]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zvol.c
module/*.ko: prune .data, global .rodata
[mirror_zfs.git] / module / zfs / zvol.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 *
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
40 */
41
42 /*
43 * Note on locking of zvol state structures.
44 *
45 * These structures are used to maintain internal state used to emulate block
46 * devices on top of zvols. In particular, management of device minor number
47 * operations - create, remove, rename, and set_snapdev - involves access to
48 * these structures. The zvol_state_lock is primarily used to protect the
49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50 * of the zvol_state_t structures, as well as to make sure that when the
51 * time comes to remove the structure from the list, it is not in use, and
52 * therefore, it can be taken off zvol_state_list and freed.
53 *
54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55 * e.g. for the duration of receive and rollback operations. This lock can be
56 * held for significant periods of time. Given that it is undesirable to hold
57 * mutexes for long periods of time, the following lock ordering applies:
58 * - take zvol_state_lock if necessary, to protect zvol_state_list
59 * - take zv_suspend_lock if necessary, by the code path in question
60 * - take zv_state_lock to protect zvol_state_t
61 *
62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63 * single-threaded (to preserve order of minor operations), and are executed
64 * through the zvol_task_cb that dispatches the specific operations. Therefore,
65 * these operations are serialized per pool. Consequently, we can be certain
66 * that for a given zvol, there is only one operation at a time in progress.
67 * That is why one can be sure that first, zvol_state_t for a given zvol is
68 * allocated and placed on zvol_state_list, and then other minor operations
69 * for this zvol are going to proceed in the order of issue.
70 *
71 */
72
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 #include <sys/zvol_impl.h>
88
89 unsigned int zvol_inhibit_dev = 0;
90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
91
92 struct hlist_head *zvol_htable;
93 static list_t zvol_state_list;
94 krwlock_t zvol_state_lock;
95 static const zvol_platform_ops_t *ops;
96
97 typedef enum {
98 ZVOL_ASYNC_REMOVE_MINORS,
99 ZVOL_ASYNC_RENAME_MINORS,
100 ZVOL_ASYNC_SET_SNAPDEV,
101 ZVOL_ASYNC_SET_VOLMODE,
102 ZVOL_ASYNC_MAX
103 } zvol_async_op_t;
104
105 typedef struct {
106 zvol_async_op_t op;
107 char name1[MAXNAMELEN];
108 char name2[MAXNAMELEN];
109 uint64_t value;
110 } zvol_task_t;
111
112 uint64_t
113 zvol_name_hash(const char *name)
114 {
115 int i;
116 uint64_t crc = -1ULL;
117 const uint8_t *p = (const uint8_t *)name;
118 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
119 for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
120 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
121 }
122 return (crc);
123 }
124
125 /*
126 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
127 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
128 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
129 * before zv_state_lock. The mode argument indicates the mode (including none)
130 * for zv_suspend_lock to be taken.
131 */
132 zvol_state_t *
133 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
134 {
135 zvol_state_t *zv;
136 struct hlist_node *p = NULL;
137
138 rw_enter(&zvol_state_lock, RW_READER);
139 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
140 zv = hlist_entry(p, zvol_state_t, zv_hlink);
141 mutex_enter(&zv->zv_state_lock);
142 if (zv->zv_hash == hash &&
143 strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
144 /*
145 * this is the right zvol, take the locks in the
146 * right order
147 */
148 if (mode != RW_NONE &&
149 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
150 mutex_exit(&zv->zv_state_lock);
151 rw_enter(&zv->zv_suspend_lock, mode);
152 mutex_enter(&zv->zv_state_lock);
153 /*
154 * zvol cannot be renamed as we continue
155 * to hold zvol_state_lock
156 */
157 ASSERT(zv->zv_hash == hash &&
158 strncmp(zv->zv_name, name, MAXNAMELEN)
159 == 0);
160 }
161 rw_exit(&zvol_state_lock);
162 return (zv);
163 }
164 mutex_exit(&zv->zv_state_lock);
165 }
166 rw_exit(&zvol_state_lock);
167
168 return (NULL);
169 }
170
171 /*
172 * Find a zvol_state_t given the name.
173 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
174 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
175 * before zv_state_lock. The mode argument indicates the mode (including none)
176 * for zv_suspend_lock to be taken.
177 */
178 static zvol_state_t *
179 zvol_find_by_name(const char *name, int mode)
180 {
181 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
182 }
183
184 /*
185 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
186 */
187 void
188 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
189 {
190 zfs_creat_t *zct = arg;
191 nvlist_t *nvprops = zct->zct_props;
192 int error;
193 uint64_t volblocksize, volsize;
194
195 VERIFY(nvlist_lookup_uint64(nvprops,
196 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
197 if (nvlist_lookup_uint64(nvprops,
198 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
199 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
200
201 /*
202 * These properties must be removed from the list so the generic
203 * property setting step won't apply to them.
204 */
205 VERIFY(nvlist_remove_all(nvprops,
206 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
207 (void) nvlist_remove_all(nvprops,
208 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
209
210 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
211 DMU_OT_NONE, 0, tx);
212 ASSERT(error == 0);
213
214 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
215 DMU_OT_NONE, 0, tx);
216 ASSERT(error == 0);
217
218 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
219 ASSERT(error == 0);
220 }
221
222 /*
223 * ZFS_IOC_OBJSET_STATS entry point.
224 */
225 int
226 zvol_get_stats(objset_t *os, nvlist_t *nv)
227 {
228 int error;
229 dmu_object_info_t *doi;
230 uint64_t val;
231
232 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
233 if (error)
234 return (SET_ERROR(error));
235
236 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
237 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
238 error = dmu_object_info(os, ZVOL_OBJ, doi);
239
240 if (error == 0) {
241 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
242 doi->doi_data_block_size);
243 }
244
245 kmem_free(doi, sizeof (dmu_object_info_t));
246
247 return (SET_ERROR(error));
248 }
249
250 /*
251 * Sanity check volume size.
252 */
253 int
254 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
255 {
256 if (volsize == 0)
257 return (SET_ERROR(EINVAL));
258
259 if (volsize % blocksize != 0)
260 return (SET_ERROR(EINVAL));
261
262 #ifdef _ILP32
263 if (volsize - 1 > SPEC_MAXOFFSET_T)
264 return (SET_ERROR(EOVERFLOW));
265 #endif
266 return (0);
267 }
268
269 /*
270 * Ensure the zap is flushed then inform the VFS of the capacity change.
271 */
272 static int
273 zvol_update_volsize(uint64_t volsize, objset_t *os)
274 {
275 dmu_tx_t *tx;
276 int error;
277 uint64_t txg;
278
279 tx = dmu_tx_create(os);
280 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
281 dmu_tx_mark_netfree(tx);
282 error = dmu_tx_assign(tx, TXG_WAIT);
283 if (error) {
284 dmu_tx_abort(tx);
285 return (SET_ERROR(error));
286 }
287 txg = dmu_tx_get_txg(tx);
288
289 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
290 &volsize, tx);
291 dmu_tx_commit(tx);
292
293 txg_wait_synced(dmu_objset_pool(os), txg);
294
295 if (error == 0)
296 error = dmu_free_long_range(os,
297 ZVOL_OBJ, volsize, DMU_OBJECT_END);
298
299 return (error);
300 }
301
302 /*
303 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
304 * size will result in a udev "change" event being generated.
305 */
306 int
307 zvol_set_volsize(const char *name, uint64_t volsize)
308 {
309 objset_t *os = NULL;
310 uint64_t readonly;
311 int error;
312 boolean_t owned = B_FALSE;
313
314 error = dsl_prop_get_integer(name,
315 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
316 if (error != 0)
317 return (SET_ERROR(error));
318 if (readonly)
319 return (SET_ERROR(EROFS));
320
321 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
322
323 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
324 RW_READ_HELD(&zv->zv_suspend_lock)));
325
326 if (zv == NULL || zv->zv_objset == NULL) {
327 if (zv != NULL)
328 rw_exit(&zv->zv_suspend_lock);
329 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
330 FTAG, &os)) != 0) {
331 if (zv != NULL)
332 mutex_exit(&zv->zv_state_lock);
333 return (SET_ERROR(error));
334 }
335 owned = B_TRUE;
336 if (zv != NULL)
337 zv->zv_objset = os;
338 } else {
339 os = zv->zv_objset;
340 }
341
342 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
343
344 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
345 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
346 goto out;
347
348 error = zvol_update_volsize(volsize, os);
349 if (error == 0 && zv != NULL) {
350 zv->zv_volsize = volsize;
351 zv->zv_changed = 1;
352 }
353 out:
354 kmem_free(doi, sizeof (dmu_object_info_t));
355
356 if (owned) {
357 dmu_objset_disown(os, B_TRUE, FTAG);
358 if (zv != NULL)
359 zv->zv_objset = NULL;
360 } else {
361 rw_exit(&zv->zv_suspend_lock);
362 }
363
364 if (zv != NULL)
365 mutex_exit(&zv->zv_state_lock);
366
367 if (error == 0 && zv != NULL)
368 ops->zv_update_volsize(zv, volsize);
369
370 return (SET_ERROR(error));
371 }
372
373 /*
374 * Sanity check volume block size.
375 */
376 int
377 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
378 {
379 /* Record sizes above 128k need the feature to be enabled */
380 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
381 spa_t *spa;
382 int error;
383
384 if ((error = spa_open(name, &spa, FTAG)) != 0)
385 return (error);
386
387 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
388 spa_close(spa, FTAG);
389 return (SET_ERROR(ENOTSUP));
390 }
391
392 /*
393 * We don't allow setting the property above 1MB,
394 * unless the tunable has been changed.
395 */
396 if (volblocksize > zfs_max_recordsize)
397 return (SET_ERROR(EDOM));
398
399 spa_close(spa, FTAG);
400 }
401
402 if (volblocksize < SPA_MINBLOCKSIZE ||
403 volblocksize > SPA_MAXBLOCKSIZE ||
404 !ISP2(volblocksize))
405 return (SET_ERROR(EDOM));
406
407 return (0);
408 }
409
410 /*
411 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
412 * implement DKIOCFREE/free-long-range.
413 */
414 static int
415 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
416 {
417 zvol_state_t *zv = arg1;
418 lr_truncate_t *lr = arg2;
419 uint64_t offset, length;
420
421 if (byteswap)
422 byteswap_uint64_array(lr, sizeof (*lr));
423
424 offset = lr->lr_offset;
425 length = lr->lr_length;
426
427 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
428 dmu_tx_mark_netfree(tx);
429 int error = dmu_tx_assign(tx, TXG_WAIT);
430 if (error != 0) {
431 dmu_tx_abort(tx);
432 } else {
433 zil_replaying(zv->zv_zilog, tx);
434 dmu_tx_commit(tx);
435 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
436 length);
437 }
438
439 return (error);
440 }
441
442 /*
443 * Replay a TX_WRITE ZIL transaction that didn't get committed
444 * after a system failure
445 */
446 static int
447 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
448 {
449 zvol_state_t *zv = arg1;
450 lr_write_t *lr = arg2;
451 objset_t *os = zv->zv_objset;
452 char *data = (char *)(lr + 1); /* data follows lr_write_t */
453 uint64_t offset, length;
454 dmu_tx_t *tx;
455 int error;
456
457 if (byteswap)
458 byteswap_uint64_array(lr, sizeof (*lr));
459
460 offset = lr->lr_offset;
461 length = lr->lr_length;
462
463 /* If it's a dmu_sync() block, write the whole block */
464 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
465 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
466 if (length < blocksize) {
467 offset -= offset % blocksize;
468 length = blocksize;
469 }
470 }
471
472 tx = dmu_tx_create(os);
473 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
474 error = dmu_tx_assign(tx, TXG_WAIT);
475 if (error) {
476 dmu_tx_abort(tx);
477 } else {
478 dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
479 zil_replaying(zv->zv_zilog, tx);
480 dmu_tx_commit(tx);
481 }
482
483 return (error);
484 }
485
486 static int
487 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
488 {
489 (void) arg1, (void) arg2, (void) byteswap;
490 return (SET_ERROR(ENOTSUP));
491 }
492
493 /*
494 * Callback vectors for replaying records.
495 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
496 */
497 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
498 zvol_replay_err, /* no such transaction type */
499 zvol_replay_err, /* TX_CREATE */
500 zvol_replay_err, /* TX_MKDIR */
501 zvol_replay_err, /* TX_MKXATTR */
502 zvol_replay_err, /* TX_SYMLINK */
503 zvol_replay_err, /* TX_REMOVE */
504 zvol_replay_err, /* TX_RMDIR */
505 zvol_replay_err, /* TX_LINK */
506 zvol_replay_err, /* TX_RENAME */
507 zvol_replay_write, /* TX_WRITE */
508 zvol_replay_truncate, /* TX_TRUNCATE */
509 zvol_replay_err, /* TX_SETATTR */
510 zvol_replay_err, /* TX_ACL */
511 zvol_replay_err, /* TX_CREATE_ATTR */
512 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
513 zvol_replay_err, /* TX_MKDIR_ACL */
514 zvol_replay_err, /* TX_MKDIR_ATTR */
515 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
516 zvol_replay_err, /* TX_WRITE2 */
517 };
518
519 /*
520 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
521 *
522 * We store data in the log buffers if it's small enough.
523 * Otherwise we will later flush the data out via dmu_sync().
524 */
525 static const ssize_t zvol_immediate_write_sz = 32768;
526
527 void
528 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
529 uint64_t size, int sync)
530 {
531 uint32_t blocksize = zv->zv_volblocksize;
532 zilog_t *zilog = zv->zv_zilog;
533 itx_wr_state_t write_state;
534 uint64_t sz = size;
535
536 if (zil_replaying(zilog, tx))
537 return;
538
539 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
540 write_state = WR_INDIRECT;
541 else if (!spa_has_slogs(zilog->zl_spa) &&
542 size >= blocksize && blocksize > zvol_immediate_write_sz)
543 write_state = WR_INDIRECT;
544 else if (sync)
545 write_state = WR_COPIED;
546 else
547 write_state = WR_NEED_COPY;
548
549 while (size) {
550 itx_t *itx;
551 lr_write_t *lr;
552 itx_wr_state_t wr_state = write_state;
553 ssize_t len = size;
554
555 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
556 wr_state = WR_NEED_COPY;
557 else if (wr_state == WR_INDIRECT)
558 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
559
560 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
561 (wr_state == WR_COPIED ? len : 0));
562 lr = (lr_write_t *)&itx->itx_lr;
563 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
564 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
565 zil_itx_destroy(itx);
566 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
567 lr = (lr_write_t *)&itx->itx_lr;
568 wr_state = WR_NEED_COPY;
569 }
570
571 itx->itx_wr_state = wr_state;
572 lr->lr_foid = ZVOL_OBJ;
573 lr->lr_offset = offset;
574 lr->lr_length = len;
575 lr->lr_blkoff = 0;
576 BP_ZERO(&lr->lr_blkptr);
577
578 itx->itx_private = zv;
579 itx->itx_sync = sync;
580
581 (void) zil_itx_assign(zilog, itx, tx);
582
583 offset += len;
584 size -= len;
585 }
586
587 if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
588 dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
589 }
590 }
591
592 /*
593 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
594 */
595 void
596 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
597 boolean_t sync)
598 {
599 itx_t *itx;
600 lr_truncate_t *lr;
601 zilog_t *zilog = zv->zv_zilog;
602
603 if (zil_replaying(zilog, tx))
604 return;
605
606 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
607 lr = (lr_truncate_t *)&itx->itx_lr;
608 lr->lr_foid = ZVOL_OBJ;
609 lr->lr_offset = off;
610 lr->lr_length = len;
611
612 itx->itx_sync = sync;
613 zil_itx_assign(zilog, itx, tx);
614 }
615
616
617 /* ARGSUSED */
618 static void
619 zvol_get_done(zgd_t *zgd, int error)
620 {
621 if (zgd->zgd_db)
622 dmu_buf_rele(zgd->zgd_db, zgd);
623
624 zfs_rangelock_exit(zgd->zgd_lr);
625
626 kmem_free(zgd, sizeof (zgd_t));
627 }
628
629 /*
630 * Get data to generate a TX_WRITE intent log record.
631 */
632 int
633 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
634 struct lwb *lwb, zio_t *zio)
635 {
636 zvol_state_t *zv = arg;
637 uint64_t offset = lr->lr_offset;
638 uint64_t size = lr->lr_length;
639 dmu_buf_t *db;
640 zgd_t *zgd;
641 int error;
642
643 ASSERT3P(lwb, !=, NULL);
644 ASSERT3P(zio, !=, NULL);
645 ASSERT3U(size, !=, 0);
646
647 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
648 zgd->zgd_lwb = lwb;
649
650 /*
651 * Write records come in two flavors: immediate and indirect.
652 * For small writes it's cheaper to store the data with the
653 * log record (immediate); for large writes it's cheaper to
654 * sync the data and get a pointer to it (indirect) so that
655 * we don't have to write the data twice.
656 */
657 if (buf != NULL) { /* immediate write */
658 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
659 size, RL_READER);
660 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
661 DMU_READ_NO_PREFETCH);
662 } else { /* indirect write */
663 /*
664 * Have to lock the whole block to ensure when it's written out
665 * and its checksum is being calculated that no one can change
666 * the data. Contrarily to zfs_get_data we need not re-check
667 * blocksize after we get the lock because it cannot be changed.
668 */
669 size = zv->zv_volblocksize;
670 offset = P2ALIGN_TYPED(offset, size, uint64_t);
671 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
672 size, RL_READER);
673 error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
674 DMU_READ_NO_PREFETCH);
675 if (error == 0) {
676 blkptr_t *bp = &lr->lr_blkptr;
677
678 zgd->zgd_db = db;
679 zgd->zgd_bp = bp;
680
681 ASSERT(db != NULL);
682 ASSERT(db->db_offset == offset);
683 ASSERT(db->db_size == size);
684
685 error = dmu_sync(zio, lr->lr_common.lrc_txg,
686 zvol_get_done, zgd);
687
688 if (error == 0)
689 return (0);
690 }
691 }
692
693 zvol_get_done(zgd, error);
694
695 return (SET_ERROR(error));
696 }
697
698 /*
699 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
700 */
701
702 void
703 zvol_insert(zvol_state_t *zv)
704 {
705 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
706 list_insert_head(&zvol_state_list, zv);
707 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
708 }
709
710 /*
711 * Simply remove the zvol from to list of zvols.
712 */
713 static void
714 zvol_remove(zvol_state_t *zv)
715 {
716 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
717 list_remove(&zvol_state_list, zv);
718 hlist_del(&zv->zv_hlink);
719 }
720
721 /*
722 * Setup zv after we just own the zv->objset
723 */
724 static int
725 zvol_setup_zv(zvol_state_t *zv)
726 {
727 uint64_t volsize;
728 int error;
729 uint64_t ro;
730 objset_t *os = zv->zv_objset;
731
732 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
733 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
734
735 zv->zv_zilog = NULL;
736 zv->zv_flags &= ~ZVOL_WRITTEN_TO;
737
738 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
739 if (error)
740 return (SET_ERROR(error));
741
742 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
743 if (error)
744 return (SET_ERROR(error));
745
746 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
747 if (error)
748 return (SET_ERROR(error));
749
750 ops->zv_set_capacity(zv, volsize >> 9);
751 zv->zv_volsize = volsize;
752
753 if (ro || dmu_objset_is_snapshot(os) ||
754 !spa_writeable(dmu_objset_spa(os))) {
755 ops->zv_set_disk_ro(zv, 1);
756 zv->zv_flags |= ZVOL_RDONLY;
757 } else {
758 ops->zv_set_disk_ro(zv, 0);
759 zv->zv_flags &= ~ZVOL_RDONLY;
760 }
761 return (0);
762 }
763
764 /*
765 * Shutdown every zv_objset related stuff except zv_objset itself.
766 * The is the reverse of zvol_setup_zv.
767 */
768 static void
769 zvol_shutdown_zv(zvol_state_t *zv)
770 {
771 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
772 RW_LOCK_HELD(&zv->zv_suspend_lock));
773
774 if (zv->zv_flags & ZVOL_WRITTEN_TO) {
775 ASSERT(zv->zv_zilog != NULL);
776 zil_close(zv->zv_zilog);
777 }
778
779 zv->zv_zilog = NULL;
780
781 dnode_rele(zv->zv_dn, zv);
782 zv->zv_dn = NULL;
783
784 /*
785 * Evict cached data. We must write out any dirty data before
786 * disowning the dataset.
787 */
788 if (zv->zv_flags & ZVOL_WRITTEN_TO)
789 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
790 (void) dmu_objset_evict_dbufs(zv->zv_objset);
791 }
792
793 /*
794 * return the proper tag for rollback and recv
795 */
796 void *
797 zvol_tag(zvol_state_t *zv)
798 {
799 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
800 return (zv->zv_open_count > 0 ? zv : NULL);
801 }
802
803 /*
804 * Suspend the zvol for recv and rollback.
805 */
806 zvol_state_t *
807 zvol_suspend(const char *name)
808 {
809 zvol_state_t *zv;
810
811 zv = zvol_find_by_name(name, RW_WRITER);
812
813 if (zv == NULL)
814 return (NULL);
815
816 /* block all I/O, release in zvol_resume. */
817 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
818 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
819
820 atomic_inc(&zv->zv_suspend_ref);
821
822 if (zv->zv_open_count > 0)
823 zvol_shutdown_zv(zv);
824
825 /*
826 * do not hold zv_state_lock across suspend/resume to
827 * avoid locking up zvol lookups
828 */
829 mutex_exit(&zv->zv_state_lock);
830
831 /* zv_suspend_lock is released in zvol_resume() */
832 return (zv);
833 }
834
835 int
836 zvol_resume(zvol_state_t *zv)
837 {
838 int error = 0;
839
840 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
841
842 mutex_enter(&zv->zv_state_lock);
843
844 if (zv->zv_open_count > 0) {
845 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
846 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
847 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
848 dmu_objset_rele(zv->zv_objset, zv);
849
850 error = zvol_setup_zv(zv);
851 }
852
853 mutex_exit(&zv->zv_state_lock);
854
855 rw_exit(&zv->zv_suspend_lock);
856 /*
857 * We need this because we don't hold zvol_state_lock while releasing
858 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
859 * zv_suspend_lock to determine it is safe to free because rwlock is
860 * not inherent atomic.
861 */
862 atomic_dec(&zv->zv_suspend_ref);
863
864 return (SET_ERROR(error));
865 }
866
867 int
868 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
869 {
870 objset_t *os;
871 int error;
872
873 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
874 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
875 ASSERT(mutex_owned(&spa_namespace_lock));
876
877 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
878 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
879 if (error)
880 return (SET_ERROR(error));
881
882 zv->zv_objset = os;
883
884 error = zvol_setup_zv(zv);
885 if (error) {
886 dmu_objset_disown(os, 1, zv);
887 zv->zv_objset = NULL;
888 }
889
890 return (error);
891 }
892
893 void
894 zvol_last_close(zvol_state_t *zv)
895 {
896 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
897 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
898
899 zvol_shutdown_zv(zv);
900
901 dmu_objset_disown(zv->zv_objset, 1, zv);
902 zv->zv_objset = NULL;
903 }
904
905 typedef struct minors_job {
906 list_t *list;
907 list_node_t link;
908 /* input */
909 char *name;
910 /* output */
911 int error;
912 } minors_job_t;
913
914 /*
915 * Prefetch zvol dnodes for the minors_job
916 */
917 static void
918 zvol_prefetch_minors_impl(void *arg)
919 {
920 minors_job_t *job = arg;
921 char *dsname = job->name;
922 objset_t *os = NULL;
923
924 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
925 FTAG, &os);
926 if (job->error == 0) {
927 dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
928 dmu_objset_disown(os, B_TRUE, FTAG);
929 }
930 }
931
932 /*
933 * Mask errors to continue dmu_objset_find() traversal
934 */
935 static int
936 zvol_create_snap_minor_cb(const char *dsname, void *arg)
937 {
938 minors_job_t *j = arg;
939 list_t *minors_list = j->list;
940 const char *name = j->name;
941
942 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
943
944 /* skip the designated dataset */
945 if (name && strcmp(dsname, name) == 0)
946 return (0);
947
948 /* at this point, the dsname should name a snapshot */
949 if (strchr(dsname, '@') == 0) {
950 dprintf("zvol_create_snap_minor_cb(): "
951 "%s is not a snapshot name\n", dsname);
952 } else {
953 minors_job_t *job;
954 char *n = kmem_strdup(dsname);
955 if (n == NULL)
956 return (0);
957
958 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
959 job->name = n;
960 job->list = minors_list;
961 job->error = 0;
962 list_insert_tail(minors_list, job);
963 /* don't care if dispatch fails, because job->error is 0 */
964 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
965 TQ_SLEEP);
966 }
967
968 return (0);
969 }
970
971 /*
972 * If spa_keystore_load_wkey() is called for an encrypted zvol,
973 * we need to look for any clones also using the key. This function
974 * is "best effort" - so we just skip over it if there are failures.
975 */
976 static void
977 zvol_add_clones(const char *dsname, list_t *minors_list)
978 {
979 /* Also check if it has clones */
980 dsl_dir_t *dd = NULL;
981 dsl_pool_t *dp = NULL;
982
983 if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
984 return;
985
986 if (!spa_feature_is_enabled(dp->dp_spa,
987 SPA_FEATURE_ENCRYPTION))
988 goto out;
989
990 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
991 goto out;
992
993 if (dsl_dir_phys(dd)->dd_clones == 0)
994 goto out;
995
996 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
997 zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
998 objset_t *mos = dd->dd_pool->dp_meta_objset;
999
1000 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1001 zap_cursor_retrieve(zc, za) == 0;
1002 zap_cursor_advance(zc)) {
1003 dsl_dataset_t *clone;
1004 minors_job_t *job;
1005
1006 if (dsl_dataset_hold_obj(dd->dd_pool,
1007 za->za_first_integer, FTAG, &clone) == 0) {
1008
1009 char name[ZFS_MAX_DATASET_NAME_LEN];
1010 dsl_dataset_name(clone, name);
1011
1012 char *n = kmem_strdup(name);
1013 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1014 job->name = n;
1015 job->list = minors_list;
1016 job->error = 0;
1017 list_insert_tail(minors_list, job);
1018
1019 dsl_dataset_rele(clone, FTAG);
1020 }
1021 }
1022 zap_cursor_fini(zc);
1023 kmem_free(za, sizeof (zap_attribute_t));
1024 kmem_free(zc, sizeof (zap_cursor_t));
1025
1026 out:
1027 if (dd != NULL)
1028 dsl_dir_rele(dd, FTAG);
1029 if (dp != NULL)
1030 dsl_pool_rele(dp, FTAG);
1031 }
1032
1033 /*
1034 * Mask errors to continue dmu_objset_find() traversal
1035 */
1036 static int
1037 zvol_create_minors_cb(const char *dsname, void *arg)
1038 {
1039 uint64_t snapdev;
1040 int error;
1041 list_t *minors_list = arg;
1042
1043 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1044
1045 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1046 if (error)
1047 return (0);
1048
1049 /*
1050 * Given the name and the 'snapdev' property, create device minor nodes
1051 * with the linkages to zvols/snapshots as needed.
1052 * If the name represents a zvol, create a minor node for the zvol, then
1053 * check if its snapshots are 'visible', and if so, iterate over the
1054 * snapshots and create device minor nodes for those.
1055 */
1056 if (strchr(dsname, '@') == 0) {
1057 minors_job_t *job;
1058 char *n = kmem_strdup(dsname);
1059 if (n == NULL)
1060 return (0);
1061
1062 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1063 job->name = n;
1064 job->list = minors_list;
1065 job->error = 0;
1066 list_insert_tail(minors_list, job);
1067 /* don't care if dispatch fails, because job->error is 0 */
1068 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1069 TQ_SLEEP);
1070
1071 zvol_add_clones(dsname, minors_list);
1072
1073 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1074 /*
1075 * traverse snapshots only, do not traverse children,
1076 * and skip the 'dsname'
1077 */
1078 error = dmu_objset_find(dsname,
1079 zvol_create_snap_minor_cb, (void *)job,
1080 DS_FIND_SNAPSHOTS);
1081 }
1082 } else {
1083 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1084 dsname);
1085 }
1086
1087 return (0);
1088 }
1089
1090 /*
1091 * Create minors for the specified dataset, including children and snapshots.
1092 * Pay attention to the 'snapdev' property and iterate over the snapshots
1093 * only if they are 'visible'. This approach allows one to assure that the
1094 * snapshot metadata is read from disk only if it is needed.
1095 *
1096 * The name can represent a dataset to be recursively scanned for zvols and
1097 * their snapshots, or a single zvol snapshot. If the name represents a
1098 * dataset, the scan is performed in two nested stages:
1099 * - scan the dataset for zvols, and
1100 * - for each zvol, create a minor node, then check if the zvol's snapshots
1101 * are 'visible', and only then iterate over the snapshots if needed
1102 *
1103 * If the name represents a snapshot, a check is performed if the snapshot is
1104 * 'visible' (which also verifies that the parent is a zvol), and if so,
1105 * a minor node for that snapshot is created.
1106 */
1107 void
1108 zvol_create_minors_recursive(const char *name)
1109 {
1110 list_t minors_list;
1111 minors_job_t *job;
1112
1113 if (zvol_inhibit_dev)
1114 return;
1115
1116 /*
1117 * This is the list for prefetch jobs. Whenever we found a match
1118 * during dmu_objset_find, we insert a minors_job to the list and do
1119 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1120 * any lock because all list operation is done on the current thread.
1121 *
1122 * We will use this list to do zvol_create_minor_impl after prefetch
1123 * so we don't have to traverse using dmu_objset_find again.
1124 */
1125 list_create(&minors_list, sizeof (minors_job_t),
1126 offsetof(minors_job_t, link));
1127
1128
1129 if (strchr(name, '@') != NULL) {
1130 uint64_t snapdev;
1131
1132 int error = dsl_prop_get_integer(name, "snapdev",
1133 &snapdev, NULL);
1134
1135 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1136 (void) ops->zv_create_minor(name);
1137 } else {
1138 fstrans_cookie_t cookie = spl_fstrans_mark();
1139 (void) dmu_objset_find(name, zvol_create_minors_cb,
1140 &minors_list, DS_FIND_CHILDREN);
1141 spl_fstrans_unmark(cookie);
1142 }
1143
1144 taskq_wait_outstanding(system_taskq, 0);
1145
1146 /*
1147 * Prefetch is completed, we can do zvol_create_minor_impl
1148 * sequentially.
1149 */
1150 while ((job = list_head(&minors_list)) != NULL) {
1151 list_remove(&minors_list, job);
1152 if (!job->error)
1153 (void) ops->zv_create_minor(job->name);
1154 kmem_strfree(job->name);
1155 kmem_free(job, sizeof (minors_job_t));
1156 }
1157
1158 list_destroy(&minors_list);
1159 }
1160
1161 void
1162 zvol_create_minor(const char *name)
1163 {
1164 /*
1165 * Note: the dsl_pool_config_lock must not be held.
1166 * Minor node creation needs to obtain the zvol_state_lock.
1167 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1168 * config lock. Therefore, we can't have the config lock now if
1169 * we are going to wait for the zvol_state_lock, because it
1170 * would be a lock order inversion which could lead to deadlock.
1171 */
1172
1173 if (zvol_inhibit_dev)
1174 return;
1175
1176 if (strchr(name, '@') != NULL) {
1177 uint64_t snapdev;
1178
1179 int error = dsl_prop_get_integer(name,
1180 "snapdev", &snapdev, NULL);
1181
1182 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1183 (void) ops->zv_create_minor(name);
1184 } else {
1185 (void) ops->zv_create_minor(name);
1186 }
1187 }
1188
1189 /*
1190 * Remove minors for specified dataset including children and snapshots.
1191 */
1192
1193 static void
1194 zvol_free_task(void *arg)
1195 {
1196 ops->zv_free(arg);
1197 }
1198
1199 void
1200 zvol_remove_minors_impl(const char *name)
1201 {
1202 zvol_state_t *zv, *zv_next;
1203 int namelen = ((name) ? strlen(name) : 0);
1204 taskqid_t t;
1205 list_t free_list;
1206
1207 if (zvol_inhibit_dev)
1208 return;
1209
1210 list_create(&free_list, sizeof (zvol_state_t),
1211 offsetof(zvol_state_t, zv_next));
1212
1213 rw_enter(&zvol_state_lock, RW_WRITER);
1214
1215 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1216 zv_next = list_next(&zvol_state_list, zv);
1217
1218 mutex_enter(&zv->zv_state_lock);
1219 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1220 (strncmp(zv->zv_name, name, namelen) == 0 &&
1221 (zv->zv_name[namelen] == '/' ||
1222 zv->zv_name[namelen] == '@'))) {
1223 /*
1224 * By holding zv_state_lock here, we guarantee that no
1225 * one is currently using this zv
1226 */
1227
1228 /* If in use, leave alone */
1229 if (zv->zv_open_count > 0 ||
1230 atomic_read(&zv->zv_suspend_ref)) {
1231 mutex_exit(&zv->zv_state_lock);
1232 continue;
1233 }
1234
1235 zvol_remove(zv);
1236
1237 /*
1238 * Cleared while holding zvol_state_lock as a writer
1239 * which will prevent zvol_open() from opening it.
1240 */
1241 ops->zv_clear_private(zv);
1242
1243 /* Drop zv_state_lock before zvol_free() */
1244 mutex_exit(&zv->zv_state_lock);
1245
1246 /* Try parallel zv_free, if failed do it in place */
1247 t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1248 TQ_SLEEP);
1249 if (t == TASKQID_INVALID)
1250 list_insert_head(&free_list, zv);
1251 } else {
1252 mutex_exit(&zv->zv_state_lock);
1253 }
1254 }
1255 rw_exit(&zvol_state_lock);
1256
1257 /* Drop zvol_state_lock before calling zvol_free() */
1258 while ((zv = list_head(&free_list)) != NULL) {
1259 list_remove(&free_list, zv);
1260 ops->zv_free(zv);
1261 }
1262 }
1263
1264 /* Remove minor for this specific volume only */
1265 static void
1266 zvol_remove_minor_impl(const char *name)
1267 {
1268 zvol_state_t *zv = NULL, *zv_next;
1269
1270 if (zvol_inhibit_dev)
1271 return;
1272
1273 rw_enter(&zvol_state_lock, RW_WRITER);
1274
1275 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1276 zv_next = list_next(&zvol_state_list, zv);
1277
1278 mutex_enter(&zv->zv_state_lock);
1279 if (strcmp(zv->zv_name, name) == 0) {
1280 /*
1281 * By holding zv_state_lock here, we guarantee that no
1282 * one is currently using this zv
1283 */
1284
1285 /* If in use, leave alone */
1286 if (zv->zv_open_count > 0 ||
1287 atomic_read(&zv->zv_suspend_ref)) {
1288 mutex_exit(&zv->zv_state_lock);
1289 continue;
1290 }
1291 zvol_remove(zv);
1292
1293 ops->zv_clear_private(zv);
1294 mutex_exit(&zv->zv_state_lock);
1295 break;
1296 } else {
1297 mutex_exit(&zv->zv_state_lock);
1298 }
1299 }
1300
1301 /* Drop zvol_state_lock before calling zvol_free() */
1302 rw_exit(&zvol_state_lock);
1303
1304 if (zv != NULL)
1305 ops->zv_free(zv);
1306 }
1307
1308 /*
1309 * Rename minors for specified dataset including children and snapshots.
1310 */
1311 static void
1312 zvol_rename_minors_impl(const char *oldname, const char *newname)
1313 {
1314 zvol_state_t *zv, *zv_next;
1315 int oldnamelen;
1316
1317 if (zvol_inhibit_dev)
1318 return;
1319
1320 oldnamelen = strlen(oldname);
1321
1322 rw_enter(&zvol_state_lock, RW_READER);
1323
1324 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1325 zv_next = list_next(&zvol_state_list, zv);
1326
1327 mutex_enter(&zv->zv_state_lock);
1328
1329 if (strcmp(zv->zv_name, oldname) == 0) {
1330 ops->zv_rename_minor(zv, newname);
1331 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1332 (zv->zv_name[oldnamelen] == '/' ||
1333 zv->zv_name[oldnamelen] == '@')) {
1334 char *name = kmem_asprintf("%s%c%s", newname,
1335 zv->zv_name[oldnamelen],
1336 zv->zv_name + oldnamelen + 1);
1337 ops->zv_rename_minor(zv, name);
1338 kmem_strfree(name);
1339 }
1340
1341 mutex_exit(&zv->zv_state_lock);
1342 }
1343
1344 rw_exit(&zvol_state_lock);
1345 }
1346
1347 typedef struct zvol_snapdev_cb_arg {
1348 uint64_t snapdev;
1349 } zvol_snapdev_cb_arg_t;
1350
1351 static int
1352 zvol_set_snapdev_cb(const char *dsname, void *param)
1353 {
1354 zvol_snapdev_cb_arg_t *arg = param;
1355
1356 if (strchr(dsname, '@') == NULL)
1357 return (0);
1358
1359 switch (arg->snapdev) {
1360 case ZFS_SNAPDEV_VISIBLE:
1361 (void) ops->zv_create_minor(dsname);
1362 break;
1363 case ZFS_SNAPDEV_HIDDEN:
1364 (void) zvol_remove_minor_impl(dsname);
1365 break;
1366 }
1367
1368 return (0);
1369 }
1370
1371 static void
1372 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1373 {
1374 zvol_snapdev_cb_arg_t arg = {snapdev};
1375 fstrans_cookie_t cookie = spl_fstrans_mark();
1376 /*
1377 * The zvol_set_snapdev_sync() sets snapdev appropriately
1378 * in the dataset hierarchy. Here, we only scan snapshots.
1379 */
1380 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1381 spl_fstrans_unmark(cookie);
1382 }
1383
1384 static void
1385 zvol_set_volmode_impl(char *name, uint64_t volmode)
1386 {
1387 fstrans_cookie_t cookie;
1388 uint64_t old_volmode;
1389 zvol_state_t *zv;
1390
1391 if (strchr(name, '@') != NULL)
1392 return;
1393
1394 /*
1395 * It's unfortunate we need to remove minors before we create new ones:
1396 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1397 * could be different when we set, for instance, volmode from "geom"
1398 * to "dev" (or vice versa).
1399 */
1400 zv = zvol_find_by_name(name, RW_NONE);
1401 if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1402 return;
1403 if (zv != NULL) {
1404 old_volmode = zv->zv_volmode;
1405 mutex_exit(&zv->zv_state_lock);
1406 if (old_volmode == volmode)
1407 return;
1408 zvol_wait_close(zv);
1409 }
1410 cookie = spl_fstrans_mark();
1411 switch (volmode) {
1412 case ZFS_VOLMODE_NONE:
1413 (void) zvol_remove_minor_impl(name);
1414 break;
1415 case ZFS_VOLMODE_GEOM:
1416 case ZFS_VOLMODE_DEV:
1417 (void) zvol_remove_minor_impl(name);
1418 (void) ops->zv_create_minor(name);
1419 break;
1420 case ZFS_VOLMODE_DEFAULT:
1421 (void) zvol_remove_minor_impl(name);
1422 if (zvol_volmode == ZFS_VOLMODE_NONE)
1423 break;
1424 else /* if zvol_volmode is invalid defaults to "geom" */
1425 (void) ops->zv_create_minor(name);
1426 break;
1427 }
1428 spl_fstrans_unmark(cookie);
1429 }
1430
1431 static zvol_task_t *
1432 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1433 uint64_t value)
1434 {
1435 zvol_task_t *task;
1436
1437 /* Never allow tasks on hidden names. */
1438 if (name1[0] == '$')
1439 return (NULL);
1440
1441 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1442 task->op = op;
1443 task->value = value;
1444
1445 strlcpy(task->name1, name1, MAXNAMELEN);
1446 if (name2 != NULL)
1447 strlcpy(task->name2, name2, MAXNAMELEN);
1448
1449 return (task);
1450 }
1451
1452 static void
1453 zvol_task_free(zvol_task_t *task)
1454 {
1455 kmem_free(task, sizeof (zvol_task_t));
1456 }
1457
1458 /*
1459 * The worker thread function performed asynchronously.
1460 */
1461 static void
1462 zvol_task_cb(void *arg)
1463 {
1464 zvol_task_t *task = arg;
1465
1466 switch (task->op) {
1467 case ZVOL_ASYNC_REMOVE_MINORS:
1468 zvol_remove_minors_impl(task->name1);
1469 break;
1470 case ZVOL_ASYNC_RENAME_MINORS:
1471 zvol_rename_minors_impl(task->name1, task->name2);
1472 break;
1473 case ZVOL_ASYNC_SET_SNAPDEV:
1474 zvol_set_snapdev_impl(task->name1, task->value);
1475 break;
1476 case ZVOL_ASYNC_SET_VOLMODE:
1477 zvol_set_volmode_impl(task->name1, task->value);
1478 break;
1479 default:
1480 VERIFY(0);
1481 break;
1482 }
1483
1484 zvol_task_free(task);
1485 }
1486
1487 typedef struct zvol_set_prop_int_arg {
1488 const char *zsda_name;
1489 uint64_t zsda_value;
1490 zprop_source_t zsda_source;
1491 dmu_tx_t *zsda_tx;
1492 } zvol_set_prop_int_arg_t;
1493
1494 /*
1495 * Sanity check the dataset for safe use by the sync task. No additional
1496 * conditions are imposed.
1497 */
1498 static int
1499 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
1500 {
1501 zvol_set_prop_int_arg_t *zsda = arg;
1502 dsl_pool_t *dp = dmu_tx_pool(tx);
1503 dsl_dir_t *dd;
1504 int error;
1505
1506 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1507 if (error != 0)
1508 return (error);
1509
1510 dsl_dir_rele(dd, FTAG);
1511
1512 return (error);
1513 }
1514
1515 /* ARGSUSED */
1516 static int
1517 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1518 {
1519 char dsname[MAXNAMELEN];
1520 zvol_task_t *task;
1521 uint64_t snapdev;
1522
1523 dsl_dataset_name(ds, dsname);
1524 if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
1525 return (0);
1526 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
1527 if (task == NULL)
1528 return (0);
1529
1530 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1531 task, TQ_SLEEP);
1532 return (0);
1533 }
1534
1535 /*
1536 * Traverse all child datasets and apply snapdev appropriately.
1537 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1538 * dataset and read the effective "snapdev" on every child in the callback
1539 * function: this is because the value is not guaranteed to be the same in the
1540 * whole dataset hierarchy.
1541 */
1542 static void
1543 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
1544 {
1545 zvol_set_prop_int_arg_t *zsda = arg;
1546 dsl_pool_t *dp = dmu_tx_pool(tx);
1547 dsl_dir_t *dd;
1548 dsl_dataset_t *ds;
1549 int error;
1550
1551 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1552 zsda->zsda_tx = tx;
1553
1554 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1555 if (error == 0) {
1556 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
1557 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1558 &zsda->zsda_value, zsda->zsda_tx);
1559 dsl_dataset_rele(ds, FTAG);
1560 }
1561 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
1562 zsda, DS_FIND_CHILDREN);
1563
1564 dsl_dir_rele(dd, FTAG);
1565 }
1566
1567 int
1568 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
1569 {
1570 zvol_set_prop_int_arg_t zsda;
1571
1572 zsda.zsda_name = ddname;
1573 zsda.zsda_source = source;
1574 zsda.zsda_value = snapdev;
1575
1576 return (dsl_sync_task(ddname, zvol_set_snapdev_check,
1577 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1578 }
1579
1580 /*
1581 * Sanity check the dataset for safe use by the sync task. No additional
1582 * conditions are imposed.
1583 */
1584 static int
1585 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
1586 {
1587 zvol_set_prop_int_arg_t *zsda = arg;
1588 dsl_pool_t *dp = dmu_tx_pool(tx);
1589 dsl_dir_t *dd;
1590 int error;
1591
1592 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1593 if (error != 0)
1594 return (error);
1595
1596 dsl_dir_rele(dd, FTAG);
1597
1598 return (error);
1599 }
1600
1601 /* ARGSUSED */
1602 static int
1603 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1604 {
1605 char dsname[MAXNAMELEN];
1606 zvol_task_t *task;
1607 uint64_t volmode;
1608
1609 dsl_dataset_name(ds, dsname);
1610 if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
1611 return (0);
1612 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
1613 if (task == NULL)
1614 return (0);
1615
1616 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1617 task, TQ_SLEEP);
1618 return (0);
1619 }
1620
1621 /*
1622 * Traverse all child datasets and apply volmode appropriately.
1623 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1624 * dataset and read the effective "volmode" on every child in the callback
1625 * function: this is because the value is not guaranteed to be the same in the
1626 * whole dataset hierarchy.
1627 */
1628 static void
1629 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
1630 {
1631 zvol_set_prop_int_arg_t *zsda = arg;
1632 dsl_pool_t *dp = dmu_tx_pool(tx);
1633 dsl_dir_t *dd;
1634 dsl_dataset_t *ds;
1635 int error;
1636
1637 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1638 zsda->zsda_tx = tx;
1639
1640 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1641 if (error == 0) {
1642 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
1643 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1644 &zsda->zsda_value, zsda->zsda_tx);
1645 dsl_dataset_rele(ds, FTAG);
1646 }
1647
1648 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
1649 zsda, DS_FIND_CHILDREN);
1650
1651 dsl_dir_rele(dd, FTAG);
1652 }
1653
1654 int
1655 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
1656 {
1657 zvol_set_prop_int_arg_t zsda;
1658
1659 zsda.zsda_name = ddname;
1660 zsda.zsda_source = source;
1661 zsda.zsda_value = volmode;
1662
1663 return (dsl_sync_task(ddname, zvol_set_volmode_check,
1664 zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1665 }
1666
1667 void
1668 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1669 {
1670 zvol_task_t *task;
1671 taskqid_t id;
1672
1673 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1674 if (task == NULL)
1675 return;
1676
1677 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1678 if ((async == B_FALSE) && (id != TASKQID_INVALID))
1679 taskq_wait_id(spa->spa_zvol_taskq, id);
1680 }
1681
1682 void
1683 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1684 boolean_t async)
1685 {
1686 zvol_task_t *task;
1687 taskqid_t id;
1688
1689 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1690 if (task == NULL)
1691 return;
1692
1693 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1694 if ((async == B_FALSE) && (id != TASKQID_INVALID))
1695 taskq_wait_id(spa->spa_zvol_taskq, id);
1696 }
1697
1698 boolean_t
1699 zvol_is_zvol(const char *name)
1700 {
1701
1702 return (ops->zv_is_zvol(name));
1703 }
1704
1705 void
1706 zvol_register_ops(const zvol_platform_ops_t *zvol_ops)
1707 {
1708 ops = zvol_ops;
1709 }
1710
1711 int
1712 zvol_init_impl(void)
1713 {
1714 int i;
1715
1716 list_create(&zvol_state_list, sizeof (zvol_state_t),
1717 offsetof(zvol_state_t, zv_next));
1718 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1719
1720 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1721 KM_SLEEP);
1722 for (i = 0; i < ZVOL_HT_SIZE; i++)
1723 INIT_HLIST_HEAD(&zvol_htable[i]);
1724
1725 return (0);
1726 }
1727
1728 void
1729 zvol_fini_impl(void)
1730 {
1731 zvol_remove_minors_impl(NULL);
1732
1733 /*
1734 * The call to "zvol_remove_minors_impl" may dispatch entries to
1735 * the system_taskq, but it doesn't wait for those entries to
1736 * complete before it returns. Thus, we must wait for all of the
1737 * removals to finish, before we can continue.
1738 */
1739 taskq_wait_outstanding(system_taskq, 0);
1740
1741 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1742 list_destroy(&zvol_state_list);
1743 rw_destroy(&zvol_state_lock);
1744 }