one is currently using this zv
2247 */
2248
2249 /* If in use, leave alone */
2250 if (zv->zv_open_count > 0 ||
2251 atomic_read(&zv->zv_suspend_ref)) {
2252 mutex_exit(&zv->zv_state_lock);
2253 continue;
2254 }
2255 zvol_remove(zv);
2256
2257 /*
2258 * Cleared while holding zvol_state_lock as a writer
2259 * which will prevent zvol_open() from opening it.
2260 */
2261 zv->zv_disk->private_data = NULL;
2262
2263 mutex_exit(&zv->zv_state_lock);
2264 break;
2265 } else {
2266 mutex_exit(&zv->zv_state_lock);
2267 }
2268 }
2269
2270 /* Drop zvol_state_lock before calling zvol_free() */
2271 rw_exit(&zvol_state_lock);
2272
2273 if (zv != NULL)
2274 zvol_free(zv);
2275 }
2276
2277 /*
2278 * Rename minors for specified dataset including children and snapshots.
2279 */
2280 static void
2281 zvol_rename_minors_impl(const char *oldname, const char *newname)
2282 {
2283 zvol_state_t *zv, *zv_next;
2284 int oldnamelen, newnamelen;
2285
2286 if (zvol_inhibit_dev)
2287 return;
2288
2289 oldnamelen = strlen(oldname);
2290 newnamelen = strlen(newname);
2291
2292 rw_enter(&zvol_state_lock, RW_READER);
2293
2294 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2295 zv_next = list_next(&zvol_state_list, zv);
2296
2297 mutex_enter(&zv->zv_state_lock);
2298
2299 if (strcmp(zv->zv_name, oldname) == 0) {
2300 zvol_rename_minor(zv, newname);
2301 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
2302 (zv->zv_name[oldnamelen] == '/' ||
2303 zv->zv_name[oldnamelen] == '@')) {
2304 char *name = kmem_asprintf("%s%c%s", newname,
2305 zv->zv_name[oldnamelen],
2306 zv->zv_name + oldnamelen + 1);
2307 zvol_rename_minor(zv, name);
2308 strfree(name);
2309 }
2310
2311 mutex_exit(&zv->zv_state_lock);
2312 }
2313
2314 rw_exit(&zvol_state_lock);
2315 }
2316
2317 typedef struct zvol_snapdev_cb_arg {
2318 uint64_t snapdev;
2319 } zvol_snapdev_cb_arg_t;
2320
2321 static int
2322 zvol_set_snapdev_cb(const char *dsname, void *param)
2323 {
2324 zvol_snapdev_cb_arg_t *arg = param;
2325
2326 if (strchr(dsname, '@') == NULL)
2327 return (0);
2328
2329 switch (arg->snapdev) {
2330 case ZFS_SNAPDEV_VISIBLE:
2331 (void) zvol_create_minor_impl(dsname);
2332 break;
2333 case ZFS_SNAPDEV_HIDDEN:
2334 (void) zvol_remove_minor_impl(dsname);
2335 break;
2336 }
2337
2338 return (0);
2339 }
2340
2341 static void
2342 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
2343 {
2344 zvol_snapdev_cb_arg_t arg = {snapdev};
2345 fstrans_cookie_t cookie = spl_fstrans_mark();
2346 /*
2347 * The zvol_set_snapdev_sync() sets snapdev appropriately
2348 * in the dataset hierarchy. Here, we only scan snapshots.
2349 */
2350 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
2351 spl_fstrans_unmark(cookie);
2352 }
2353
2354 typedef struct zvol_volmode_cb_arg {
2355 uint64_t volmode;
2356 } zvol_volmode_cb_arg_t;
2357
2358 static void
2359 zvol_set_volmode_impl(char *name, uint64_t volmode)
2360 {
2361 fstrans_cookie_t cookie = spl_fstrans_mark();
2362
2363 if (strchr(name, '@') != NULL)
2364 return;
2365
2366 /*
2367 * It's unfortunate we need to remove minors before we create new ones:
2368 * this is necessary because our backing gendisk (zvol_state->zv_disk)
2369 * coule be different when we set, for instance, volmode from "geom"
2370 * to "dev" (or vice versa).
2371 * A possible optimization is to modify our consumers so we don't get
2372 * called when "volmode" does not change.
2373 */
2374 switch (volmode) {
2375 case ZFS_VOLMODE_NONE:
2376 (void) zvol_remove_minor_impl(name);
2377 break;
2378 case ZFS_VOLMODE_GEOM:
2379 case ZFS_VOLMODE_DEV:
2380 (void) zvol_remove_minor_impl(name);
2381 (void) zvol_create_minor_impl(name);
2382 break;
2383 case ZFS_VOLMODE_DEFAULT:
2384 (void) zvol_remove_minor_impl(name);
2385 if (zvol_volmode == ZFS_VOLMODE_NONE)
2386 break;
2387 else /* if zvol_volmode is invalid defaults to "geom" */
2388 (void) zvol_create_minor_impl(name);
2389 break;
2390 }
2391
2392 spl_fstrans_unmark(cookie);
2393 }
2394
2395 static zvol_task_t *
2396 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
2397 uint64_t value)
2398 {
2399 zvol_task_t *task;
2400 char *delim;
2401
2402 /* Never allow tasks on hidden names. */
2403 if (name1[0] == '$')
2404 return (NULL);
2405
2406 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2407 task->op = op;
2408 task->value = value;
2409 delim = strchr(name1, '/');
2410 strlcpy(task->pool, name1, delim ? (delim - name1 + 1) : MAXNAMELEN);
2411
2412 strlcpy(task->name1, name1, MAXNAMELEN);
2413 if (name2 != NULL)
2414 strlcpy(task->name2, name2, MAXNAMELEN);
2415
2416 return (task);
2417 }
2418
2419 static void
2420 zvol_task_free(zvol_task_t *task)
2421 {
2422 kmem_free(task, sizeof (zvol_task_t));
2423 }
2424
2425 /*
2426 * The worker thread function performed asynchronously.
2427 */
2428 static void
2429 zvol_task_cb(void *param)
2430 {
2431 zvol_task_t *task = (zvol_task_t *)param;
2432
2433 switch (task->op) {
2434 case ZVOL_ASYNC_CREATE_MINORS:
2435 (void) zvol_create_minors_impl(task->name1);
2436 break;
2437 case ZVOL_ASYNC_REMOVE_MINORS:
2438 zvol_remove_minors_impl(task->name1);
2439 break;
2440 case ZVOL_ASYNC_RENAME_MINORS:
2441 zvol_rename_minors_impl(task->name1, task->name2);
2442 break;
2443 case ZVOL_ASYNC_SET_SNAPDEV:
2444 zvol_set_snapdev_impl(task->name1, task->value);
2445 break;
2446 case ZVOL_ASYNC_SET_VOLMODE:
2447 zvol_set_volmode_impl(task->name1, task->value);
2448 break;
2449 default:
2450 VERIFY(0);
2451 break;
2452 }
2453
2454 zvol_task_free(task);
2455 }
2456
2457 typedef struct zvol_set_prop_int_arg {
2458 const char *zsda_name;
2459 uint64_t zsda_value;
2460 zprop_source_t zsda_source;
2461 dmu_tx_t *zsda_tx;
2462 } zvol_set_prop_int_arg_t;
2463
2464 /*
2465 * Sanity check the dataset for safe use by the sync task. No additional
2466 * conditions are imposed.
2467 */
2468 static int
2469 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
2470 {
2471 zvol_set_prop_int_arg_t *zsda = arg;
2472 dsl_pool_t *dp = dmu_tx_pool(tx);
2473 dsl_dir_t *dd;
2474 int error;
2475
2476 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
2477 if (error != 0)
2478 return (error);
2479
2480 dsl_dir_rele(dd, FTAG);
2481
2482 return (error);
2483 }
2484
2485 /* ARGSUSED */
2486 static int
2487 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2488 {
2489 char dsname[MAXNAMELEN];
2490 zvol_task_t *task;
2491 uint64_t snapdev;
2492
2493 dsl_dataset_name(ds, dsname);
2494 if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
2495 return (0);
2496 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
2497 if (task == NULL)
2498 return (0);
2499
2500 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
2501 task, TQ_SLEEP);
2502 return (0);
2503 }
2504
2505 /*
2506 * Traverse all child datasets and apply snapdev appropriately.
2507 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
2508 * dataset and read the effective "snapdev" on every child in the callback
2509 * function: this is because the value is not guaranteed to be the same in the
2510 * whole dataset hierarchy.
2511 */
2512 static void
2513 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
2514 {
2515 zvol_set_prop_int_arg_t *zsda = arg;
2516 dsl_pool_t *dp = dmu_tx_pool(tx);
2517 dsl_dir_t *dd;
2518 dsl_dataset_t *ds;
2519 int error;
2520
2521 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2522 zsda->zsda_tx = tx;
2523
2524 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2525 if (error == 0) {
2526 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
2527 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2528 &zsda->zsda_value, zsda->zsda_tx);
2529 dsl_dataset_rele(ds, FTAG);
2530 }
2531 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
2532 zsda, DS_FIND_CHILDREN);
2533
2534 dsl_dir_rele(dd, FTAG);
2535 }
2536
2537 int
2538 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
2539 {
2540 zvol_set_prop_int_arg_t zsda;
2541
2542 zsda.zsda_name = ddname;
2543 zsda.zsda_source = source;
2544 zsda.zsda_value = snapdev;
2545
2546 return (dsl_sync_task(ddname, zvol_set_snapdev_check,
2547 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2548 }
2549
2550 /*
2551 * Sanity check the dataset for safe use by the sync task. No additional
2552 * conditions are imposed.
2553 */
2554 static int
2555 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
2556 {
2557 zvol_set_prop_int_arg_t *zsda = arg;
2558 dsl_pool_t *dp = dmu_tx_pool(tx);
2559 dsl_dir_t *dd;
2560 int error;
2561
2562 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
2563 if (error != 0)
2564 return (error);
2565
2566 dsl_dir_rele(dd, FTAG);
2567
2568 return (error);
2569 }
2570
2571 /* ARGSUSED */
2572 static int
2573 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2574 {
2575 char dsname[MAXNAMELEN];
2576 zvol_task_t *task;
2577 uint64_t volmode;
2578
2579 dsl_dataset_name(ds, dsname);
2580 if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
2581 return (0);
2582 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
2583 if (task == NULL)
2584 return (0);
2585
2586 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
2587 task, TQ_SLEEP);
2588 return (0);
2589 }
2590
2591 /*
2592 * Traverse all child datasets and apply volmode appropriately.
2593 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
2594 * dataset and read the effective "volmode" on every child in the callback
2595 * function: this is because the value is not guaranteed to be the same in the
2596 * whole dataset hierarchy.
2597 */
2598 static void
2599 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
2600 {
2601 zvol_set_prop_int_arg_t *zsda = arg;
2602 dsl_pool_t *dp = dmu_tx_pool(tx);
2603 dsl_dir_t *dd;
2604 dsl_dataset_t *ds;
2605 int error;
2606
2607 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2608 zsda->zsda_tx = tx;
2609
2610 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2611 if (error == 0) {
2612 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
2613 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2614 &zsda->zsda_value, zsda->zsda_tx);
2615 dsl_dataset_rele(ds, FTAG);
2616 }
2617
2618 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
2619 zsda, DS_FIND_CHILDREN);
2620
2621 dsl_dir_rele(dd, FTAG);
2622 }
2623
2624 int
2625 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
2626 {
2627 zvol_set_prop_int_arg_t zsda;
2628
2629 zsda.zsda_name = ddname;
2630 zsda.zsda_source = source;
2631 zsda.zsda_value = volmode;
2632
2633 return (dsl_sync_task(ddname, zvol_set_volmode_check,
2634 zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2635 }
2636
2637 void
2638 zvol_create_minors(spa_t *spa, const char *name, boolean_t async)
2639 {
2640 zvol_task_t *task;
2641 taskqid_t id;
2642
2643 task = zvol_task_alloc(ZVOL_ASYNC_CREATE_MINORS, name, NULL, ~0ULL);
2644 if (task == NULL)
2645 return;
2646
2647 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2648 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2649 taskq_wait_id(spa->spa_zvol_taskq, id);
2650 }
2651
2652 void
2653 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
2654 {
2655 zvol_task_t *task;
2656 taskqid_t id;
2657
2658 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
2659 if (task == NULL)
2660 return;
2661
2662 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2663 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2664 taskq_wait_id(spa->spa_zvol_taskq, id);
2665 }
2666
2667 void
2668 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
2669 boolean_t async)
2670 {
2671 zvol_task_t *task;
2672 taskqid_t id;
2673
2674 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
2675 if (task == NULL)
2676 return;
2677
2678 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2679 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2680 taskq_wait_id(spa->spa_zvol_taskq, id);
2681 }
2682
2683 int
2684 zvol_init(void)
2685 {
2686 int threads = MIN(MAX(zvol_threads, 1), 1024);
2687 int i, error;
2688
2689 list_create(&zvol_state_list, sizeof (zvol_state_t),
2690 offsetof(zvol_state_t, zv_next));
2691 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
2692 ida_init(&zvol_ida);
2693
2694 zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
2695 threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
2696 if (zvol_taskq == NULL) {
2697 printk(KERN_INFO "ZFS: taskq_create() failed\n");
2698 error = -ENOMEM;
2699 goto out;
2700 }
2701
2702 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
2703 KM_SLEEP);
2704 if (!zvol_htable) {
2705 error = -ENOMEM;
2706 goto out_taskq;
2707 }
2708 for (i = 0; i < ZVOL_HT_SIZE; i++)
2709 INIT_HLIST_HEAD(&zvol_htable[i]);
2710
2711 error = register_blkdev(zvol_major, ZVOL_DRIVER);
2712 if (error) {
2713 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
2714 goto out_free;
2715 }
2716
2717 blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
2718 THIS_MODULE, zvol_probe, NULL, NULL);
2719
2720 return (0);
2721
2722 out_free:
2723 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2724 out_taskq:
2725 taskq_destroy(zvol_taskq);
2726 out:
2727 ida_destroy(&zvol_ida);
2728 rw_destroy(&zvol_state_lock);
2729 list_destroy(&zvol_state_list);
2730
2731 return (SET_ERROR(error));
2732 }
2733
2734 void
2735 zvol_fini(void)
2736 {
2737 zvol_remove_minors_impl(NULL);
2738
2739 blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
2740 unregister_blkdev(zvol_major, ZVOL_DRIVER);
2741 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2742
2743 taskq_destroy(zvol_taskq);
2744 list_destroy(&zvol_state_list);
2745 rw_destroy(&zvol_state_lock);
2746
2747 ida_destroy(&zvol_ida);
2748 }
2749
2750 /* BEGIN CSTYLED */
2751 module_param(zvol_inhibit_dev, uint, 0644);
2752 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
2753
2754 module_param(zvol_major, uint, 0444);
2755 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
2756
2757 module_param(zvol_threads, uint, 0444);
2758 MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
2759
2760 module_param(zvol_request_sync, uint, 0644);
2761 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
2762
2763 module_param(zvol_max_discard_blocks, ulong, 0444);
2764 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
2765
2766 module_param(zvol_prefetch_bytes, uint, 0644);
2767 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
2768
2769 module_param(zvol_volmode, uint, 0644);
2770 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
2771 /* END CSTYLED */