]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zvol.c
Add support for DISCARD to ZVOLs.
[mirror_zfs-debian.git] / module / zfs / zvol.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 */
37
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_prop.h>
41 #include <sys/zap.h>
42 #include <sys/zil_impl.h>
43 #include <sys/zio.h>
44 #include <sys/zfs_rlock.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/zvol.h>
47 #include <linux/blkdev_compat.h>
48
49 unsigned int zvol_major = ZVOL_MAJOR;
50 unsigned int zvol_threads = 32;
51
52 static taskq_t *zvol_taskq;
53 static kmutex_t zvol_state_lock;
54 static list_t zvol_state_list;
55 static char *zvol_tag = "zvol_tag";
56
57 /*
58 * The in-core state of each volume.
59 */
60 typedef struct zvol_state {
61 char zv_name[MAXNAMELEN]; /* name */
62 uint64_t zv_volsize; /* advertised space */
63 uint64_t zv_volblocksize;/* volume block size */
64 objset_t *zv_objset; /* objset handle */
65 uint32_t zv_flags; /* ZVOL_* flags */
66 uint32_t zv_open_count; /* open counts */
67 uint32_t zv_changed; /* disk changed */
68 zilog_t *zv_zilog; /* ZIL handle */
69 znode_t zv_znode; /* for range locking */
70 dmu_buf_t *zv_dbuf; /* bonus handle */
71 dev_t zv_dev; /* device id */
72 struct gendisk *zv_disk; /* generic disk */
73 struct request_queue *zv_queue; /* request queue */
74 spinlock_t zv_lock; /* request queue lock */
75 list_node_t zv_next; /* next zvol_state_t linkage */
76 } zvol_state_t;
77
78 #define ZVOL_RDONLY 0x1
79
80 /*
81 * Find the next available range of ZVOL_MINORS minor numbers. The
82 * zvol_state_list is kept in ascending minor order so we simply need
83 * to scan the list for the first gap in the sequence. This allows us
84 * to recycle minor number as devices are created and removed.
85 */
86 static int
87 zvol_find_minor(unsigned *minor)
88 {
89 zvol_state_t *zv;
90
91 *minor = 0;
92 ASSERT(MUTEX_HELD(&zvol_state_lock));
93 for (zv = list_head(&zvol_state_list); zv != NULL;
94 zv = list_next(&zvol_state_list, zv), *minor += ZVOL_MINORS) {
95 if (MINOR(zv->zv_dev) != MINOR(*minor))
96 break;
97 }
98
99 /* All minors are in use */
100 if (*minor >= (1 << MINORBITS))
101 return ENXIO;
102
103 return 0;
104 }
105
106 /*
107 * Find a zvol_state_t given the full major+minor dev_t.
108 */
109 static zvol_state_t *
110 zvol_find_by_dev(dev_t dev)
111 {
112 zvol_state_t *zv;
113
114 ASSERT(MUTEX_HELD(&zvol_state_lock));
115 for (zv = list_head(&zvol_state_list); zv != NULL;
116 zv = list_next(&zvol_state_list, zv)) {
117 if (zv->zv_dev == dev)
118 return zv;
119 }
120
121 return NULL;
122 }
123
124 /*
125 * Find a zvol_state_t given the name provided at zvol_alloc() time.
126 */
127 static zvol_state_t *
128 zvol_find_by_name(const char *name)
129 {
130 zvol_state_t *zv;
131
132 ASSERT(MUTEX_HELD(&zvol_state_lock));
133 for (zv = list_head(&zvol_state_list); zv != NULL;
134 zv = list_next(&zvol_state_list, zv)) {
135 if (!strncmp(zv->zv_name, name, MAXNAMELEN))
136 return zv;
137 }
138
139 return NULL;
140 }
141
142 /*
143 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
144 */
145 void
146 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
147 {
148 zfs_creat_t *zct = arg;
149 nvlist_t *nvprops = zct->zct_props;
150 int error;
151 uint64_t volblocksize, volsize;
152
153 VERIFY(nvlist_lookup_uint64(nvprops,
154 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
155 if (nvlist_lookup_uint64(nvprops,
156 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
157 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
158
159 /*
160 * These properties must be removed from the list so the generic
161 * property setting step won't apply to them.
162 */
163 VERIFY(nvlist_remove_all(nvprops,
164 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
165 (void) nvlist_remove_all(nvprops,
166 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
167
168 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
169 DMU_OT_NONE, 0, tx);
170 ASSERT(error == 0);
171
172 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
173 DMU_OT_NONE, 0, tx);
174 ASSERT(error == 0);
175
176 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
177 ASSERT(error == 0);
178 }
179
180 /*
181 * ZFS_IOC_OBJSET_STATS entry point.
182 */
183 int
184 zvol_get_stats(objset_t *os, nvlist_t *nv)
185 {
186 int error;
187 dmu_object_info_t *doi;
188 uint64_t val;
189
190 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
191 if (error)
192 return (error);
193
194 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
195 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
196 error = dmu_object_info(os, ZVOL_OBJ, doi);
197
198 if (error == 0) {
199 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
200 doi->doi_data_block_size);
201 }
202
203 kmem_free(doi, sizeof(dmu_object_info_t));
204
205 return (error);
206 }
207
208 /*
209 * Sanity check volume size.
210 */
211 int
212 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
213 {
214 if (volsize == 0)
215 return (EINVAL);
216
217 if (volsize % blocksize != 0)
218 return (EINVAL);
219
220 #ifdef _ILP32
221 if (volsize - 1 > MAXOFFSET_T)
222 return (EOVERFLOW);
223 #endif
224 return (0);
225 }
226
227 /*
228 * Ensure the zap is flushed then inform the VFS of the capacity change.
229 */
230 static int
231 zvol_update_volsize(zvol_state_t *zv, uint64_t volsize, objset_t *os)
232 {
233 struct block_device *bdev;
234 dmu_tx_t *tx;
235 int error;
236
237 ASSERT(MUTEX_HELD(&zvol_state_lock));
238
239 tx = dmu_tx_create(os);
240 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
241 error = dmu_tx_assign(tx, TXG_WAIT);
242 if (error) {
243 dmu_tx_abort(tx);
244 return (error);
245 }
246
247 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
248 &volsize, tx);
249 dmu_tx_commit(tx);
250
251 if (error)
252 return (error);
253
254 error = dmu_free_long_range(os,
255 ZVOL_OBJ, volsize, DMU_OBJECT_END);
256 if (error)
257 return (error);
258
259 bdev = bdget_disk(zv->zv_disk, 0);
260 if (!bdev)
261 return (EIO);
262 /*
263 * 2.6.28 API change
264 * Added check_disk_size_change() helper function.
265 */
266 #ifdef HAVE_CHECK_DISK_SIZE_CHANGE
267 set_capacity(zv->zv_disk, volsize >> 9);
268 zv->zv_volsize = volsize;
269 check_disk_size_change(zv->zv_disk, bdev);
270 #else
271 zv->zv_volsize = volsize;
272 zv->zv_changed = 1;
273 (void) check_disk_change(bdev);
274 #endif /* HAVE_CHECK_DISK_SIZE_CHANGE */
275
276 bdput(bdev);
277
278 return (0);
279 }
280
281 /*
282 * Set ZFS_PROP_VOLSIZE set entry point.
283 */
284 int
285 zvol_set_volsize(const char *name, uint64_t volsize)
286 {
287 zvol_state_t *zv;
288 dmu_object_info_t *doi;
289 objset_t *os = NULL;
290 uint64_t readonly;
291 int error;
292
293 mutex_enter(&zvol_state_lock);
294
295 zv = zvol_find_by_name(name);
296 if (zv == NULL) {
297 error = ENXIO;
298 goto out;
299 }
300
301 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
302
303 error = dmu_objset_hold(name, FTAG, &os);
304 if (error)
305 goto out_doi;
306
307 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) != 0 ||
308 (error = zvol_check_volsize(volsize,doi->doi_data_block_size)) != 0)
309 goto out_doi;
310
311 VERIFY(dsl_prop_get_integer(name, "readonly", &readonly, NULL) == 0);
312 if (readonly) {
313 error = EROFS;
314 goto out_doi;
315 }
316
317 if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
318 error = EROFS;
319 goto out_doi;
320 }
321
322 error = zvol_update_volsize(zv, volsize, os);
323 out_doi:
324 kmem_free(doi, sizeof(dmu_object_info_t));
325 out:
326 if (os)
327 dmu_objset_rele(os, FTAG);
328
329 mutex_exit(&zvol_state_lock);
330
331 return (error);
332 }
333
334 /*
335 * Sanity check volume block size.
336 */
337 int
338 zvol_check_volblocksize(uint64_t volblocksize)
339 {
340 if (volblocksize < SPA_MINBLOCKSIZE ||
341 volblocksize > SPA_MAXBLOCKSIZE ||
342 !ISP2(volblocksize))
343 return (EDOM);
344
345 return (0);
346 }
347
348 /*
349 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
350 */
351 int
352 zvol_set_volblocksize(const char *name, uint64_t volblocksize)
353 {
354 zvol_state_t *zv;
355 dmu_tx_t *tx;
356 int error;
357
358 mutex_enter(&zvol_state_lock);
359
360 zv = zvol_find_by_name(name);
361 if (zv == NULL) {
362 error = ENXIO;
363 goto out;
364 }
365
366 if (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY)) {
367 error = EROFS;
368 goto out;
369 }
370
371 tx = dmu_tx_create(zv->zv_objset);
372 dmu_tx_hold_bonus(tx, ZVOL_OBJ);
373 error = dmu_tx_assign(tx, TXG_WAIT);
374 if (error) {
375 dmu_tx_abort(tx);
376 } else {
377 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
378 volblocksize, 0, tx);
379 if (error == ENOTSUP)
380 error = EBUSY;
381 dmu_tx_commit(tx);
382 if (error == 0)
383 zv->zv_volblocksize = volblocksize;
384 }
385 out:
386 mutex_exit(&zvol_state_lock);
387
388 return (error);
389 }
390
391 /*
392 * Replay a TX_WRITE ZIL transaction that didn't get committed
393 * after a system failure
394 */
395 static int
396 zvol_replay_write(zvol_state_t *zv, lr_write_t *lr, boolean_t byteswap)
397 {
398 objset_t *os = zv->zv_objset;
399 char *data = (char *)(lr + 1); /* data follows lr_write_t */
400 uint64_t off = lr->lr_offset;
401 uint64_t len = lr->lr_length;
402 dmu_tx_t *tx;
403 int error;
404
405 if (byteswap)
406 byteswap_uint64_array(lr, sizeof (*lr));
407
408 tx = dmu_tx_create(os);
409 dmu_tx_hold_write(tx, ZVOL_OBJ, off, len);
410 error = dmu_tx_assign(tx, TXG_WAIT);
411 if (error) {
412 dmu_tx_abort(tx);
413 } else {
414 dmu_write(os, ZVOL_OBJ, off, len, data, tx);
415 dmu_tx_commit(tx);
416 }
417
418 return (error);
419 }
420
421 static int
422 zvol_replay_err(zvol_state_t *zv, lr_t *lr, boolean_t byteswap)
423 {
424 return (ENOTSUP);
425 }
426
427 /*
428 * Callback vectors for replaying records.
429 * Only TX_WRITE is needed for zvol.
430 */
431 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
432 (zil_replay_func_t *)zvol_replay_err, /* no such transaction type */
433 (zil_replay_func_t *)zvol_replay_err, /* TX_CREATE */
434 (zil_replay_func_t *)zvol_replay_err, /* TX_MKDIR */
435 (zil_replay_func_t *)zvol_replay_err, /* TX_MKXATTR */
436 (zil_replay_func_t *)zvol_replay_err, /* TX_SYMLINK */
437 (zil_replay_func_t *)zvol_replay_err, /* TX_REMOVE */
438 (zil_replay_func_t *)zvol_replay_err, /* TX_RMDIR */
439 (zil_replay_func_t *)zvol_replay_err, /* TX_LINK */
440 (zil_replay_func_t *)zvol_replay_err, /* TX_RENAME */
441 (zil_replay_func_t *)zvol_replay_write, /* TX_WRITE */
442 (zil_replay_func_t *)zvol_replay_err, /* TX_TRUNCATE */
443 (zil_replay_func_t *)zvol_replay_err, /* TX_SETATTR */
444 (zil_replay_func_t *)zvol_replay_err, /* TX_ACL */
445 };
446
447 /*
448 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
449 *
450 * We store data in the log buffers if it's small enough.
451 * Otherwise we will later flush the data out via dmu_sync().
452 */
453 ssize_t zvol_immediate_write_sz = 32768;
454
455 static void
456 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx,
457 uint64_t offset, uint64_t size, int sync)
458 {
459 uint32_t blocksize = zv->zv_volblocksize;
460 zilog_t *zilog = zv->zv_zilog;
461 boolean_t slogging;
462
463 if (zil_replaying(zilog, tx))
464 return;
465
466 slogging = spa_has_slogs(zilog->zl_spa);
467
468 while (size) {
469 itx_t *itx;
470 lr_write_t *lr;
471 ssize_t len;
472 itx_wr_state_t write_state;
473
474 /*
475 * Unlike zfs_log_write() we can be called with
476 * up to DMU_MAX_ACCESS/2 (5MB) writes.
477 */
478 if (blocksize > zvol_immediate_write_sz && !slogging &&
479 size >= blocksize && offset % blocksize == 0) {
480 write_state = WR_INDIRECT; /* uses dmu_sync */
481 len = blocksize;
482 } else if (sync) {
483 write_state = WR_COPIED;
484 len = MIN(ZIL_MAX_LOG_DATA, size);
485 } else {
486 write_state = WR_NEED_COPY;
487 len = MIN(ZIL_MAX_LOG_DATA, size);
488 }
489
490 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
491 (write_state == WR_COPIED ? len : 0));
492 lr = (lr_write_t *)&itx->itx_lr;
493 if (write_state == WR_COPIED && dmu_read(zv->zv_objset,
494 ZVOL_OBJ, offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
495 zil_itx_destroy(itx);
496 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
497 lr = (lr_write_t *)&itx->itx_lr;
498 write_state = WR_NEED_COPY;
499 }
500
501 itx->itx_wr_state = write_state;
502 if (write_state == WR_NEED_COPY)
503 itx->itx_sod += len;
504 lr->lr_foid = ZVOL_OBJ;
505 lr->lr_offset = offset;
506 lr->lr_length = len;
507 lr->lr_blkoff = 0;
508 BP_ZERO(&lr->lr_blkptr);
509
510 itx->itx_private = zv;
511 itx->itx_sync = sync;
512
513 (void) zil_itx_assign(zilog, itx, tx);
514
515 offset += len;
516 size -= len;
517 }
518 }
519
520 /*
521 * Common write path running under the zvol taskq context. This function
522 * is responsible for copying the request structure data in to the DMU and
523 * signaling the request queue with the result of the copy.
524 */
525 static void
526 zvol_write(void *arg)
527 {
528 struct request *req = (struct request *)arg;
529 struct request_queue *q = req->q;
530 zvol_state_t *zv = q->queuedata;
531 uint64_t offset = blk_rq_pos(req) << 9;
532 uint64_t size = blk_rq_bytes(req);
533 int error = 0;
534 dmu_tx_t *tx;
535 rl_t *rl;
536
537 if (req->cmd_flags & VDEV_REQ_FLUSH)
538 zil_commit(zv->zv_zilog, ZVOL_OBJ);
539
540 /*
541 * Some requests are just for flush and nothing else.
542 */
543 if (size == 0) {
544 blk_end_request(req, 0, size);
545 return;
546 }
547
548 rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER);
549
550 tx = dmu_tx_create(zv->zv_objset);
551 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, size);
552
553 /* This will only fail for ENOSPC */
554 error = dmu_tx_assign(tx, TXG_WAIT);
555 if (error) {
556 dmu_tx_abort(tx);
557 zfs_range_unlock(rl);
558 blk_end_request(req, -error, size);
559 return;
560 }
561
562 error = dmu_write_req(zv->zv_objset, ZVOL_OBJ, req, tx);
563 if (error == 0)
564 zvol_log_write(zv, tx, offset, size,
565 req->cmd_flags & VDEV_REQ_FUA);
566
567 dmu_tx_commit(tx);
568 zfs_range_unlock(rl);
569
570 if ((req->cmd_flags & VDEV_REQ_FUA) ||
571 zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS)
572 zil_commit(zv->zv_zilog, ZVOL_OBJ);
573
574 blk_end_request(req, -error, size);
575 }
576
577 #ifdef HAVE_BLK_QUEUE_DISCARD
578 static void
579 zvol_discard(void *arg)
580 {
581 struct request *req = (struct request *)arg;
582 struct request_queue *q = req->q;
583 zvol_state_t *zv = q->queuedata;
584 uint64_t offset = blk_rq_pos(req) << 9;
585 uint64_t size = blk_rq_bytes(req);
586 int error;
587 rl_t *rl;
588
589 if (offset + size > zv->zv_volsize) {
590 blk_end_request(req, -EIO, size);
591 return;
592 }
593
594 if (size == 0) {
595 blk_end_request(req, 0, size);
596 return;
597 }
598
599 rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_WRITER);
600
601 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, size);
602
603 /*
604 * TODO: maybe we should add the operation to the log.
605 */
606
607 zfs_range_unlock(rl);
608
609 blk_end_request(req, -error, size);
610 }
611 #endif /* HAVE_BLK_QUEUE_DISCARD */
612
613 /*
614 * Common read path running under the zvol taskq context. This function
615 * is responsible for copying the requested data out of the DMU and in to
616 * a linux request structure. It then must signal the request queue with
617 * an error code describing the result of the copy.
618 */
619 static void
620 zvol_read(void *arg)
621 {
622 struct request *req = (struct request *)arg;
623 struct request_queue *q = req->q;
624 zvol_state_t *zv = q->queuedata;
625 uint64_t offset = blk_rq_pos(req) << 9;
626 uint64_t size = blk_rq_bytes(req);
627 int error;
628 rl_t *rl;
629
630 if (size == 0) {
631 blk_end_request(req, 0, size);
632 return;
633 }
634
635 rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
636
637 error = dmu_read_req(zv->zv_objset, ZVOL_OBJ, req);
638
639 zfs_range_unlock(rl);
640
641 /* convert checksum errors into IO errors */
642 if (error == ECKSUM)
643 error = EIO;
644
645 blk_end_request(req, -error, size);
646 }
647
648 /*
649 * Request will be added back to the request queue and retried if
650 * it cannot be immediately dispatched to the taskq for handling
651 */
652 static inline void
653 zvol_dispatch(task_func_t func, struct request *req)
654 {
655 if (!taskq_dispatch(zvol_taskq, func, (void *)req, TQ_NOSLEEP))
656 blk_requeue_request(req->q, req);
657 }
658
659 /*
660 * Common request path. Rather than registering a custom make_request()
661 * function we use the generic Linux version. This is done because it allows
662 * us to easily merge read requests which would otherwise we performed
663 * synchronously by the DMU. This is less critical in write case where the
664 * DMU will perform the correct merging within a transaction group. Using
665 * the generic make_request() also let's use leverage the fact that the
666 * elevator with ensure correct ordering in regards to barrior IOs. On
667 * the downside it means that in the write case we end up doing request
668 * merging twice once in the elevator and once in the DMU.
669 *
670 * The request handler is called under a spin lock so all the real work
671 * is handed off to be done in the context of the zvol taskq. This function
672 * simply performs basic request sanity checking and hands off the request.
673 */
674 static void
675 zvol_request(struct request_queue *q)
676 {
677 zvol_state_t *zv = q->queuedata;
678 struct request *req;
679 unsigned int size;
680
681 while ((req = blk_fetch_request(q)) != NULL) {
682 size = blk_rq_bytes(req);
683
684 if (size != 0 && blk_rq_pos(req) + blk_rq_sectors(req) >
685 get_capacity(zv->zv_disk)) {
686 printk(KERN_INFO
687 "%s: bad access: block=%llu, count=%lu\n",
688 req->rq_disk->disk_name,
689 (long long unsigned)blk_rq_pos(req),
690 (long unsigned)blk_rq_sectors(req));
691 __blk_end_request(req, -EIO, size);
692 continue;
693 }
694
695 if (!blk_fs_request(req)) {
696 printk(KERN_INFO "%s: non-fs cmd\n",
697 req->rq_disk->disk_name);
698 __blk_end_request(req, -EIO, size);
699 continue;
700 }
701
702 switch (rq_data_dir(req)) {
703 case READ:
704 zvol_dispatch(zvol_read, req);
705 break;
706 case WRITE:
707 if (unlikely(get_disk_ro(zv->zv_disk)) ||
708 unlikely(zv->zv_flags & ZVOL_RDONLY)) {
709 __blk_end_request(req, -EROFS, size);
710 break;
711 }
712
713 #ifdef HAVE_BLK_QUEUE_DISCARD
714 if (req->cmd_flags & VDEV_REQ_DISCARD) {
715 zvol_dispatch(zvol_discard, req);
716 break;
717 }
718 #endif /* HAVE_BLK_QUEUE_DISCARD */
719
720 zvol_dispatch(zvol_write, req);
721 break;
722 default:
723 printk(KERN_INFO "%s: unknown cmd: %d\n",
724 req->rq_disk->disk_name, (int)rq_data_dir(req));
725 __blk_end_request(req, -EIO, size);
726 break;
727 }
728 }
729 }
730
731 static void
732 zvol_get_done(zgd_t *zgd, int error)
733 {
734 if (zgd->zgd_db)
735 dmu_buf_rele(zgd->zgd_db, zgd);
736
737 zfs_range_unlock(zgd->zgd_rl);
738
739 if (error == 0 && zgd->zgd_bp)
740 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
741
742 kmem_free(zgd, sizeof (zgd_t));
743 }
744
745 /*
746 * Get data to generate a TX_WRITE intent log record.
747 */
748 static int
749 zvol_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
750 {
751 zvol_state_t *zv = arg;
752 objset_t *os = zv->zv_objset;
753 uint64_t offset = lr->lr_offset;
754 uint64_t size = lr->lr_length;
755 dmu_buf_t *db;
756 zgd_t *zgd;
757 int error;
758
759 ASSERT(zio != NULL);
760 ASSERT(size != 0);
761
762 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
763 zgd->zgd_zilog = zv->zv_zilog;
764 zgd->zgd_rl = zfs_range_lock(&zv->zv_znode, offset, size, RL_READER);
765
766 /*
767 * Write records come in two flavors: immediate and indirect.
768 * For small writes it's cheaper to store the data with the
769 * log record (immediate); for large writes it's cheaper to
770 * sync the data and get a pointer to it (indirect) so that
771 * we don't have to write the data twice.
772 */
773 if (buf != NULL) { /* immediate write */
774 error = dmu_read(os, ZVOL_OBJ, offset, size, buf,
775 DMU_READ_NO_PREFETCH);
776 } else {
777 size = zv->zv_volblocksize;
778 offset = P2ALIGN_TYPED(offset, size, uint64_t);
779 error = dmu_buf_hold(os, ZVOL_OBJ, offset, zgd, &db,
780 DMU_READ_NO_PREFETCH);
781 if (error == 0) {
782 zgd->zgd_db = db;
783 zgd->zgd_bp = &lr->lr_blkptr;
784
785 ASSERT(db != NULL);
786 ASSERT(db->db_offset == offset);
787 ASSERT(db->db_size == size);
788
789 error = dmu_sync(zio, lr->lr_common.lrc_txg,
790 zvol_get_done, zgd);
791
792 if (error == 0)
793 return (0);
794 }
795 }
796
797 zvol_get_done(zgd, error);
798
799 return (error);
800 }
801
802 /*
803 * The zvol_state_t's are inserted in increasing MINOR(dev_t) order.
804 */
805 static void
806 zvol_insert(zvol_state_t *zv_insert)
807 {
808 zvol_state_t *zv = NULL;
809
810 ASSERT(MUTEX_HELD(&zvol_state_lock));
811 ASSERT3U(MINOR(zv_insert->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
812 for (zv = list_head(&zvol_state_list); zv != NULL;
813 zv = list_next(&zvol_state_list, zv)) {
814 if (MINOR(zv->zv_dev) > MINOR(zv_insert->zv_dev))
815 break;
816 }
817
818 list_insert_before(&zvol_state_list, zv, zv_insert);
819 }
820
821 /*
822 * Simply remove the zvol from to list of zvols.
823 */
824 static void
825 zvol_remove(zvol_state_t *zv_remove)
826 {
827 ASSERT(MUTEX_HELD(&zvol_state_lock));
828 list_remove(&zvol_state_list, zv_remove);
829 }
830
831 static int
832 zvol_first_open(zvol_state_t *zv)
833 {
834 objset_t *os;
835 uint64_t volsize;
836 int error;
837 uint64_t ro;
838
839 /* lie and say we're read-only */
840 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, 1, zvol_tag, &os);
841 if (error)
842 return (-error);
843
844 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
845 if (error) {
846 dmu_objset_disown(os, zvol_tag);
847 return (-error);
848 }
849
850 zv->zv_objset = os;
851 error = dmu_bonus_hold(os, ZVOL_OBJ, zvol_tag, &zv->zv_dbuf);
852 if (error) {
853 dmu_objset_disown(os, zvol_tag);
854 return (-error);
855 }
856
857 set_capacity(zv->zv_disk, volsize >> 9);
858 zv->zv_volsize = volsize;
859 zv->zv_zilog = zil_open(os, zvol_get_data);
860
861 VERIFY(dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL) == 0);
862 if (ro || dmu_objset_is_snapshot(os)) {
863 set_disk_ro(zv->zv_disk, 1);
864 zv->zv_flags |= ZVOL_RDONLY;
865 } else {
866 set_disk_ro(zv->zv_disk, 0);
867 zv->zv_flags &= ~ZVOL_RDONLY;
868 }
869
870 return (-error);
871 }
872
873 static void
874 zvol_last_close(zvol_state_t *zv)
875 {
876 zil_close(zv->zv_zilog);
877 zv->zv_zilog = NULL;
878 dmu_buf_rele(zv->zv_dbuf, zvol_tag);
879 zv->zv_dbuf = NULL;
880 dmu_objset_disown(zv->zv_objset, zvol_tag);
881 zv->zv_objset = NULL;
882 }
883
884 static int
885 zvol_open(struct block_device *bdev, fmode_t flag)
886 {
887 zvol_state_t *zv = bdev->bd_disk->private_data;
888 int error = 0, drop_mutex = 0;
889
890 /*
891 * If the caller is already holding the mutex do not take it
892 * again, this will happen as part of zvol_create_minor().
893 * Once add_disk() is called the device is live and the kernel
894 * will attempt to open it to read the partition information.
895 */
896 if (!mutex_owned(&zvol_state_lock)) {
897 mutex_enter(&zvol_state_lock);
898 drop_mutex = 1;
899 }
900
901 ASSERT3P(zv, !=, NULL);
902
903 if (zv->zv_open_count == 0) {
904 error = zvol_first_open(zv);
905 if (error)
906 goto out_mutex;
907 }
908
909 if ((flag & FMODE_WRITE) &&
910 (get_disk_ro(zv->zv_disk) || (zv->zv_flags & ZVOL_RDONLY))) {
911 error = -EROFS;
912 goto out_open_count;
913 }
914
915 zv->zv_open_count++;
916
917 out_open_count:
918 if (zv->zv_open_count == 0)
919 zvol_last_close(zv);
920
921 out_mutex:
922 if (drop_mutex)
923 mutex_exit(&zvol_state_lock);
924
925 check_disk_change(bdev);
926
927 return (error);
928 }
929
930 static int
931 zvol_release(struct gendisk *disk, fmode_t mode)
932 {
933 zvol_state_t *zv = disk->private_data;
934 int drop_mutex = 0;
935
936 if (!mutex_owned(&zvol_state_lock)) {
937 mutex_enter(&zvol_state_lock);
938 drop_mutex = 1;
939 }
940
941 ASSERT3P(zv, !=, NULL);
942 ASSERT3U(zv->zv_open_count, >, 0);
943 zv->zv_open_count--;
944 if (zv->zv_open_count == 0)
945 zvol_last_close(zv);
946
947 if (drop_mutex)
948 mutex_exit(&zvol_state_lock);
949
950 return (0);
951 }
952
953 static int
954 zvol_ioctl(struct block_device *bdev, fmode_t mode,
955 unsigned int cmd, unsigned long arg)
956 {
957 zvol_state_t *zv = bdev->bd_disk->private_data;
958 int error = 0;
959
960 if (zv == NULL)
961 return (-ENXIO);
962
963 switch (cmd) {
964 case BLKFLSBUF:
965 zil_commit(zv->zv_zilog, ZVOL_OBJ);
966 break;
967 case BLKZNAME:
968 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
969 break;
970
971 default:
972 error = -ENOTTY;
973 break;
974
975 }
976
977 return (error);
978 }
979
980 #ifdef CONFIG_COMPAT
981 static int
982 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
983 unsigned cmd, unsigned long arg)
984 {
985 return zvol_ioctl(bdev, mode, cmd, arg);
986 }
987 #else
988 #define zvol_compat_ioctl NULL
989 #endif
990
991 static int zvol_media_changed(struct gendisk *disk)
992 {
993 zvol_state_t *zv = disk->private_data;
994
995 return zv->zv_changed;
996 }
997
998 static int zvol_revalidate_disk(struct gendisk *disk)
999 {
1000 zvol_state_t *zv = disk->private_data;
1001
1002 zv->zv_changed = 0;
1003 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1004
1005 return 0;
1006 }
1007
1008 /*
1009 * Provide a simple virtual geometry for legacy compatibility. For devices
1010 * smaller than 1 MiB a small head and sector count is used to allow very
1011 * tiny devices. For devices over 1 Mib a standard head and sector count
1012 * is used to keep the cylinders count reasonable.
1013 */
1014 static int
1015 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1016 {
1017 zvol_state_t *zv = bdev->bd_disk->private_data;
1018 sector_t sectors = get_capacity(zv->zv_disk);
1019
1020 if (sectors > 2048) {
1021 geo->heads = 16;
1022 geo->sectors = 63;
1023 } else {
1024 geo->heads = 2;
1025 geo->sectors = 4;
1026 }
1027
1028 geo->start = 0;
1029 geo->cylinders = sectors / (geo->heads * geo->sectors);
1030
1031 return 0;
1032 }
1033
1034 static struct kobject *
1035 zvol_probe(dev_t dev, int *part, void *arg)
1036 {
1037 zvol_state_t *zv;
1038 struct kobject *kobj;
1039
1040 mutex_enter(&zvol_state_lock);
1041 zv = zvol_find_by_dev(dev);
1042 kobj = zv ? get_disk(zv->zv_disk) : ERR_PTR(-ENOENT);
1043 mutex_exit(&zvol_state_lock);
1044
1045 return kobj;
1046 }
1047
1048 #ifdef HAVE_BDEV_BLOCK_DEVICE_OPERATIONS
1049 static struct block_device_operations zvol_ops = {
1050 .open = zvol_open,
1051 .release = zvol_release,
1052 .ioctl = zvol_ioctl,
1053 .compat_ioctl = zvol_compat_ioctl,
1054 .media_changed = zvol_media_changed,
1055 .revalidate_disk = zvol_revalidate_disk,
1056 .getgeo = zvol_getgeo,
1057 .owner = THIS_MODULE,
1058 };
1059
1060 #else /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
1061
1062 static int
1063 zvol_open_by_inode(struct inode *inode, struct file *file)
1064 {
1065 return zvol_open(inode->i_bdev, file->f_mode);
1066 }
1067
1068 static int
1069 zvol_release_by_inode(struct inode *inode, struct file *file)
1070 {
1071 return zvol_release(inode->i_bdev->bd_disk, file->f_mode);
1072 }
1073
1074 static int
1075 zvol_ioctl_by_inode(struct inode *inode, struct file *file,
1076 unsigned int cmd, unsigned long arg)
1077 {
1078 if (file == NULL || inode == NULL)
1079 return -EINVAL;
1080 return zvol_ioctl(inode->i_bdev, file->f_mode, cmd, arg);
1081 }
1082
1083 # ifdef CONFIG_COMPAT
1084 static long
1085 zvol_compat_ioctl_by_inode(struct file *file,
1086 unsigned int cmd, unsigned long arg)
1087 {
1088 if (file == NULL)
1089 return -EINVAL;
1090 return zvol_compat_ioctl(file->f_dentry->d_inode->i_bdev,
1091 file->f_mode, cmd, arg);
1092 }
1093 # else
1094 # define zvol_compat_ioctl_by_inode NULL
1095 # endif
1096
1097 static struct block_device_operations zvol_ops = {
1098 .open = zvol_open_by_inode,
1099 .release = zvol_release_by_inode,
1100 .ioctl = zvol_ioctl_by_inode,
1101 .compat_ioctl = zvol_compat_ioctl_by_inode,
1102 .media_changed = zvol_media_changed,
1103 .revalidate_disk = zvol_revalidate_disk,
1104 .getgeo = zvol_getgeo,
1105 .owner = THIS_MODULE,
1106 };
1107 #endif /* HAVE_BDEV_BLOCK_DEVICE_OPERATIONS */
1108
1109 /*
1110 * Allocate memory for a new zvol_state_t and setup the required
1111 * request queue and generic disk structures for the block device.
1112 */
1113 static zvol_state_t *
1114 zvol_alloc(dev_t dev, const char *name)
1115 {
1116 zvol_state_t *zv;
1117
1118 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1119 if (zv == NULL)
1120 goto out;
1121
1122 zv->zv_queue = blk_init_queue(zvol_request, &zv->zv_lock);
1123 if (zv->zv_queue == NULL)
1124 goto out_kmem;
1125
1126 #ifdef HAVE_BLK_QUEUE_FLUSH
1127 blk_queue_flush(zv->zv_queue, VDEV_REQ_FLUSH | VDEV_REQ_FUA);
1128 #else
1129 blk_queue_ordered(zv->zv_queue, QUEUE_ORDERED_DRAIN, NULL);
1130 #endif /* HAVE_BLK_QUEUE_FLUSH */
1131
1132 zv->zv_disk = alloc_disk(ZVOL_MINORS);
1133 if (zv->zv_disk == NULL)
1134 goto out_queue;
1135
1136 zv->zv_queue->queuedata = zv;
1137 zv->zv_dev = dev;
1138 zv->zv_open_count = 0;
1139 strlcpy(zv->zv_name, name, MAXNAMELEN);
1140
1141 mutex_init(&zv->zv_znode.z_range_lock, NULL, MUTEX_DEFAULT, NULL);
1142 avl_create(&zv->zv_znode.z_range_avl, zfs_range_compare,
1143 sizeof (rl_t), offsetof(rl_t, r_node));
1144 zv->zv_znode.z_is_zvol = TRUE;
1145
1146 spin_lock_init(&zv->zv_lock);
1147 list_link_init(&zv->zv_next);
1148
1149 zv->zv_disk->major = zvol_major;
1150 zv->zv_disk->first_minor = (dev & MINORMASK);
1151 zv->zv_disk->fops = &zvol_ops;
1152 zv->zv_disk->private_data = zv;
1153 zv->zv_disk->queue = zv->zv_queue;
1154 snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
1155 ZVOL_DEV_NAME, (dev & MINORMASK));
1156
1157 return zv;
1158
1159 out_queue:
1160 blk_cleanup_queue(zv->zv_queue);
1161 out_kmem:
1162 kmem_free(zv, sizeof (zvol_state_t));
1163 out:
1164 return NULL;
1165 }
1166
1167 /*
1168 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1169 */
1170 static void
1171 zvol_free(zvol_state_t *zv)
1172 {
1173 avl_destroy(&zv->zv_znode.z_range_avl);
1174 mutex_destroy(&zv->zv_znode.z_range_lock);
1175
1176 del_gendisk(zv->zv_disk);
1177 blk_cleanup_queue(zv->zv_queue);
1178 put_disk(zv->zv_disk);
1179
1180 kmem_free(zv, sizeof (zvol_state_t));
1181 }
1182
1183 static int
1184 __zvol_create_minor(const char *name)
1185 {
1186 zvol_state_t *zv;
1187 objset_t *os;
1188 dmu_object_info_t *doi;
1189 uint64_t volsize;
1190 unsigned minor = 0;
1191 int error = 0;
1192
1193 ASSERT(MUTEX_HELD(&zvol_state_lock));
1194
1195 zv = zvol_find_by_name(name);
1196 if (zv) {
1197 error = EEXIST;
1198 goto out;
1199 }
1200
1201 doi = kmem_alloc(sizeof(dmu_object_info_t), KM_SLEEP);
1202
1203 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, zvol_tag, &os);
1204 if (error)
1205 goto out_doi;
1206
1207 error = dmu_object_info(os, ZVOL_OBJ, doi);
1208 if (error)
1209 goto out_dmu_objset_disown;
1210
1211 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1212 if (error)
1213 goto out_dmu_objset_disown;
1214
1215 error = zvol_find_minor(&minor);
1216 if (error)
1217 goto out_dmu_objset_disown;
1218
1219 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1220 if (zv == NULL) {
1221 error = EAGAIN;
1222 goto out_dmu_objset_disown;
1223 }
1224
1225 if (dmu_objset_is_snapshot(os))
1226 zv->zv_flags |= ZVOL_RDONLY;
1227
1228 zv->zv_volblocksize = doi->doi_data_block_size;
1229 zv->zv_volsize = volsize;
1230 zv->zv_objset = os;
1231
1232 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1233
1234 blk_queue_max_hw_sectors(zv->zv_queue, UINT_MAX);
1235 blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
1236 blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
1237 blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
1238 blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
1239 #ifdef HAVE_BLK_QUEUE_DISCARD
1240 blk_queue_max_discard_sectors(zv->zv_queue, UINT_MAX);
1241 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zv->zv_queue);
1242 #endif
1243 #ifdef HAVE_BLK_QUEUE_NONROT
1244 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zv->zv_queue);
1245 #endif
1246
1247 if (zil_replay_disable)
1248 zil_destroy(dmu_objset_zil(os), B_FALSE);
1249 else
1250 zil_replay(os, zv, zvol_replay_vector);
1251
1252 out_dmu_objset_disown:
1253 dmu_objset_disown(os, zvol_tag);
1254 zv->zv_objset = NULL;
1255 out_doi:
1256 kmem_free(doi, sizeof(dmu_object_info_t));
1257 out:
1258
1259 if (error == 0) {
1260 zvol_insert(zv);
1261 add_disk(zv->zv_disk);
1262 }
1263
1264 return (error);
1265 }
1266
1267 /*
1268 * Create a block device minor node and setup the linkage between it
1269 * and the specified volume. Once this function returns the block
1270 * device is live and ready for use.
1271 */
1272 int
1273 zvol_create_minor(const char *name)
1274 {
1275 int error;
1276
1277 mutex_enter(&zvol_state_lock);
1278 error = __zvol_create_minor(name);
1279 mutex_exit(&zvol_state_lock);
1280
1281 return (error);
1282 }
1283
1284 static int
1285 __zvol_remove_minor(const char *name)
1286 {
1287 zvol_state_t *zv;
1288
1289 ASSERT(MUTEX_HELD(&zvol_state_lock));
1290
1291 zv = zvol_find_by_name(name);
1292 if (zv == NULL)
1293 return (ENXIO);
1294
1295 if (zv->zv_open_count > 0)
1296 return (EBUSY);
1297
1298 zvol_remove(zv);
1299 zvol_free(zv);
1300
1301 return (0);
1302 }
1303
1304 /*
1305 * Remove a block device minor node for the specified volume.
1306 */
1307 int
1308 zvol_remove_minor(const char *name)
1309 {
1310 int error;
1311
1312 mutex_enter(&zvol_state_lock);
1313 error = __zvol_remove_minor(name);
1314 mutex_exit(&zvol_state_lock);
1315
1316 return (error);
1317 }
1318
1319 static int
1320 zvol_create_minors_cb(spa_t *spa, uint64_t dsobj,
1321 const char *dsname, void *arg)
1322 {
1323 if (strchr(dsname, '/') == NULL)
1324 return 0;
1325
1326 (void) __zvol_create_minor(dsname);
1327 return (0);
1328 }
1329
1330 /*
1331 * Create minors for specified pool, if pool is NULL create minors
1332 * for all available pools.
1333 */
1334 int
1335 zvol_create_minors(const char *pool)
1336 {
1337 spa_t *spa = NULL;
1338 int error = 0;
1339
1340 mutex_enter(&zvol_state_lock);
1341 if (pool) {
1342 error = dmu_objset_find_spa(NULL, pool, zvol_create_minors_cb,
1343 NULL, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1344 } else {
1345 mutex_enter(&spa_namespace_lock);
1346 while ((spa = spa_next(spa)) != NULL) {
1347 error = dmu_objset_find_spa(NULL,
1348 spa_name(spa), zvol_create_minors_cb, NULL,
1349 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
1350 if (error)
1351 break;
1352 }
1353 mutex_exit(&spa_namespace_lock);
1354 }
1355 mutex_exit(&zvol_state_lock);
1356
1357 return error;
1358 }
1359
1360 /*
1361 * Remove minors for specified pool, if pool is NULL remove all minors.
1362 */
1363 void
1364 zvol_remove_minors(const char *pool)
1365 {
1366 zvol_state_t *zv, *zv_next;
1367 char *str;
1368
1369 str = kmem_zalloc(MAXNAMELEN, KM_SLEEP);
1370 if (pool) {
1371 (void) strncpy(str, pool, strlen(pool));
1372 (void) strcat(str, "/");
1373 }
1374
1375 mutex_enter(&zvol_state_lock);
1376 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1377 zv_next = list_next(&zvol_state_list, zv);
1378
1379 if (pool == NULL || !strncmp(str, zv->zv_name, strlen(str))) {
1380 zvol_remove(zv);
1381 zvol_free(zv);
1382 }
1383 }
1384 mutex_exit(&zvol_state_lock);
1385 kmem_free(str, MAXNAMELEN);
1386 }
1387
1388 int
1389 zvol_init(void)
1390 {
1391 int error;
1392
1393 zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_threads, maxclsyspri,
1394 zvol_threads, INT_MAX, TASKQ_PREPOPULATE);
1395 if (zvol_taskq == NULL) {
1396 printk(KERN_INFO "ZFS: taskq_create() failed\n");
1397 return (-ENOMEM);
1398 }
1399
1400 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1401 if (error) {
1402 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1403 taskq_destroy(zvol_taskq);
1404 return (error);
1405 }
1406
1407 blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
1408 THIS_MODULE, zvol_probe, NULL, NULL);
1409
1410 mutex_init(&zvol_state_lock, NULL, MUTEX_DEFAULT, NULL);
1411 list_create(&zvol_state_list, sizeof (zvol_state_t),
1412 offsetof(zvol_state_t, zv_next));
1413
1414 (void) zvol_create_minors(NULL);
1415
1416 return (0);
1417 }
1418
1419 void
1420 zvol_fini(void)
1421 {
1422 zvol_remove_minors(NULL);
1423 blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
1424 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1425 taskq_destroy(zvol_taskq);
1426 mutex_destroy(&zvol_state_lock);
1427 list_destroy(&zvol_state_list);
1428 }
1429
1430 module_param(zvol_major, uint, 0444);
1431 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1432
1433 module_param(zvol_threads, uint, 0444);
1434 MODULE_PARM_DESC(zvol_threads, "Number of threads for zvol device");