]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zvol.c
OpenZFS 9963 - Separate tunable for disabling ZIL vdev flush
[mirror_zfs.git] / module / zfs / zvol.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 *
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
40 */
41
42 /*
43 * Note on locking of zvol state structures.
44 *
45 * These structures are used to maintain internal state used to emulate block
46 * devices on top of zvols. In particular, management of device minor number
47 * operations - create, remove, rename, and set_snapdev - involves access to
48 * these structures. The zvol_state_lock is primarily used to protect the
49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50 * of the zvol_state_t structures, as well as to make sure that when the
51 * time comes to remove the structure from the list, it is not in use, and
52 * therefore, it can be taken off zvol_state_list and freed.
53 *
54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55 * e.g. for the duration of receive and rollback operations. This lock can be
56 * held for significant periods of time. Given that it is undesirable to hold
57 * mutexes for long periods of time, the following lock ordering applies:
58 * - take zvol_state_lock if necessary, to protect zvol_state_list
59 * - take zv_suspend_lock if necessary, by the code path in question
60 * - take zv_state_lock to protect zvol_state_t
61 *
62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63 * single-threaded (to preserve order of minor operations), and are executed
64 * through the zvol_task_cb that dispatches the specific operations. Therefore,
65 * these operations are serialized per pool. Consequently, we can be certain
66 * that for a given zvol, there is only one operation at a time in progress.
67 * That is why one can be sure that first, zvol_state_t for a given zvol is
68 * allocated and placed on zvol_state_list, and then other minor operations
69 * for this zvol are going to proceed in the order of issue.
70 *
71 * It is also worth keeping in mind that once add_disk() is called, the zvol is
72 * announced to the world, and zvol_open()/zvol_release() can be called at any
73 * time. Incidentally, add_disk() itself calls zvol_open()->zvol_first_open()
74 * and zvol_release()->zvol_last_close() directly as well.
75 */
76
77 #include <sys/dataset_kstats.h>
78 #include <sys/dbuf.h>
79 #include <sys/dmu_traverse.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_prop.h>
82 #include <sys/dsl_dir.h>
83 #include <sys/zap.h>
84 #include <sys/zfeature.h>
85 #include <sys/zil_impl.h>
86 #include <sys/dmu_tx.h>
87 #include <sys/zio.h>
88 #include <sys/zfs_rlock.h>
89 #include <sys/spa_impl.h>
90 #include <sys/zvol.h>
91
92 #include <linux/blkdev_compat.h>
93 #include <linux/task_io_accounting_ops.h>
94
95 unsigned int zvol_inhibit_dev = 0;
96 unsigned int zvol_major = ZVOL_MAJOR;
97 unsigned int zvol_threads = 32;
98 unsigned int zvol_request_sync = 0;
99 unsigned int zvol_prefetch_bytes = (128 * 1024);
100 unsigned long zvol_max_discard_blocks = 16384;
101 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
102
103 static taskq_t *zvol_taskq;
104 static krwlock_t zvol_state_lock;
105 static list_t zvol_state_list;
106
107 #define ZVOL_HT_SIZE 1024
108 static struct hlist_head *zvol_htable;
109 #define ZVOL_HT_HEAD(hash) (&zvol_htable[(hash) & (ZVOL_HT_SIZE-1)])
110
111 static struct ida zvol_ida;
112
113 /*
114 * The in-core state of each volume.
115 */
116 struct zvol_state {
117 char zv_name[MAXNAMELEN]; /* name */
118 uint64_t zv_volsize; /* advertised space */
119 uint64_t zv_volblocksize; /* volume block size */
120 objset_t *zv_objset; /* objset handle */
121 uint32_t zv_flags; /* ZVOL_* flags */
122 uint32_t zv_open_count; /* open counts */
123 uint32_t zv_changed; /* disk changed */
124 zilog_t *zv_zilog; /* ZIL handle */
125 rangelock_t zv_rangelock; /* for range locking */
126 dnode_t *zv_dn; /* dnode hold */
127 dev_t zv_dev; /* device id */
128 struct gendisk *zv_disk; /* generic disk */
129 struct request_queue *zv_queue; /* request queue */
130 dataset_kstats_t zv_kstat; /* zvol kstats */
131 list_node_t zv_next; /* next zvol_state_t linkage */
132 uint64_t zv_hash; /* name hash */
133 struct hlist_node zv_hlink; /* hash link */
134 kmutex_t zv_state_lock; /* protects zvol_state_t */
135 atomic_t zv_suspend_ref; /* refcount for suspend */
136 krwlock_t zv_suspend_lock; /* suspend lock */
137 };
138
139 typedef enum {
140 ZVOL_ASYNC_CREATE_MINORS,
141 ZVOL_ASYNC_REMOVE_MINORS,
142 ZVOL_ASYNC_RENAME_MINORS,
143 ZVOL_ASYNC_SET_SNAPDEV,
144 ZVOL_ASYNC_SET_VOLMODE,
145 ZVOL_ASYNC_MAX
146 } zvol_async_op_t;
147
148 typedef struct {
149 zvol_async_op_t op;
150 char pool[MAXNAMELEN];
151 char name1[MAXNAMELEN];
152 char name2[MAXNAMELEN];
153 zprop_source_t source;
154 uint64_t value;
155 } zvol_task_t;
156
157 #define ZVOL_RDONLY 0x1
158
159 static uint64_t
160 zvol_name_hash(const char *name)
161 {
162 int i;
163 uint64_t crc = -1ULL;
164 uint8_t *p = (uint8_t *)name;
165 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
166 for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
167 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
168 }
169 return (crc);
170 }
171
172 /*
173 * Find a zvol_state_t given the full major+minor dev_t. If found,
174 * return with zv_state_lock taken, otherwise, return (NULL) without
175 * taking zv_state_lock.
176 */
177 static zvol_state_t *
178 zvol_find_by_dev(dev_t dev)
179 {
180 zvol_state_t *zv;
181
182 rw_enter(&zvol_state_lock, RW_READER);
183 for (zv = list_head(&zvol_state_list); zv != NULL;
184 zv = list_next(&zvol_state_list, zv)) {
185 mutex_enter(&zv->zv_state_lock);
186 if (zv->zv_dev == dev) {
187 rw_exit(&zvol_state_lock);
188 return (zv);
189 }
190 mutex_exit(&zv->zv_state_lock);
191 }
192 rw_exit(&zvol_state_lock);
193
194 return (NULL);
195 }
196
197 /*
198 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
199 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
200 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
201 * before zv_state_lock. The mode argument indicates the mode (including none)
202 * for zv_suspend_lock to be taken.
203 */
204 static zvol_state_t *
205 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
206 {
207 zvol_state_t *zv;
208 struct hlist_node *p = NULL;
209
210 rw_enter(&zvol_state_lock, RW_READER);
211 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
212 zv = hlist_entry(p, zvol_state_t, zv_hlink);
213 mutex_enter(&zv->zv_state_lock);
214 if (zv->zv_hash == hash &&
215 strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
216 /*
217 * this is the right zvol, take the locks in the
218 * right order
219 */
220 if (mode != RW_NONE &&
221 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
222 mutex_exit(&zv->zv_state_lock);
223 rw_enter(&zv->zv_suspend_lock, mode);
224 mutex_enter(&zv->zv_state_lock);
225 /*
226 * zvol cannot be renamed as we continue
227 * to hold zvol_state_lock
228 */
229 ASSERT(zv->zv_hash == hash &&
230 strncmp(zv->zv_name, name, MAXNAMELEN)
231 == 0);
232 }
233 rw_exit(&zvol_state_lock);
234 return (zv);
235 }
236 mutex_exit(&zv->zv_state_lock);
237 }
238 rw_exit(&zvol_state_lock);
239
240 return (NULL);
241 }
242
243 /*
244 * Find a zvol_state_t given the name.
245 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
246 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
247 * before zv_state_lock. The mode argument indicates the mode (including none)
248 * for zv_suspend_lock to be taken.
249 */
250 static zvol_state_t *
251 zvol_find_by_name(const char *name, int mode)
252 {
253 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
254 }
255
256
257 /*
258 * Given a path, return TRUE if path is a ZVOL.
259 */
260 boolean_t
261 zvol_is_zvol(const char *device)
262 {
263 struct block_device *bdev;
264 unsigned int major;
265
266 bdev = vdev_lookup_bdev(device);
267 if (IS_ERR(bdev))
268 return (B_FALSE);
269
270 major = MAJOR(bdev->bd_dev);
271 bdput(bdev);
272
273 if (major == zvol_major)
274 return (B_TRUE);
275
276 return (B_FALSE);
277 }
278
279 /*
280 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
281 */
282 void
283 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
284 {
285 zfs_creat_t *zct = arg;
286 nvlist_t *nvprops = zct->zct_props;
287 int error;
288 uint64_t volblocksize, volsize;
289
290 VERIFY(nvlist_lookup_uint64(nvprops,
291 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
292 if (nvlist_lookup_uint64(nvprops,
293 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
294 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
295
296 /*
297 * These properties must be removed from the list so the generic
298 * property setting step won't apply to them.
299 */
300 VERIFY(nvlist_remove_all(nvprops,
301 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
302 (void) nvlist_remove_all(nvprops,
303 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
304
305 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
306 DMU_OT_NONE, 0, tx);
307 ASSERT(error == 0);
308
309 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
310 DMU_OT_NONE, 0, tx);
311 ASSERT(error == 0);
312
313 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
314 ASSERT(error == 0);
315 }
316
317 /*
318 * ZFS_IOC_OBJSET_STATS entry point.
319 */
320 int
321 zvol_get_stats(objset_t *os, nvlist_t *nv)
322 {
323 int error;
324 dmu_object_info_t *doi;
325 uint64_t val;
326
327 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
328 if (error)
329 return (SET_ERROR(error));
330
331 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
332 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
333 error = dmu_object_info(os, ZVOL_OBJ, doi);
334
335 if (error == 0) {
336 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
337 doi->doi_data_block_size);
338 }
339
340 kmem_free(doi, sizeof (dmu_object_info_t));
341
342 return (SET_ERROR(error));
343 }
344
345 /*
346 * Sanity check volume size.
347 */
348 int
349 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
350 {
351 if (volsize == 0)
352 return (SET_ERROR(EINVAL));
353
354 if (volsize % blocksize != 0)
355 return (SET_ERROR(EINVAL));
356
357 #ifdef _ILP32
358 if (volsize - 1 > SPEC_MAXOFFSET_T)
359 return (SET_ERROR(EOVERFLOW));
360 #endif
361 return (0);
362 }
363
364 /*
365 * Ensure the zap is flushed then inform the VFS of the capacity change.
366 */
367 static int
368 zvol_update_volsize(uint64_t volsize, objset_t *os)
369 {
370 dmu_tx_t *tx;
371 int error;
372 uint64_t txg;
373
374 tx = dmu_tx_create(os);
375 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
376 dmu_tx_mark_netfree(tx);
377 error = dmu_tx_assign(tx, TXG_WAIT);
378 if (error) {
379 dmu_tx_abort(tx);
380 return (SET_ERROR(error));
381 }
382 txg = dmu_tx_get_txg(tx);
383
384 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
385 &volsize, tx);
386 dmu_tx_commit(tx);
387
388 txg_wait_synced(dmu_objset_pool(os), txg);
389
390 if (error == 0)
391 error = dmu_free_long_range(os,
392 ZVOL_OBJ, volsize, DMU_OBJECT_END);
393
394 return (error);
395 }
396
397 /*
398 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
399 * size will result in a udev "change" event being generated.
400 */
401 int
402 zvol_set_volsize(const char *name, uint64_t volsize)
403 {
404 objset_t *os = NULL;
405 struct gendisk *disk = NULL;
406 uint64_t readonly;
407 int error;
408 boolean_t owned = B_FALSE;
409
410 error = dsl_prop_get_integer(name,
411 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
412 if (error != 0)
413 return (SET_ERROR(error));
414 if (readonly)
415 return (SET_ERROR(EROFS));
416
417 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
418
419 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
420 RW_READ_HELD(&zv->zv_suspend_lock)));
421
422 if (zv == NULL || zv->zv_objset == NULL) {
423 if (zv != NULL)
424 rw_exit(&zv->zv_suspend_lock);
425 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
426 FTAG, &os)) != 0) {
427 if (zv != NULL)
428 mutex_exit(&zv->zv_state_lock);
429 return (SET_ERROR(error));
430 }
431 owned = B_TRUE;
432 if (zv != NULL)
433 zv->zv_objset = os;
434 } else {
435 os = zv->zv_objset;
436 }
437
438 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
439
440 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
441 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
442 goto out;
443
444 error = zvol_update_volsize(volsize, os);
445 if (error == 0 && zv != NULL) {
446 zv->zv_volsize = volsize;
447 zv->zv_changed = 1;
448 disk = zv->zv_disk;
449 }
450 out:
451 kmem_free(doi, sizeof (dmu_object_info_t));
452
453 if (owned) {
454 dmu_objset_disown(os, B_TRUE, FTAG);
455 if (zv != NULL)
456 zv->zv_objset = NULL;
457 } else {
458 rw_exit(&zv->zv_suspend_lock);
459 }
460
461 if (zv != NULL)
462 mutex_exit(&zv->zv_state_lock);
463
464 if (disk != NULL)
465 revalidate_disk(disk);
466
467 return (SET_ERROR(error));
468 }
469
470 /*
471 * Sanity check volume block size.
472 */
473 int
474 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
475 {
476 /* Record sizes above 128k need the feature to be enabled */
477 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
478 spa_t *spa;
479 int error;
480
481 if ((error = spa_open(name, &spa, FTAG)) != 0)
482 return (error);
483
484 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
485 spa_close(spa, FTAG);
486 return (SET_ERROR(ENOTSUP));
487 }
488
489 /*
490 * We don't allow setting the property above 1MB,
491 * unless the tunable has been changed.
492 */
493 if (volblocksize > zfs_max_recordsize)
494 return (SET_ERROR(EDOM));
495
496 spa_close(spa, FTAG);
497 }
498
499 if (volblocksize < SPA_MINBLOCKSIZE ||
500 volblocksize > SPA_MAXBLOCKSIZE ||
501 !ISP2(volblocksize))
502 return (SET_ERROR(EDOM));
503
504 return (0);
505 }
506
507 /*
508 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
509 */
510 int
511 zvol_set_volblocksize(const char *name, uint64_t volblocksize)
512 {
513 zvol_state_t *zv;
514 dmu_tx_t *tx;
515 int error;
516
517 zv = zvol_find_by_name(name, RW_READER);
518
519 if (zv == NULL)
520 return (SET_ERROR(ENXIO));
521
522 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
523 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
524
525 if (zv->zv_flags & ZVOL_RDONLY) {
526 mutex_exit(&zv->zv_state_lock);
527 rw_exit(&zv->zv_suspend_lock);
528 return (SET_ERROR(EROFS));
529 }
530
531 tx = dmu_tx_create(zv->zv_objset);
532 dmu_tx_hold_bonus(tx, ZVOL_OBJ);
533 error = dmu_tx_assign(tx, TXG_WAIT);
534 if (error) {
535 dmu_tx_abort(tx);
536 } else {
537 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
538 volblocksize, 0, tx);
539 if (error == ENOTSUP)
540 error = SET_ERROR(EBUSY);
541 dmu_tx_commit(tx);
542 if (error == 0)
543 zv->zv_volblocksize = volblocksize;
544 }
545
546 mutex_exit(&zv->zv_state_lock);
547 rw_exit(&zv->zv_suspend_lock);
548
549 return (SET_ERROR(error));
550 }
551
552 /*
553 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
554 * implement DKIOCFREE/free-long-range.
555 */
556 static int
557 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
558 {
559 zvol_state_t *zv = arg1;
560 lr_truncate_t *lr = arg2;
561 uint64_t offset, length;
562
563 if (byteswap)
564 byteswap_uint64_array(lr, sizeof (*lr));
565
566 offset = lr->lr_offset;
567 length = lr->lr_length;
568
569 return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length));
570 }
571
572 /*
573 * Replay a TX_WRITE ZIL transaction that didn't get committed
574 * after a system failure
575 */
576 static int
577 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
578 {
579 zvol_state_t *zv = arg1;
580 lr_write_t *lr = arg2;
581 objset_t *os = zv->zv_objset;
582 char *data = (char *)(lr + 1); /* data follows lr_write_t */
583 uint64_t offset, length;
584 dmu_tx_t *tx;
585 int error;
586
587 if (byteswap)
588 byteswap_uint64_array(lr, sizeof (*lr));
589
590 offset = lr->lr_offset;
591 length = lr->lr_length;
592
593 /* If it's a dmu_sync() block, write the whole block */
594 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
595 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
596 if (length < blocksize) {
597 offset -= offset % blocksize;
598 length = blocksize;
599 }
600 }
601
602 tx = dmu_tx_create(os);
603 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
604 error = dmu_tx_assign(tx, TXG_WAIT);
605 if (error) {
606 dmu_tx_abort(tx);
607 } else {
608 dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
609 dmu_tx_commit(tx);
610 }
611
612 return (error);
613 }
614
615 static int
616 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
617 {
618 return (SET_ERROR(ENOTSUP));
619 }
620
621 /*
622 * Callback vectors for replaying records.
623 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
624 */
625 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
626 zvol_replay_err, /* no such transaction type */
627 zvol_replay_err, /* TX_CREATE */
628 zvol_replay_err, /* TX_MKDIR */
629 zvol_replay_err, /* TX_MKXATTR */
630 zvol_replay_err, /* TX_SYMLINK */
631 zvol_replay_err, /* TX_REMOVE */
632 zvol_replay_err, /* TX_RMDIR */
633 zvol_replay_err, /* TX_LINK */
634 zvol_replay_err, /* TX_RENAME */
635 zvol_replay_write, /* TX_WRITE */
636 zvol_replay_truncate, /* TX_TRUNCATE */
637 zvol_replay_err, /* TX_SETATTR */
638 zvol_replay_err, /* TX_ACL */
639 zvol_replay_err, /* TX_CREATE_ATTR */
640 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
641 zvol_replay_err, /* TX_MKDIR_ACL */
642 zvol_replay_err, /* TX_MKDIR_ATTR */
643 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
644 zvol_replay_err, /* TX_WRITE2 */
645 };
646
647 /*
648 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
649 *
650 * We store data in the log buffers if it's small enough.
651 * Otherwise we will later flush the data out via dmu_sync().
652 */
653 ssize_t zvol_immediate_write_sz = 32768;
654
655 static void
656 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
657 uint64_t size, int sync)
658 {
659 uint32_t blocksize = zv->zv_volblocksize;
660 zilog_t *zilog = zv->zv_zilog;
661 itx_wr_state_t write_state;
662
663 if (zil_replaying(zilog, tx))
664 return;
665
666 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
667 write_state = WR_INDIRECT;
668 else if (!spa_has_slogs(zilog->zl_spa) &&
669 size >= blocksize && blocksize > zvol_immediate_write_sz)
670 write_state = WR_INDIRECT;
671 else if (sync)
672 write_state = WR_COPIED;
673 else
674 write_state = WR_NEED_COPY;
675
676 while (size) {
677 itx_t *itx;
678 lr_write_t *lr;
679 itx_wr_state_t wr_state = write_state;
680 ssize_t len = size;
681
682 if (wr_state == WR_COPIED && size > ZIL_MAX_COPIED_DATA)
683 wr_state = WR_NEED_COPY;
684 else if (wr_state == WR_INDIRECT)
685 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
686
687 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
688 (wr_state == WR_COPIED ? len : 0));
689 lr = (lr_write_t *)&itx->itx_lr;
690 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
691 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
692 zil_itx_destroy(itx);
693 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
694 lr = (lr_write_t *)&itx->itx_lr;
695 wr_state = WR_NEED_COPY;
696 }
697
698 itx->itx_wr_state = wr_state;
699 lr->lr_foid = ZVOL_OBJ;
700 lr->lr_offset = offset;
701 lr->lr_length = len;
702 lr->lr_blkoff = 0;
703 BP_ZERO(&lr->lr_blkptr);
704
705 itx->itx_private = zv;
706 itx->itx_sync = sync;
707
708 (void) zil_itx_assign(zilog, itx, tx);
709
710 offset += len;
711 size -= len;
712 }
713 }
714
715 typedef struct zv_request {
716 zvol_state_t *zv;
717 struct bio *bio;
718 locked_range_t *lr;
719 } zv_request_t;
720
721 static void
722 uio_from_bio(uio_t *uio, struct bio *bio)
723 {
724 uio->uio_bvec = &bio->bi_io_vec[BIO_BI_IDX(bio)];
725 uio->uio_skip = BIO_BI_SKIP(bio);
726 uio->uio_resid = BIO_BI_SIZE(bio);
727 uio->uio_iovcnt = bio->bi_vcnt - BIO_BI_IDX(bio);
728 uio->uio_loffset = BIO_BI_SECTOR(bio) << 9;
729 uio->uio_limit = MAXOFFSET_T;
730 uio->uio_segflg = UIO_BVEC;
731 }
732
733 static void
734 zvol_write(void *arg)
735 {
736 int error = 0;
737
738 zv_request_t *zvr = arg;
739 struct bio *bio = zvr->bio;
740 uio_t uio;
741 uio_from_bio(&uio, bio);
742
743 zvol_state_t *zv = zvr->zv;
744 ASSERT(zv && zv->zv_open_count > 0);
745
746 ssize_t start_resid = uio.uio_resid;
747 unsigned long start_jif = jiffies;
748 blk_generic_start_io_acct(zv->zv_queue, WRITE, bio_sectors(bio),
749 &zv->zv_disk->part0);
750
751 boolean_t sync =
752 bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
753
754 uint64_t volsize = zv->zv_volsize;
755 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
756 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
757 uint64_t off = uio.uio_loffset;
758 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
759
760 if (bytes > volsize - off) /* don't write past the end */
761 bytes = volsize - off;
762
763 dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
764
765 /* This will only fail for ENOSPC */
766 error = dmu_tx_assign(tx, TXG_WAIT);
767 if (error) {
768 dmu_tx_abort(tx);
769 break;
770 }
771 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
772 if (error == 0) {
773 zvol_log_write(zv, tx, off, bytes, sync);
774 }
775 dmu_tx_commit(tx);
776
777 if (error)
778 break;
779 }
780 rangelock_exit(zvr->lr);
781
782 int64_t nwritten = start_resid - uio.uio_resid;
783 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
784 task_io_account_write(nwritten);
785
786 if (sync)
787 zil_commit(zv->zv_zilog, ZVOL_OBJ);
788
789 rw_exit(&zv->zv_suspend_lock);
790 blk_generic_end_io_acct(zv->zv_queue, WRITE, &zv->zv_disk->part0,
791 start_jif);
792 BIO_END_IO(bio, -error);
793 kmem_free(zvr, sizeof (zv_request_t));
794 }
795
796 /*
797 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
798 */
799 static void
800 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
801 boolean_t sync)
802 {
803 itx_t *itx;
804 lr_truncate_t *lr;
805 zilog_t *zilog = zv->zv_zilog;
806
807 if (zil_replaying(zilog, tx))
808 return;
809
810 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
811 lr = (lr_truncate_t *)&itx->itx_lr;
812 lr->lr_foid = ZVOL_OBJ;
813 lr->lr_offset = off;
814 lr->lr_length = len;
815
816 itx->itx_sync = sync;
817 zil_itx_assign(zilog, itx, tx);
818 }
819
820 static void
821 zvol_discard(void *arg)
822 {
823 zv_request_t *zvr = arg;
824 struct bio *bio = zvr->bio;
825 zvol_state_t *zv = zvr->zv;
826 uint64_t start = BIO_BI_SECTOR(bio) << 9;
827 uint64_t size = BIO_BI_SIZE(bio);
828 uint64_t end = start + size;
829 boolean_t sync;
830 int error = 0;
831 dmu_tx_t *tx;
832 unsigned long start_jif;
833
834 ASSERT(zv && zv->zv_open_count > 0);
835
836 start_jif = jiffies;
837 blk_generic_start_io_acct(zv->zv_queue, WRITE, bio_sectors(bio),
838 &zv->zv_disk->part0);
839
840 sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
841
842 if (end > zv->zv_volsize) {
843 error = SET_ERROR(EIO);
844 goto unlock;
845 }
846
847 /*
848 * Align the request to volume block boundaries when a secure erase is
849 * not required. This will prevent dnode_free_range() from zeroing out
850 * the unaligned parts which is slow (read-modify-write) and useless
851 * since we are not freeing any space by doing so.
852 */
853 if (!bio_is_secure_erase(bio)) {
854 start = P2ROUNDUP(start, zv->zv_volblocksize);
855 end = P2ALIGN(end, zv->zv_volblocksize);
856 size = end - start;
857 }
858
859 if (start >= end)
860 goto unlock;
861
862 tx = dmu_tx_create(zv->zv_objset);
863 dmu_tx_mark_netfree(tx);
864 error = dmu_tx_assign(tx, TXG_WAIT);
865 if (error != 0) {
866 dmu_tx_abort(tx);
867 } else {
868 zvol_log_truncate(zv, tx, start, size, B_TRUE);
869 dmu_tx_commit(tx);
870 error = dmu_free_long_range(zv->zv_objset,
871 ZVOL_OBJ, start, size);
872 }
873 unlock:
874 rangelock_exit(zvr->lr);
875
876 if (error == 0 && sync)
877 zil_commit(zv->zv_zilog, ZVOL_OBJ);
878
879 rw_exit(&zv->zv_suspend_lock);
880 blk_generic_end_io_acct(zv->zv_queue, WRITE, &zv->zv_disk->part0,
881 start_jif);
882 BIO_END_IO(bio, -error);
883 kmem_free(zvr, sizeof (zv_request_t));
884 }
885
886 static void
887 zvol_read(void *arg)
888 {
889 int error = 0;
890
891 zv_request_t *zvr = arg;
892 struct bio *bio = zvr->bio;
893 uio_t uio;
894 uio_from_bio(&uio, bio);
895
896 zvol_state_t *zv = zvr->zv;
897 ASSERT(zv && zv->zv_open_count > 0);
898
899 ssize_t start_resid = uio.uio_resid;
900 unsigned long start_jif = jiffies;
901 blk_generic_start_io_acct(zv->zv_queue, READ, bio_sectors(bio),
902 &zv->zv_disk->part0);
903
904 uint64_t volsize = zv->zv_volsize;
905 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
906 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
907
908 /* don't read past the end */
909 if (bytes > volsize - uio.uio_loffset)
910 bytes = volsize - uio.uio_loffset;
911
912 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
913 if (error) {
914 /* convert checksum errors into IO errors */
915 if (error == ECKSUM)
916 error = SET_ERROR(EIO);
917 break;
918 }
919 }
920 rangelock_exit(zvr->lr);
921
922 int64_t nread = start_resid - uio.uio_resid;
923 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
924 task_io_account_read(nread);
925
926 rw_exit(&zv->zv_suspend_lock);
927 blk_generic_end_io_acct(zv->zv_queue, READ, &zv->zv_disk->part0,
928 start_jif);
929 BIO_END_IO(bio, -error);
930 kmem_free(zvr, sizeof (zv_request_t));
931 }
932
933 static MAKE_REQUEST_FN_RET
934 zvol_request(struct request_queue *q, struct bio *bio)
935 {
936 zvol_state_t *zv = q->queuedata;
937 fstrans_cookie_t cookie = spl_fstrans_mark();
938 uint64_t offset = BIO_BI_SECTOR(bio) << 9;
939 uint64_t size = BIO_BI_SIZE(bio);
940 int rw = bio_data_dir(bio);
941 zv_request_t *zvr;
942
943 if (bio_has_data(bio) && offset + size > zv->zv_volsize) {
944 printk(KERN_INFO
945 "%s: bad access: offset=%llu, size=%lu\n",
946 zv->zv_disk->disk_name,
947 (long long unsigned)offset,
948 (long unsigned)size);
949
950 BIO_END_IO(bio, -SET_ERROR(EIO));
951 goto out;
952 }
953
954 if (rw == WRITE) {
955 boolean_t need_sync = B_FALSE;
956
957 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
958 BIO_END_IO(bio, -SET_ERROR(EROFS));
959 goto out;
960 }
961
962 /*
963 * To be released in the I/O function. See the comment on
964 * zfs_range_lock below.
965 */
966 rw_enter(&zv->zv_suspend_lock, RW_READER);
967
968 /* bio marked as FLUSH need to flush before write */
969 if (bio_is_flush(bio))
970 zil_commit(zv->zv_zilog, ZVOL_OBJ);
971
972 /* Some requests are just for flush and nothing else. */
973 if (size == 0) {
974 rw_exit(&zv->zv_suspend_lock);
975 BIO_END_IO(bio, 0);
976 goto out;
977 }
978
979 zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
980 zvr->zv = zv;
981 zvr->bio = bio;
982
983 /*
984 * To be released in the I/O function. Since the I/O functions
985 * are asynchronous, we take it here synchronously to make
986 * sure overlapped I/Os are properly ordered.
987 */
988 zvr->lr = rangelock_enter(&zv->zv_rangelock, offset, size,
989 RL_WRITER);
990 /*
991 * Sync writes and discards execute zil_commit() which may need
992 * to take a RL_READER lock on the whole block being modified
993 * via its zillog->zl_get_data(): to avoid circular dependency
994 * issues with taskq threads execute these requests
995 * synchronously here in zvol_request().
996 */
997 need_sync = bio_is_fua(bio) ||
998 zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
999 if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
1000 if (zvol_request_sync || need_sync ||
1001 taskq_dispatch(zvol_taskq, zvol_discard, zvr,
1002 TQ_SLEEP) == TASKQID_INVALID)
1003 zvol_discard(zvr);
1004 } else {
1005 if (zvol_request_sync || need_sync ||
1006 taskq_dispatch(zvol_taskq, zvol_write, zvr,
1007 TQ_SLEEP) == TASKQID_INVALID)
1008 zvol_write(zvr);
1009 }
1010 } else {
1011 zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
1012 zvr->zv = zv;
1013 zvr->bio = bio;
1014
1015 rw_enter(&zv->zv_suspend_lock, RW_READER);
1016
1017 zvr->lr = rangelock_enter(&zv->zv_rangelock, offset, size,
1018 RL_READER);
1019 if (zvol_request_sync || taskq_dispatch(zvol_taskq,
1020 zvol_read, zvr, TQ_SLEEP) == TASKQID_INVALID)
1021 zvol_read(zvr);
1022 }
1023
1024 out:
1025 spl_fstrans_unmark(cookie);
1026 #ifdef HAVE_MAKE_REQUEST_FN_RET_INT
1027 return (0);
1028 #elif defined(HAVE_MAKE_REQUEST_FN_RET_QC)
1029 return (BLK_QC_T_NONE);
1030 #endif
1031 }
1032
1033 static void
1034 zvol_get_done(zgd_t *zgd, int error)
1035 {
1036 if (zgd->zgd_db)
1037 dmu_buf_rele(zgd->zgd_db, zgd);
1038
1039 rangelock_exit(zgd->zgd_lr);
1040
1041 if (error == 0 && zgd->zgd_bp)
1042 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1043
1044 kmem_free(zgd, sizeof (zgd_t));
1045 }
1046
1047 /*
1048 * Get data to generate a TX_WRITE intent log record.
1049 */
1050 static int
1051 zvol_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1052 {
1053 zvol_state_t *zv = arg;
1054 uint64_t offset = lr->lr_offset;
1055 uint64_t size = lr->lr_length;
1056 dmu_buf_t *db;
1057 zgd_t *zgd;
1058 int error;
1059
1060 ASSERT3P(lwb, !=, NULL);
1061 ASSERT3P(zio, !=, NULL);
1062 ASSERT3U(size, !=, 0);
1063
1064 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1065 zgd->zgd_lwb = lwb;
1066
1067 /*
1068 * Write records come in two flavors: immediate and indirect.
1069 * For small writes it's cheaper to store the data with the
1070 * log record (immediate); for large writes it's cheaper to
1071 * sync the data and get a pointer to it (indirect) so that
1072 * we don't have to write the data twice.
1073 */
1074 if (buf != NULL) { /* immediate write */
1075 zgd->zgd_lr = rangelock_enter(&zv->zv_rangelock, offset, size,
1076 RL_READER);
1077 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
1078 DMU_READ_NO_PREFETCH);
1079 } else { /* indirect write */
1080 /*
1081 * Have to lock the whole block to ensure when it's written out
1082 * and its checksum is being calculated that no one can change
1083 * the data. Contrarily to zfs_get_data we need not re-check
1084 * blocksize after we get the lock because it cannot be changed.
1085 */
1086 size = zv->zv_volblocksize;
1087 offset = P2ALIGN_TYPED(offset, size, uint64_t);
1088 zgd->zgd_lr = rangelock_enter(&zv->zv_rangelock, offset, size,
1089 RL_READER);
1090 error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
1091 DMU_READ_NO_PREFETCH);
1092 if (error == 0) {
1093 blkptr_t *bp = &lr->lr_blkptr;
1094
1095 zgd->zgd_db = db;
1096 zgd->zgd_bp = bp;
1097
1098 ASSERT(db != NULL);
1099 ASSERT(db->db_offset == offset);
1100 ASSERT(db->db_size == size);
1101
1102 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1103 zvol_get_done, zgd);
1104
1105 if (error == 0)
1106 return (0);
1107 }
1108 }
1109
1110 zvol_get_done(zgd, error);
1111
1112 return (SET_ERROR(error));
1113 }
1114
1115 /*
1116 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1117 */
1118 static void
1119 zvol_insert(zvol_state_t *zv)
1120 {
1121 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1122 ASSERT3U(MINOR(zv->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
1123 list_insert_head(&zvol_state_list, zv);
1124 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1125 }
1126
1127 /*
1128 * Simply remove the zvol from to list of zvols.
1129 */
1130 static void
1131 zvol_remove(zvol_state_t *zv)
1132 {
1133 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1134 list_remove(&zvol_state_list, zv);
1135 hlist_del(&zv->zv_hlink);
1136 }
1137
1138 /*
1139 * Setup zv after we just own the zv->objset
1140 */
1141 static int
1142 zvol_setup_zv(zvol_state_t *zv)
1143 {
1144 uint64_t volsize;
1145 int error;
1146 uint64_t ro;
1147 objset_t *os = zv->zv_objset;
1148
1149 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1150 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
1151
1152 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
1153 if (error)
1154 return (SET_ERROR(error));
1155
1156 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1157 if (error)
1158 return (SET_ERROR(error));
1159
1160 error = dnode_hold(os, ZVOL_OBJ, FTAG, &zv->zv_dn);
1161 if (error)
1162 return (SET_ERROR(error));
1163
1164 set_capacity(zv->zv_disk, volsize >> 9);
1165 zv->zv_volsize = volsize;
1166 zv->zv_zilog = zil_open(os, zvol_get_data);
1167
1168 if (ro || dmu_objset_is_snapshot(os) ||
1169 !spa_writeable(dmu_objset_spa(os))) {
1170 set_disk_ro(zv->zv_disk, 1);
1171 zv->zv_flags |= ZVOL_RDONLY;
1172 } else {
1173 set_disk_ro(zv->zv_disk, 0);
1174 zv->zv_flags &= ~ZVOL_RDONLY;
1175 }
1176 return (0);
1177 }
1178
1179 /*
1180 * Shutdown every zv_objset related stuff except zv_objset itself.
1181 * The is the reverse of zvol_setup_zv.
1182 */
1183 static void
1184 zvol_shutdown_zv(zvol_state_t *zv)
1185 {
1186 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
1187 RW_LOCK_HELD(&zv->zv_suspend_lock));
1188
1189 zil_close(zv->zv_zilog);
1190 zv->zv_zilog = NULL;
1191
1192 dnode_rele(zv->zv_dn, FTAG);
1193 zv->zv_dn = NULL;
1194
1195 /*
1196 * Evict cached data. We must write out any dirty data before
1197 * disowning the dataset.
1198 */
1199 if (!(zv->zv_flags & ZVOL_RDONLY))
1200 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1201 (void) dmu_objset_evict_dbufs(zv->zv_objset);
1202 }
1203
1204 /*
1205 * return the proper tag for rollback and recv
1206 */
1207 void *
1208 zvol_tag(zvol_state_t *zv)
1209 {
1210 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1211 return (zv->zv_open_count > 0 ? zv : NULL);
1212 }
1213
1214 /*
1215 * Suspend the zvol for recv and rollback.
1216 */
1217 zvol_state_t *
1218 zvol_suspend(const char *name)
1219 {
1220 zvol_state_t *zv;
1221
1222 zv = zvol_find_by_name(name, RW_WRITER);
1223
1224 if (zv == NULL)
1225 return (NULL);
1226
1227 /* block all I/O, release in zvol_resume. */
1228 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1229 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1230
1231 atomic_inc(&zv->zv_suspend_ref);
1232
1233 if (zv->zv_open_count > 0)
1234 zvol_shutdown_zv(zv);
1235
1236 /*
1237 * do not hold zv_state_lock across suspend/resume to
1238 * avoid locking up zvol lookups
1239 */
1240 mutex_exit(&zv->zv_state_lock);
1241
1242 /* zv_suspend_lock is released in zvol_resume() */
1243 return (zv);
1244 }
1245
1246 int
1247 zvol_resume(zvol_state_t *zv)
1248 {
1249 int error = 0;
1250
1251 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1252
1253 mutex_enter(&zv->zv_state_lock);
1254
1255 if (zv->zv_open_count > 0) {
1256 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
1257 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
1258 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
1259 dmu_objset_rele(zv->zv_objset, zv);
1260
1261 error = zvol_setup_zv(zv);
1262 }
1263
1264 mutex_exit(&zv->zv_state_lock);
1265
1266 rw_exit(&zv->zv_suspend_lock);
1267 /*
1268 * We need this because we don't hold zvol_state_lock while releasing
1269 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1270 * zv_suspend_lock to determine it is safe to free because rwlock is
1271 * not inherent atomic.
1272 */
1273 atomic_dec(&zv->zv_suspend_ref);
1274
1275 return (SET_ERROR(error));
1276 }
1277
1278 static int
1279 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
1280 {
1281 objset_t *os;
1282 int error, locked = 0;
1283 boolean_t ro;
1284
1285 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1286 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1287
1288 /*
1289 * In all other cases the spa_namespace_lock is taken before the
1290 * bdev->bd_mutex lock. But in this case the Linux __blkdev_get()
1291 * function calls fops->open() with the bdev->bd_mutex lock held.
1292 * This deadlock can be easily observed with zvols used as vdevs.
1293 *
1294 * To avoid a potential lock inversion deadlock we preemptively
1295 * try to take the spa_namespace_lock(). Normally it will not
1296 * be contended and this is safe because spa_open_common() handles
1297 * the case where the caller already holds the spa_namespace_lock.
1298 *
1299 * When it is contended we risk a lock inversion if we were to
1300 * block waiting for the lock. Luckily, the __blkdev_get()
1301 * function allows us to return -ERESTARTSYS which will result in
1302 * bdev->bd_mutex being dropped, reacquired, and fops->open() being
1303 * called again. This process can be repeated safely until both
1304 * locks are acquired.
1305 */
1306 if (!mutex_owned(&spa_namespace_lock)) {
1307 locked = mutex_tryenter(&spa_namespace_lock);
1308 if (!locked)
1309 return (-SET_ERROR(ERESTARTSYS));
1310 }
1311
1312 ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
1313 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
1314 if (error)
1315 goto out_mutex;
1316
1317 zv->zv_objset = os;
1318
1319 error = zvol_setup_zv(zv);
1320
1321 if (error) {
1322 dmu_objset_disown(os, 1, zv);
1323 zv->zv_objset = NULL;
1324 }
1325
1326 out_mutex:
1327 if (locked)
1328 mutex_exit(&spa_namespace_lock);
1329 return (SET_ERROR(-error));
1330 }
1331
1332 static void
1333 zvol_last_close(zvol_state_t *zv)
1334 {
1335 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1336 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1337
1338 zvol_shutdown_zv(zv);
1339
1340 dmu_objset_disown(zv->zv_objset, 1, zv);
1341 zv->zv_objset = NULL;
1342 }
1343
1344 static int
1345 zvol_open(struct block_device *bdev, fmode_t flag)
1346 {
1347 zvol_state_t *zv;
1348 int error = 0;
1349 boolean_t drop_suspend = B_TRUE;
1350
1351 rw_enter(&zvol_state_lock, RW_READER);
1352 /*
1353 * Obtain a copy of private_data under the zvol_state_lock to make
1354 * sure that either the result of zvol free code path setting
1355 * bdev->bd_disk->private_data to NULL is observed, or zvol_free()
1356 * is not called on this zv because of the positive zv_open_count.
1357 */
1358 zv = bdev->bd_disk->private_data;
1359 if (zv == NULL) {
1360 rw_exit(&zvol_state_lock);
1361 return (SET_ERROR(-ENXIO));
1362 }
1363
1364 mutex_enter(&zv->zv_state_lock);
1365 /*
1366 * make sure zvol is not suspended during first open
1367 * (hold zv_suspend_lock) and respect proper lock acquisition
1368 * ordering - zv_suspend_lock before zv_state_lock
1369 */
1370 if (zv->zv_open_count == 0) {
1371 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
1372 mutex_exit(&zv->zv_state_lock);
1373 rw_enter(&zv->zv_suspend_lock, RW_READER);
1374 mutex_enter(&zv->zv_state_lock);
1375 /* check to see if zv_suspend_lock is needed */
1376 if (zv->zv_open_count != 0) {
1377 rw_exit(&zv->zv_suspend_lock);
1378 drop_suspend = B_FALSE;
1379 }
1380 }
1381 } else {
1382 drop_suspend = B_FALSE;
1383 }
1384 rw_exit(&zvol_state_lock);
1385
1386 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1387 ASSERT(zv->zv_open_count != 0 || RW_READ_HELD(&zv->zv_suspend_lock));
1388
1389 if (zv->zv_open_count == 0) {
1390 error = zvol_first_open(zv, !(flag & FMODE_WRITE));
1391 if (error)
1392 goto out_mutex;
1393 }
1394
1395 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
1396 error = -EROFS;
1397 goto out_open_count;
1398 }
1399
1400 zv->zv_open_count++;
1401
1402 mutex_exit(&zv->zv_state_lock);
1403 if (drop_suspend)
1404 rw_exit(&zv->zv_suspend_lock);
1405
1406 check_disk_change(bdev);
1407
1408 return (0);
1409
1410 out_open_count:
1411 if (zv->zv_open_count == 0)
1412 zvol_last_close(zv);
1413
1414 out_mutex:
1415 mutex_exit(&zv->zv_state_lock);
1416 if (drop_suspend)
1417 rw_exit(&zv->zv_suspend_lock);
1418 if (error == -ERESTARTSYS)
1419 schedule();
1420
1421 return (SET_ERROR(error));
1422 }
1423
1424 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1425 static void
1426 #else
1427 static int
1428 #endif
1429 zvol_release(struct gendisk *disk, fmode_t mode)
1430 {
1431 zvol_state_t *zv;
1432 boolean_t drop_suspend = B_TRUE;
1433
1434 rw_enter(&zvol_state_lock, RW_READER);
1435 zv = disk->private_data;
1436
1437 mutex_enter(&zv->zv_state_lock);
1438 ASSERT(zv->zv_open_count > 0);
1439 /*
1440 * make sure zvol is not suspended during last close
1441 * (hold zv_suspend_lock) and respect proper lock acquisition
1442 * ordering - zv_suspend_lock before zv_state_lock
1443 */
1444 if (zv->zv_open_count == 1) {
1445 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
1446 mutex_exit(&zv->zv_state_lock);
1447 rw_enter(&zv->zv_suspend_lock, RW_READER);
1448 mutex_enter(&zv->zv_state_lock);
1449 /* check to see if zv_suspend_lock is needed */
1450 if (zv->zv_open_count != 1) {
1451 rw_exit(&zv->zv_suspend_lock);
1452 drop_suspend = B_FALSE;
1453 }
1454 }
1455 } else {
1456 drop_suspend = B_FALSE;
1457 }
1458 rw_exit(&zvol_state_lock);
1459
1460 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1461 ASSERT(zv->zv_open_count != 1 || RW_READ_HELD(&zv->zv_suspend_lock));
1462
1463 zv->zv_open_count--;
1464 if (zv->zv_open_count == 0)
1465 zvol_last_close(zv);
1466
1467 mutex_exit(&zv->zv_state_lock);
1468
1469 if (drop_suspend)
1470 rw_exit(&zv->zv_suspend_lock);
1471
1472 #ifndef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1473 return (0);
1474 #endif
1475 }
1476
1477 static int
1478 zvol_ioctl(struct block_device *bdev, fmode_t mode,
1479 unsigned int cmd, unsigned long arg)
1480 {
1481 zvol_state_t *zv = bdev->bd_disk->private_data;
1482 int error = 0;
1483
1484 ASSERT3U(zv->zv_open_count, >, 0);
1485
1486 switch (cmd) {
1487 case BLKFLSBUF:
1488 fsync_bdev(bdev);
1489 invalidate_bdev(bdev);
1490 rw_enter(&zv->zv_suspend_lock, RW_READER);
1491
1492 if (!(zv->zv_flags & ZVOL_RDONLY))
1493 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1494
1495 rw_exit(&zv->zv_suspend_lock);
1496 break;
1497
1498 case BLKZNAME:
1499 mutex_enter(&zv->zv_state_lock);
1500 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
1501 mutex_exit(&zv->zv_state_lock);
1502 break;
1503
1504 default:
1505 error = -ENOTTY;
1506 break;
1507 }
1508
1509 return (SET_ERROR(error));
1510 }
1511
1512 #ifdef CONFIG_COMPAT
1513 static int
1514 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
1515 unsigned cmd, unsigned long arg)
1516 {
1517 return (zvol_ioctl(bdev, mode, cmd, arg));
1518 }
1519 #else
1520 #define zvol_compat_ioctl NULL
1521 #endif
1522
1523 /*
1524 * Linux 2.6.38 preferred interface.
1525 */
1526 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1527 static unsigned int
1528 zvol_check_events(struct gendisk *disk, unsigned int clearing)
1529 {
1530 unsigned int mask = 0;
1531
1532 rw_enter(&zvol_state_lock, RW_READER);
1533
1534 zvol_state_t *zv = disk->private_data;
1535 if (zv != NULL) {
1536 mutex_enter(&zv->zv_state_lock);
1537 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1538 zv->zv_changed = 0;
1539 mutex_exit(&zv->zv_state_lock);
1540 }
1541
1542 rw_exit(&zvol_state_lock);
1543
1544 return (mask);
1545 }
1546 #else
1547 static int zvol_media_changed(struct gendisk *disk)
1548 {
1549 int changed = 0;
1550
1551 rw_enter(&zvol_state_lock, RW_READER);
1552
1553 zvol_state_t *zv = disk->private_data;
1554 if (zv != NULL) {
1555 mutex_enter(&zv->zv_state_lock);
1556 changed = zv->zv_changed;
1557 zv->zv_changed = 0;
1558 mutex_exit(&zv->zv_state_lock);
1559 }
1560
1561 rw_exit(&zvol_state_lock);
1562
1563 return (changed);
1564 }
1565 #endif
1566
1567 static int zvol_revalidate_disk(struct gendisk *disk)
1568 {
1569 rw_enter(&zvol_state_lock, RW_READER);
1570
1571 zvol_state_t *zv = disk->private_data;
1572 if (zv != NULL) {
1573 mutex_enter(&zv->zv_state_lock);
1574 set_capacity(zv->zv_disk, zv->zv_volsize >> SECTOR_BITS);
1575 mutex_exit(&zv->zv_state_lock);
1576 }
1577
1578 rw_exit(&zvol_state_lock);
1579
1580 return (0);
1581 }
1582
1583 /*
1584 * Provide a simple virtual geometry for legacy compatibility. For devices
1585 * smaller than 1 MiB a small head and sector count is used to allow very
1586 * tiny devices. For devices over 1 Mib a standard head and sector count
1587 * is used to keep the cylinders count reasonable.
1588 */
1589 static int
1590 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1591 {
1592 zvol_state_t *zv = bdev->bd_disk->private_data;
1593 sector_t sectors;
1594
1595 ASSERT3U(zv->zv_open_count, >, 0);
1596
1597 sectors = get_capacity(zv->zv_disk);
1598
1599 if (sectors > 2048) {
1600 geo->heads = 16;
1601 geo->sectors = 63;
1602 } else {
1603 geo->heads = 2;
1604 geo->sectors = 4;
1605 }
1606
1607 geo->start = 0;
1608 geo->cylinders = sectors / (geo->heads * geo->sectors);
1609
1610 return (0);
1611 }
1612
1613 static struct kobject *
1614 zvol_probe(dev_t dev, int *part, void *arg)
1615 {
1616 zvol_state_t *zv;
1617 struct kobject *kobj;
1618
1619 zv = zvol_find_by_dev(dev);
1620 kobj = zv ? get_disk_and_module(zv->zv_disk) : NULL;
1621 ASSERT(zv == NULL || MUTEX_HELD(&zv->zv_state_lock));
1622 if (zv)
1623 mutex_exit(&zv->zv_state_lock);
1624
1625 return (kobj);
1626 }
1627
1628 static struct block_device_operations zvol_ops = {
1629 .open = zvol_open,
1630 .release = zvol_release,
1631 .ioctl = zvol_ioctl,
1632 .compat_ioctl = zvol_compat_ioctl,
1633 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1634 .check_events = zvol_check_events,
1635 #else
1636 .media_changed = zvol_media_changed,
1637 #endif
1638 .revalidate_disk = zvol_revalidate_disk,
1639 .getgeo = zvol_getgeo,
1640 .owner = THIS_MODULE,
1641 };
1642
1643 /*
1644 * Allocate memory for a new zvol_state_t and setup the required
1645 * request queue and generic disk structures for the block device.
1646 */
1647 static zvol_state_t *
1648 zvol_alloc(dev_t dev, const char *name)
1649 {
1650 zvol_state_t *zv;
1651 uint64_t volmode;
1652
1653 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1654 return (NULL);
1655
1656 if (volmode == ZFS_VOLMODE_DEFAULT)
1657 volmode = zvol_volmode;
1658
1659 if (volmode == ZFS_VOLMODE_NONE)
1660 return (NULL);
1661
1662 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1663
1664 list_link_init(&zv->zv_next);
1665
1666 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1667
1668 zv->zv_queue = blk_alloc_queue(GFP_ATOMIC);
1669 if (zv->zv_queue == NULL)
1670 goto out_kmem;
1671
1672 blk_queue_make_request(zv->zv_queue, zvol_request);
1673 blk_queue_set_write_cache(zv->zv_queue, B_TRUE, B_TRUE);
1674
1675 /* Limit read-ahead to a single page to prevent over-prefetching. */
1676 blk_queue_set_read_ahead(zv->zv_queue, 1);
1677
1678 /* Disable write merging in favor of the ZIO pipeline. */
1679 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zv->zv_queue);
1680
1681 zv->zv_disk = alloc_disk(ZVOL_MINORS);
1682 if (zv->zv_disk == NULL)
1683 goto out_queue;
1684
1685 zv->zv_queue->queuedata = zv;
1686 zv->zv_dev = dev;
1687 zv->zv_open_count = 0;
1688 strlcpy(zv->zv_name, name, MAXNAMELEN);
1689
1690 rangelock_init(&zv->zv_rangelock, NULL, NULL);
1691 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1692
1693 zv->zv_disk->major = zvol_major;
1694 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1695 zv->zv_disk->events = DISK_EVENT_MEDIA_CHANGE;
1696 #endif
1697
1698 if (volmode == ZFS_VOLMODE_DEV) {
1699 /*
1700 * ZFS_VOLMODE_DEV disable partitioning on ZVOL devices: set
1701 * gendisk->minors = 1 as noted in include/linux/genhd.h.
1702 * Also disable extended partition numbers (GENHD_FL_EXT_DEVT)
1703 * and suppresses partition scanning (GENHD_FL_NO_PART_SCAN)
1704 * setting gendisk->flags accordingly.
1705 */
1706 zv->zv_disk->minors = 1;
1707 #if defined(GENHD_FL_EXT_DEVT)
1708 zv->zv_disk->flags &= ~GENHD_FL_EXT_DEVT;
1709 #endif
1710 #if defined(GENHD_FL_NO_PART_SCAN)
1711 zv->zv_disk->flags |= GENHD_FL_NO_PART_SCAN;
1712 #endif
1713 }
1714 zv->zv_disk->first_minor = (dev & MINORMASK);
1715 zv->zv_disk->fops = &zvol_ops;
1716 zv->zv_disk->private_data = zv;
1717 zv->zv_disk->queue = zv->zv_queue;
1718 snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
1719 ZVOL_DEV_NAME, (dev & MINORMASK));
1720
1721 return (zv);
1722
1723 out_queue:
1724 blk_cleanup_queue(zv->zv_queue);
1725 out_kmem:
1726 kmem_free(zv, sizeof (zvol_state_t));
1727
1728 return (NULL);
1729 }
1730
1731 /*
1732 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1733 * At this time, the structure is not opened by anyone, is taken off
1734 * the zvol_state_list, and has its private data set to NULL.
1735 * The zvol_state_lock is dropped.
1736 */
1737 static void
1738 zvol_free(void *arg)
1739 {
1740 zvol_state_t *zv = arg;
1741
1742 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1743 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1744 ASSERT(zv->zv_open_count == 0);
1745 ASSERT(zv->zv_disk->private_data == NULL);
1746
1747 rw_destroy(&zv->zv_suspend_lock);
1748 rangelock_fini(&zv->zv_rangelock);
1749
1750 del_gendisk(zv->zv_disk);
1751 blk_cleanup_queue(zv->zv_queue);
1752 put_disk(zv->zv_disk);
1753
1754 ida_simple_remove(&zvol_ida, MINOR(zv->zv_dev) >> ZVOL_MINOR_BITS);
1755
1756 mutex_destroy(&zv->zv_state_lock);
1757 dataset_kstats_destroy(&zv->zv_kstat);
1758
1759 kmem_free(zv, sizeof (zvol_state_t));
1760 }
1761
1762 /*
1763 * Create a block device minor node and setup the linkage between it
1764 * and the specified volume. Once this function returns the block
1765 * device is live and ready for use.
1766 */
1767 static int
1768 zvol_create_minor_impl(const char *name)
1769 {
1770 zvol_state_t *zv;
1771 objset_t *os;
1772 dmu_object_info_t *doi;
1773 uint64_t volsize;
1774 uint64_t len;
1775 unsigned minor = 0;
1776 int error = 0;
1777 int idx;
1778 uint64_t hash = zvol_name_hash(name);
1779
1780 if (zvol_inhibit_dev)
1781 return (0);
1782
1783 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1784 if (idx < 0)
1785 return (SET_ERROR(-idx));
1786 minor = idx << ZVOL_MINOR_BITS;
1787
1788 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1789 if (zv) {
1790 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1791 mutex_exit(&zv->zv_state_lock);
1792 ida_simple_remove(&zvol_ida, idx);
1793 return (SET_ERROR(EEXIST));
1794 }
1795
1796 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1797
1798 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1799 if (error)
1800 goto out_doi;
1801
1802 error = dmu_object_info(os, ZVOL_OBJ, doi);
1803 if (error)
1804 goto out_dmu_objset_disown;
1805
1806 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1807 if (error)
1808 goto out_dmu_objset_disown;
1809
1810 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1811 if (zv == NULL) {
1812 error = SET_ERROR(EAGAIN);
1813 goto out_dmu_objset_disown;
1814 }
1815 zv->zv_hash = hash;
1816
1817 if (dmu_objset_is_snapshot(os))
1818 zv->zv_flags |= ZVOL_RDONLY;
1819
1820 zv->zv_volblocksize = doi->doi_data_block_size;
1821 zv->zv_volsize = volsize;
1822 zv->zv_objset = os;
1823
1824 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1825
1826 blk_queue_max_hw_sectors(zv->zv_queue, (DMU_MAX_ACCESS / 4) >> 9);
1827 blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
1828 blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
1829 blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
1830 blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
1831 blk_queue_max_discard_sectors(zv->zv_queue,
1832 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1833 blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
1834 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_queue);
1835 #ifdef QUEUE_FLAG_NONROT
1836 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_queue);
1837 #endif
1838 #ifdef QUEUE_FLAG_ADD_RANDOM
1839 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_queue);
1840 #endif
1841
1842 if (spa_writeable(dmu_objset_spa(os))) {
1843 if (zil_replay_disable)
1844 zil_destroy(dmu_objset_zil(os), B_FALSE);
1845 else
1846 zil_replay(os, zv, zvol_replay_vector);
1847 }
1848 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1849 dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1850
1851 /*
1852 * When udev detects the addition of the device it will immediately
1853 * invoke blkid(8) to determine the type of content on the device.
1854 * Prefetching the blocks commonly scanned by blkid(8) will speed
1855 * up this process.
1856 */
1857 len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
1858 if (len > 0) {
1859 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1860 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1861 ZIO_PRIORITY_SYNC_READ);
1862 }
1863
1864 zv->zv_objset = NULL;
1865 out_dmu_objset_disown:
1866 dmu_objset_disown(os, B_TRUE, FTAG);
1867 out_doi:
1868 kmem_free(doi, sizeof (dmu_object_info_t));
1869
1870 if (error == 0) {
1871 rw_enter(&zvol_state_lock, RW_WRITER);
1872 zvol_insert(zv);
1873 rw_exit(&zvol_state_lock);
1874 add_disk(zv->zv_disk);
1875 } else {
1876 ida_simple_remove(&zvol_ida, idx);
1877 }
1878
1879 return (SET_ERROR(error));
1880 }
1881
1882 /*
1883 * Rename a block device minor mode for the specified volume.
1884 */
1885 static void
1886 zvol_rename_minor(zvol_state_t *zv, const char *newname)
1887 {
1888 int readonly = get_disk_ro(zv->zv_disk);
1889
1890 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1891 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1892
1893 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1894
1895 /* move to new hashtable entry */
1896 zv->zv_hash = zvol_name_hash(zv->zv_name);
1897 hlist_del(&zv->zv_hlink);
1898 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1899
1900 /*
1901 * The block device's read-only state is briefly changed causing
1902 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1903 * the name change and fixes the symlinks. This does not change
1904 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1905 * changes. This would normally be done using kobject_uevent() but
1906 * that is a GPL-only symbol which is why we need this workaround.
1907 */
1908 set_disk_ro(zv->zv_disk, !readonly);
1909 set_disk_ro(zv->zv_disk, readonly);
1910 }
1911
1912 typedef struct minors_job {
1913 list_t *list;
1914 list_node_t link;
1915 /* input */
1916 char *name;
1917 /* output */
1918 int error;
1919 } minors_job_t;
1920
1921 /*
1922 * Prefetch zvol dnodes for the minors_job
1923 */
1924 static void
1925 zvol_prefetch_minors_impl(void *arg)
1926 {
1927 minors_job_t *job = arg;
1928 char *dsname = job->name;
1929 objset_t *os = NULL;
1930
1931 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1932 FTAG, &os);
1933 if (job->error == 0) {
1934 dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
1935 dmu_objset_disown(os, B_TRUE, FTAG);
1936 }
1937 }
1938
1939 /*
1940 * Mask errors to continue dmu_objset_find() traversal
1941 */
1942 static int
1943 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1944 {
1945 minors_job_t *j = arg;
1946 list_t *minors_list = j->list;
1947 const char *name = j->name;
1948
1949 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1950
1951 /* skip the designated dataset */
1952 if (name && strcmp(dsname, name) == 0)
1953 return (0);
1954
1955 /* at this point, the dsname should name a snapshot */
1956 if (strchr(dsname, '@') == 0) {
1957 dprintf("zvol_create_snap_minor_cb(): "
1958 "%s is not a shapshot name\n", dsname);
1959 } else {
1960 minors_job_t *job;
1961 char *n = strdup(dsname);
1962 if (n == NULL)
1963 return (0);
1964
1965 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1966 job->name = n;
1967 job->list = minors_list;
1968 job->error = 0;
1969 list_insert_tail(minors_list, job);
1970 /* don't care if dispatch fails, because job->error is 0 */
1971 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1972 TQ_SLEEP);
1973 }
1974
1975 return (0);
1976 }
1977
1978 /*
1979 * Mask errors to continue dmu_objset_find() traversal
1980 */
1981 static int
1982 zvol_create_minors_cb(const char *dsname, void *arg)
1983 {
1984 uint64_t snapdev;
1985 int error;
1986 list_t *minors_list = arg;
1987
1988 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1989
1990 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1991 if (error)
1992 return (0);
1993
1994 /*
1995 * Given the name and the 'snapdev' property, create device minor nodes
1996 * with the linkages to zvols/snapshots as needed.
1997 * If the name represents a zvol, create a minor node for the zvol, then
1998 * check if its snapshots are 'visible', and if so, iterate over the
1999 * snapshots and create device minor nodes for those.
2000 */
2001 if (strchr(dsname, '@') == 0) {
2002 minors_job_t *job;
2003 char *n = strdup(dsname);
2004 if (n == NULL)
2005 return (0);
2006
2007 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
2008 job->name = n;
2009 job->list = minors_list;
2010 job->error = 0;
2011 list_insert_tail(minors_list, job);
2012 /* don't care if dispatch fails, because job->error is 0 */
2013 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
2014 TQ_SLEEP);
2015
2016 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
2017 /*
2018 * traverse snapshots only, do not traverse children,
2019 * and skip the 'dsname'
2020 */
2021 error = dmu_objset_find((char *)dsname,
2022 zvol_create_snap_minor_cb, (void *)job,
2023 DS_FIND_SNAPSHOTS);
2024 }
2025 } else {
2026 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
2027 dsname);
2028 }
2029
2030 return (0);
2031 }
2032
2033 /*
2034 * Create minors for the specified dataset, including children and snapshots.
2035 * Pay attention to the 'snapdev' property and iterate over the snapshots
2036 * only if they are 'visible'. This approach allows one to assure that the
2037 * snapshot metadata is read from disk only if it is needed.
2038 *
2039 * The name can represent a dataset to be recursively scanned for zvols and
2040 * their snapshots, or a single zvol snapshot. If the name represents a
2041 * dataset, the scan is performed in two nested stages:
2042 * - scan the dataset for zvols, and
2043 * - for each zvol, create a minor node, then check if the zvol's snapshots
2044 * are 'visible', and only then iterate over the snapshots if needed
2045 *
2046 * If the name represents a snapshot, a check is performed if the snapshot is
2047 * 'visible' (which also verifies that the parent is a zvol), and if so,
2048 * a minor node for that snapshot is created.
2049 */
2050 static int
2051 zvol_create_minors_impl(const char *name)
2052 {
2053 int error = 0;
2054 fstrans_cookie_t cookie;
2055 char *atp, *parent;
2056 list_t minors_list;
2057 minors_job_t *job;
2058
2059 if (zvol_inhibit_dev)
2060 return (0);
2061
2062 /*
2063 * This is the list for prefetch jobs. Whenever we found a match
2064 * during dmu_objset_find, we insert a minors_job to the list and do
2065 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
2066 * any lock because all list operation is done on the current thread.
2067 *
2068 * We will use this list to do zvol_create_minor_impl after prefetch
2069 * so we don't have to traverse using dmu_objset_find again.
2070 */
2071 list_create(&minors_list, sizeof (minors_job_t),
2072 offsetof(minors_job_t, link));
2073
2074 parent = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2075 (void) strlcpy(parent, name, MAXPATHLEN);
2076
2077 if ((atp = strrchr(parent, '@')) != NULL) {
2078 uint64_t snapdev;
2079
2080 *atp = '\0';
2081 error = dsl_prop_get_integer(parent, "snapdev",
2082 &snapdev, NULL);
2083
2084 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
2085 error = zvol_create_minor_impl(name);
2086 } else {
2087 cookie = spl_fstrans_mark();
2088 error = dmu_objset_find(parent, zvol_create_minors_cb,
2089 &minors_list, DS_FIND_CHILDREN);
2090 spl_fstrans_unmark(cookie);
2091 }
2092
2093 kmem_free(parent, MAXPATHLEN);
2094 taskq_wait_outstanding(system_taskq, 0);
2095
2096 /*
2097 * Prefetch is completed, we can do zvol_create_minor_impl
2098 * sequentially.
2099 */
2100 while ((job = list_head(&minors_list)) != NULL) {
2101 list_remove(&minors_list, job);
2102 if (!job->error)
2103 zvol_create_minor_impl(job->name);
2104 strfree(job->name);
2105 kmem_free(job, sizeof (minors_job_t));
2106 }
2107
2108 list_destroy(&minors_list);
2109
2110 return (SET_ERROR(error));
2111 }
2112
2113 /*
2114 * Remove minors for specified dataset including children and snapshots.
2115 */
2116 static void
2117 zvol_remove_minors_impl(const char *name)
2118 {
2119 zvol_state_t *zv, *zv_next;
2120 int namelen = ((name) ? strlen(name) : 0);
2121 taskqid_t t, tid = TASKQID_INVALID;
2122 list_t free_list;
2123
2124 if (zvol_inhibit_dev)
2125 return;
2126
2127 list_create(&free_list, sizeof (zvol_state_t),
2128 offsetof(zvol_state_t, zv_next));
2129
2130 rw_enter(&zvol_state_lock, RW_WRITER);
2131
2132 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2133 zv_next = list_next(&zvol_state_list, zv);
2134
2135 mutex_enter(&zv->zv_state_lock);
2136 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
2137 (strncmp(zv->zv_name, name, namelen) == 0 &&
2138 (zv->zv_name[namelen] == '/' ||
2139 zv->zv_name[namelen] == '@'))) {
2140 /*
2141 * By holding zv_state_lock here, we guarantee that no
2142 * one is currently using this zv
2143 */
2144
2145 /* If in use, leave alone */
2146 if (zv->zv_open_count > 0 ||
2147 atomic_read(&zv->zv_suspend_ref)) {
2148 mutex_exit(&zv->zv_state_lock);
2149 continue;
2150 }
2151
2152 zvol_remove(zv);
2153
2154 /*
2155 * Cleared while holding zvol_state_lock as a writer
2156 * which will prevent zvol_open() from opening it.
2157 */
2158 zv->zv_disk->private_data = NULL;
2159
2160 /* Drop zv_state_lock before zvol_free() */
2161 mutex_exit(&zv->zv_state_lock);
2162
2163 /* Try parallel zv_free, if failed do it in place */
2164 t = taskq_dispatch(system_taskq, zvol_free, zv,
2165 TQ_SLEEP);
2166 if (t == TASKQID_INVALID)
2167 list_insert_head(&free_list, zv);
2168 else
2169 tid = t;
2170 } else {
2171 mutex_exit(&zv->zv_state_lock);
2172 }
2173 }
2174 rw_exit(&zvol_state_lock);
2175
2176 /* Drop zvol_state_lock before calling zvol_free() */
2177 while ((zv = list_head(&free_list)) != NULL) {
2178 list_remove(&free_list, zv);
2179 zvol_free(zv);
2180 }
2181
2182 if (tid != TASKQID_INVALID)
2183 taskq_wait_outstanding(system_taskq, tid);
2184 }
2185
2186 /* Remove minor for this specific volume only */
2187 static void
2188 zvol_remove_minor_impl(const char *name)
2189 {
2190 zvol_state_t *zv = NULL, *zv_next;
2191
2192 if (zvol_inhibit_dev)
2193 return;
2194
2195 rw_enter(&zvol_state_lock, RW_WRITER);
2196
2197 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2198 zv_next = list_next(&zvol_state_list, zv);
2199
2200 mutex_enter(&zv->zv_state_lock);
2201 if (strcmp(zv->zv_name, name) == 0) {
2202 /*
2203 * By holding zv_state_lock here, we guarantee that no
2204 * one is currently using this zv
2205 */
2206
2207 /* If in use, leave alone */
2208 if (zv->zv_open_count > 0 ||
2209 atomic_read(&zv->zv_suspend_ref)) {
2210 mutex_exit(&zv->zv_state_lock);
2211 continue;
2212 }
2213 zvol_remove(zv);
2214
2215 /*
2216 * Cleared while holding zvol_state_lock as a writer
2217 * which will prevent zvol_open() from opening it.
2218 */
2219 zv->zv_disk->private_data = NULL;
2220
2221 mutex_exit(&zv->zv_state_lock);
2222 break;
2223 } else {
2224 mutex_exit(&zv->zv_state_lock);
2225 }
2226 }
2227
2228 /* Drop zvol_state_lock before calling zvol_free() */
2229 rw_exit(&zvol_state_lock);
2230
2231 if (zv != NULL)
2232 zvol_free(zv);
2233 }
2234
2235 /*
2236 * Rename minors for specified dataset including children and snapshots.
2237 */
2238 static void
2239 zvol_rename_minors_impl(const char *oldname, const char *newname)
2240 {
2241 zvol_state_t *zv, *zv_next;
2242 int oldnamelen, newnamelen;
2243
2244 if (zvol_inhibit_dev)
2245 return;
2246
2247 oldnamelen = strlen(oldname);
2248 newnamelen = strlen(newname);
2249
2250 rw_enter(&zvol_state_lock, RW_READER);
2251
2252 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2253 zv_next = list_next(&zvol_state_list, zv);
2254
2255 mutex_enter(&zv->zv_state_lock);
2256
2257 /* If in use, leave alone */
2258 if (zv->zv_open_count > 0) {
2259 mutex_exit(&zv->zv_state_lock);
2260 continue;
2261 }
2262
2263 if (strcmp(zv->zv_name, oldname) == 0) {
2264 zvol_rename_minor(zv, newname);
2265 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
2266 (zv->zv_name[oldnamelen] == '/' ||
2267 zv->zv_name[oldnamelen] == '@')) {
2268 char *name = kmem_asprintf("%s%c%s", newname,
2269 zv->zv_name[oldnamelen],
2270 zv->zv_name + oldnamelen + 1);
2271 zvol_rename_minor(zv, name);
2272 kmem_free(name, strlen(name + 1));
2273 }
2274
2275 mutex_exit(&zv->zv_state_lock);
2276 }
2277
2278 rw_exit(&zvol_state_lock);
2279 }
2280
2281 typedef struct zvol_snapdev_cb_arg {
2282 uint64_t snapdev;
2283 } zvol_snapdev_cb_arg_t;
2284
2285 static int
2286 zvol_set_snapdev_cb(const char *dsname, void *param)
2287 {
2288 zvol_snapdev_cb_arg_t *arg = param;
2289
2290 if (strchr(dsname, '@') == NULL)
2291 return (0);
2292
2293 switch (arg->snapdev) {
2294 case ZFS_SNAPDEV_VISIBLE:
2295 (void) zvol_create_minor_impl(dsname);
2296 break;
2297 case ZFS_SNAPDEV_HIDDEN:
2298 (void) zvol_remove_minor_impl(dsname);
2299 break;
2300 }
2301
2302 return (0);
2303 }
2304
2305 static void
2306 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
2307 {
2308 zvol_snapdev_cb_arg_t arg = {snapdev};
2309 fstrans_cookie_t cookie = spl_fstrans_mark();
2310 /*
2311 * The zvol_set_snapdev_sync() sets snapdev appropriately
2312 * in the dataset hierarchy. Here, we only scan snapshots.
2313 */
2314 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
2315 spl_fstrans_unmark(cookie);
2316 }
2317
2318 typedef struct zvol_volmode_cb_arg {
2319 uint64_t volmode;
2320 } zvol_volmode_cb_arg_t;
2321
2322 static void
2323 zvol_set_volmode_impl(char *name, uint64_t volmode)
2324 {
2325 fstrans_cookie_t cookie = spl_fstrans_mark();
2326
2327 if (strchr(name, '@') != NULL)
2328 return;
2329
2330 /*
2331 * It's unfortunate we need to remove minors before we create new ones:
2332 * this is necessary because our backing gendisk (zvol_state->zv_disk)
2333 * coule be different when we set, for instance, volmode from "geom"
2334 * to "dev" (or vice versa).
2335 * A possible optimization is to modify our consumers so we don't get
2336 * called when "volmode" does not change.
2337 */
2338 switch (volmode) {
2339 case ZFS_VOLMODE_NONE:
2340 (void) zvol_remove_minor_impl(name);
2341 break;
2342 case ZFS_VOLMODE_GEOM:
2343 case ZFS_VOLMODE_DEV:
2344 (void) zvol_remove_minor_impl(name);
2345 (void) zvol_create_minor_impl(name);
2346 break;
2347 case ZFS_VOLMODE_DEFAULT:
2348 (void) zvol_remove_minor_impl(name);
2349 if (zvol_volmode == ZFS_VOLMODE_NONE)
2350 break;
2351 else /* if zvol_volmode is invalid defaults to "geom" */
2352 (void) zvol_create_minor_impl(name);
2353 break;
2354 }
2355
2356 spl_fstrans_unmark(cookie);
2357 }
2358
2359 static zvol_task_t *
2360 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
2361 uint64_t value)
2362 {
2363 zvol_task_t *task;
2364 char *delim;
2365
2366 /* Never allow tasks on hidden names. */
2367 if (name1[0] == '$')
2368 return (NULL);
2369
2370 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2371 task->op = op;
2372 task->value = value;
2373 delim = strchr(name1, '/');
2374 strlcpy(task->pool, name1, delim ? (delim - name1 + 1) : MAXNAMELEN);
2375
2376 strlcpy(task->name1, name1, MAXNAMELEN);
2377 if (name2 != NULL)
2378 strlcpy(task->name2, name2, MAXNAMELEN);
2379
2380 return (task);
2381 }
2382
2383 static void
2384 zvol_task_free(zvol_task_t *task)
2385 {
2386 kmem_free(task, sizeof (zvol_task_t));
2387 }
2388
2389 /*
2390 * The worker thread function performed asynchronously.
2391 */
2392 static void
2393 zvol_task_cb(void *param)
2394 {
2395 zvol_task_t *task = (zvol_task_t *)param;
2396
2397 switch (task->op) {
2398 case ZVOL_ASYNC_CREATE_MINORS:
2399 (void) zvol_create_minors_impl(task->name1);
2400 break;
2401 case ZVOL_ASYNC_REMOVE_MINORS:
2402 zvol_remove_minors_impl(task->name1);
2403 break;
2404 case ZVOL_ASYNC_RENAME_MINORS:
2405 zvol_rename_minors_impl(task->name1, task->name2);
2406 break;
2407 case ZVOL_ASYNC_SET_SNAPDEV:
2408 zvol_set_snapdev_impl(task->name1, task->value);
2409 break;
2410 case ZVOL_ASYNC_SET_VOLMODE:
2411 zvol_set_volmode_impl(task->name1, task->value);
2412 break;
2413 default:
2414 VERIFY(0);
2415 break;
2416 }
2417
2418 zvol_task_free(task);
2419 }
2420
2421 typedef struct zvol_set_prop_int_arg {
2422 const char *zsda_name;
2423 uint64_t zsda_value;
2424 zprop_source_t zsda_source;
2425 dmu_tx_t *zsda_tx;
2426 } zvol_set_prop_int_arg_t;
2427
2428 /*
2429 * Sanity check the dataset for safe use by the sync task. No additional
2430 * conditions are imposed.
2431 */
2432 static int
2433 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
2434 {
2435 zvol_set_prop_int_arg_t *zsda = arg;
2436 dsl_pool_t *dp = dmu_tx_pool(tx);
2437 dsl_dir_t *dd;
2438 int error;
2439
2440 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
2441 if (error != 0)
2442 return (error);
2443
2444 dsl_dir_rele(dd, FTAG);
2445
2446 return (error);
2447 }
2448
2449 /* ARGSUSED */
2450 static int
2451 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2452 {
2453 char dsname[MAXNAMELEN];
2454 zvol_task_t *task;
2455 uint64_t snapdev;
2456
2457 dsl_dataset_name(ds, dsname);
2458 if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
2459 return (0);
2460 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
2461 if (task == NULL)
2462 return (0);
2463
2464 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
2465 task, TQ_SLEEP);
2466 return (0);
2467 }
2468
2469 /*
2470 * Traverse all child datasets and apply snapdev appropriately.
2471 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
2472 * dataset and read the effective "snapdev" on every child in the callback
2473 * function: this is because the value is not guaranteed to be the same in the
2474 * whole dataset hierarchy.
2475 */
2476 static void
2477 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
2478 {
2479 zvol_set_prop_int_arg_t *zsda = arg;
2480 dsl_pool_t *dp = dmu_tx_pool(tx);
2481 dsl_dir_t *dd;
2482 dsl_dataset_t *ds;
2483 int error;
2484
2485 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2486 zsda->zsda_tx = tx;
2487
2488 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2489 if (error == 0) {
2490 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
2491 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2492 &zsda->zsda_value, zsda->zsda_tx);
2493 dsl_dataset_rele(ds, FTAG);
2494 }
2495 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
2496 zsda, DS_FIND_CHILDREN);
2497
2498 dsl_dir_rele(dd, FTAG);
2499 }
2500
2501 int
2502 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
2503 {
2504 zvol_set_prop_int_arg_t zsda;
2505
2506 zsda.zsda_name = ddname;
2507 zsda.zsda_source = source;
2508 zsda.zsda_value = snapdev;
2509
2510 return (dsl_sync_task(ddname, zvol_set_snapdev_check,
2511 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2512 }
2513
2514 /*
2515 * Sanity check the dataset for safe use by the sync task. No additional
2516 * conditions are imposed.
2517 */
2518 static int
2519 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
2520 {
2521 zvol_set_prop_int_arg_t *zsda = arg;
2522 dsl_pool_t *dp = dmu_tx_pool(tx);
2523 dsl_dir_t *dd;
2524 int error;
2525
2526 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
2527 if (error != 0)
2528 return (error);
2529
2530 dsl_dir_rele(dd, FTAG);
2531
2532 return (error);
2533 }
2534
2535 /* ARGSUSED */
2536 static int
2537 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2538 {
2539 char dsname[MAXNAMELEN];
2540 zvol_task_t *task;
2541 uint64_t volmode;
2542
2543 dsl_dataset_name(ds, dsname);
2544 if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
2545 return (0);
2546 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
2547 if (task == NULL)
2548 return (0);
2549
2550 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
2551 task, TQ_SLEEP);
2552 return (0);
2553 }
2554
2555 /*
2556 * Traverse all child datasets and apply volmode appropriately.
2557 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
2558 * dataset and read the effective "volmode" on every child in the callback
2559 * function: this is because the value is not guaranteed to be the same in the
2560 * whole dataset hierarchy.
2561 */
2562 static void
2563 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
2564 {
2565 zvol_set_prop_int_arg_t *zsda = arg;
2566 dsl_pool_t *dp = dmu_tx_pool(tx);
2567 dsl_dir_t *dd;
2568 dsl_dataset_t *ds;
2569 int error;
2570
2571 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2572 zsda->zsda_tx = tx;
2573
2574 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2575 if (error == 0) {
2576 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
2577 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2578 &zsda->zsda_value, zsda->zsda_tx);
2579 dsl_dataset_rele(ds, FTAG);
2580 }
2581
2582 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
2583 zsda, DS_FIND_CHILDREN);
2584
2585 dsl_dir_rele(dd, FTAG);
2586 }
2587
2588 int
2589 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
2590 {
2591 zvol_set_prop_int_arg_t zsda;
2592
2593 zsda.zsda_name = ddname;
2594 zsda.zsda_source = source;
2595 zsda.zsda_value = volmode;
2596
2597 return (dsl_sync_task(ddname, zvol_set_volmode_check,
2598 zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2599 }
2600
2601 void
2602 zvol_create_minors(spa_t *spa, const char *name, boolean_t async)
2603 {
2604 zvol_task_t *task;
2605 taskqid_t id;
2606
2607 task = zvol_task_alloc(ZVOL_ASYNC_CREATE_MINORS, name, NULL, ~0ULL);
2608 if (task == NULL)
2609 return;
2610
2611 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2612 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2613 taskq_wait_id(spa->spa_zvol_taskq, id);
2614 }
2615
2616 void
2617 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
2618 {
2619 zvol_task_t *task;
2620 taskqid_t id;
2621
2622 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
2623 if (task == NULL)
2624 return;
2625
2626 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2627 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2628 taskq_wait_id(spa->spa_zvol_taskq, id);
2629 }
2630
2631 void
2632 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
2633 boolean_t async)
2634 {
2635 zvol_task_t *task;
2636 taskqid_t id;
2637
2638 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
2639 if (task == NULL)
2640 return;
2641
2642 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2643 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2644 taskq_wait_id(spa->spa_zvol_taskq, id);
2645 }
2646
2647 int
2648 zvol_init(void)
2649 {
2650 int threads = MIN(MAX(zvol_threads, 1), 1024);
2651 int i, error;
2652
2653 list_create(&zvol_state_list, sizeof (zvol_state_t),
2654 offsetof(zvol_state_t, zv_next));
2655 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
2656 ida_init(&zvol_ida);
2657
2658 zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
2659 threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
2660 if (zvol_taskq == NULL) {
2661 printk(KERN_INFO "ZFS: taskq_create() failed\n");
2662 error = -ENOMEM;
2663 goto out;
2664 }
2665
2666 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
2667 KM_SLEEP);
2668 if (!zvol_htable) {
2669 error = -ENOMEM;
2670 goto out_taskq;
2671 }
2672 for (i = 0; i < ZVOL_HT_SIZE; i++)
2673 INIT_HLIST_HEAD(&zvol_htable[i]);
2674
2675 error = register_blkdev(zvol_major, ZVOL_DRIVER);
2676 if (error) {
2677 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
2678 goto out_free;
2679 }
2680
2681 blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
2682 THIS_MODULE, zvol_probe, NULL, NULL);
2683
2684 return (0);
2685
2686 out_free:
2687 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2688 out_taskq:
2689 taskq_destroy(zvol_taskq);
2690 out:
2691 ida_destroy(&zvol_ida);
2692 rw_destroy(&zvol_state_lock);
2693 list_destroy(&zvol_state_list);
2694
2695 return (SET_ERROR(error));
2696 }
2697
2698 void
2699 zvol_fini(void)
2700 {
2701 zvol_remove_minors_impl(NULL);
2702
2703 blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
2704 unregister_blkdev(zvol_major, ZVOL_DRIVER);
2705 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2706
2707 taskq_destroy(zvol_taskq);
2708 list_destroy(&zvol_state_list);
2709 rw_destroy(&zvol_state_lock);
2710
2711 ida_destroy(&zvol_ida);
2712 }
2713
2714 /* BEGIN CSTYLED */
2715 module_param(zvol_inhibit_dev, uint, 0644);
2716 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
2717
2718 module_param(zvol_major, uint, 0444);
2719 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
2720
2721 module_param(zvol_threads, uint, 0444);
2722 MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
2723
2724 module_param(zvol_request_sync, uint, 0644);
2725 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
2726
2727 module_param(zvol_max_discard_blocks, ulong, 0444);
2728 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
2729
2730 module_param(zvol_prefetch_bytes, uint, 0644);
2731 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
2732
2733 module_param(zvol_volmode, uint, 0644);
2734 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
2735 /* END CSTYLED */