]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zvol.c
Add Module Parameter Regarding Log Size Limit
[mirror_zfs.git] / module / zfs / zvol.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 *
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40 */
41
42 /*
43 * Note on locking of zvol state structures.
44 *
45 * These structures are used to maintain internal state used to emulate block
46 * devices on top of zvols. In particular, management of device minor number
47 * operations - create, remove, rename, and set_snapdev - involves access to
48 * these structures. The zvol_state_lock is primarily used to protect the
49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50 * of the zvol_state_t structures, as well as to make sure that when the
51 * time comes to remove the structure from the list, it is not in use, and
52 * therefore, it can be taken off zvol_state_list and freed.
53 *
54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55 * e.g. for the duration of receive and rollback operations. This lock can be
56 * held for significant periods of time. Given that it is undesirable to hold
57 * mutexes for long periods of time, the following lock ordering applies:
58 * - take zvol_state_lock if necessary, to protect zvol_state_list
59 * - take zv_suspend_lock if necessary, by the code path in question
60 * - take zv_state_lock to protect zvol_state_t
61 *
62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63 * single-threaded (to preserve order of minor operations), and are executed
64 * through the zvol_task_cb that dispatches the specific operations. Therefore,
65 * these operations are serialized per pool. Consequently, we can be certain
66 * that for a given zvol, there is only one operation at a time in progress.
67 * That is why one can be sure that first, zvol_state_t for a given zvol is
68 * allocated and placed on zvol_state_list, and then other minor operations
69 * for this zvol are going to proceed in the order of issue.
70 *
71 */
72
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 #include <sys/zvol_impl.h>
88
89 unsigned int zvol_inhibit_dev = 0;
90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
91
92 struct hlist_head *zvol_htable;
93 list_t zvol_state_list;
94 krwlock_t zvol_state_lock;
95 const zvol_platform_ops_t *ops;
96
97 typedef enum {
98 ZVOL_ASYNC_REMOVE_MINORS,
99 ZVOL_ASYNC_RENAME_MINORS,
100 ZVOL_ASYNC_SET_SNAPDEV,
101 ZVOL_ASYNC_SET_VOLMODE,
102 ZVOL_ASYNC_MAX
103 } zvol_async_op_t;
104
105 typedef struct {
106 zvol_async_op_t op;
107 char name1[MAXNAMELEN];
108 char name2[MAXNAMELEN];
109 uint64_t value;
110 } zvol_task_t;
111
112 uint64_t
113 zvol_name_hash(const char *name)
114 {
115 int i;
116 uint64_t crc = -1ULL;
117 const uint8_t *p = (const uint8_t *)name;
118 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
119 for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
120 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
121 }
122 return (crc);
123 }
124
125 /*
126 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
127 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
128 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
129 * before zv_state_lock. The mode argument indicates the mode (including none)
130 * for zv_suspend_lock to be taken.
131 */
132 zvol_state_t *
133 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
134 {
135 zvol_state_t *zv;
136 struct hlist_node *p = NULL;
137
138 rw_enter(&zvol_state_lock, RW_READER);
139 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
140 zv = hlist_entry(p, zvol_state_t, zv_hlink);
141 mutex_enter(&zv->zv_state_lock);
142 if (zv->zv_hash == hash &&
143 strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
144 /*
145 * this is the right zvol, take the locks in the
146 * right order
147 */
148 if (mode != RW_NONE &&
149 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
150 mutex_exit(&zv->zv_state_lock);
151 rw_enter(&zv->zv_suspend_lock, mode);
152 mutex_enter(&zv->zv_state_lock);
153 /*
154 * zvol cannot be renamed as we continue
155 * to hold zvol_state_lock
156 */
157 ASSERT(zv->zv_hash == hash &&
158 strncmp(zv->zv_name, name, MAXNAMELEN)
159 == 0);
160 }
161 rw_exit(&zvol_state_lock);
162 return (zv);
163 }
164 mutex_exit(&zv->zv_state_lock);
165 }
166 rw_exit(&zvol_state_lock);
167
168 return (NULL);
169 }
170
171 /*
172 * Find a zvol_state_t given the name.
173 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
174 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
175 * before zv_state_lock. The mode argument indicates the mode (including none)
176 * for zv_suspend_lock to be taken.
177 */
178 static zvol_state_t *
179 zvol_find_by_name(const char *name, int mode)
180 {
181 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
182 }
183
184 /*
185 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
186 */
187 void
188 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
189 {
190 zfs_creat_t *zct = arg;
191 nvlist_t *nvprops = zct->zct_props;
192 int error;
193 uint64_t volblocksize, volsize;
194
195 VERIFY(nvlist_lookup_uint64(nvprops,
196 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
197 if (nvlist_lookup_uint64(nvprops,
198 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
199 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
200
201 /*
202 * These properties must be removed from the list so the generic
203 * property setting step won't apply to them.
204 */
205 VERIFY(nvlist_remove_all(nvprops,
206 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
207 (void) nvlist_remove_all(nvprops,
208 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
209
210 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
211 DMU_OT_NONE, 0, tx);
212 ASSERT(error == 0);
213
214 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
215 DMU_OT_NONE, 0, tx);
216 ASSERT(error == 0);
217
218 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
219 ASSERT(error == 0);
220 }
221
222 /*
223 * ZFS_IOC_OBJSET_STATS entry point.
224 */
225 int
226 zvol_get_stats(objset_t *os, nvlist_t *nv)
227 {
228 int error;
229 dmu_object_info_t *doi;
230 uint64_t val;
231
232 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
233 if (error)
234 return (SET_ERROR(error));
235
236 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
237 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
238 error = dmu_object_info(os, ZVOL_OBJ, doi);
239
240 if (error == 0) {
241 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
242 doi->doi_data_block_size);
243 }
244
245 kmem_free(doi, sizeof (dmu_object_info_t));
246
247 return (SET_ERROR(error));
248 }
249
250 /*
251 * Sanity check volume size.
252 */
253 int
254 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
255 {
256 if (volsize == 0)
257 return (SET_ERROR(EINVAL));
258
259 if (volsize % blocksize != 0)
260 return (SET_ERROR(EINVAL));
261
262 #ifdef _ILP32
263 if (volsize - 1 > SPEC_MAXOFFSET_T)
264 return (SET_ERROR(EOVERFLOW));
265 #endif
266 return (0);
267 }
268
269 /*
270 * Ensure the zap is flushed then inform the VFS of the capacity change.
271 */
272 static int
273 zvol_update_volsize(uint64_t volsize, objset_t *os)
274 {
275 dmu_tx_t *tx;
276 int error;
277 uint64_t txg;
278
279 tx = dmu_tx_create(os);
280 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
281 dmu_tx_mark_netfree(tx);
282 error = dmu_tx_assign(tx, TXG_WAIT);
283 if (error) {
284 dmu_tx_abort(tx);
285 return (SET_ERROR(error));
286 }
287 txg = dmu_tx_get_txg(tx);
288
289 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
290 &volsize, tx);
291 dmu_tx_commit(tx);
292
293 txg_wait_synced(dmu_objset_pool(os), txg);
294
295 if (error == 0)
296 error = dmu_free_long_range(os,
297 ZVOL_OBJ, volsize, DMU_OBJECT_END);
298
299 return (error);
300 }
301
302 /*
303 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
304 * size will result in a udev "change" event being generated.
305 */
306 int
307 zvol_set_volsize(const char *name, uint64_t volsize)
308 {
309 objset_t *os = NULL;
310 uint64_t readonly;
311 int error;
312 boolean_t owned = B_FALSE;
313
314 error = dsl_prop_get_integer(name,
315 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
316 if (error != 0)
317 return (SET_ERROR(error));
318 if (readonly)
319 return (SET_ERROR(EROFS));
320
321 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
322
323 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
324 RW_READ_HELD(&zv->zv_suspend_lock)));
325
326 if (zv == NULL || zv->zv_objset == NULL) {
327 if (zv != NULL)
328 rw_exit(&zv->zv_suspend_lock);
329 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
330 FTAG, &os)) != 0) {
331 if (zv != NULL)
332 mutex_exit(&zv->zv_state_lock);
333 return (SET_ERROR(error));
334 }
335 owned = B_TRUE;
336 if (zv != NULL)
337 zv->zv_objset = os;
338 } else {
339 os = zv->zv_objset;
340 }
341
342 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
343
344 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
345 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
346 goto out;
347
348 error = zvol_update_volsize(volsize, os);
349 if (error == 0 && zv != NULL) {
350 zv->zv_volsize = volsize;
351 zv->zv_changed = 1;
352 }
353 out:
354 kmem_free(doi, sizeof (dmu_object_info_t));
355
356 if (owned) {
357 dmu_objset_disown(os, B_TRUE, FTAG);
358 if (zv != NULL)
359 zv->zv_objset = NULL;
360 } else {
361 rw_exit(&zv->zv_suspend_lock);
362 }
363
364 if (zv != NULL)
365 mutex_exit(&zv->zv_state_lock);
366
367 if (error == 0 && zv != NULL)
368 ops->zv_update_volsize(zv, volsize);
369
370 return (SET_ERROR(error));
371 }
372
373 /*
374 * Sanity check volume block size.
375 */
376 int
377 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
378 {
379 /* Record sizes above 128k need the feature to be enabled */
380 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
381 spa_t *spa;
382 int error;
383
384 if ((error = spa_open(name, &spa, FTAG)) != 0)
385 return (error);
386
387 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
388 spa_close(spa, FTAG);
389 return (SET_ERROR(ENOTSUP));
390 }
391
392 /*
393 * We don't allow setting the property above 1MB,
394 * unless the tunable has been changed.
395 */
396 if (volblocksize > zfs_max_recordsize)
397 return (SET_ERROR(EDOM));
398
399 spa_close(spa, FTAG);
400 }
401
402 if (volblocksize < SPA_MINBLOCKSIZE ||
403 volblocksize > SPA_MAXBLOCKSIZE ||
404 !ISP2(volblocksize))
405 return (SET_ERROR(EDOM));
406
407 return (0);
408 }
409
410 /*
411 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
412 */
413 int
414 zvol_set_volblocksize(const char *name, uint64_t volblocksize)
415 {
416 zvol_state_t *zv;
417 dmu_tx_t *tx;
418 int error;
419
420 zv = zvol_find_by_name(name, RW_READER);
421
422 if (zv == NULL)
423 return (SET_ERROR(ENXIO));
424
425 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
426 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
427
428 if (zv->zv_flags & ZVOL_RDONLY) {
429 mutex_exit(&zv->zv_state_lock);
430 rw_exit(&zv->zv_suspend_lock);
431 return (SET_ERROR(EROFS));
432 }
433
434 tx = dmu_tx_create(zv->zv_objset);
435 dmu_tx_hold_bonus(tx, ZVOL_OBJ);
436 error = dmu_tx_assign(tx, TXG_WAIT);
437 if (error) {
438 dmu_tx_abort(tx);
439 } else {
440 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
441 volblocksize, 0, tx);
442 if (error == ENOTSUP)
443 error = SET_ERROR(EBUSY);
444 dmu_tx_commit(tx);
445 if (error == 0)
446 zv->zv_volblocksize = volblocksize;
447 }
448
449 mutex_exit(&zv->zv_state_lock);
450 rw_exit(&zv->zv_suspend_lock);
451
452 return (SET_ERROR(error));
453 }
454
455 /*
456 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
457 * implement DKIOCFREE/free-long-range.
458 */
459 static int
460 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
461 {
462 zvol_state_t *zv = arg1;
463 lr_truncate_t *lr = arg2;
464 uint64_t offset, length;
465
466 if (byteswap)
467 byteswap_uint64_array(lr, sizeof (*lr));
468
469 offset = lr->lr_offset;
470 length = lr->lr_length;
471
472 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
473 dmu_tx_mark_netfree(tx);
474 int error = dmu_tx_assign(tx, TXG_WAIT);
475 if (error != 0) {
476 dmu_tx_abort(tx);
477 } else {
478 zil_replaying(zv->zv_zilog, tx);
479 dmu_tx_commit(tx);
480 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
481 length);
482 }
483
484 return (error);
485 }
486
487 /*
488 * Replay a TX_WRITE ZIL transaction that didn't get committed
489 * after a system failure
490 */
491 static int
492 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
493 {
494 zvol_state_t *zv = arg1;
495 lr_write_t *lr = arg2;
496 objset_t *os = zv->zv_objset;
497 char *data = (char *)(lr + 1); /* data follows lr_write_t */
498 uint64_t offset, length;
499 dmu_tx_t *tx;
500 int error;
501
502 if (byteswap)
503 byteswap_uint64_array(lr, sizeof (*lr));
504
505 offset = lr->lr_offset;
506 length = lr->lr_length;
507
508 /* If it's a dmu_sync() block, write the whole block */
509 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
510 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
511 if (length < blocksize) {
512 offset -= offset % blocksize;
513 length = blocksize;
514 }
515 }
516
517 tx = dmu_tx_create(os);
518 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
519 error = dmu_tx_assign(tx, TXG_WAIT);
520 if (error) {
521 dmu_tx_abort(tx);
522 } else {
523 dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
524 zil_replaying(zv->zv_zilog, tx);
525 dmu_tx_commit(tx);
526 }
527
528 return (error);
529 }
530
531 static int
532 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
533 {
534 return (SET_ERROR(ENOTSUP));
535 }
536
537 /*
538 * Callback vectors for replaying records.
539 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
540 */
541 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
542 zvol_replay_err, /* no such transaction type */
543 zvol_replay_err, /* TX_CREATE */
544 zvol_replay_err, /* TX_MKDIR */
545 zvol_replay_err, /* TX_MKXATTR */
546 zvol_replay_err, /* TX_SYMLINK */
547 zvol_replay_err, /* TX_REMOVE */
548 zvol_replay_err, /* TX_RMDIR */
549 zvol_replay_err, /* TX_LINK */
550 zvol_replay_err, /* TX_RENAME */
551 zvol_replay_write, /* TX_WRITE */
552 zvol_replay_truncate, /* TX_TRUNCATE */
553 zvol_replay_err, /* TX_SETATTR */
554 zvol_replay_err, /* TX_ACL */
555 zvol_replay_err, /* TX_CREATE_ATTR */
556 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
557 zvol_replay_err, /* TX_MKDIR_ACL */
558 zvol_replay_err, /* TX_MKDIR_ATTR */
559 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
560 zvol_replay_err, /* TX_WRITE2 */
561 };
562
563 /*
564 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
565 *
566 * We store data in the log buffers if it's small enough.
567 * Otherwise we will later flush the data out via dmu_sync().
568 */
569 ssize_t zvol_immediate_write_sz = 32768;
570
571 void
572 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
573 uint64_t size, int sync)
574 {
575 uint32_t blocksize = zv->zv_volblocksize;
576 zilog_t *zilog = zv->zv_zilog;
577 itx_wr_state_t write_state;
578 uint64_t sz = size;
579
580 if (zil_replaying(zilog, tx))
581 return;
582
583 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
584 write_state = WR_INDIRECT;
585 else if (!spa_has_slogs(zilog->zl_spa) &&
586 size >= blocksize && blocksize > zvol_immediate_write_sz)
587 write_state = WR_INDIRECT;
588 else if (sync)
589 write_state = WR_COPIED;
590 else
591 write_state = WR_NEED_COPY;
592
593 while (size) {
594 itx_t *itx;
595 lr_write_t *lr;
596 itx_wr_state_t wr_state = write_state;
597 ssize_t len = size;
598
599 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
600 wr_state = WR_NEED_COPY;
601 else if (wr_state == WR_INDIRECT)
602 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
603
604 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
605 (wr_state == WR_COPIED ? len : 0));
606 lr = (lr_write_t *)&itx->itx_lr;
607 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
608 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
609 zil_itx_destroy(itx);
610 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
611 lr = (lr_write_t *)&itx->itx_lr;
612 wr_state = WR_NEED_COPY;
613 }
614
615 itx->itx_wr_state = wr_state;
616 lr->lr_foid = ZVOL_OBJ;
617 lr->lr_offset = offset;
618 lr->lr_length = len;
619 lr->lr_blkoff = 0;
620 BP_ZERO(&lr->lr_blkptr);
621
622 itx->itx_private = zv;
623 itx->itx_sync = sync;
624
625 (void) zil_itx_assign(zilog, itx, tx);
626
627 offset += len;
628 size -= len;
629 }
630
631 if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
632 dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
633 }
634 }
635
636 /*
637 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
638 */
639 void
640 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
641 boolean_t sync)
642 {
643 itx_t *itx;
644 lr_truncate_t *lr;
645 zilog_t *zilog = zv->zv_zilog;
646
647 if (zil_replaying(zilog, tx))
648 return;
649
650 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
651 lr = (lr_truncate_t *)&itx->itx_lr;
652 lr->lr_foid = ZVOL_OBJ;
653 lr->lr_offset = off;
654 lr->lr_length = len;
655
656 itx->itx_sync = sync;
657 zil_itx_assign(zilog, itx, tx);
658 }
659
660
661 /* ARGSUSED */
662 static void
663 zvol_get_done(zgd_t *zgd, int error)
664 {
665 if (zgd->zgd_db)
666 dmu_buf_rele(zgd->zgd_db, zgd);
667
668 zfs_rangelock_exit(zgd->zgd_lr);
669
670 kmem_free(zgd, sizeof (zgd_t));
671 }
672
673 /*
674 * Get data to generate a TX_WRITE intent log record.
675 */
676 int
677 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
678 struct lwb *lwb, zio_t *zio)
679 {
680 zvol_state_t *zv = arg;
681 uint64_t offset = lr->lr_offset;
682 uint64_t size = lr->lr_length;
683 dmu_buf_t *db;
684 zgd_t *zgd;
685 int error;
686
687 ASSERT3P(lwb, !=, NULL);
688 ASSERT3P(zio, !=, NULL);
689 ASSERT3U(size, !=, 0);
690
691 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
692 zgd->zgd_lwb = lwb;
693
694 /*
695 * Write records come in two flavors: immediate and indirect.
696 * For small writes it's cheaper to store the data with the
697 * log record (immediate); for large writes it's cheaper to
698 * sync the data and get a pointer to it (indirect) so that
699 * we don't have to write the data twice.
700 */
701 if (buf != NULL) { /* immediate write */
702 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
703 size, RL_READER);
704 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
705 DMU_READ_NO_PREFETCH);
706 } else { /* indirect write */
707 /*
708 * Have to lock the whole block to ensure when it's written out
709 * and its checksum is being calculated that no one can change
710 * the data. Contrarily to zfs_get_data we need not re-check
711 * blocksize after we get the lock because it cannot be changed.
712 */
713 size = zv->zv_volblocksize;
714 offset = P2ALIGN_TYPED(offset, size, uint64_t);
715 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
716 size, RL_READER);
717 error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
718 DMU_READ_NO_PREFETCH);
719 if (error == 0) {
720 blkptr_t *bp = &lr->lr_blkptr;
721
722 zgd->zgd_db = db;
723 zgd->zgd_bp = bp;
724
725 ASSERT(db != NULL);
726 ASSERT(db->db_offset == offset);
727 ASSERT(db->db_size == size);
728
729 error = dmu_sync(zio, lr->lr_common.lrc_txg,
730 zvol_get_done, zgd);
731
732 if (error == 0)
733 return (0);
734 }
735 }
736
737 zvol_get_done(zgd, error);
738
739 return (SET_ERROR(error));
740 }
741
742 /*
743 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
744 */
745
746 void
747 zvol_insert(zvol_state_t *zv)
748 {
749 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
750 list_insert_head(&zvol_state_list, zv);
751 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
752 }
753
754 /*
755 * Simply remove the zvol from to list of zvols.
756 */
757 static void
758 zvol_remove(zvol_state_t *zv)
759 {
760 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
761 list_remove(&zvol_state_list, zv);
762 hlist_del(&zv->zv_hlink);
763 }
764
765 /*
766 * Setup zv after we just own the zv->objset
767 */
768 static int
769 zvol_setup_zv(zvol_state_t *zv)
770 {
771 uint64_t volsize;
772 int error;
773 uint64_t ro;
774 objset_t *os = zv->zv_objset;
775
776 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
777 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
778
779 zv->zv_zilog = NULL;
780 zv->zv_flags &= ~ZVOL_WRITTEN_TO;
781
782 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
783 if (error)
784 return (SET_ERROR(error));
785
786 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
787 if (error)
788 return (SET_ERROR(error));
789
790 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
791 if (error)
792 return (SET_ERROR(error));
793
794 ops->zv_set_capacity(zv, volsize >> 9);
795 zv->zv_volsize = volsize;
796
797 if (ro || dmu_objset_is_snapshot(os) ||
798 !spa_writeable(dmu_objset_spa(os))) {
799 ops->zv_set_disk_ro(zv, 1);
800 zv->zv_flags |= ZVOL_RDONLY;
801 } else {
802 ops->zv_set_disk_ro(zv, 0);
803 zv->zv_flags &= ~ZVOL_RDONLY;
804 }
805 return (0);
806 }
807
808 /*
809 * Shutdown every zv_objset related stuff except zv_objset itself.
810 * The is the reverse of zvol_setup_zv.
811 */
812 static void
813 zvol_shutdown_zv(zvol_state_t *zv)
814 {
815 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
816 RW_LOCK_HELD(&zv->zv_suspend_lock));
817
818 if (zv->zv_flags & ZVOL_WRITTEN_TO) {
819 ASSERT(zv->zv_zilog != NULL);
820 zil_close(zv->zv_zilog);
821 }
822
823 zv->zv_zilog = NULL;
824
825 dnode_rele(zv->zv_dn, zv);
826 zv->zv_dn = NULL;
827
828 /*
829 * Evict cached data. We must write out any dirty data before
830 * disowning the dataset.
831 */
832 if (zv->zv_flags & ZVOL_WRITTEN_TO)
833 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
834 (void) dmu_objset_evict_dbufs(zv->zv_objset);
835 }
836
837 /*
838 * return the proper tag for rollback and recv
839 */
840 void *
841 zvol_tag(zvol_state_t *zv)
842 {
843 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
844 return (zv->zv_open_count > 0 ? zv : NULL);
845 }
846
847 /*
848 * Suspend the zvol for recv and rollback.
849 */
850 zvol_state_t *
851 zvol_suspend(const char *name)
852 {
853 zvol_state_t *zv;
854
855 zv = zvol_find_by_name(name, RW_WRITER);
856
857 if (zv == NULL)
858 return (NULL);
859
860 /* block all I/O, release in zvol_resume. */
861 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
862 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
863
864 atomic_inc(&zv->zv_suspend_ref);
865
866 if (zv->zv_open_count > 0)
867 zvol_shutdown_zv(zv);
868
869 /*
870 * do not hold zv_state_lock across suspend/resume to
871 * avoid locking up zvol lookups
872 */
873 mutex_exit(&zv->zv_state_lock);
874
875 /* zv_suspend_lock is released in zvol_resume() */
876 return (zv);
877 }
878
879 int
880 zvol_resume(zvol_state_t *zv)
881 {
882 int error = 0;
883
884 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
885
886 mutex_enter(&zv->zv_state_lock);
887
888 if (zv->zv_open_count > 0) {
889 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
890 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
891 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
892 dmu_objset_rele(zv->zv_objset, zv);
893
894 error = zvol_setup_zv(zv);
895 }
896
897 mutex_exit(&zv->zv_state_lock);
898
899 rw_exit(&zv->zv_suspend_lock);
900 /*
901 * We need this because we don't hold zvol_state_lock while releasing
902 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
903 * zv_suspend_lock to determine it is safe to free because rwlock is
904 * not inherent atomic.
905 */
906 atomic_dec(&zv->zv_suspend_ref);
907
908 return (SET_ERROR(error));
909 }
910
911 int
912 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
913 {
914 objset_t *os;
915 int error, locked = 0;
916 boolean_t ro;
917
918 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
919 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
920
921 /*
922 * In all other cases the spa_namespace_lock is taken before the
923 * bdev->bd_mutex lock. But in this case the Linux __blkdev_get()
924 * function calls fops->open() with the bdev->bd_mutex lock held.
925 * This deadlock can be easily observed with zvols used as vdevs.
926 *
927 * To avoid a potential lock inversion deadlock we preemptively
928 * try to take the spa_namespace_lock(). Normally it will not
929 * be contended and this is safe because spa_open_common() handles
930 * the case where the caller already holds the spa_namespace_lock.
931 *
932 * When it is contended we risk a lock inversion if we were to
933 * block waiting for the lock. Luckily, the __blkdev_get()
934 * function allows us to return -ERESTARTSYS which will result in
935 * bdev->bd_mutex being dropped, reacquired, and fops->open() being
936 * called again. This process can be repeated safely until both
937 * locks are acquired.
938 */
939 if (!mutex_owned(&spa_namespace_lock)) {
940 locked = mutex_tryenter(&spa_namespace_lock);
941 if (!locked)
942 return (SET_ERROR(EINTR));
943 }
944
945 ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
946 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
947 if (error)
948 goto out_mutex;
949
950 zv->zv_objset = os;
951
952 error = zvol_setup_zv(zv);
953
954 if (error) {
955 dmu_objset_disown(os, 1, zv);
956 zv->zv_objset = NULL;
957 }
958
959 out_mutex:
960 if (locked)
961 mutex_exit(&spa_namespace_lock);
962 return (SET_ERROR(error));
963 }
964
965 void
966 zvol_last_close(zvol_state_t *zv)
967 {
968 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
969 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
970
971 zvol_shutdown_zv(zv);
972
973 dmu_objset_disown(zv->zv_objset, 1, zv);
974 zv->zv_objset = NULL;
975 }
976
977 typedef struct minors_job {
978 list_t *list;
979 list_node_t link;
980 /* input */
981 char *name;
982 /* output */
983 int error;
984 } minors_job_t;
985
986 /*
987 * Prefetch zvol dnodes for the minors_job
988 */
989 static void
990 zvol_prefetch_minors_impl(void *arg)
991 {
992 minors_job_t *job = arg;
993 char *dsname = job->name;
994 objset_t *os = NULL;
995
996 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
997 FTAG, &os);
998 if (job->error == 0) {
999 dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
1000 dmu_objset_disown(os, B_TRUE, FTAG);
1001 }
1002 }
1003
1004 /*
1005 * Mask errors to continue dmu_objset_find() traversal
1006 */
1007 static int
1008 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1009 {
1010 minors_job_t *j = arg;
1011 list_t *minors_list = j->list;
1012 const char *name = j->name;
1013
1014 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1015
1016 /* skip the designated dataset */
1017 if (name && strcmp(dsname, name) == 0)
1018 return (0);
1019
1020 /* at this point, the dsname should name a snapshot */
1021 if (strchr(dsname, '@') == 0) {
1022 dprintf("zvol_create_snap_minor_cb(): "
1023 "%s is not a snapshot name\n", dsname);
1024 } else {
1025 minors_job_t *job;
1026 char *n = kmem_strdup(dsname);
1027 if (n == NULL)
1028 return (0);
1029
1030 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1031 job->name = n;
1032 job->list = minors_list;
1033 job->error = 0;
1034 list_insert_tail(minors_list, job);
1035 /* don't care if dispatch fails, because job->error is 0 */
1036 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1037 TQ_SLEEP);
1038 }
1039
1040 return (0);
1041 }
1042
1043 /*
1044 * Mask errors to continue dmu_objset_find() traversal
1045 */
1046 static int
1047 zvol_create_minors_cb(const char *dsname, void *arg)
1048 {
1049 uint64_t snapdev;
1050 int error;
1051 list_t *minors_list = arg;
1052
1053 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1054
1055 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1056 if (error)
1057 return (0);
1058
1059 /*
1060 * Given the name and the 'snapdev' property, create device minor nodes
1061 * with the linkages to zvols/snapshots as needed.
1062 * If the name represents a zvol, create a minor node for the zvol, then
1063 * check if its snapshots are 'visible', and if so, iterate over the
1064 * snapshots and create device minor nodes for those.
1065 */
1066 if (strchr(dsname, '@') == 0) {
1067 minors_job_t *job;
1068 char *n = kmem_strdup(dsname);
1069 if (n == NULL)
1070 return (0);
1071
1072 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1073 job->name = n;
1074 job->list = minors_list;
1075 job->error = 0;
1076 list_insert_tail(minors_list, job);
1077 /* don't care if dispatch fails, because job->error is 0 */
1078 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1079 TQ_SLEEP);
1080
1081 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1082 /*
1083 * traverse snapshots only, do not traverse children,
1084 * and skip the 'dsname'
1085 */
1086 error = dmu_objset_find(dsname,
1087 zvol_create_snap_minor_cb, (void *)job,
1088 DS_FIND_SNAPSHOTS);
1089 }
1090 } else {
1091 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1092 dsname);
1093 }
1094
1095 return (0);
1096 }
1097
1098 /*
1099 * Create minors for the specified dataset, including children and snapshots.
1100 * Pay attention to the 'snapdev' property and iterate over the snapshots
1101 * only if they are 'visible'. This approach allows one to assure that the
1102 * snapshot metadata is read from disk only if it is needed.
1103 *
1104 * The name can represent a dataset to be recursively scanned for zvols and
1105 * their snapshots, or a single zvol snapshot. If the name represents a
1106 * dataset, the scan is performed in two nested stages:
1107 * - scan the dataset for zvols, and
1108 * - for each zvol, create a minor node, then check if the zvol's snapshots
1109 * are 'visible', and only then iterate over the snapshots if needed
1110 *
1111 * If the name represents a snapshot, a check is performed if the snapshot is
1112 * 'visible' (which also verifies that the parent is a zvol), and if so,
1113 * a minor node for that snapshot is created.
1114 */
1115 void
1116 zvol_create_minors_recursive(const char *name)
1117 {
1118 list_t minors_list;
1119 minors_job_t *job;
1120
1121 if (zvol_inhibit_dev)
1122 return;
1123
1124 /*
1125 * This is the list for prefetch jobs. Whenever we found a match
1126 * during dmu_objset_find, we insert a minors_job to the list and do
1127 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1128 * any lock because all list operation is done on the current thread.
1129 *
1130 * We will use this list to do zvol_create_minor_impl after prefetch
1131 * so we don't have to traverse using dmu_objset_find again.
1132 */
1133 list_create(&minors_list, sizeof (minors_job_t),
1134 offsetof(minors_job_t, link));
1135
1136
1137 if (strchr(name, '@') != NULL) {
1138 uint64_t snapdev;
1139
1140 int error = dsl_prop_get_integer(name, "snapdev",
1141 &snapdev, NULL);
1142
1143 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1144 (void) ops->zv_create_minor(name);
1145 } else {
1146 fstrans_cookie_t cookie = spl_fstrans_mark();
1147 (void) dmu_objset_find(name, zvol_create_minors_cb,
1148 &minors_list, DS_FIND_CHILDREN);
1149 spl_fstrans_unmark(cookie);
1150 }
1151
1152 taskq_wait_outstanding(system_taskq, 0);
1153
1154 /*
1155 * Prefetch is completed, we can do zvol_create_minor_impl
1156 * sequentially.
1157 */
1158 while ((job = list_head(&minors_list)) != NULL) {
1159 list_remove(&minors_list, job);
1160 if (!job->error)
1161 (void) ops->zv_create_minor(job->name);
1162 kmem_strfree(job->name);
1163 kmem_free(job, sizeof (minors_job_t));
1164 }
1165
1166 list_destroy(&minors_list);
1167 }
1168
1169 void
1170 zvol_create_minor(const char *name)
1171 {
1172 /*
1173 * Note: the dsl_pool_config_lock must not be held.
1174 * Minor node creation needs to obtain the zvol_state_lock.
1175 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1176 * config lock. Therefore, we can't have the config lock now if
1177 * we are going to wait for the zvol_state_lock, because it
1178 * would be a lock order inversion which could lead to deadlock.
1179 */
1180
1181 if (zvol_inhibit_dev)
1182 return;
1183
1184 if (strchr(name, '@') != NULL) {
1185 uint64_t snapdev;
1186
1187 int error = dsl_prop_get_integer(name,
1188 "snapdev", &snapdev, NULL);
1189
1190 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1191 (void) ops->zv_create_minor(name);
1192 } else {
1193 (void) ops->zv_create_minor(name);
1194 }
1195 }
1196
1197 /*
1198 * Remove minors for specified dataset including children and snapshots.
1199 */
1200
1201 static void
1202 zvol_free_task(void *arg)
1203 {
1204 ops->zv_free(arg);
1205 }
1206
1207 void
1208 zvol_remove_minors_impl(const char *name)
1209 {
1210 zvol_state_t *zv, *zv_next;
1211 int namelen = ((name) ? strlen(name) : 0);
1212 taskqid_t t;
1213 list_t free_list;
1214
1215 if (zvol_inhibit_dev)
1216 return;
1217
1218 list_create(&free_list, sizeof (zvol_state_t),
1219 offsetof(zvol_state_t, zv_next));
1220
1221 rw_enter(&zvol_state_lock, RW_WRITER);
1222
1223 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1224 zv_next = list_next(&zvol_state_list, zv);
1225
1226 mutex_enter(&zv->zv_state_lock);
1227 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1228 (strncmp(zv->zv_name, name, namelen) == 0 &&
1229 (zv->zv_name[namelen] == '/' ||
1230 zv->zv_name[namelen] == '@'))) {
1231 /*
1232 * By holding zv_state_lock here, we guarantee that no
1233 * one is currently using this zv
1234 */
1235
1236 /* If in use, leave alone */
1237 if (zv->zv_open_count > 0 ||
1238 atomic_read(&zv->zv_suspend_ref)) {
1239 mutex_exit(&zv->zv_state_lock);
1240 continue;
1241 }
1242
1243 zvol_remove(zv);
1244
1245 /*
1246 * Cleared while holding zvol_state_lock as a writer
1247 * which will prevent zvol_open() from opening it.
1248 */
1249 ops->zv_clear_private(zv);
1250
1251 /* Drop zv_state_lock before zvol_free() */
1252 mutex_exit(&zv->zv_state_lock);
1253
1254 /* Try parallel zv_free, if failed do it in place */
1255 t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1256 TQ_SLEEP);
1257 if (t == TASKQID_INVALID)
1258 list_insert_head(&free_list, zv);
1259 } else {
1260 mutex_exit(&zv->zv_state_lock);
1261 }
1262 }
1263 rw_exit(&zvol_state_lock);
1264
1265 /* Drop zvol_state_lock before calling zvol_free() */
1266 while ((zv = list_head(&free_list)) != NULL) {
1267 list_remove(&free_list, zv);
1268 ops->zv_free(zv);
1269 }
1270 }
1271
1272 /* Remove minor for this specific volume only */
1273 static void
1274 zvol_remove_minor_impl(const char *name)
1275 {
1276 zvol_state_t *zv = NULL, *zv_next;
1277
1278 if (zvol_inhibit_dev)
1279 return;
1280
1281 rw_enter(&zvol_state_lock, RW_WRITER);
1282
1283 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1284 zv_next = list_next(&zvol_state_list, zv);
1285
1286 mutex_enter(&zv->zv_state_lock);
1287 if (strcmp(zv->zv_name, name) == 0) {
1288 /*
1289 * By holding zv_state_lock here, we guarantee that no
1290 * one is currently using this zv
1291 */
1292
1293 /* If in use, leave alone */
1294 if (zv->zv_open_count > 0 ||
1295 atomic_read(&zv->zv_suspend_ref)) {
1296 mutex_exit(&zv->zv_state_lock);
1297 continue;
1298 }
1299 zvol_remove(zv);
1300
1301 ops->zv_clear_private(zv);
1302 mutex_exit(&zv->zv_state_lock);
1303 break;
1304 } else {
1305 mutex_exit(&zv->zv_state_lock);
1306 }
1307 }
1308
1309 /* Drop zvol_state_lock before calling zvol_free() */
1310 rw_exit(&zvol_state_lock);
1311
1312 if (zv != NULL)
1313 ops->zv_free(zv);
1314 }
1315
1316 /*
1317 * Rename minors for specified dataset including children and snapshots.
1318 */
1319 static void
1320 zvol_rename_minors_impl(const char *oldname, const char *newname)
1321 {
1322 zvol_state_t *zv, *zv_next;
1323 int oldnamelen, newnamelen;
1324
1325 if (zvol_inhibit_dev)
1326 return;
1327
1328 oldnamelen = strlen(oldname);
1329 newnamelen = strlen(newname);
1330
1331 rw_enter(&zvol_state_lock, RW_READER);
1332
1333 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1334 zv_next = list_next(&zvol_state_list, zv);
1335
1336 mutex_enter(&zv->zv_state_lock);
1337
1338 if (strcmp(zv->zv_name, oldname) == 0) {
1339 ops->zv_rename_minor(zv, newname);
1340 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1341 (zv->zv_name[oldnamelen] == '/' ||
1342 zv->zv_name[oldnamelen] == '@')) {
1343 char *name = kmem_asprintf("%s%c%s", newname,
1344 zv->zv_name[oldnamelen],
1345 zv->zv_name + oldnamelen + 1);
1346 ops->zv_rename_minor(zv, name);
1347 kmem_strfree(name);
1348 }
1349
1350 mutex_exit(&zv->zv_state_lock);
1351 }
1352
1353 rw_exit(&zvol_state_lock);
1354 }
1355
1356 typedef struct zvol_snapdev_cb_arg {
1357 uint64_t snapdev;
1358 } zvol_snapdev_cb_arg_t;
1359
1360 static int
1361 zvol_set_snapdev_cb(const char *dsname, void *param)
1362 {
1363 zvol_snapdev_cb_arg_t *arg = param;
1364
1365 if (strchr(dsname, '@') == NULL)
1366 return (0);
1367
1368 switch (arg->snapdev) {
1369 case ZFS_SNAPDEV_VISIBLE:
1370 (void) ops->zv_create_minor(dsname);
1371 break;
1372 case ZFS_SNAPDEV_HIDDEN:
1373 (void) zvol_remove_minor_impl(dsname);
1374 break;
1375 }
1376
1377 return (0);
1378 }
1379
1380 static void
1381 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1382 {
1383 zvol_snapdev_cb_arg_t arg = {snapdev};
1384 fstrans_cookie_t cookie = spl_fstrans_mark();
1385 /*
1386 * The zvol_set_snapdev_sync() sets snapdev appropriately
1387 * in the dataset hierarchy. Here, we only scan snapshots.
1388 */
1389 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1390 spl_fstrans_unmark(cookie);
1391 }
1392
1393 static void
1394 zvol_set_volmode_impl(char *name, uint64_t volmode)
1395 {
1396 fstrans_cookie_t cookie;
1397 uint64_t old_volmode;
1398 zvol_state_t *zv;
1399
1400 if (strchr(name, '@') != NULL)
1401 return;
1402
1403 /*
1404 * It's unfortunate we need to remove minors before we create new ones:
1405 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1406 * could be different when we set, for instance, volmode from "geom"
1407 * to "dev" (or vice versa).
1408 */
1409 zv = zvol_find_by_name(name, RW_NONE);
1410 if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1411 return;
1412 if (zv != NULL) {
1413 old_volmode = zv->zv_volmode;
1414 mutex_exit(&zv->zv_state_lock);
1415 if (old_volmode == volmode)
1416 return;
1417 zvol_wait_close(zv);
1418 }
1419 cookie = spl_fstrans_mark();
1420 switch (volmode) {
1421 case ZFS_VOLMODE_NONE:
1422 (void) zvol_remove_minor_impl(name);
1423 break;
1424 case ZFS_VOLMODE_GEOM:
1425 case ZFS_VOLMODE_DEV:
1426 (void) zvol_remove_minor_impl(name);
1427 (void) ops->zv_create_minor(name);
1428 break;
1429 case ZFS_VOLMODE_DEFAULT:
1430 (void) zvol_remove_minor_impl(name);
1431 if (zvol_volmode == ZFS_VOLMODE_NONE)
1432 break;
1433 else /* if zvol_volmode is invalid defaults to "geom" */
1434 (void) ops->zv_create_minor(name);
1435 break;
1436 }
1437 spl_fstrans_unmark(cookie);
1438 }
1439
1440 static zvol_task_t *
1441 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1442 uint64_t value)
1443 {
1444 zvol_task_t *task;
1445
1446 /* Never allow tasks on hidden names. */
1447 if (name1[0] == '$')
1448 return (NULL);
1449
1450 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1451 task->op = op;
1452 task->value = value;
1453
1454 strlcpy(task->name1, name1, MAXNAMELEN);
1455 if (name2 != NULL)
1456 strlcpy(task->name2, name2, MAXNAMELEN);
1457
1458 return (task);
1459 }
1460
1461 static void
1462 zvol_task_free(zvol_task_t *task)
1463 {
1464 kmem_free(task, sizeof (zvol_task_t));
1465 }
1466
1467 /*
1468 * The worker thread function performed asynchronously.
1469 */
1470 static void
1471 zvol_task_cb(void *arg)
1472 {
1473 zvol_task_t *task = arg;
1474
1475 switch (task->op) {
1476 case ZVOL_ASYNC_REMOVE_MINORS:
1477 zvol_remove_minors_impl(task->name1);
1478 break;
1479 case ZVOL_ASYNC_RENAME_MINORS:
1480 zvol_rename_minors_impl(task->name1, task->name2);
1481 break;
1482 case ZVOL_ASYNC_SET_SNAPDEV:
1483 zvol_set_snapdev_impl(task->name1, task->value);
1484 break;
1485 case ZVOL_ASYNC_SET_VOLMODE:
1486 zvol_set_volmode_impl(task->name1, task->value);
1487 break;
1488 default:
1489 VERIFY(0);
1490 break;
1491 }
1492
1493 zvol_task_free(task);
1494 }
1495
1496 typedef struct zvol_set_prop_int_arg {
1497 const char *zsda_name;
1498 uint64_t zsda_value;
1499 zprop_source_t zsda_source;
1500 dmu_tx_t *zsda_tx;
1501 } zvol_set_prop_int_arg_t;
1502
1503 /*
1504 * Sanity check the dataset for safe use by the sync task. No additional
1505 * conditions are imposed.
1506 */
1507 static int
1508 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
1509 {
1510 zvol_set_prop_int_arg_t *zsda = arg;
1511 dsl_pool_t *dp = dmu_tx_pool(tx);
1512 dsl_dir_t *dd;
1513 int error;
1514
1515 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1516 if (error != 0)
1517 return (error);
1518
1519 dsl_dir_rele(dd, FTAG);
1520
1521 return (error);
1522 }
1523
1524 /* ARGSUSED */
1525 static int
1526 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1527 {
1528 char dsname[MAXNAMELEN];
1529 zvol_task_t *task;
1530 uint64_t snapdev;
1531
1532 dsl_dataset_name(ds, dsname);
1533 if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
1534 return (0);
1535 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
1536 if (task == NULL)
1537 return (0);
1538
1539 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1540 task, TQ_SLEEP);
1541 return (0);
1542 }
1543
1544 /*
1545 * Traverse all child datasets and apply snapdev appropriately.
1546 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1547 * dataset and read the effective "snapdev" on every child in the callback
1548 * function: this is because the value is not guaranteed to be the same in the
1549 * whole dataset hierarchy.
1550 */
1551 static void
1552 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
1553 {
1554 zvol_set_prop_int_arg_t *zsda = arg;
1555 dsl_pool_t *dp = dmu_tx_pool(tx);
1556 dsl_dir_t *dd;
1557 dsl_dataset_t *ds;
1558 int error;
1559
1560 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1561 zsda->zsda_tx = tx;
1562
1563 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1564 if (error == 0) {
1565 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
1566 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1567 &zsda->zsda_value, zsda->zsda_tx);
1568 dsl_dataset_rele(ds, FTAG);
1569 }
1570 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
1571 zsda, DS_FIND_CHILDREN);
1572
1573 dsl_dir_rele(dd, FTAG);
1574 }
1575
1576 int
1577 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
1578 {
1579 zvol_set_prop_int_arg_t zsda;
1580
1581 zsda.zsda_name = ddname;
1582 zsda.zsda_source = source;
1583 zsda.zsda_value = snapdev;
1584
1585 return (dsl_sync_task(ddname, zvol_set_snapdev_check,
1586 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1587 }
1588
1589 /*
1590 * Sanity check the dataset for safe use by the sync task. No additional
1591 * conditions are imposed.
1592 */
1593 static int
1594 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
1595 {
1596 zvol_set_prop_int_arg_t *zsda = arg;
1597 dsl_pool_t *dp = dmu_tx_pool(tx);
1598 dsl_dir_t *dd;
1599 int error;
1600
1601 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1602 if (error != 0)
1603 return (error);
1604
1605 dsl_dir_rele(dd, FTAG);
1606
1607 return (error);
1608 }
1609
1610 /* ARGSUSED */
1611 static int
1612 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1613 {
1614 char dsname[MAXNAMELEN];
1615 zvol_task_t *task;
1616 uint64_t volmode;
1617
1618 dsl_dataset_name(ds, dsname);
1619 if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
1620 return (0);
1621 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
1622 if (task == NULL)
1623 return (0);
1624
1625 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1626 task, TQ_SLEEP);
1627 return (0);
1628 }
1629
1630 /*
1631 * Traverse all child datasets and apply volmode appropriately.
1632 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1633 * dataset and read the effective "volmode" on every child in the callback
1634 * function: this is because the value is not guaranteed to be the same in the
1635 * whole dataset hierarchy.
1636 */
1637 static void
1638 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
1639 {
1640 zvol_set_prop_int_arg_t *zsda = arg;
1641 dsl_pool_t *dp = dmu_tx_pool(tx);
1642 dsl_dir_t *dd;
1643 dsl_dataset_t *ds;
1644 int error;
1645
1646 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1647 zsda->zsda_tx = tx;
1648
1649 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1650 if (error == 0) {
1651 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
1652 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1653 &zsda->zsda_value, zsda->zsda_tx);
1654 dsl_dataset_rele(ds, FTAG);
1655 }
1656
1657 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
1658 zsda, DS_FIND_CHILDREN);
1659
1660 dsl_dir_rele(dd, FTAG);
1661 }
1662
1663 int
1664 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
1665 {
1666 zvol_set_prop_int_arg_t zsda;
1667
1668 zsda.zsda_name = ddname;
1669 zsda.zsda_source = source;
1670 zsda.zsda_value = volmode;
1671
1672 return (dsl_sync_task(ddname, zvol_set_volmode_check,
1673 zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1674 }
1675
1676 void
1677 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1678 {
1679 zvol_task_t *task;
1680 taskqid_t id;
1681
1682 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1683 if (task == NULL)
1684 return;
1685
1686 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1687 if ((async == B_FALSE) && (id != TASKQID_INVALID))
1688 taskq_wait_id(spa->spa_zvol_taskq, id);
1689 }
1690
1691 void
1692 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1693 boolean_t async)
1694 {
1695 zvol_task_t *task;
1696 taskqid_t id;
1697
1698 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1699 if (task == NULL)
1700 return;
1701
1702 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1703 if ((async == B_FALSE) && (id != TASKQID_INVALID))
1704 taskq_wait_id(spa->spa_zvol_taskq, id);
1705 }
1706
1707 boolean_t
1708 zvol_is_zvol(const char *name)
1709 {
1710
1711 return (ops->zv_is_zvol(name));
1712 }
1713
1714 void
1715 zvol_register_ops(const zvol_platform_ops_t *zvol_ops)
1716 {
1717 ops = zvol_ops;
1718 }
1719
1720 int
1721 zvol_init_impl(void)
1722 {
1723 int i;
1724
1725 list_create(&zvol_state_list, sizeof (zvol_state_t),
1726 offsetof(zvol_state_t, zv_next));
1727 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1728
1729 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1730 KM_SLEEP);
1731 for (i = 0; i < ZVOL_HT_SIZE; i++)
1732 INIT_HLIST_HEAD(&zvol_htable[i]);
1733
1734 return (0);
1735 }
1736
1737 void
1738 zvol_fini_impl(void)
1739 {
1740 zvol_remove_minors_impl(NULL);
1741
1742 /*
1743 * The call to "zvol_remove_minors_impl" may dispatch entries to
1744 * the system_taskq, but it doesn't wait for those entries to
1745 * complete before it returns. Thus, we must wait for all of the
1746 * removals to finish, before we can continue.
1747 */
1748 taskq_wait_outstanding(system_taskq, 0);
1749
1750 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1751 list_destroy(&zvol_state_list);
1752 rw_destroy(&zvol_state_lock);
1753 }