]> git.proxmox.com Git - qemu.git/blob - target-arm/helper.c
target-openrisc: Update OpenRISCCPU to QOM realizefn
[qemu.git] / target-arm / helper.c
1 #include "cpu.h"
2 #include "exec/gdbstub.h"
3 #include "helper.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/sysemu.h"
6 #include "qemu/bitops.h"
7
8 #ifndef CONFIG_USER_ONLY
9 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
10 int access_type, int is_user,
11 hwaddr *phys_ptr, int *prot,
12 target_ulong *page_size);
13 #endif
14
15 static int vfp_gdb_get_reg(CPUARMState *env, uint8_t *buf, int reg)
16 {
17 int nregs;
18
19 /* VFP data registers are always little-endian. */
20 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
21 if (reg < nregs) {
22 stfq_le_p(buf, env->vfp.regs[reg]);
23 return 8;
24 }
25 if (arm_feature(env, ARM_FEATURE_NEON)) {
26 /* Aliases for Q regs. */
27 nregs += 16;
28 if (reg < nregs) {
29 stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
30 stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
31 return 16;
32 }
33 }
34 switch (reg - nregs) {
35 case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
36 case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
37 case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
38 }
39 return 0;
40 }
41
42 static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
43 {
44 int nregs;
45
46 nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
47 if (reg < nregs) {
48 env->vfp.regs[reg] = ldfq_le_p(buf);
49 return 8;
50 }
51 if (arm_feature(env, ARM_FEATURE_NEON)) {
52 nregs += 16;
53 if (reg < nregs) {
54 env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
55 env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
56 return 16;
57 }
58 }
59 switch (reg - nregs) {
60 case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
61 case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
62 case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
63 }
64 return 0;
65 }
66
67 static int dacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
68 {
69 env->cp15.c3 = value;
70 tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
71 return 0;
72 }
73
74 static int fcse_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
75 {
76 if (env->cp15.c13_fcse != value) {
77 /* Unlike real hardware the qemu TLB uses virtual addresses,
78 * not modified virtual addresses, so this causes a TLB flush.
79 */
80 tlb_flush(env, 1);
81 env->cp15.c13_fcse = value;
82 }
83 return 0;
84 }
85 static int contextidr_write(CPUARMState *env, const ARMCPRegInfo *ri,
86 uint64_t value)
87 {
88 if (env->cp15.c13_context != value && !arm_feature(env, ARM_FEATURE_MPU)) {
89 /* For VMSA (when not using the LPAE long descriptor page table
90 * format) this register includes the ASID, so do a TLB flush.
91 * For PMSA it is purely a process ID and no action is needed.
92 */
93 tlb_flush(env, 1);
94 }
95 env->cp15.c13_context = value;
96 return 0;
97 }
98
99 static int tlbiall_write(CPUARMState *env, const ARMCPRegInfo *ri,
100 uint64_t value)
101 {
102 /* Invalidate all (TLBIALL) */
103 tlb_flush(env, 1);
104 return 0;
105 }
106
107 static int tlbimva_write(CPUARMState *env, const ARMCPRegInfo *ri,
108 uint64_t value)
109 {
110 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
111 tlb_flush_page(env, value & TARGET_PAGE_MASK);
112 return 0;
113 }
114
115 static int tlbiasid_write(CPUARMState *env, const ARMCPRegInfo *ri,
116 uint64_t value)
117 {
118 /* Invalidate by ASID (TLBIASID) */
119 tlb_flush(env, value == 0);
120 return 0;
121 }
122
123 static int tlbimvaa_write(CPUARMState *env, const ARMCPRegInfo *ri,
124 uint64_t value)
125 {
126 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
127 tlb_flush_page(env, value & TARGET_PAGE_MASK);
128 return 0;
129 }
130
131 static const ARMCPRegInfo cp_reginfo[] = {
132 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
133 * version" bits will read as a reserved value, which should cause
134 * Linux to not try to use the debug hardware.
135 */
136 { .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
137 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
138 /* MMU Domain access control / MPU write buffer control */
139 { .name = "DACR", .cp = 15,
140 .crn = 3, .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
141 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c3),
142 .resetvalue = 0, .writefn = dacr_write },
143 { .name = "FCSEIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 0,
144 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
145 .resetvalue = 0, .writefn = fcse_write },
146 { .name = "CONTEXTIDR", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 1,
147 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c13_fcse),
148 .resetvalue = 0, .writefn = contextidr_write },
149 /* ??? This covers not just the impdef TLB lockdown registers but also
150 * some v7VMSA registers relating to TEX remap, so it is overly broad.
151 */
152 { .name = "TLB_LOCKDOWN", .cp = 15, .crn = 10, .crm = CP_ANY,
153 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_NOP },
154 /* MMU TLB control. Note that the wildcarding means we cover not just
155 * the unified TLB ops but also the dside/iside/inner-shareable variants.
156 */
157 { .name = "TLBIALL", .cp = 15, .crn = 8, .crm = CP_ANY,
158 .opc1 = CP_ANY, .opc2 = 0, .access = PL1_W, .writefn = tlbiall_write, },
159 { .name = "TLBIMVA", .cp = 15, .crn = 8, .crm = CP_ANY,
160 .opc1 = CP_ANY, .opc2 = 1, .access = PL1_W, .writefn = tlbimva_write, },
161 { .name = "TLBIASID", .cp = 15, .crn = 8, .crm = CP_ANY,
162 .opc1 = CP_ANY, .opc2 = 2, .access = PL1_W, .writefn = tlbiasid_write, },
163 { .name = "TLBIMVAA", .cp = 15, .crn = 8, .crm = CP_ANY,
164 .opc1 = CP_ANY, .opc2 = 3, .access = PL1_W, .writefn = tlbimvaa_write, },
165 /* Cache maintenance ops; some of this space may be overridden later. */
166 { .name = "CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
167 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W,
168 .type = ARM_CP_NOP | ARM_CP_OVERRIDE },
169 REGINFO_SENTINEL
170 };
171
172 static const ARMCPRegInfo not_v6_cp_reginfo[] = {
173 /* Not all pre-v6 cores implemented this WFI, so this is slightly
174 * over-broad.
175 */
176 { .name = "WFI_v5", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = 2,
177 .access = PL1_W, .type = ARM_CP_WFI },
178 REGINFO_SENTINEL
179 };
180
181 static const ARMCPRegInfo not_v7_cp_reginfo[] = {
182 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
183 * is UNPREDICTABLE; we choose to NOP as most implementations do).
184 */
185 { .name = "WFI_v6", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
186 .access = PL1_W, .type = ARM_CP_WFI },
187 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
188 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
189 * OMAPCP will override this space.
190 */
191 { .name = "DLOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 0,
192 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_data),
193 .resetvalue = 0 },
194 { .name = "ILOCKDOWN", .cp = 15, .crn = 9, .crm = 0, .opc1 = 0, .opc2 = 1,
195 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_insn),
196 .resetvalue = 0 },
197 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
198 { .name = "DUMMY", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = CP_ANY,
199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
200 REGINFO_SENTINEL
201 };
202
203 static int cpacr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
204 {
205 if (env->cp15.c1_coproc != value) {
206 env->cp15.c1_coproc = value;
207 /* ??? Is this safe when called from within a TB? */
208 tb_flush(env);
209 }
210 return 0;
211 }
212
213 static const ARMCPRegInfo v6_cp_reginfo[] = {
214 /* prefetch by MVA in v6, NOP in v7 */
215 { .name = "MVA_prefetch",
216 .cp = 15, .crn = 7, .crm = 13, .opc1 = 0, .opc2 = 1,
217 .access = PL1_W, .type = ARM_CP_NOP },
218 { .name = "ISB", .cp = 15, .crn = 7, .crm = 5, .opc1 = 0, .opc2 = 4,
219 .access = PL0_W, .type = ARM_CP_NOP },
220 { .name = "DSB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 4,
221 .access = PL0_W, .type = ARM_CP_NOP },
222 { .name = "DMB", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 5,
223 .access = PL0_W, .type = ARM_CP_NOP },
224 { .name = "IFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 2,
225 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_insn),
226 .resetvalue = 0, },
227 /* Watchpoint Fault Address Register : should actually only be present
228 * for 1136, 1176, 11MPCore.
229 */
230 { .name = "WFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 1,
231 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0, },
232 { .name = "CPACR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 2,
233 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_coproc),
234 .resetvalue = 0, .writefn = cpacr_write },
235 REGINFO_SENTINEL
236 };
237
238 static int pmreg_read(CPUARMState *env, const ARMCPRegInfo *ri,
239 uint64_t *value)
240 {
241 /* Generic performance monitor register read function for where
242 * user access may be allowed by PMUSERENR.
243 */
244 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
245 return EXCP_UDEF;
246 }
247 *value = CPREG_FIELD32(env, ri);
248 return 0;
249 }
250
251 static int pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
252 uint64_t value)
253 {
254 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
255 return EXCP_UDEF;
256 }
257 /* only the DP, X, D and E bits are writable */
258 env->cp15.c9_pmcr &= ~0x39;
259 env->cp15.c9_pmcr |= (value & 0x39);
260 return 0;
261 }
262
263 static int pmcntenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
264 uint64_t value)
265 {
266 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
267 return EXCP_UDEF;
268 }
269 value &= (1 << 31);
270 env->cp15.c9_pmcnten |= value;
271 return 0;
272 }
273
274 static int pmcntenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
275 uint64_t value)
276 {
277 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
278 return EXCP_UDEF;
279 }
280 value &= (1 << 31);
281 env->cp15.c9_pmcnten &= ~value;
282 return 0;
283 }
284
285 static int pmovsr_write(CPUARMState *env, const ARMCPRegInfo *ri,
286 uint64_t value)
287 {
288 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
289 return EXCP_UDEF;
290 }
291 env->cp15.c9_pmovsr &= ~value;
292 return 0;
293 }
294
295 static int pmxevtyper_write(CPUARMState *env, const ARMCPRegInfo *ri,
296 uint64_t value)
297 {
298 if (arm_current_pl(env) == 0 && !env->cp15.c9_pmuserenr) {
299 return EXCP_UDEF;
300 }
301 env->cp15.c9_pmxevtyper = value & 0xff;
302 return 0;
303 }
304
305 static int pmuserenr_write(CPUARMState *env, const ARMCPRegInfo *ri,
306 uint64_t value)
307 {
308 env->cp15.c9_pmuserenr = value & 1;
309 return 0;
310 }
311
312 static int pmintenset_write(CPUARMState *env, const ARMCPRegInfo *ri,
313 uint64_t value)
314 {
315 /* We have no event counters so only the C bit can be changed */
316 value &= (1 << 31);
317 env->cp15.c9_pminten |= value;
318 return 0;
319 }
320
321 static int pmintenclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
322 uint64_t value)
323 {
324 value &= (1 << 31);
325 env->cp15.c9_pminten &= ~value;
326 return 0;
327 }
328
329 static int ccsidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
330 uint64_t *value)
331 {
332 ARMCPU *cpu = arm_env_get_cpu(env);
333 *value = cpu->ccsidr[env->cp15.c0_cssel];
334 return 0;
335 }
336
337 static int csselr_write(CPUARMState *env, const ARMCPRegInfo *ri,
338 uint64_t value)
339 {
340 env->cp15.c0_cssel = value & 0xf;
341 return 0;
342 }
343
344 static const ARMCPRegInfo v7_cp_reginfo[] = {
345 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
346 * debug components
347 */
348 { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
349 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
350 { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
351 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
352 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
353 { .name = "NOP", .cp = 15, .crn = 7, .crm = 0, .opc1 = 0, .opc2 = 4,
354 .access = PL1_W, .type = ARM_CP_NOP },
355 /* Performance monitors are implementation defined in v7,
356 * but with an ARM recommended set of registers, which we
357 * follow (although we don't actually implement any counters)
358 *
359 * Performance registers fall into three categories:
360 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
361 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
362 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
363 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
364 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
365 */
366 { .name = "PMCNTENSET", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 1,
367 .access = PL0_RW, .resetvalue = 0,
368 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
369 .readfn = pmreg_read, .writefn = pmcntenset_write },
370 { .name = "PMCNTENCLR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 2,
371 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcnten),
372 .readfn = pmreg_read, .writefn = pmcntenclr_write },
373 { .name = "PMOVSR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 3,
374 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, cp15.c9_pmovsr),
375 .readfn = pmreg_read, .writefn = pmovsr_write },
376 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
377 * respect PMUSERENR.
378 */
379 { .name = "PMSWINC", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 4,
380 .access = PL0_W, .type = ARM_CP_NOP },
381 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
382 * We choose to RAZ/WI. XXX should respect PMUSERENR.
383 */
384 { .name = "PMSELR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 5,
385 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
386 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
387 { .name = "PMCCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 0,
388 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
389 { .name = "PMXEVTYPER", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 1,
390 .access = PL0_RW,
391 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmxevtyper),
392 .readfn = pmreg_read, .writefn = pmxevtyper_write },
393 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
394 { .name = "PMXEVCNTR", .cp = 15, .crn = 9, .crm = 13, .opc1 = 0, .opc2 = 2,
395 .access = PL0_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
396 { .name = "PMUSERENR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 0,
397 .access = PL0_R | PL1_RW,
398 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmuserenr),
399 .resetvalue = 0,
400 .writefn = pmuserenr_write },
401 { .name = "PMINTENSET", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 1,
402 .access = PL1_RW,
403 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
404 .resetvalue = 0,
405 .writefn = pmintenset_write },
406 { .name = "PMINTENCLR", .cp = 15, .crn = 9, .crm = 14, .opc1 = 0, .opc2 = 2,
407 .access = PL1_RW,
408 .fieldoffset = offsetof(CPUARMState, cp15.c9_pminten),
409 .resetvalue = 0,
410 .writefn = pmintenclr_write },
411 { .name = "SCR", .cp = 15, .crn = 1, .crm = 1, .opc1 = 0, .opc2 = 0,
412 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_scr),
413 .resetvalue = 0, },
414 { .name = "CCSIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 0,
415 .access = PL1_R, .readfn = ccsidr_read },
416 { .name = "CSSELR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 2, .opc2 = 0,
417 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c0_cssel),
418 .writefn = csselr_write, .resetvalue = 0 },
419 /* Auxiliary ID register: this actually has an IMPDEF value but for now
420 * just RAZ for all cores:
421 */
422 { .name = "AIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 7,
423 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
424 REGINFO_SENTINEL
425 };
426
427 static int teecr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
428 {
429 value &= 1;
430 env->teecr = value;
431 return 0;
432 }
433
434 static int teehbr_read(CPUARMState *env, const ARMCPRegInfo *ri,
435 uint64_t *value)
436 {
437 /* This is a helper function because the user access rights
438 * depend on the value of the TEECR.
439 */
440 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
441 return EXCP_UDEF;
442 }
443 *value = env->teehbr;
444 return 0;
445 }
446
447 static int teehbr_write(CPUARMState *env, const ARMCPRegInfo *ri,
448 uint64_t value)
449 {
450 if (arm_current_pl(env) == 0 && (env->teecr & 1)) {
451 return EXCP_UDEF;
452 }
453 env->teehbr = value;
454 return 0;
455 }
456
457 static const ARMCPRegInfo t2ee_cp_reginfo[] = {
458 { .name = "TEECR", .cp = 14, .crn = 0, .crm = 0, .opc1 = 6, .opc2 = 0,
459 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, teecr),
460 .resetvalue = 0,
461 .writefn = teecr_write },
462 { .name = "TEEHBR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 6, .opc2 = 0,
463 .access = PL0_RW, .fieldoffset = offsetof(CPUARMState, teehbr),
464 .resetvalue = 0,
465 .readfn = teehbr_read, .writefn = teehbr_write },
466 REGINFO_SENTINEL
467 };
468
469 static const ARMCPRegInfo v6k_cp_reginfo[] = {
470 { .name = "TPIDRURW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 2,
471 .access = PL0_RW,
472 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls1),
473 .resetvalue = 0 },
474 { .name = "TPIDRURO", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 3,
475 .access = PL0_R|PL1_W,
476 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls2),
477 .resetvalue = 0 },
478 { .name = "TPIDRPRW", .cp = 15, .crn = 13, .crm = 0, .opc1 = 0, .opc2 = 4,
479 .access = PL1_RW,
480 .fieldoffset = offsetof(CPUARMState, cp15.c13_tls3),
481 .resetvalue = 0 },
482 REGINFO_SENTINEL
483 };
484
485 static const ARMCPRegInfo generic_timer_cp_reginfo[] = {
486 /* Dummy implementation: RAZ/WI the whole crn=14 space */
487 { .name = "GENERIC_TIMER", .cp = 15, .crn = 14,
488 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
489 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
490 REGINFO_SENTINEL
491 };
492
493 static int par_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
494 {
495 if (arm_feature(env, ARM_FEATURE_LPAE)) {
496 env->cp15.c7_par = value;
497 } else if (arm_feature(env, ARM_FEATURE_V7)) {
498 env->cp15.c7_par = value & 0xfffff6ff;
499 } else {
500 env->cp15.c7_par = value & 0xfffff1ff;
501 }
502 return 0;
503 }
504
505 #ifndef CONFIG_USER_ONLY
506 /* get_phys_addr() isn't present for user-mode-only targets */
507
508 /* Return true if extended addresses are enabled, ie this is an
509 * LPAE implementation and we are using the long-descriptor translation
510 * table format because the TTBCR EAE bit is set.
511 */
512 static inline bool extended_addresses_enabled(CPUARMState *env)
513 {
514 return arm_feature(env, ARM_FEATURE_LPAE)
515 && (env->cp15.c2_control & (1 << 31));
516 }
517
518 static int ats_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
519 {
520 hwaddr phys_addr;
521 target_ulong page_size;
522 int prot;
523 int ret, is_user = ri->opc2 & 2;
524 int access_type = ri->opc2 & 1;
525
526 if (ri->opc2 & 4) {
527 /* Other states are only available with TrustZone */
528 return EXCP_UDEF;
529 }
530 ret = get_phys_addr(env, value, access_type, is_user,
531 &phys_addr, &prot, &page_size);
532 if (extended_addresses_enabled(env)) {
533 /* ret is a DFSR/IFSR value for the long descriptor
534 * translation table format, but with WnR always clear.
535 * Convert it to a 64-bit PAR.
536 */
537 uint64_t par64 = (1 << 11); /* LPAE bit always set */
538 if (ret == 0) {
539 par64 |= phys_addr & ~0xfffULL;
540 /* We don't set the ATTR or SH fields in the PAR. */
541 } else {
542 par64 |= 1; /* F */
543 par64 |= (ret & 0x3f) << 1; /* FS */
544 /* Note that S2WLK and FSTAGE are always zero, because we don't
545 * implement virtualization and therefore there can't be a stage 2
546 * fault.
547 */
548 }
549 env->cp15.c7_par = par64;
550 env->cp15.c7_par_hi = par64 >> 32;
551 } else {
552 /* ret is a DFSR/IFSR value for the short descriptor
553 * translation table format (with WnR always clear).
554 * Convert it to a 32-bit PAR.
555 */
556 if (ret == 0) {
557 /* We do not set any attribute bits in the PAR */
558 if (page_size == (1 << 24)
559 && arm_feature(env, ARM_FEATURE_V7)) {
560 env->cp15.c7_par = (phys_addr & 0xff000000) | 1 << 1;
561 } else {
562 env->cp15.c7_par = phys_addr & 0xfffff000;
563 }
564 } else {
565 env->cp15.c7_par = ((ret & (10 << 1)) >> 5) |
566 ((ret & (12 << 1)) >> 6) |
567 ((ret & 0xf) << 1) | 1;
568 }
569 env->cp15.c7_par_hi = 0;
570 }
571 return 0;
572 }
573 #endif
574
575 static const ARMCPRegInfo vapa_cp_reginfo[] = {
576 { .name = "PAR", .cp = 15, .crn = 7, .crm = 4, .opc1 = 0, .opc2 = 0,
577 .access = PL1_RW, .resetvalue = 0,
578 .fieldoffset = offsetof(CPUARMState, cp15.c7_par),
579 .writefn = par_write },
580 #ifndef CONFIG_USER_ONLY
581 { .name = "ATS", .cp = 15, .crn = 7, .crm = 8, .opc1 = 0, .opc2 = CP_ANY,
582 .access = PL1_W, .writefn = ats_write },
583 #endif
584 REGINFO_SENTINEL
585 };
586
587 /* Return basic MPU access permission bits. */
588 static uint32_t simple_mpu_ap_bits(uint32_t val)
589 {
590 uint32_t ret;
591 uint32_t mask;
592 int i;
593 ret = 0;
594 mask = 3;
595 for (i = 0; i < 16; i += 2) {
596 ret |= (val >> i) & mask;
597 mask <<= 2;
598 }
599 return ret;
600 }
601
602 /* Pad basic MPU access permission bits to extended format. */
603 static uint32_t extended_mpu_ap_bits(uint32_t val)
604 {
605 uint32_t ret;
606 uint32_t mask;
607 int i;
608 ret = 0;
609 mask = 3;
610 for (i = 0; i < 16; i += 2) {
611 ret |= (val & mask) << i;
612 mask <<= 2;
613 }
614 return ret;
615 }
616
617 static int pmsav5_data_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
618 uint64_t value)
619 {
620 env->cp15.c5_data = extended_mpu_ap_bits(value);
621 return 0;
622 }
623
624 static int pmsav5_data_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
625 uint64_t *value)
626 {
627 *value = simple_mpu_ap_bits(env->cp15.c5_data);
628 return 0;
629 }
630
631 static int pmsav5_insn_ap_write(CPUARMState *env, const ARMCPRegInfo *ri,
632 uint64_t value)
633 {
634 env->cp15.c5_insn = extended_mpu_ap_bits(value);
635 return 0;
636 }
637
638 static int pmsav5_insn_ap_read(CPUARMState *env, const ARMCPRegInfo *ri,
639 uint64_t *value)
640 {
641 *value = simple_mpu_ap_bits(env->cp15.c5_insn);
642 return 0;
643 }
644
645 static int arm946_prbs_read(CPUARMState *env, const ARMCPRegInfo *ri,
646 uint64_t *value)
647 {
648 if (ri->crm >= 8) {
649 return EXCP_UDEF;
650 }
651 *value = env->cp15.c6_region[ri->crm];
652 return 0;
653 }
654
655 static int arm946_prbs_write(CPUARMState *env, const ARMCPRegInfo *ri,
656 uint64_t value)
657 {
658 if (ri->crm >= 8) {
659 return EXCP_UDEF;
660 }
661 env->cp15.c6_region[ri->crm] = value;
662 return 0;
663 }
664
665 static const ARMCPRegInfo pmsav5_cp_reginfo[] = {
666 { .name = "DATA_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
667 .access = PL1_RW,
668 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0,
669 .readfn = pmsav5_data_ap_read, .writefn = pmsav5_data_ap_write, },
670 { .name = "INSN_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
671 .access = PL1_RW,
672 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0,
673 .readfn = pmsav5_insn_ap_read, .writefn = pmsav5_insn_ap_write, },
674 { .name = "DATA_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 2,
675 .access = PL1_RW,
676 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
677 { .name = "INSN_EXT_AP", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 3,
678 .access = PL1_RW,
679 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
680 { .name = "DCACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
681 .access = PL1_RW,
682 .fieldoffset = offsetof(CPUARMState, cp15.c2_data), .resetvalue = 0, },
683 { .name = "ICACHE_CFG", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
684 .access = PL1_RW,
685 .fieldoffset = offsetof(CPUARMState, cp15.c2_insn), .resetvalue = 0, },
686 /* Protection region base and size registers */
687 { .name = "946_PRBS", .cp = 15, .crn = 6, .crm = CP_ANY, .opc1 = 0,
688 .opc2 = CP_ANY, .access = PL1_RW,
689 .readfn = arm946_prbs_read, .writefn = arm946_prbs_write, },
690 REGINFO_SENTINEL
691 };
692
693 static int vmsa_ttbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
694 uint64_t value)
695 {
696 if (arm_feature(env, ARM_FEATURE_LPAE)) {
697 value &= ~((7 << 19) | (3 << 14) | (0xf << 3));
698 /* With LPAE the TTBCR could result in a change of ASID
699 * via the TTBCR.A1 bit, so do a TLB flush.
700 */
701 tlb_flush(env, 1);
702 } else {
703 value &= 7;
704 }
705 /* Note that we always calculate c2_mask and c2_base_mask, but
706 * they are only used for short-descriptor tables (ie if EAE is 0);
707 * for long-descriptor tables the TTBCR fields are used differently
708 * and the c2_mask and c2_base_mask values are meaningless.
709 */
710 env->cp15.c2_control = value;
711 env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> value);
712 env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> value);
713 return 0;
714 }
715
716 static void vmsa_ttbcr_reset(CPUARMState *env, const ARMCPRegInfo *ri)
717 {
718 env->cp15.c2_base_mask = 0xffffc000u;
719 env->cp15.c2_control = 0;
720 env->cp15.c2_mask = 0;
721 }
722
723 static const ARMCPRegInfo vmsa_cp_reginfo[] = {
724 { .name = "DFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 0,
725 .access = PL1_RW,
726 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
727 { .name = "IFSR", .cp = 15, .crn = 5, .crm = 0, .opc1 = 0, .opc2 = 1,
728 .access = PL1_RW,
729 .fieldoffset = offsetof(CPUARMState, cp15.c5_insn), .resetvalue = 0, },
730 { .name = "TTBR0", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
731 .access = PL1_RW,
732 .fieldoffset = offsetof(CPUARMState, cp15.c2_base0), .resetvalue = 0, },
733 { .name = "TTBR1", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 1,
734 .access = PL1_RW,
735 .fieldoffset = offsetof(CPUARMState, cp15.c2_base1), .resetvalue = 0, },
736 { .name = "TTBCR", .cp = 15, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 2,
737 .access = PL1_RW, .writefn = vmsa_ttbcr_write,
738 .resetfn = vmsa_ttbcr_reset,
739 .fieldoffset = offsetof(CPUARMState, cp15.c2_control) },
740 { .name = "DFAR", .cp = 15, .crn = 6, .crm = 0, .opc1 = 0, .opc2 = 0,
741 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c6_data),
742 .resetvalue = 0, },
743 REGINFO_SENTINEL
744 };
745
746 static int omap_ticonfig_write(CPUARMState *env, const ARMCPRegInfo *ri,
747 uint64_t value)
748 {
749 env->cp15.c15_ticonfig = value & 0xe7;
750 /* The OS_TYPE bit in this register changes the reported CPUID! */
751 env->cp15.c0_cpuid = (value & (1 << 5)) ?
752 ARM_CPUID_TI915T : ARM_CPUID_TI925T;
753 return 0;
754 }
755
756 static int omap_threadid_write(CPUARMState *env, const ARMCPRegInfo *ri,
757 uint64_t value)
758 {
759 env->cp15.c15_threadid = value & 0xffff;
760 return 0;
761 }
762
763 static int omap_wfi_write(CPUARMState *env, const ARMCPRegInfo *ri,
764 uint64_t value)
765 {
766 /* Wait-for-interrupt (deprecated) */
767 cpu_interrupt(env, CPU_INTERRUPT_HALT);
768 return 0;
769 }
770
771 static int omap_cachemaint_write(CPUARMState *env, const ARMCPRegInfo *ri,
772 uint64_t value)
773 {
774 /* On OMAP there are registers indicating the max/min index of dcache lines
775 * containing a dirty line; cache flush operations have to reset these.
776 */
777 env->cp15.c15_i_max = 0x000;
778 env->cp15.c15_i_min = 0xff0;
779 return 0;
780 }
781
782 static const ARMCPRegInfo omap_cp_reginfo[] = {
783 { .name = "DFSR", .cp = 15, .crn = 5, .crm = CP_ANY,
784 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW, .type = ARM_CP_OVERRIDE,
785 .fieldoffset = offsetof(CPUARMState, cp15.c5_data), .resetvalue = 0, },
786 { .name = "", .cp = 15, .crn = 15, .crm = 0, .opc1 = 0, .opc2 = 0,
787 .access = PL1_RW, .type = ARM_CP_NOP },
788 { .name = "TICONFIG", .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0,
789 .access = PL1_RW,
790 .fieldoffset = offsetof(CPUARMState, cp15.c15_ticonfig), .resetvalue = 0,
791 .writefn = omap_ticonfig_write },
792 { .name = "IMAX", .cp = 15, .crn = 15, .crm = 2, .opc1 = 0, .opc2 = 0,
793 .access = PL1_RW,
794 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_max), .resetvalue = 0, },
795 { .name = "IMIN", .cp = 15, .crn = 15, .crm = 3, .opc1 = 0, .opc2 = 0,
796 .access = PL1_RW, .resetvalue = 0xff0,
797 .fieldoffset = offsetof(CPUARMState, cp15.c15_i_min) },
798 { .name = "THREADID", .cp = 15, .crn = 15, .crm = 4, .opc1 = 0, .opc2 = 0,
799 .access = PL1_RW,
800 .fieldoffset = offsetof(CPUARMState, cp15.c15_threadid), .resetvalue = 0,
801 .writefn = omap_threadid_write },
802 { .name = "TI925T_STATUS", .cp = 15, .crn = 15,
803 .crm = 8, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
804 .readfn = arm_cp_read_zero, .writefn = omap_wfi_write, },
805 /* TODO: Peripheral port remap register:
806 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
807 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
808 * when MMU is off.
809 */
810 { .name = "OMAP_CACHEMAINT", .cp = 15, .crn = 7, .crm = CP_ANY,
811 .opc1 = 0, .opc2 = CP_ANY, .access = PL1_W, .type = ARM_CP_OVERRIDE,
812 .writefn = omap_cachemaint_write },
813 { .name = "C9", .cp = 15, .crn = 9,
814 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_RW,
815 .type = ARM_CP_CONST | ARM_CP_OVERRIDE, .resetvalue = 0 },
816 REGINFO_SENTINEL
817 };
818
819 static int xscale_cpar_write(CPUARMState *env, const ARMCPRegInfo *ri,
820 uint64_t value)
821 {
822 value &= 0x3fff;
823 if (env->cp15.c15_cpar != value) {
824 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
825 tb_flush(env);
826 env->cp15.c15_cpar = value;
827 }
828 return 0;
829 }
830
831 static const ARMCPRegInfo xscale_cp_reginfo[] = {
832 { .name = "XSCALE_CPAR",
833 .cp = 15, .crn = 15, .crm = 1, .opc1 = 0, .opc2 = 0, .access = PL1_RW,
834 .fieldoffset = offsetof(CPUARMState, cp15.c15_cpar), .resetvalue = 0,
835 .writefn = xscale_cpar_write, },
836 { .name = "XSCALE_AUXCR",
837 .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1, .access = PL1_RW,
838 .fieldoffset = offsetof(CPUARMState, cp15.c1_xscaleauxcr),
839 .resetvalue = 0, },
840 REGINFO_SENTINEL
841 };
842
843 static const ARMCPRegInfo dummy_c15_cp_reginfo[] = {
844 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
845 * implementation of this implementation-defined space.
846 * Ideally this should eventually disappear in favour of actually
847 * implementing the correct behaviour for all cores.
848 */
849 { .name = "C15_IMPDEF", .cp = 15, .crn = 15,
850 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
851 .access = PL1_RW, .type = ARM_CP_CONST, .resetvalue = 0 },
852 REGINFO_SENTINEL
853 };
854
855 static const ARMCPRegInfo cache_dirty_status_cp_reginfo[] = {
856 /* Cache status: RAZ because we have no cache so it's always clean */
857 { .name = "CDSR", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 6,
858 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
859 REGINFO_SENTINEL
860 };
861
862 static const ARMCPRegInfo cache_block_ops_cp_reginfo[] = {
863 /* We never have a a block transfer operation in progress */
864 { .name = "BXSR", .cp = 15, .crn = 7, .crm = 12, .opc1 = 0, .opc2 = 4,
865 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = 0 },
866 /* The cache ops themselves: these all NOP for QEMU */
867 { .name = "IICR", .cp = 15, .crm = 5, .opc1 = 0,
868 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
869 { .name = "IDCR", .cp = 15, .crm = 6, .opc1 = 0,
870 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
871 { .name = "CDCR", .cp = 15, .crm = 12, .opc1 = 0,
872 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
873 { .name = "PIR", .cp = 15, .crm = 12, .opc1 = 1,
874 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
875 { .name = "PDR", .cp = 15, .crm = 12, .opc1 = 2,
876 .access = PL0_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
877 { .name = "CIDCR", .cp = 15, .crm = 14, .opc1 = 0,
878 .access = PL1_W, .type = ARM_CP_NOP|ARM_CP_64BIT },
879 REGINFO_SENTINEL
880 };
881
882 static const ARMCPRegInfo cache_test_clean_cp_reginfo[] = {
883 /* The cache test-and-clean instructions always return (1 << 30)
884 * to indicate that there are no dirty cache lines.
885 */
886 { .name = "TC_DCACHE", .cp = 15, .crn = 7, .crm = 10, .opc1 = 0, .opc2 = 3,
887 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
888 { .name = "TCI_DCACHE", .cp = 15, .crn = 7, .crm = 14, .opc1 = 0, .opc2 = 3,
889 .access = PL0_R, .type = ARM_CP_CONST, .resetvalue = (1 << 30) },
890 REGINFO_SENTINEL
891 };
892
893 static const ARMCPRegInfo strongarm_cp_reginfo[] = {
894 /* Ignore ReadBuffer accesses */
895 { .name = "C9_READBUFFER", .cp = 15, .crn = 9,
896 .crm = CP_ANY, .opc1 = CP_ANY, .opc2 = CP_ANY,
897 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
898 .resetvalue = 0 },
899 REGINFO_SENTINEL
900 };
901
902 static int mpidr_read(CPUARMState *env, const ARMCPRegInfo *ri,
903 uint64_t *value)
904 {
905 CPUState *cs = CPU(arm_env_get_cpu(env));
906 uint32_t mpidr = cs->cpu_index;
907 /* We don't support setting cluster ID ([8..11])
908 * so these bits always RAZ.
909 */
910 if (arm_feature(env, ARM_FEATURE_V7MP)) {
911 mpidr |= (1 << 31);
912 /* Cores which are uniprocessor (non-coherent)
913 * but still implement the MP extensions set
914 * bit 30. (For instance, A9UP.) However we do
915 * not currently model any of those cores.
916 */
917 }
918 *value = mpidr;
919 return 0;
920 }
921
922 static const ARMCPRegInfo mpidr_cp_reginfo[] = {
923 { .name = "MPIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 5,
924 .access = PL1_R, .readfn = mpidr_read },
925 REGINFO_SENTINEL
926 };
927
928 static int par64_read(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
929 {
930 *value = ((uint64_t)env->cp15.c7_par_hi << 32) | env->cp15.c7_par;
931 return 0;
932 }
933
934 static int par64_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
935 {
936 env->cp15.c7_par_hi = value >> 32;
937 env->cp15.c7_par = value;
938 return 0;
939 }
940
941 static void par64_reset(CPUARMState *env, const ARMCPRegInfo *ri)
942 {
943 env->cp15.c7_par_hi = 0;
944 env->cp15.c7_par = 0;
945 }
946
947 static int ttbr064_read(CPUARMState *env, const ARMCPRegInfo *ri,
948 uint64_t *value)
949 {
950 *value = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
951 return 0;
952 }
953
954 static int ttbr064_write(CPUARMState *env, const ARMCPRegInfo *ri,
955 uint64_t value)
956 {
957 env->cp15.c2_base0_hi = value >> 32;
958 env->cp15.c2_base0 = value;
959 /* Writes to the 64 bit format TTBRs may change the ASID */
960 tlb_flush(env, 1);
961 return 0;
962 }
963
964 static void ttbr064_reset(CPUARMState *env, const ARMCPRegInfo *ri)
965 {
966 env->cp15.c2_base0_hi = 0;
967 env->cp15.c2_base0 = 0;
968 }
969
970 static int ttbr164_read(CPUARMState *env, const ARMCPRegInfo *ri,
971 uint64_t *value)
972 {
973 *value = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
974 return 0;
975 }
976
977 static int ttbr164_write(CPUARMState *env, const ARMCPRegInfo *ri,
978 uint64_t value)
979 {
980 env->cp15.c2_base1_hi = value >> 32;
981 env->cp15.c2_base1 = value;
982 return 0;
983 }
984
985 static void ttbr164_reset(CPUARMState *env, const ARMCPRegInfo *ri)
986 {
987 env->cp15.c2_base1_hi = 0;
988 env->cp15.c2_base1 = 0;
989 }
990
991 static const ARMCPRegInfo lpae_cp_reginfo[] = {
992 /* NOP AMAIR0/1: the override is because these clash with the rather
993 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
994 */
995 { .name = "AMAIR0", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 0,
996 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
997 .resetvalue = 0 },
998 { .name = "AMAIR1", .cp = 15, .crn = 10, .crm = 3, .opc1 = 0, .opc2 = 1,
999 .access = PL1_RW, .type = ARM_CP_CONST | ARM_CP_OVERRIDE,
1000 .resetvalue = 0 },
1001 /* 64 bit access versions of the (dummy) debug registers */
1002 { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
1003 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1004 { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
1005 .access = PL0_R, .type = ARM_CP_CONST|ARM_CP_64BIT, .resetvalue = 0 },
1006 { .name = "PAR", .cp = 15, .crm = 7, .opc1 = 0,
1007 .access = PL1_RW, .type = ARM_CP_64BIT,
1008 .readfn = par64_read, .writefn = par64_write, .resetfn = par64_reset },
1009 { .name = "TTBR0", .cp = 15, .crm = 2, .opc1 = 0,
1010 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr064_read,
1011 .writefn = ttbr064_write, .resetfn = ttbr064_reset },
1012 { .name = "TTBR1", .cp = 15, .crm = 2, .opc1 = 1,
1013 .access = PL1_RW, .type = ARM_CP_64BIT, .readfn = ttbr164_read,
1014 .writefn = ttbr164_write, .resetfn = ttbr164_reset },
1015 REGINFO_SENTINEL
1016 };
1017
1018 static int sctlr_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value)
1019 {
1020 env->cp15.c1_sys = value;
1021 /* ??? Lots of these bits are not implemented. */
1022 /* This may enable/disable the MMU, so do a TLB flush. */
1023 tlb_flush(env, 1);
1024 return 0;
1025 }
1026
1027 void register_cp_regs_for_features(ARMCPU *cpu)
1028 {
1029 /* Register all the coprocessor registers based on feature bits */
1030 CPUARMState *env = &cpu->env;
1031 if (arm_feature(env, ARM_FEATURE_M)) {
1032 /* M profile has no coprocessor registers */
1033 return;
1034 }
1035
1036 define_arm_cp_regs(cpu, cp_reginfo);
1037 if (arm_feature(env, ARM_FEATURE_V6)) {
1038 /* The ID registers all have impdef reset values */
1039 ARMCPRegInfo v6_idregs[] = {
1040 { .name = "ID_PFR0", .cp = 15, .crn = 0, .crm = 1,
1041 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1042 .resetvalue = cpu->id_pfr0 },
1043 { .name = "ID_PFR1", .cp = 15, .crn = 0, .crm = 1,
1044 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1045 .resetvalue = cpu->id_pfr1 },
1046 { .name = "ID_DFR0", .cp = 15, .crn = 0, .crm = 1,
1047 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1048 .resetvalue = cpu->id_dfr0 },
1049 { .name = "ID_AFR0", .cp = 15, .crn = 0, .crm = 1,
1050 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1051 .resetvalue = cpu->id_afr0 },
1052 { .name = "ID_MMFR0", .cp = 15, .crn = 0, .crm = 1,
1053 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1054 .resetvalue = cpu->id_mmfr0 },
1055 { .name = "ID_MMFR1", .cp = 15, .crn = 0, .crm = 1,
1056 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1057 .resetvalue = cpu->id_mmfr1 },
1058 { .name = "ID_MMFR2", .cp = 15, .crn = 0, .crm = 1,
1059 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1060 .resetvalue = cpu->id_mmfr2 },
1061 { .name = "ID_MMFR3", .cp = 15, .crn = 0, .crm = 1,
1062 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1063 .resetvalue = cpu->id_mmfr3 },
1064 { .name = "ID_ISAR0", .cp = 15, .crn = 0, .crm = 2,
1065 .opc1 = 0, .opc2 = 0, .access = PL1_R, .type = ARM_CP_CONST,
1066 .resetvalue = cpu->id_isar0 },
1067 { .name = "ID_ISAR1", .cp = 15, .crn = 0, .crm = 2,
1068 .opc1 = 0, .opc2 = 1, .access = PL1_R, .type = ARM_CP_CONST,
1069 .resetvalue = cpu->id_isar1 },
1070 { .name = "ID_ISAR2", .cp = 15, .crn = 0, .crm = 2,
1071 .opc1 = 0, .opc2 = 2, .access = PL1_R, .type = ARM_CP_CONST,
1072 .resetvalue = cpu->id_isar2 },
1073 { .name = "ID_ISAR3", .cp = 15, .crn = 0, .crm = 2,
1074 .opc1 = 0, .opc2 = 3, .access = PL1_R, .type = ARM_CP_CONST,
1075 .resetvalue = cpu->id_isar3 },
1076 { .name = "ID_ISAR4", .cp = 15, .crn = 0, .crm = 2,
1077 .opc1 = 0, .opc2 = 4, .access = PL1_R, .type = ARM_CP_CONST,
1078 .resetvalue = cpu->id_isar4 },
1079 { .name = "ID_ISAR5", .cp = 15, .crn = 0, .crm = 2,
1080 .opc1 = 0, .opc2 = 5, .access = PL1_R, .type = ARM_CP_CONST,
1081 .resetvalue = cpu->id_isar5 },
1082 /* 6..7 are as yet unallocated and must RAZ */
1083 { .name = "ID_ISAR6", .cp = 15, .crn = 0, .crm = 2,
1084 .opc1 = 0, .opc2 = 6, .access = PL1_R, .type = ARM_CP_CONST,
1085 .resetvalue = 0 },
1086 { .name = "ID_ISAR7", .cp = 15, .crn = 0, .crm = 2,
1087 .opc1 = 0, .opc2 = 7, .access = PL1_R, .type = ARM_CP_CONST,
1088 .resetvalue = 0 },
1089 REGINFO_SENTINEL
1090 };
1091 define_arm_cp_regs(cpu, v6_idregs);
1092 define_arm_cp_regs(cpu, v6_cp_reginfo);
1093 } else {
1094 define_arm_cp_regs(cpu, not_v6_cp_reginfo);
1095 }
1096 if (arm_feature(env, ARM_FEATURE_V6K)) {
1097 define_arm_cp_regs(cpu, v6k_cp_reginfo);
1098 }
1099 if (arm_feature(env, ARM_FEATURE_V7)) {
1100 /* v7 performance monitor control register: same implementor
1101 * field as main ID register, and we implement no event counters.
1102 */
1103 ARMCPRegInfo pmcr = {
1104 .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
1105 .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
1106 .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
1107 .readfn = pmreg_read, .writefn = pmcr_write
1108 };
1109 ARMCPRegInfo clidr = {
1110 .name = "CLIDR", .cp = 15, .crn = 0, .crm = 0, .opc1 = 1, .opc2 = 1,
1111 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->clidr
1112 };
1113 define_one_arm_cp_reg(cpu, &pmcr);
1114 define_one_arm_cp_reg(cpu, &clidr);
1115 define_arm_cp_regs(cpu, v7_cp_reginfo);
1116 } else {
1117 define_arm_cp_regs(cpu, not_v7_cp_reginfo);
1118 }
1119 if (arm_feature(env, ARM_FEATURE_MPU)) {
1120 /* These are the MPU registers prior to PMSAv6. Any new
1121 * PMSA core later than the ARM946 will require that we
1122 * implement the PMSAv6 or PMSAv7 registers, which are
1123 * completely different.
1124 */
1125 assert(!arm_feature(env, ARM_FEATURE_V6));
1126 define_arm_cp_regs(cpu, pmsav5_cp_reginfo);
1127 } else {
1128 define_arm_cp_regs(cpu, vmsa_cp_reginfo);
1129 }
1130 if (arm_feature(env, ARM_FEATURE_THUMB2EE)) {
1131 define_arm_cp_regs(cpu, t2ee_cp_reginfo);
1132 }
1133 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1134 define_arm_cp_regs(cpu, generic_timer_cp_reginfo);
1135 }
1136 if (arm_feature(env, ARM_FEATURE_VAPA)) {
1137 define_arm_cp_regs(cpu, vapa_cp_reginfo);
1138 }
1139 if (arm_feature(env, ARM_FEATURE_CACHE_TEST_CLEAN)) {
1140 define_arm_cp_regs(cpu, cache_test_clean_cp_reginfo);
1141 }
1142 if (arm_feature(env, ARM_FEATURE_CACHE_DIRTY_REG)) {
1143 define_arm_cp_regs(cpu, cache_dirty_status_cp_reginfo);
1144 }
1145 if (arm_feature(env, ARM_FEATURE_CACHE_BLOCK_OPS)) {
1146 define_arm_cp_regs(cpu, cache_block_ops_cp_reginfo);
1147 }
1148 if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1149 define_arm_cp_regs(cpu, omap_cp_reginfo);
1150 }
1151 if (arm_feature(env, ARM_FEATURE_STRONGARM)) {
1152 define_arm_cp_regs(cpu, strongarm_cp_reginfo);
1153 }
1154 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1155 define_arm_cp_regs(cpu, xscale_cp_reginfo);
1156 }
1157 if (arm_feature(env, ARM_FEATURE_DUMMY_C15_REGS)) {
1158 define_arm_cp_regs(cpu, dummy_c15_cp_reginfo);
1159 }
1160 if (arm_feature(env, ARM_FEATURE_MPIDR)) {
1161 define_arm_cp_regs(cpu, mpidr_cp_reginfo);
1162 }
1163 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1164 define_arm_cp_regs(cpu, lpae_cp_reginfo);
1165 }
1166 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1167 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1168 * be read-only (ie write causes UNDEF exception).
1169 */
1170 {
1171 ARMCPRegInfo id_cp_reginfo[] = {
1172 /* Note that the MIDR isn't a simple constant register because
1173 * of the TI925 behaviour where writes to another register can
1174 * cause the MIDR value to change.
1175 */
1176 { .name = "MIDR",
1177 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 0,
1178 .access = PL1_R, .resetvalue = cpu->midr,
1179 .writefn = arm_cp_write_ignore,
1180 .fieldoffset = offsetof(CPUARMState, cp15.c0_cpuid) },
1181 { .name = "CTR",
1182 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 1,
1183 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = cpu->ctr },
1184 { .name = "TCMTR",
1185 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 2,
1186 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1187 { .name = "TLBTR",
1188 .cp = 15, .crn = 0, .crm = 0, .opc1 = 0, .opc2 = 3,
1189 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1190 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1191 { .name = "DUMMY",
1192 .cp = 15, .crn = 0, .crm = 3, .opc1 = 0, .opc2 = CP_ANY,
1193 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1194 { .name = "DUMMY",
1195 .cp = 15, .crn = 0, .crm = 4, .opc1 = 0, .opc2 = CP_ANY,
1196 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1197 { .name = "DUMMY",
1198 .cp = 15, .crn = 0, .crm = 5, .opc1 = 0, .opc2 = CP_ANY,
1199 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1200 { .name = "DUMMY",
1201 .cp = 15, .crn = 0, .crm = 6, .opc1 = 0, .opc2 = CP_ANY,
1202 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1203 { .name = "DUMMY",
1204 .cp = 15, .crn = 0, .crm = 7, .opc1 = 0, .opc2 = CP_ANY,
1205 .access = PL1_R, .type = ARM_CP_CONST, .resetvalue = 0 },
1206 REGINFO_SENTINEL
1207 };
1208 ARMCPRegInfo crn0_wi_reginfo = {
1209 .name = "CRN0_WI", .cp = 15, .crn = 0, .crm = CP_ANY,
1210 .opc1 = CP_ANY, .opc2 = CP_ANY, .access = PL1_W,
1211 .type = ARM_CP_NOP | ARM_CP_OVERRIDE
1212 };
1213 if (arm_feature(env, ARM_FEATURE_OMAPCP) ||
1214 arm_feature(env, ARM_FEATURE_STRONGARM)) {
1215 ARMCPRegInfo *r;
1216 /* Register the blanket "writes ignored" value first to cover the
1217 * whole space. Then define the specific ID registers, but update
1218 * their access field to allow write access, so that they ignore
1219 * writes rather than causing them to UNDEF.
1220 */
1221 define_one_arm_cp_reg(cpu, &crn0_wi_reginfo);
1222 for (r = id_cp_reginfo; r->type != ARM_CP_SENTINEL; r++) {
1223 r->access = PL1_RW;
1224 define_one_arm_cp_reg(cpu, r);
1225 }
1226 } else {
1227 /* Just register the standard ID registers (read-only, meaning
1228 * that writes will UNDEF).
1229 */
1230 define_arm_cp_regs(cpu, id_cp_reginfo);
1231 }
1232 }
1233
1234 if (arm_feature(env, ARM_FEATURE_AUXCR)) {
1235 ARMCPRegInfo auxcr = {
1236 .name = "AUXCR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 1,
1237 .access = PL1_RW, .type = ARM_CP_CONST,
1238 .resetvalue = cpu->reset_auxcr
1239 };
1240 define_one_arm_cp_reg(cpu, &auxcr);
1241 }
1242
1243 /* Generic registers whose values depend on the implementation */
1244 {
1245 ARMCPRegInfo sctlr = {
1246 .name = "SCTLR", .cp = 15, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
1247 .access = PL1_RW, .fieldoffset = offsetof(CPUARMState, cp15.c1_sys),
1248 .writefn = sctlr_write, .resetvalue = cpu->reset_sctlr
1249 };
1250 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1251 /* Normally we would always end the TB on an SCTLR write, but Linux
1252 * arch/arm/mach-pxa/sleep.S expects two instructions following
1253 * an MMU enable to execute from cache. Imitate this behaviour.
1254 */
1255 sctlr.type |= ARM_CP_SUPPRESS_TB_END;
1256 }
1257 define_one_arm_cp_reg(cpu, &sctlr);
1258 }
1259 }
1260
1261 ARMCPU *cpu_arm_init(const char *cpu_model)
1262 {
1263 ARMCPU *cpu;
1264 CPUARMState *env;
1265 ObjectClass *oc;
1266 static int inited = 0;
1267
1268 oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
1269 if (!oc) {
1270 return NULL;
1271 }
1272 cpu = ARM_CPU(object_new(object_class_get_name(oc)));
1273 env = &cpu->env;
1274 env->cpu_model_str = cpu_model;
1275
1276 /* TODO this should be set centrally, once possible */
1277 object_property_set_bool(OBJECT(cpu), true, "realized", NULL);
1278
1279 if (tcg_enabled() && !inited) {
1280 inited = 1;
1281 arm_translate_init();
1282 }
1283
1284 return cpu;
1285 }
1286
1287 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
1288 {
1289 CPUARMState *env = &cpu->env;
1290
1291 if (arm_feature(env, ARM_FEATURE_NEON)) {
1292 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1293 51, "arm-neon.xml", 0);
1294 } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
1295 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1296 35, "arm-vfp3.xml", 0);
1297 } else if (arm_feature(env, ARM_FEATURE_VFP)) {
1298 gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
1299 19, "arm-vfp.xml", 0);
1300 }
1301 }
1302
1303 /* Sort alphabetically by type name, except for "any". */
1304 static gint arm_cpu_list_compare(gconstpointer a, gconstpointer b)
1305 {
1306 ObjectClass *class_a = (ObjectClass *)a;
1307 ObjectClass *class_b = (ObjectClass *)b;
1308 const char *name_a, *name_b;
1309
1310 name_a = object_class_get_name(class_a);
1311 name_b = object_class_get_name(class_b);
1312 if (strcmp(name_a, "any-" TYPE_ARM_CPU) == 0) {
1313 return 1;
1314 } else if (strcmp(name_b, "any-" TYPE_ARM_CPU) == 0) {
1315 return -1;
1316 } else {
1317 return strcmp(name_a, name_b);
1318 }
1319 }
1320
1321 static void arm_cpu_list_entry(gpointer data, gpointer user_data)
1322 {
1323 ObjectClass *oc = data;
1324 CPUListState *s = user_data;
1325 const char *typename;
1326 char *name;
1327
1328 typename = object_class_get_name(oc);
1329 name = g_strndup(typename, strlen(typename) - strlen("-" TYPE_ARM_CPU));
1330 (*s->cpu_fprintf)(s->file, " %s\n",
1331 name);
1332 g_free(name);
1333 }
1334
1335 void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf)
1336 {
1337 CPUListState s = {
1338 .file = f,
1339 .cpu_fprintf = cpu_fprintf,
1340 };
1341 GSList *list;
1342
1343 list = object_class_get_list(TYPE_ARM_CPU, false);
1344 list = g_slist_sort(list, arm_cpu_list_compare);
1345 (*cpu_fprintf)(f, "Available CPUs:\n");
1346 g_slist_foreach(list, arm_cpu_list_entry, &s);
1347 g_slist_free(list);
1348 }
1349
1350 void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
1351 const ARMCPRegInfo *r, void *opaque)
1352 {
1353 /* Define implementations of coprocessor registers.
1354 * We store these in a hashtable because typically
1355 * there are less than 150 registers in a space which
1356 * is 16*16*16*8*8 = 262144 in size.
1357 * Wildcarding is supported for the crm, opc1 and opc2 fields.
1358 * If a register is defined twice then the second definition is
1359 * used, so this can be used to define some generic registers and
1360 * then override them with implementation specific variations.
1361 * At least one of the original and the second definition should
1362 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
1363 * against accidental use.
1364 */
1365 int crm, opc1, opc2;
1366 int crmmin = (r->crm == CP_ANY) ? 0 : r->crm;
1367 int crmmax = (r->crm == CP_ANY) ? 15 : r->crm;
1368 int opc1min = (r->opc1 == CP_ANY) ? 0 : r->opc1;
1369 int opc1max = (r->opc1 == CP_ANY) ? 7 : r->opc1;
1370 int opc2min = (r->opc2 == CP_ANY) ? 0 : r->opc2;
1371 int opc2max = (r->opc2 == CP_ANY) ? 7 : r->opc2;
1372 /* 64 bit registers have only CRm and Opc1 fields */
1373 assert(!((r->type & ARM_CP_64BIT) && (r->opc2 || r->crn)));
1374 /* Check that the register definition has enough info to handle
1375 * reads and writes if they are permitted.
1376 */
1377 if (!(r->type & (ARM_CP_SPECIAL|ARM_CP_CONST))) {
1378 if (r->access & PL3_R) {
1379 assert(r->fieldoffset || r->readfn);
1380 }
1381 if (r->access & PL3_W) {
1382 assert(r->fieldoffset || r->writefn);
1383 }
1384 }
1385 /* Bad type field probably means missing sentinel at end of reg list */
1386 assert(cptype_valid(r->type));
1387 for (crm = crmmin; crm <= crmmax; crm++) {
1388 for (opc1 = opc1min; opc1 <= opc1max; opc1++) {
1389 for (opc2 = opc2min; opc2 <= opc2max; opc2++) {
1390 uint32_t *key = g_new(uint32_t, 1);
1391 ARMCPRegInfo *r2 = g_memdup(r, sizeof(ARMCPRegInfo));
1392 int is64 = (r->type & ARM_CP_64BIT) ? 1 : 0;
1393 *key = ENCODE_CP_REG(r->cp, is64, r->crn, crm, opc1, opc2);
1394 r2->opaque = opaque;
1395 /* Make sure reginfo passed to helpers for wildcarded regs
1396 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
1397 */
1398 r2->crm = crm;
1399 r2->opc1 = opc1;
1400 r2->opc2 = opc2;
1401 /* Overriding of an existing definition must be explicitly
1402 * requested.
1403 */
1404 if (!(r->type & ARM_CP_OVERRIDE)) {
1405 ARMCPRegInfo *oldreg;
1406 oldreg = g_hash_table_lookup(cpu->cp_regs, key);
1407 if (oldreg && !(oldreg->type & ARM_CP_OVERRIDE)) {
1408 fprintf(stderr, "Register redefined: cp=%d %d bit "
1409 "crn=%d crm=%d opc1=%d opc2=%d, "
1410 "was %s, now %s\n", r2->cp, 32 + 32 * is64,
1411 r2->crn, r2->crm, r2->opc1, r2->opc2,
1412 oldreg->name, r2->name);
1413 assert(0);
1414 }
1415 }
1416 g_hash_table_insert(cpu->cp_regs, key, r2);
1417 }
1418 }
1419 }
1420 }
1421
1422 void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
1423 const ARMCPRegInfo *regs, void *opaque)
1424 {
1425 /* Define a whole list of registers */
1426 const ARMCPRegInfo *r;
1427 for (r = regs; r->type != ARM_CP_SENTINEL; r++) {
1428 define_one_arm_cp_reg_with_opaque(cpu, r, opaque);
1429 }
1430 }
1431
1432 const ARMCPRegInfo *get_arm_cp_reginfo(ARMCPU *cpu, uint32_t encoded_cp)
1433 {
1434 return g_hash_table_lookup(cpu->cp_regs, &encoded_cp);
1435 }
1436
1437 int arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
1438 uint64_t value)
1439 {
1440 /* Helper coprocessor write function for write-ignore registers */
1441 return 0;
1442 }
1443
1444 int arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t *value)
1445 {
1446 /* Helper coprocessor write function for read-as-zero registers */
1447 *value = 0;
1448 return 0;
1449 }
1450
1451 static int bad_mode_switch(CPUARMState *env, int mode)
1452 {
1453 /* Return true if it is not valid for us to switch to
1454 * this CPU mode (ie all the UNPREDICTABLE cases in
1455 * the ARM ARM CPSRWriteByInstr pseudocode).
1456 */
1457 switch (mode) {
1458 case ARM_CPU_MODE_USR:
1459 case ARM_CPU_MODE_SYS:
1460 case ARM_CPU_MODE_SVC:
1461 case ARM_CPU_MODE_ABT:
1462 case ARM_CPU_MODE_UND:
1463 case ARM_CPU_MODE_IRQ:
1464 case ARM_CPU_MODE_FIQ:
1465 return 0;
1466 default:
1467 return 1;
1468 }
1469 }
1470
1471 uint32_t cpsr_read(CPUARMState *env)
1472 {
1473 int ZF;
1474 ZF = (env->ZF == 0);
1475 return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
1476 (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
1477 | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
1478 | ((env->condexec_bits & 0xfc) << 8)
1479 | (env->GE << 16);
1480 }
1481
1482 void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
1483 {
1484 if (mask & CPSR_NZCV) {
1485 env->ZF = (~val) & CPSR_Z;
1486 env->NF = val;
1487 env->CF = (val >> 29) & 1;
1488 env->VF = (val << 3) & 0x80000000;
1489 }
1490 if (mask & CPSR_Q)
1491 env->QF = ((val & CPSR_Q) != 0);
1492 if (mask & CPSR_T)
1493 env->thumb = ((val & CPSR_T) != 0);
1494 if (mask & CPSR_IT_0_1) {
1495 env->condexec_bits &= ~3;
1496 env->condexec_bits |= (val >> 25) & 3;
1497 }
1498 if (mask & CPSR_IT_2_7) {
1499 env->condexec_bits &= 3;
1500 env->condexec_bits |= (val >> 8) & 0xfc;
1501 }
1502 if (mask & CPSR_GE) {
1503 env->GE = (val >> 16) & 0xf;
1504 }
1505
1506 if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
1507 if (bad_mode_switch(env, val & CPSR_M)) {
1508 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
1509 * We choose to ignore the attempt and leave the CPSR M field
1510 * untouched.
1511 */
1512 mask &= ~CPSR_M;
1513 } else {
1514 switch_mode(env, val & CPSR_M);
1515 }
1516 }
1517 mask &= ~CACHED_CPSR_BITS;
1518 env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
1519 }
1520
1521 /* Sign/zero extend */
1522 uint32_t HELPER(sxtb16)(uint32_t x)
1523 {
1524 uint32_t res;
1525 res = (uint16_t)(int8_t)x;
1526 res |= (uint32_t)(int8_t)(x >> 16) << 16;
1527 return res;
1528 }
1529
1530 uint32_t HELPER(uxtb16)(uint32_t x)
1531 {
1532 uint32_t res;
1533 res = (uint16_t)(uint8_t)x;
1534 res |= (uint32_t)(uint8_t)(x >> 16) << 16;
1535 return res;
1536 }
1537
1538 uint32_t HELPER(clz)(uint32_t x)
1539 {
1540 return clz32(x);
1541 }
1542
1543 int32_t HELPER(sdiv)(int32_t num, int32_t den)
1544 {
1545 if (den == 0)
1546 return 0;
1547 if (num == INT_MIN && den == -1)
1548 return INT_MIN;
1549 return num / den;
1550 }
1551
1552 uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
1553 {
1554 if (den == 0)
1555 return 0;
1556 return num / den;
1557 }
1558
1559 uint32_t HELPER(rbit)(uint32_t x)
1560 {
1561 x = ((x & 0xff000000) >> 24)
1562 | ((x & 0x00ff0000) >> 8)
1563 | ((x & 0x0000ff00) << 8)
1564 | ((x & 0x000000ff) << 24);
1565 x = ((x & 0xf0f0f0f0) >> 4)
1566 | ((x & 0x0f0f0f0f) << 4);
1567 x = ((x & 0x88888888) >> 3)
1568 | ((x & 0x44444444) >> 1)
1569 | ((x & 0x22222222) << 1)
1570 | ((x & 0x11111111) << 3);
1571 return x;
1572 }
1573
1574 #if defined(CONFIG_USER_ONLY)
1575
1576 void do_interrupt (CPUARMState *env)
1577 {
1578 env->exception_index = -1;
1579 }
1580
1581 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address, int rw,
1582 int mmu_idx)
1583 {
1584 if (rw == 2) {
1585 env->exception_index = EXCP_PREFETCH_ABORT;
1586 env->cp15.c6_insn = address;
1587 } else {
1588 env->exception_index = EXCP_DATA_ABORT;
1589 env->cp15.c6_data = address;
1590 }
1591 return 1;
1592 }
1593
1594 /* These should probably raise undefined insn exceptions. */
1595 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
1596 {
1597 cpu_abort(env, "v7m_mrs %d\n", reg);
1598 }
1599
1600 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
1601 {
1602 cpu_abort(env, "v7m_mrs %d\n", reg);
1603 return 0;
1604 }
1605
1606 void switch_mode(CPUARMState *env, int mode)
1607 {
1608 if (mode != ARM_CPU_MODE_USR)
1609 cpu_abort(env, "Tried to switch out of user mode\n");
1610 }
1611
1612 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
1613 {
1614 cpu_abort(env, "banked r13 write\n");
1615 }
1616
1617 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
1618 {
1619 cpu_abort(env, "banked r13 read\n");
1620 return 0;
1621 }
1622
1623 #else
1624
1625 /* Map CPU modes onto saved register banks. */
1626 static inline int bank_number(CPUARMState *env, int mode)
1627 {
1628 switch (mode) {
1629 case ARM_CPU_MODE_USR:
1630 case ARM_CPU_MODE_SYS:
1631 return 0;
1632 case ARM_CPU_MODE_SVC:
1633 return 1;
1634 case ARM_CPU_MODE_ABT:
1635 return 2;
1636 case ARM_CPU_MODE_UND:
1637 return 3;
1638 case ARM_CPU_MODE_IRQ:
1639 return 4;
1640 case ARM_CPU_MODE_FIQ:
1641 return 5;
1642 }
1643 cpu_abort(env, "Bad mode %x\n", mode);
1644 return -1;
1645 }
1646
1647 void switch_mode(CPUARMState *env, int mode)
1648 {
1649 int old_mode;
1650 int i;
1651
1652 old_mode = env->uncached_cpsr & CPSR_M;
1653 if (mode == old_mode)
1654 return;
1655
1656 if (old_mode == ARM_CPU_MODE_FIQ) {
1657 memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
1658 memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
1659 } else if (mode == ARM_CPU_MODE_FIQ) {
1660 memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
1661 memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
1662 }
1663
1664 i = bank_number(env, old_mode);
1665 env->banked_r13[i] = env->regs[13];
1666 env->banked_r14[i] = env->regs[14];
1667 env->banked_spsr[i] = env->spsr;
1668
1669 i = bank_number(env, mode);
1670 env->regs[13] = env->banked_r13[i];
1671 env->regs[14] = env->banked_r14[i];
1672 env->spsr = env->banked_spsr[i];
1673 }
1674
1675 static void v7m_push(CPUARMState *env, uint32_t val)
1676 {
1677 env->regs[13] -= 4;
1678 stl_phys(env->regs[13], val);
1679 }
1680
1681 static uint32_t v7m_pop(CPUARMState *env)
1682 {
1683 uint32_t val;
1684 val = ldl_phys(env->regs[13]);
1685 env->regs[13] += 4;
1686 return val;
1687 }
1688
1689 /* Switch to V7M main or process stack pointer. */
1690 static void switch_v7m_sp(CPUARMState *env, int process)
1691 {
1692 uint32_t tmp;
1693 if (env->v7m.current_sp != process) {
1694 tmp = env->v7m.other_sp;
1695 env->v7m.other_sp = env->regs[13];
1696 env->regs[13] = tmp;
1697 env->v7m.current_sp = process;
1698 }
1699 }
1700
1701 static void do_v7m_exception_exit(CPUARMState *env)
1702 {
1703 uint32_t type;
1704 uint32_t xpsr;
1705
1706 type = env->regs[15];
1707 if (env->v7m.exception != 0)
1708 armv7m_nvic_complete_irq(env->nvic, env->v7m.exception);
1709
1710 /* Switch to the target stack. */
1711 switch_v7m_sp(env, (type & 4) != 0);
1712 /* Pop registers. */
1713 env->regs[0] = v7m_pop(env);
1714 env->regs[1] = v7m_pop(env);
1715 env->regs[2] = v7m_pop(env);
1716 env->regs[3] = v7m_pop(env);
1717 env->regs[12] = v7m_pop(env);
1718 env->regs[14] = v7m_pop(env);
1719 env->regs[15] = v7m_pop(env);
1720 xpsr = v7m_pop(env);
1721 xpsr_write(env, xpsr, 0xfffffdff);
1722 /* Undo stack alignment. */
1723 if (xpsr & 0x200)
1724 env->regs[13] |= 4;
1725 /* ??? The exception return type specifies Thread/Handler mode. However
1726 this is also implied by the xPSR value. Not sure what to do
1727 if there is a mismatch. */
1728 /* ??? Likewise for mismatches between the CONTROL register and the stack
1729 pointer. */
1730 }
1731
1732 static void do_interrupt_v7m(CPUARMState *env)
1733 {
1734 uint32_t xpsr = xpsr_read(env);
1735 uint32_t lr;
1736 uint32_t addr;
1737
1738 lr = 0xfffffff1;
1739 if (env->v7m.current_sp)
1740 lr |= 4;
1741 if (env->v7m.exception == 0)
1742 lr |= 8;
1743
1744 /* For exceptions we just mark as pending on the NVIC, and let that
1745 handle it. */
1746 /* TODO: Need to escalate if the current priority is higher than the
1747 one we're raising. */
1748 switch (env->exception_index) {
1749 case EXCP_UDEF:
1750 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE);
1751 return;
1752 case EXCP_SWI:
1753 /* The PC already points to the next instruction. */
1754 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SVC);
1755 return;
1756 case EXCP_PREFETCH_ABORT:
1757 case EXCP_DATA_ABORT:
1758 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_MEM);
1759 return;
1760 case EXCP_BKPT:
1761 if (semihosting_enabled) {
1762 int nr;
1763 nr = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
1764 if (nr == 0xab) {
1765 env->regs[15] += 2;
1766 env->regs[0] = do_arm_semihosting(env);
1767 return;
1768 }
1769 }
1770 armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_DEBUG);
1771 return;
1772 case EXCP_IRQ:
1773 env->v7m.exception = armv7m_nvic_acknowledge_irq(env->nvic);
1774 break;
1775 case EXCP_EXCEPTION_EXIT:
1776 do_v7m_exception_exit(env);
1777 return;
1778 default:
1779 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1780 return; /* Never happens. Keep compiler happy. */
1781 }
1782
1783 /* Align stack pointer. */
1784 /* ??? Should only do this if Configuration Control Register
1785 STACKALIGN bit is set. */
1786 if (env->regs[13] & 4) {
1787 env->regs[13] -= 4;
1788 xpsr |= 0x200;
1789 }
1790 /* Switch to the handler mode. */
1791 v7m_push(env, xpsr);
1792 v7m_push(env, env->regs[15]);
1793 v7m_push(env, env->regs[14]);
1794 v7m_push(env, env->regs[12]);
1795 v7m_push(env, env->regs[3]);
1796 v7m_push(env, env->regs[2]);
1797 v7m_push(env, env->regs[1]);
1798 v7m_push(env, env->regs[0]);
1799 switch_v7m_sp(env, 0);
1800 /* Clear IT bits */
1801 env->condexec_bits = 0;
1802 env->regs[14] = lr;
1803 addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
1804 env->regs[15] = addr & 0xfffffffe;
1805 env->thumb = addr & 1;
1806 }
1807
1808 /* Handle a CPU exception. */
1809 void do_interrupt(CPUARMState *env)
1810 {
1811 uint32_t addr;
1812 uint32_t mask;
1813 int new_mode;
1814 uint32_t offset;
1815
1816 if (IS_M(env)) {
1817 do_interrupt_v7m(env);
1818 return;
1819 }
1820 /* TODO: Vectored interrupt controller. */
1821 switch (env->exception_index) {
1822 case EXCP_UDEF:
1823 new_mode = ARM_CPU_MODE_UND;
1824 addr = 0x04;
1825 mask = CPSR_I;
1826 if (env->thumb)
1827 offset = 2;
1828 else
1829 offset = 4;
1830 break;
1831 case EXCP_SWI:
1832 if (semihosting_enabled) {
1833 /* Check for semihosting interrupt. */
1834 if (env->thumb) {
1835 mask = arm_lduw_code(env, env->regs[15] - 2, env->bswap_code)
1836 & 0xff;
1837 } else {
1838 mask = arm_ldl_code(env, env->regs[15] - 4, env->bswap_code)
1839 & 0xffffff;
1840 }
1841 /* Only intercept calls from privileged modes, to provide some
1842 semblance of security. */
1843 if (((mask == 0x123456 && !env->thumb)
1844 || (mask == 0xab && env->thumb))
1845 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1846 env->regs[0] = do_arm_semihosting(env);
1847 return;
1848 }
1849 }
1850 new_mode = ARM_CPU_MODE_SVC;
1851 addr = 0x08;
1852 mask = CPSR_I;
1853 /* The PC already points to the next instruction. */
1854 offset = 0;
1855 break;
1856 case EXCP_BKPT:
1857 /* See if this is a semihosting syscall. */
1858 if (env->thumb && semihosting_enabled) {
1859 mask = arm_lduw_code(env, env->regs[15], env->bswap_code) & 0xff;
1860 if (mask == 0xab
1861 && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
1862 env->regs[15] += 2;
1863 env->regs[0] = do_arm_semihosting(env);
1864 return;
1865 }
1866 }
1867 env->cp15.c5_insn = 2;
1868 /* Fall through to prefetch abort. */
1869 case EXCP_PREFETCH_ABORT:
1870 new_mode = ARM_CPU_MODE_ABT;
1871 addr = 0x0c;
1872 mask = CPSR_A | CPSR_I;
1873 offset = 4;
1874 break;
1875 case EXCP_DATA_ABORT:
1876 new_mode = ARM_CPU_MODE_ABT;
1877 addr = 0x10;
1878 mask = CPSR_A | CPSR_I;
1879 offset = 8;
1880 break;
1881 case EXCP_IRQ:
1882 new_mode = ARM_CPU_MODE_IRQ;
1883 addr = 0x18;
1884 /* Disable IRQ and imprecise data aborts. */
1885 mask = CPSR_A | CPSR_I;
1886 offset = 4;
1887 break;
1888 case EXCP_FIQ:
1889 new_mode = ARM_CPU_MODE_FIQ;
1890 addr = 0x1c;
1891 /* Disable FIQ, IRQ and imprecise data aborts. */
1892 mask = CPSR_A | CPSR_I | CPSR_F;
1893 offset = 4;
1894 break;
1895 default:
1896 cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
1897 return; /* Never happens. Keep compiler happy. */
1898 }
1899 /* High vectors. */
1900 if (env->cp15.c1_sys & (1 << 13)) {
1901 addr += 0xffff0000;
1902 }
1903 switch_mode (env, new_mode);
1904 env->spsr = cpsr_read(env);
1905 /* Clear IT bits. */
1906 env->condexec_bits = 0;
1907 /* Switch to the new mode, and to the correct instruction set. */
1908 env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
1909 env->uncached_cpsr |= mask;
1910 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
1911 * and we should just guard the thumb mode on V4 */
1912 if (arm_feature(env, ARM_FEATURE_V4T)) {
1913 env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
1914 }
1915 env->regs[14] = env->regs[15] + offset;
1916 env->regs[15] = addr;
1917 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1918 }
1919
1920 /* Check section/page access permissions.
1921 Returns the page protection flags, or zero if the access is not
1922 permitted. */
1923 static inline int check_ap(CPUARMState *env, int ap, int domain_prot,
1924 int access_type, int is_user)
1925 {
1926 int prot_ro;
1927
1928 if (domain_prot == 3) {
1929 return PAGE_READ | PAGE_WRITE;
1930 }
1931
1932 if (access_type == 1)
1933 prot_ro = 0;
1934 else
1935 prot_ro = PAGE_READ;
1936
1937 switch (ap) {
1938 case 0:
1939 if (access_type == 1)
1940 return 0;
1941 switch ((env->cp15.c1_sys >> 8) & 3) {
1942 case 1:
1943 return is_user ? 0 : PAGE_READ;
1944 case 2:
1945 return PAGE_READ;
1946 default:
1947 return 0;
1948 }
1949 case 1:
1950 return is_user ? 0 : PAGE_READ | PAGE_WRITE;
1951 case 2:
1952 if (is_user)
1953 return prot_ro;
1954 else
1955 return PAGE_READ | PAGE_WRITE;
1956 case 3:
1957 return PAGE_READ | PAGE_WRITE;
1958 case 4: /* Reserved. */
1959 return 0;
1960 case 5:
1961 return is_user ? 0 : prot_ro;
1962 case 6:
1963 return prot_ro;
1964 case 7:
1965 if (!arm_feature (env, ARM_FEATURE_V6K))
1966 return 0;
1967 return prot_ro;
1968 default:
1969 abort();
1970 }
1971 }
1972
1973 static uint32_t get_level1_table_address(CPUARMState *env, uint32_t address)
1974 {
1975 uint32_t table;
1976
1977 if (address & env->cp15.c2_mask)
1978 table = env->cp15.c2_base1 & 0xffffc000;
1979 else
1980 table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
1981
1982 table |= (address >> 18) & 0x3ffc;
1983 return table;
1984 }
1985
1986 static int get_phys_addr_v5(CPUARMState *env, uint32_t address, int access_type,
1987 int is_user, hwaddr *phys_ptr,
1988 int *prot, target_ulong *page_size)
1989 {
1990 int code;
1991 uint32_t table;
1992 uint32_t desc;
1993 int type;
1994 int ap;
1995 int domain;
1996 int domain_prot;
1997 hwaddr phys_addr;
1998
1999 /* Pagetable walk. */
2000 /* Lookup l1 descriptor. */
2001 table = get_level1_table_address(env, address);
2002 desc = ldl_phys(table);
2003 type = (desc & 3);
2004 domain = (desc >> 5) & 0x0f;
2005 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2006 if (type == 0) {
2007 /* Section translation fault. */
2008 code = 5;
2009 goto do_fault;
2010 }
2011 if (domain_prot == 0 || domain_prot == 2) {
2012 if (type == 2)
2013 code = 9; /* Section domain fault. */
2014 else
2015 code = 11; /* Page domain fault. */
2016 goto do_fault;
2017 }
2018 if (type == 2) {
2019 /* 1Mb section. */
2020 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2021 ap = (desc >> 10) & 3;
2022 code = 13;
2023 *page_size = 1024 * 1024;
2024 } else {
2025 /* Lookup l2 entry. */
2026 if (type == 1) {
2027 /* Coarse pagetable. */
2028 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2029 } else {
2030 /* Fine pagetable. */
2031 table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
2032 }
2033 desc = ldl_phys(table);
2034 switch (desc & 3) {
2035 case 0: /* Page translation fault. */
2036 code = 7;
2037 goto do_fault;
2038 case 1: /* 64k page. */
2039 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2040 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2041 *page_size = 0x10000;
2042 break;
2043 case 2: /* 4k page. */
2044 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2045 ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
2046 *page_size = 0x1000;
2047 break;
2048 case 3: /* 1k page. */
2049 if (type == 1) {
2050 if (arm_feature(env, ARM_FEATURE_XSCALE)) {
2051 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2052 } else {
2053 /* Page translation fault. */
2054 code = 7;
2055 goto do_fault;
2056 }
2057 } else {
2058 phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
2059 }
2060 ap = (desc >> 4) & 3;
2061 *page_size = 0x400;
2062 break;
2063 default:
2064 /* Never happens, but compiler isn't smart enough to tell. */
2065 abort();
2066 }
2067 code = 15;
2068 }
2069 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2070 if (!*prot) {
2071 /* Access permission fault. */
2072 goto do_fault;
2073 }
2074 *prot |= PAGE_EXEC;
2075 *phys_ptr = phys_addr;
2076 return 0;
2077 do_fault:
2078 return code | (domain << 4);
2079 }
2080
2081 static int get_phys_addr_v6(CPUARMState *env, uint32_t address, int access_type,
2082 int is_user, hwaddr *phys_ptr,
2083 int *prot, target_ulong *page_size)
2084 {
2085 int code;
2086 uint32_t table;
2087 uint32_t desc;
2088 uint32_t xn;
2089 uint32_t pxn = 0;
2090 int type;
2091 int ap;
2092 int domain = 0;
2093 int domain_prot;
2094 hwaddr phys_addr;
2095
2096 /* Pagetable walk. */
2097 /* Lookup l1 descriptor. */
2098 table = get_level1_table_address(env, address);
2099 desc = ldl_phys(table);
2100 type = (desc & 3);
2101 if (type == 0 || (type == 3 && !arm_feature(env, ARM_FEATURE_PXN))) {
2102 /* Section translation fault, or attempt to use the encoding
2103 * which is Reserved on implementations without PXN.
2104 */
2105 code = 5;
2106 goto do_fault;
2107 }
2108 if ((type == 1) || !(desc & (1 << 18))) {
2109 /* Page or Section. */
2110 domain = (desc >> 5) & 0x0f;
2111 }
2112 domain_prot = (env->cp15.c3 >> (domain * 2)) & 3;
2113 if (domain_prot == 0 || domain_prot == 2) {
2114 if (type != 1) {
2115 code = 9; /* Section domain fault. */
2116 } else {
2117 code = 11; /* Page domain fault. */
2118 }
2119 goto do_fault;
2120 }
2121 if (type != 1) {
2122 if (desc & (1 << 18)) {
2123 /* Supersection. */
2124 phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
2125 *page_size = 0x1000000;
2126 } else {
2127 /* Section. */
2128 phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
2129 *page_size = 0x100000;
2130 }
2131 ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
2132 xn = desc & (1 << 4);
2133 pxn = desc & 1;
2134 code = 13;
2135 } else {
2136 if (arm_feature(env, ARM_FEATURE_PXN)) {
2137 pxn = (desc >> 2) & 1;
2138 }
2139 /* Lookup l2 entry. */
2140 table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
2141 desc = ldl_phys(table);
2142 ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
2143 switch (desc & 3) {
2144 case 0: /* Page translation fault. */
2145 code = 7;
2146 goto do_fault;
2147 case 1: /* 64k page. */
2148 phys_addr = (desc & 0xffff0000) | (address & 0xffff);
2149 xn = desc & (1 << 15);
2150 *page_size = 0x10000;
2151 break;
2152 case 2: case 3: /* 4k page. */
2153 phys_addr = (desc & 0xfffff000) | (address & 0xfff);
2154 xn = desc & 1;
2155 *page_size = 0x1000;
2156 break;
2157 default:
2158 /* Never happens, but compiler isn't smart enough to tell. */
2159 abort();
2160 }
2161 code = 15;
2162 }
2163 if (domain_prot == 3) {
2164 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2165 } else {
2166 if (pxn && !is_user) {
2167 xn = 1;
2168 }
2169 if (xn && access_type == 2)
2170 goto do_fault;
2171
2172 /* The simplified model uses AP[0] as an access control bit. */
2173 if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
2174 /* Access flag fault. */
2175 code = (code == 15) ? 6 : 3;
2176 goto do_fault;
2177 }
2178 *prot = check_ap(env, ap, domain_prot, access_type, is_user);
2179 if (!*prot) {
2180 /* Access permission fault. */
2181 goto do_fault;
2182 }
2183 if (!xn) {
2184 *prot |= PAGE_EXEC;
2185 }
2186 }
2187 *phys_ptr = phys_addr;
2188 return 0;
2189 do_fault:
2190 return code | (domain << 4);
2191 }
2192
2193 /* Fault type for long-descriptor MMU fault reporting; this corresponds
2194 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
2195 */
2196 typedef enum {
2197 translation_fault = 1,
2198 access_fault = 2,
2199 permission_fault = 3,
2200 } MMUFaultType;
2201
2202 static int get_phys_addr_lpae(CPUARMState *env, uint32_t address,
2203 int access_type, int is_user,
2204 hwaddr *phys_ptr, int *prot,
2205 target_ulong *page_size_ptr)
2206 {
2207 /* Read an LPAE long-descriptor translation table. */
2208 MMUFaultType fault_type = translation_fault;
2209 uint32_t level = 1;
2210 uint32_t epd;
2211 uint32_t tsz;
2212 uint64_t ttbr;
2213 int ttbr_select;
2214 int n;
2215 hwaddr descaddr;
2216 uint32_t tableattrs;
2217 target_ulong page_size;
2218 uint32_t attrs;
2219
2220 /* Determine whether this address is in the region controlled by
2221 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
2222 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
2223 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
2224 */
2225 uint32_t t0sz = extract32(env->cp15.c2_control, 0, 3);
2226 uint32_t t1sz = extract32(env->cp15.c2_control, 16, 3);
2227 if (t0sz && !extract32(address, 32 - t0sz, t0sz)) {
2228 /* there is a ttbr0 region and we are in it (high bits all zero) */
2229 ttbr_select = 0;
2230 } else if (t1sz && !extract32(~address, 32 - t1sz, t1sz)) {
2231 /* there is a ttbr1 region and we are in it (high bits all one) */
2232 ttbr_select = 1;
2233 } else if (!t0sz) {
2234 /* ttbr0 region is "everything not in the ttbr1 region" */
2235 ttbr_select = 0;
2236 } else if (!t1sz) {
2237 /* ttbr1 region is "everything not in the ttbr0 region" */
2238 ttbr_select = 1;
2239 } else {
2240 /* in the gap between the two regions, this is a Translation fault */
2241 fault_type = translation_fault;
2242 goto do_fault;
2243 }
2244
2245 /* Note that QEMU ignores shareability and cacheability attributes,
2246 * so we don't need to do anything with the SH, ORGN, IRGN fields
2247 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
2248 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
2249 * implement any ASID-like capability so we can ignore it (instead
2250 * we will always flush the TLB any time the ASID is changed).
2251 */
2252 if (ttbr_select == 0) {
2253 ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
2254 epd = extract32(env->cp15.c2_control, 7, 1);
2255 tsz = t0sz;
2256 } else {
2257 ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
2258 epd = extract32(env->cp15.c2_control, 23, 1);
2259 tsz = t1sz;
2260 }
2261
2262 if (epd) {
2263 /* Translation table walk disabled => Translation fault on TLB miss */
2264 goto do_fault;
2265 }
2266
2267 /* If the region is small enough we will skip straight to a 2nd level
2268 * lookup. This affects the number of bits of the address used in
2269 * combination with the TTBR to find the first descriptor. ('n' here
2270 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
2271 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
2272 */
2273 if (tsz > 1) {
2274 level = 2;
2275 n = 14 - tsz;
2276 } else {
2277 n = 5 - tsz;
2278 }
2279
2280 /* Clear the vaddr bits which aren't part of the within-region address,
2281 * so that we don't have to special case things when calculating the
2282 * first descriptor address.
2283 */
2284 address &= (0xffffffffU >> tsz);
2285
2286 /* Now we can extract the actual base address from the TTBR */
2287 descaddr = extract64(ttbr, 0, 40);
2288 descaddr &= ~((1ULL << n) - 1);
2289
2290 tableattrs = 0;
2291 for (;;) {
2292 uint64_t descriptor;
2293
2294 descaddr |= ((address >> (9 * (4 - level))) & 0xff8);
2295 descriptor = ldq_phys(descaddr);
2296 if (!(descriptor & 1) ||
2297 (!(descriptor & 2) && (level == 3))) {
2298 /* Invalid, or the Reserved level 3 encoding */
2299 goto do_fault;
2300 }
2301 descaddr = descriptor & 0xfffffff000ULL;
2302
2303 if ((descriptor & 2) && (level < 3)) {
2304 /* Table entry. The top five bits are attributes which may
2305 * propagate down through lower levels of the table (and
2306 * which are all arranged so that 0 means "no effect", so
2307 * we can gather them up by ORing in the bits at each level).
2308 */
2309 tableattrs |= extract64(descriptor, 59, 5);
2310 level++;
2311 continue;
2312 }
2313 /* Block entry at level 1 or 2, or page entry at level 3.
2314 * These are basically the same thing, although the number
2315 * of bits we pull in from the vaddr varies.
2316 */
2317 page_size = (1 << (39 - (9 * level)));
2318 descaddr |= (address & (page_size - 1));
2319 /* Extract attributes from the descriptor and merge with table attrs */
2320 attrs = extract64(descriptor, 2, 10)
2321 | (extract64(descriptor, 52, 12) << 10);
2322 attrs |= extract32(tableattrs, 0, 2) << 11; /* XN, PXN */
2323 attrs |= extract32(tableattrs, 3, 1) << 5; /* APTable[1] => AP[2] */
2324 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
2325 * means "force PL1 access only", which means forcing AP[1] to 0.
2326 */
2327 if (extract32(tableattrs, 2, 1)) {
2328 attrs &= ~(1 << 4);
2329 }
2330 /* Since we're always in the Non-secure state, NSTable is ignored. */
2331 break;
2332 }
2333 /* Here descaddr is the final physical address, and attributes
2334 * are all in attrs.
2335 */
2336 fault_type = access_fault;
2337 if ((attrs & (1 << 8)) == 0) {
2338 /* Access flag */
2339 goto do_fault;
2340 }
2341 fault_type = permission_fault;
2342 if (is_user && !(attrs & (1 << 4))) {
2343 /* Unprivileged access not enabled */
2344 goto do_fault;
2345 }
2346 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2347 if (attrs & (1 << 12) || (!is_user && (attrs & (1 << 11)))) {
2348 /* XN or PXN */
2349 if (access_type == 2) {
2350 goto do_fault;
2351 }
2352 *prot &= ~PAGE_EXEC;
2353 }
2354 if (attrs & (1 << 5)) {
2355 /* Write access forbidden */
2356 if (access_type == 1) {
2357 goto do_fault;
2358 }
2359 *prot &= ~PAGE_WRITE;
2360 }
2361
2362 *phys_ptr = descaddr;
2363 *page_size_ptr = page_size;
2364 return 0;
2365
2366 do_fault:
2367 /* Long-descriptor format IFSR/DFSR value */
2368 return (1 << 9) | (fault_type << 2) | level;
2369 }
2370
2371 static int get_phys_addr_mpu(CPUARMState *env, uint32_t address,
2372 int access_type, int is_user,
2373 hwaddr *phys_ptr, int *prot)
2374 {
2375 int n;
2376 uint32_t mask;
2377 uint32_t base;
2378
2379 *phys_ptr = address;
2380 for (n = 7; n >= 0; n--) {
2381 base = env->cp15.c6_region[n];
2382 if ((base & 1) == 0)
2383 continue;
2384 mask = 1 << ((base >> 1) & 0x1f);
2385 /* Keep this shift separate from the above to avoid an
2386 (undefined) << 32. */
2387 mask = (mask << 1) - 1;
2388 if (((base ^ address) & ~mask) == 0)
2389 break;
2390 }
2391 if (n < 0)
2392 return 2;
2393
2394 if (access_type == 2) {
2395 mask = env->cp15.c5_insn;
2396 } else {
2397 mask = env->cp15.c5_data;
2398 }
2399 mask = (mask >> (n * 4)) & 0xf;
2400 switch (mask) {
2401 case 0:
2402 return 1;
2403 case 1:
2404 if (is_user)
2405 return 1;
2406 *prot = PAGE_READ | PAGE_WRITE;
2407 break;
2408 case 2:
2409 *prot = PAGE_READ;
2410 if (!is_user)
2411 *prot |= PAGE_WRITE;
2412 break;
2413 case 3:
2414 *prot = PAGE_READ | PAGE_WRITE;
2415 break;
2416 case 5:
2417 if (is_user)
2418 return 1;
2419 *prot = PAGE_READ;
2420 break;
2421 case 6:
2422 *prot = PAGE_READ;
2423 break;
2424 default:
2425 /* Bad permission. */
2426 return 1;
2427 }
2428 *prot |= PAGE_EXEC;
2429 return 0;
2430 }
2431
2432 /* get_phys_addr - get the physical address for this virtual address
2433 *
2434 * Find the physical address corresponding to the given virtual address,
2435 * by doing a translation table walk on MMU based systems or using the
2436 * MPU state on MPU based systems.
2437 *
2438 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
2439 * prot and page_size are not filled in, and the return value provides
2440 * information on why the translation aborted, in the format of a
2441 * DFSR/IFSR fault register, with the following caveats:
2442 * * we honour the short vs long DFSR format differences.
2443 * * the WnR bit is never set (the caller must do this).
2444 * * for MPU based systems we don't bother to return a full FSR format
2445 * value.
2446 *
2447 * @env: CPUARMState
2448 * @address: virtual address to get physical address for
2449 * @access_type: 0 for read, 1 for write, 2 for execute
2450 * @is_user: 0 for privileged access, 1 for user
2451 * @phys_ptr: set to the physical address corresponding to the virtual address
2452 * @prot: set to the permissions for the page containing phys_ptr
2453 * @page_size: set to the size of the page containing phys_ptr
2454 */
2455 static inline int get_phys_addr(CPUARMState *env, uint32_t address,
2456 int access_type, int is_user,
2457 hwaddr *phys_ptr, int *prot,
2458 target_ulong *page_size)
2459 {
2460 /* Fast Context Switch Extension. */
2461 if (address < 0x02000000)
2462 address += env->cp15.c13_fcse;
2463
2464 if ((env->cp15.c1_sys & 1) == 0) {
2465 /* MMU/MPU disabled. */
2466 *phys_ptr = address;
2467 *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
2468 *page_size = TARGET_PAGE_SIZE;
2469 return 0;
2470 } else if (arm_feature(env, ARM_FEATURE_MPU)) {
2471 *page_size = TARGET_PAGE_SIZE;
2472 return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
2473 prot);
2474 } else if (extended_addresses_enabled(env)) {
2475 return get_phys_addr_lpae(env, address, access_type, is_user, phys_ptr,
2476 prot, page_size);
2477 } else if (env->cp15.c1_sys & (1 << 23)) {
2478 return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
2479 prot, page_size);
2480 } else {
2481 return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
2482 prot, page_size);
2483 }
2484 }
2485
2486 int cpu_arm_handle_mmu_fault (CPUARMState *env, target_ulong address,
2487 int access_type, int mmu_idx)
2488 {
2489 hwaddr phys_addr;
2490 target_ulong page_size;
2491 int prot;
2492 int ret, is_user;
2493
2494 is_user = mmu_idx == MMU_USER_IDX;
2495 ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot,
2496 &page_size);
2497 if (ret == 0) {
2498 /* Map a single [sub]page. */
2499 phys_addr &= ~(hwaddr)0x3ff;
2500 address &= ~(uint32_t)0x3ff;
2501 tlb_set_page (env, address, phys_addr, prot, mmu_idx, page_size);
2502 return 0;
2503 }
2504
2505 if (access_type == 2) {
2506 env->cp15.c5_insn = ret;
2507 env->cp15.c6_insn = address;
2508 env->exception_index = EXCP_PREFETCH_ABORT;
2509 } else {
2510 env->cp15.c5_data = ret;
2511 if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
2512 env->cp15.c5_data |= (1 << 11);
2513 env->cp15.c6_data = address;
2514 env->exception_index = EXCP_DATA_ABORT;
2515 }
2516 return 1;
2517 }
2518
2519 hwaddr cpu_get_phys_page_debug(CPUARMState *env, target_ulong addr)
2520 {
2521 hwaddr phys_addr;
2522 target_ulong page_size;
2523 int prot;
2524 int ret;
2525
2526 ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot, &page_size);
2527
2528 if (ret != 0)
2529 return -1;
2530
2531 return phys_addr;
2532 }
2533
2534 void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
2535 {
2536 if ((env->uncached_cpsr & CPSR_M) == mode) {
2537 env->regs[13] = val;
2538 } else {
2539 env->banked_r13[bank_number(env, mode)] = val;
2540 }
2541 }
2542
2543 uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
2544 {
2545 if ((env->uncached_cpsr & CPSR_M) == mode) {
2546 return env->regs[13];
2547 } else {
2548 return env->banked_r13[bank_number(env, mode)];
2549 }
2550 }
2551
2552 uint32_t HELPER(v7m_mrs)(CPUARMState *env, uint32_t reg)
2553 {
2554 switch (reg) {
2555 case 0: /* APSR */
2556 return xpsr_read(env) & 0xf8000000;
2557 case 1: /* IAPSR */
2558 return xpsr_read(env) & 0xf80001ff;
2559 case 2: /* EAPSR */
2560 return xpsr_read(env) & 0xff00fc00;
2561 case 3: /* xPSR */
2562 return xpsr_read(env) & 0xff00fdff;
2563 case 5: /* IPSR */
2564 return xpsr_read(env) & 0x000001ff;
2565 case 6: /* EPSR */
2566 return xpsr_read(env) & 0x0700fc00;
2567 case 7: /* IEPSR */
2568 return xpsr_read(env) & 0x0700edff;
2569 case 8: /* MSP */
2570 return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
2571 case 9: /* PSP */
2572 return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
2573 case 16: /* PRIMASK */
2574 return (env->uncached_cpsr & CPSR_I) != 0;
2575 case 17: /* BASEPRI */
2576 case 18: /* BASEPRI_MAX */
2577 return env->v7m.basepri;
2578 case 19: /* FAULTMASK */
2579 return (env->uncached_cpsr & CPSR_F) != 0;
2580 case 20: /* CONTROL */
2581 return env->v7m.control;
2582 default:
2583 /* ??? For debugging only. */
2584 cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
2585 return 0;
2586 }
2587 }
2588
2589 void HELPER(v7m_msr)(CPUARMState *env, uint32_t reg, uint32_t val)
2590 {
2591 switch (reg) {
2592 case 0: /* APSR */
2593 xpsr_write(env, val, 0xf8000000);
2594 break;
2595 case 1: /* IAPSR */
2596 xpsr_write(env, val, 0xf8000000);
2597 break;
2598 case 2: /* EAPSR */
2599 xpsr_write(env, val, 0xfe00fc00);
2600 break;
2601 case 3: /* xPSR */
2602 xpsr_write(env, val, 0xfe00fc00);
2603 break;
2604 case 5: /* IPSR */
2605 /* IPSR bits are readonly. */
2606 break;
2607 case 6: /* EPSR */
2608 xpsr_write(env, val, 0x0600fc00);
2609 break;
2610 case 7: /* IEPSR */
2611 xpsr_write(env, val, 0x0600fc00);
2612 break;
2613 case 8: /* MSP */
2614 if (env->v7m.current_sp)
2615 env->v7m.other_sp = val;
2616 else
2617 env->regs[13] = val;
2618 break;
2619 case 9: /* PSP */
2620 if (env->v7m.current_sp)
2621 env->regs[13] = val;
2622 else
2623 env->v7m.other_sp = val;
2624 break;
2625 case 16: /* PRIMASK */
2626 if (val & 1)
2627 env->uncached_cpsr |= CPSR_I;
2628 else
2629 env->uncached_cpsr &= ~CPSR_I;
2630 break;
2631 case 17: /* BASEPRI */
2632 env->v7m.basepri = val & 0xff;
2633 break;
2634 case 18: /* BASEPRI_MAX */
2635 val &= 0xff;
2636 if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
2637 env->v7m.basepri = val;
2638 break;
2639 case 19: /* FAULTMASK */
2640 if (val & 1)
2641 env->uncached_cpsr |= CPSR_F;
2642 else
2643 env->uncached_cpsr &= ~CPSR_F;
2644 break;
2645 case 20: /* CONTROL */
2646 env->v7m.control = val & 3;
2647 switch_v7m_sp(env, (val & 2) != 0);
2648 break;
2649 default:
2650 /* ??? For debugging only. */
2651 cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
2652 return;
2653 }
2654 }
2655
2656 #endif
2657
2658 /* Note that signed overflow is undefined in C. The following routines are
2659 careful to use unsigned types where modulo arithmetic is required.
2660 Failure to do so _will_ break on newer gcc. */
2661
2662 /* Signed saturating arithmetic. */
2663
2664 /* Perform 16-bit signed saturating addition. */
2665 static inline uint16_t add16_sat(uint16_t a, uint16_t b)
2666 {
2667 uint16_t res;
2668
2669 res = a + b;
2670 if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
2671 if (a & 0x8000)
2672 res = 0x8000;
2673 else
2674 res = 0x7fff;
2675 }
2676 return res;
2677 }
2678
2679 /* Perform 8-bit signed saturating addition. */
2680 static inline uint8_t add8_sat(uint8_t a, uint8_t b)
2681 {
2682 uint8_t res;
2683
2684 res = a + b;
2685 if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
2686 if (a & 0x80)
2687 res = 0x80;
2688 else
2689 res = 0x7f;
2690 }
2691 return res;
2692 }
2693
2694 /* Perform 16-bit signed saturating subtraction. */
2695 static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
2696 {
2697 uint16_t res;
2698
2699 res = a - b;
2700 if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
2701 if (a & 0x8000)
2702 res = 0x8000;
2703 else
2704 res = 0x7fff;
2705 }
2706 return res;
2707 }
2708
2709 /* Perform 8-bit signed saturating subtraction. */
2710 static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
2711 {
2712 uint8_t res;
2713
2714 res = a - b;
2715 if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2716 if (a & 0x80)
2717 res = 0x80;
2718 else
2719 res = 0x7f;
2720 }
2721 return res;
2722 }
2723
2724 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2725 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2726 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2727 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2728 #define PFX q
2729
2730 #include "op_addsub.h"
2731
2732 /* Unsigned saturating arithmetic. */
2733 static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2734 {
2735 uint16_t res;
2736 res = a + b;
2737 if (res < a)
2738 res = 0xffff;
2739 return res;
2740 }
2741
2742 static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2743 {
2744 if (a > b)
2745 return a - b;
2746 else
2747 return 0;
2748 }
2749
2750 static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2751 {
2752 uint8_t res;
2753 res = a + b;
2754 if (res < a)
2755 res = 0xff;
2756 return res;
2757 }
2758
2759 static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2760 {
2761 if (a > b)
2762 return a - b;
2763 else
2764 return 0;
2765 }
2766
2767 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2768 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2769 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2770 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2771 #define PFX uq
2772
2773 #include "op_addsub.h"
2774
2775 /* Signed modulo arithmetic. */
2776 #define SARITH16(a, b, n, op) do { \
2777 int32_t sum; \
2778 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
2779 RESULT(sum, n, 16); \
2780 if (sum >= 0) \
2781 ge |= 3 << (n * 2); \
2782 } while(0)
2783
2784 #define SARITH8(a, b, n, op) do { \
2785 int32_t sum; \
2786 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
2787 RESULT(sum, n, 8); \
2788 if (sum >= 0) \
2789 ge |= 1 << n; \
2790 } while(0)
2791
2792
2793 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2794 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2795 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2796 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2797 #define PFX s
2798 #define ARITH_GE
2799
2800 #include "op_addsub.h"
2801
2802 /* Unsigned modulo arithmetic. */
2803 #define ADD16(a, b, n) do { \
2804 uint32_t sum; \
2805 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2806 RESULT(sum, n, 16); \
2807 if ((sum >> 16) == 1) \
2808 ge |= 3 << (n * 2); \
2809 } while(0)
2810
2811 #define ADD8(a, b, n) do { \
2812 uint32_t sum; \
2813 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2814 RESULT(sum, n, 8); \
2815 if ((sum >> 8) == 1) \
2816 ge |= 1 << n; \
2817 } while(0)
2818
2819 #define SUB16(a, b, n) do { \
2820 uint32_t sum; \
2821 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2822 RESULT(sum, n, 16); \
2823 if ((sum >> 16) == 0) \
2824 ge |= 3 << (n * 2); \
2825 } while(0)
2826
2827 #define SUB8(a, b, n) do { \
2828 uint32_t sum; \
2829 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2830 RESULT(sum, n, 8); \
2831 if ((sum >> 8) == 0) \
2832 ge |= 1 << n; \
2833 } while(0)
2834
2835 #define PFX u
2836 #define ARITH_GE
2837
2838 #include "op_addsub.h"
2839
2840 /* Halved signed arithmetic. */
2841 #define ADD16(a, b, n) \
2842 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2843 #define SUB16(a, b, n) \
2844 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2845 #define ADD8(a, b, n) \
2846 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2847 #define SUB8(a, b, n) \
2848 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2849 #define PFX sh
2850
2851 #include "op_addsub.h"
2852
2853 /* Halved unsigned arithmetic. */
2854 #define ADD16(a, b, n) \
2855 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2856 #define SUB16(a, b, n) \
2857 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2858 #define ADD8(a, b, n) \
2859 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2860 #define SUB8(a, b, n) \
2861 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2862 #define PFX uh
2863
2864 #include "op_addsub.h"
2865
2866 static inline uint8_t do_usad(uint8_t a, uint8_t b)
2867 {
2868 if (a > b)
2869 return a - b;
2870 else
2871 return b - a;
2872 }
2873
2874 /* Unsigned sum of absolute byte differences. */
2875 uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2876 {
2877 uint32_t sum;
2878 sum = do_usad(a, b);
2879 sum += do_usad(a >> 8, b >> 8);
2880 sum += do_usad(a >> 16, b >>16);
2881 sum += do_usad(a >> 24, b >> 24);
2882 return sum;
2883 }
2884
2885 /* For ARMv6 SEL instruction. */
2886 uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2887 {
2888 uint32_t mask;
2889
2890 mask = 0;
2891 if (flags & 1)
2892 mask |= 0xff;
2893 if (flags & 2)
2894 mask |= 0xff00;
2895 if (flags & 4)
2896 mask |= 0xff0000;
2897 if (flags & 8)
2898 mask |= 0xff000000;
2899 return (a & mask) | (b & ~mask);
2900 }
2901
2902 uint32_t HELPER(logicq_cc)(uint64_t val)
2903 {
2904 return (val >> 32) | (val != 0);
2905 }
2906
2907 /* VFP support. We follow the convention used for VFP instructions:
2908 Single precision routines have a "s" suffix, double precision a
2909 "d" suffix. */
2910
2911 /* Convert host exception flags to vfp form. */
2912 static inline int vfp_exceptbits_from_host(int host_bits)
2913 {
2914 int target_bits = 0;
2915
2916 if (host_bits & float_flag_invalid)
2917 target_bits |= 1;
2918 if (host_bits & float_flag_divbyzero)
2919 target_bits |= 2;
2920 if (host_bits & float_flag_overflow)
2921 target_bits |= 4;
2922 if (host_bits & (float_flag_underflow | float_flag_output_denormal))
2923 target_bits |= 8;
2924 if (host_bits & float_flag_inexact)
2925 target_bits |= 0x10;
2926 if (host_bits & float_flag_input_denormal)
2927 target_bits |= 0x80;
2928 return target_bits;
2929 }
2930
2931 uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
2932 {
2933 int i;
2934 uint32_t fpscr;
2935
2936 fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2937 | (env->vfp.vec_len << 16)
2938 | (env->vfp.vec_stride << 20);
2939 i = get_float_exception_flags(&env->vfp.fp_status);
2940 i |= get_float_exception_flags(&env->vfp.standard_fp_status);
2941 fpscr |= vfp_exceptbits_from_host(i);
2942 return fpscr;
2943 }
2944
2945 uint32_t vfp_get_fpscr(CPUARMState *env)
2946 {
2947 return HELPER(vfp_get_fpscr)(env);
2948 }
2949
2950 /* Convert vfp exception flags to target form. */
2951 static inline int vfp_exceptbits_to_host(int target_bits)
2952 {
2953 int host_bits = 0;
2954
2955 if (target_bits & 1)
2956 host_bits |= float_flag_invalid;
2957 if (target_bits & 2)
2958 host_bits |= float_flag_divbyzero;
2959 if (target_bits & 4)
2960 host_bits |= float_flag_overflow;
2961 if (target_bits & 8)
2962 host_bits |= float_flag_underflow;
2963 if (target_bits & 0x10)
2964 host_bits |= float_flag_inexact;
2965 if (target_bits & 0x80)
2966 host_bits |= float_flag_input_denormal;
2967 return host_bits;
2968 }
2969
2970 void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
2971 {
2972 int i;
2973 uint32_t changed;
2974
2975 changed = env->vfp.xregs[ARM_VFP_FPSCR];
2976 env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2977 env->vfp.vec_len = (val >> 16) & 7;
2978 env->vfp.vec_stride = (val >> 20) & 3;
2979
2980 changed ^= val;
2981 if (changed & (3 << 22)) {
2982 i = (val >> 22) & 3;
2983 switch (i) {
2984 case 0:
2985 i = float_round_nearest_even;
2986 break;
2987 case 1:
2988 i = float_round_up;
2989 break;
2990 case 2:
2991 i = float_round_down;
2992 break;
2993 case 3:
2994 i = float_round_to_zero;
2995 break;
2996 }
2997 set_float_rounding_mode(i, &env->vfp.fp_status);
2998 }
2999 if (changed & (1 << 24)) {
3000 set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3001 set_flush_inputs_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
3002 }
3003 if (changed & (1 << 25))
3004 set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
3005
3006 i = vfp_exceptbits_to_host(val);
3007 set_float_exception_flags(i, &env->vfp.fp_status);
3008 set_float_exception_flags(0, &env->vfp.standard_fp_status);
3009 }
3010
3011 void vfp_set_fpscr(CPUARMState *env, uint32_t val)
3012 {
3013 HELPER(vfp_set_fpscr)(env, val);
3014 }
3015
3016 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3017
3018 #define VFP_BINOP(name) \
3019 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3020 { \
3021 float_status *fpst = fpstp; \
3022 return float32_ ## name(a, b, fpst); \
3023 } \
3024 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3025 { \
3026 float_status *fpst = fpstp; \
3027 return float64_ ## name(a, b, fpst); \
3028 }
3029 VFP_BINOP(add)
3030 VFP_BINOP(sub)
3031 VFP_BINOP(mul)
3032 VFP_BINOP(div)
3033 #undef VFP_BINOP
3034
3035 float32 VFP_HELPER(neg, s)(float32 a)
3036 {
3037 return float32_chs(a);
3038 }
3039
3040 float64 VFP_HELPER(neg, d)(float64 a)
3041 {
3042 return float64_chs(a);
3043 }
3044
3045 float32 VFP_HELPER(abs, s)(float32 a)
3046 {
3047 return float32_abs(a);
3048 }
3049
3050 float64 VFP_HELPER(abs, d)(float64 a)
3051 {
3052 return float64_abs(a);
3053 }
3054
3055 float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
3056 {
3057 return float32_sqrt(a, &env->vfp.fp_status);
3058 }
3059
3060 float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
3061 {
3062 return float64_sqrt(a, &env->vfp.fp_status);
3063 }
3064
3065 /* XXX: check quiet/signaling case */
3066 #define DO_VFP_cmp(p, type) \
3067 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3068 { \
3069 uint32_t flags; \
3070 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3071 case 0: flags = 0x6; break; \
3072 case -1: flags = 0x8; break; \
3073 case 1: flags = 0x2; break; \
3074 default: case 2: flags = 0x3; break; \
3075 } \
3076 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3077 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3078 } \
3079 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3080 { \
3081 uint32_t flags; \
3082 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3083 case 0: flags = 0x6; break; \
3084 case -1: flags = 0x8; break; \
3085 case 1: flags = 0x2; break; \
3086 default: case 2: flags = 0x3; break; \
3087 } \
3088 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3089 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3090 }
3091 DO_VFP_cmp(s, float32)
3092 DO_VFP_cmp(d, float64)
3093 #undef DO_VFP_cmp
3094
3095 /* Integer to float and float to integer conversions */
3096
3097 #define CONV_ITOF(name, fsz, sign) \
3098 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3099 { \
3100 float_status *fpst = fpstp; \
3101 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3102 }
3103
3104 #define CONV_FTOI(name, fsz, sign, round) \
3105 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3106 { \
3107 float_status *fpst = fpstp; \
3108 if (float##fsz##_is_any_nan(x)) { \
3109 float_raise(float_flag_invalid, fpst); \
3110 return 0; \
3111 } \
3112 return float##fsz##_to_##sign##int32##round(x, fpst); \
3113 }
3114
3115 #define FLOAT_CONVS(name, p, fsz, sign) \
3116 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3117 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3118 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3119
3120 FLOAT_CONVS(si, s, 32, )
3121 FLOAT_CONVS(si, d, 64, )
3122 FLOAT_CONVS(ui, s, 32, u)
3123 FLOAT_CONVS(ui, d, 64, u)
3124
3125 #undef CONV_ITOF
3126 #undef CONV_FTOI
3127 #undef FLOAT_CONVS
3128
3129 /* floating point conversion */
3130 float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
3131 {
3132 float64 r = float32_to_float64(x, &env->vfp.fp_status);
3133 /* ARM requires that S<->D conversion of any kind of NaN generates
3134 * a quiet NaN by forcing the most significant frac bit to 1.
3135 */
3136 return float64_maybe_silence_nan(r);
3137 }
3138
3139 float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
3140 {
3141 float32 r = float64_to_float32(x, &env->vfp.fp_status);
3142 /* ARM requires that S<->D conversion of any kind of NaN generates
3143 * a quiet NaN by forcing the most significant frac bit to 1.
3144 */
3145 return float32_maybe_silence_nan(r);
3146 }
3147
3148 /* VFP3 fixed point conversion. */
3149 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3150 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3151 void *fpstp) \
3152 { \
3153 float_status *fpst = fpstp; \
3154 float##fsz tmp; \
3155 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3156 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3157 } \
3158 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3159 void *fpstp) \
3160 { \
3161 float_status *fpst = fpstp; \
3162 float##fsz tmp; \
3163 if (float##fsz##_is_any_nan(x)) { \
3164 float_raise(float_flag_invalid, fpst); \
3165 return 0; \
3166 } \
3167 tmp = float##fsz##_scalbn(x, shift, fpst); \
3168 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
3169 }
3170
3171 VFP_CONV_FIX(sh, d, 64, int16, )
3172 VFP_CONV_FIX(sl, d, 64, int32, )
3173 VFP_CONV_FIX(uh, d, 64, uint16, u)
3174 VFP_CONV_FIX(ul, d, 64, uint32, u)
3175 VFP_CONV_FIX(sh, s, 32, int16, )
3176 VFP_CONV_FIX(sl, s, 32, int32, )
3177 VFP_CONV_FIX(uh, s, 32, uint16, u)
3178 VFP_CONV_FIX(ul, s, 32, uint32, u)
3179 #undef VFP_CONV_FIX
3180
3181 /* Half precision conversions. */
3182 static float32 do_fcvt_f16_to_f32(uint32_t a, CPUARMState *env, float_status *s)
3183 {
3184 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3185 float32 r = float16_to_float32(make_float16(a), ieee, s);
3186 if (ieee) {
3187 return float32_maybe_silence_nan(r);
3188 }
3189 return r;
3190 }
3191
3192 static uint32_t do_fcvt_f32_to_f16(float32 a, CPUARMState *env, float_status *s)
3193 {
3194 int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
3195 float16 r = float32_to_float16(a, ieee, s);
3196 if (ieee) {
3197 r = float16_maybe_silence_nan(r);
3198 }
3199 return float16_val(r);
3200 }
3201
3202 float32 HELPER(neon_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3203 {
3204 return do_fcvt_f16_to_f32(a, env, &env->vfp.standard_fp_status);
3205 }
3206
3207 uint32_t HELPER(neon_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3208 {
3209 return do_fcvt_f32_to_f16(a, env, &env->vfp.standard_fp_status);
3210 }
3211
3212 float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUARMState *env)
3213 {
3214 return do_fcvt_f16_to_f32(a, env, &env->vfp.fp_status);
3215 }
3216
3217 uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUARMState *env)
3218 {
3219 return do_fcvt_f32_to_f16(a, env, &env->vfp.fp_status);
3220 }
3221
3222 #define float32_two make_float32(0x40000000)
3223 #define float32_three make_float32(0x40400000)
3224 #define float32_one_point_five make_float32(0x3fc00000)
3225
3226 float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
3227 {
3228 float_status *s = &env->vfp.standard_fp_status;
3229 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3230 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3231 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3232 float_raise(float_flag_input_denormal, s);
3233 }
3234 return float32_two;
3235 }
3236 return float32_sub(float32_two, float32_mul(a, b, s), s);
3237 }
3238
3239 float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
3240 {
3241 float_status *s = &env->vfp.standard_fp_status;
3242 float32 product;
3243 if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
3244 (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
3245 if (!(float32_is_zero(a) || float32_is_zero(b))) {
3246 float_raise(float_flag_input_denormal, s);
3247 }
3248 return float32_one_point_five;
3249 }
3250 product = float32_mul(a, b, s);
3251 return float32_div(float32_sub(float32_three, product, s), float32_two, s);
3252 }
3253
3254 /* NEON helpers. */
3255
3256 /* Constants 256 and 512 are used in some helpers; we avoid relying on
3257 * int->float conversions at run-time. */
3258 #define float64_256 make_float64(0x4070000000000000LL)
3259 #define float64_512 make_float64(0x4080000000000000LL)
3260
3261 /* The algorithm that must be used to calculate the estimate
3262 * is specified by the ARM ARM.
3263 */
3264 static float64 recip_estimate(float64 a, CPUARMState *env)
3265 {
3266 /* These calculations mustn't set any fp exception flags,
3267 * so we use a local copy of the fp_status.
3268 */
3269 float_status dummy_status = env->vfp.standard_fp_status;
3270 float_status *s = &dummy_status;
3271 /* q = (int)(a * 512.0) */
3272 float64 q = float64_mul(float64_512, a, s);
3273 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3274
3275 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
3276 q = int64_to_float64(q_int, s);
3277 q = float64_add(q, float64_half, s);
3278 q = float64_div(q, float64_512, s);
3279 q = float64_div(float64_one, q, s);
3280
3281 /* s = (int)(256.0 * r + 0.5) */
3282 q = float64_mul(q, float64_256, s);
3283 q = float64_add(q, float64_half, s);
3284 q_int = float64_to_int64_round_to_zero(q, s);
3285
3286 /* return (double)s / 256.0 */
3287 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3288 }
3289
3290 float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
3291 {
3292 float_status *s = &env->vfp.standard_fp_status;
3293 float64 f64;
3294 uint32_t val32 = float32_val(a);
3295
3296 int result_exp;
3297 int a_exp = (val32 & 0x7f800000) >> 23;
3298 int sign = val32 & 0x80000000;
3299
3300 if (float32_is_any_nan(a)) {
3301 if (float32_is_signaling_nan(a)) {
3302 float_raise(float_flag_invalid, s);
3303 }
3304 return float32_default_nan;
3305 } else if (float32_is_infinity(a)) {
3306 return float32_set_sign(float32_zero, float32_is_neg(a));
3307 } else if (float32_is_zero_or_denormal(a)) {
3308 if (!float32_is_zero(a)) {
3309 float_raise(float_flag_input_denormal, s);
3310 }
3311 float_raise(float_flag_divbyzero, s);
3312 return float32_set_sign(float32_infinity, float32_is_neg(a));
3313 } else if (a_exp >= 253) {
3314 float_raise(float_flag_underflow, s);
3315 return float32_set_sign(float32_zero, float32_is_neg(a));
3316 }
3317
3318 f64 = make_float64((0x3feULL << 52)
3319 | ((int64_t)(val32 & 0x7fffff) << 29));
3320
3321 result_exp = 253 - a_exp;
3322
3323 f64 = recip_estimate(f64, env);
3324
3325 val32 = sign
3326 | ((result_exp & 0xff) << 23)
3327 | ((float64_val(f64) >> 29) & 0x7fffff);
3328 return make_float32(val32);
3329 }
3330
3331 /* The algorithm that must be used to calculate the estimate
3332 * is specified by the ARM ARM.
3333 */
3334 static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
3335 {
3336 /* These calculations mustn't set any fp exception flags,
3337 * so we use a local copy of the fp_status.
3338 */
3339 float_status dummy_status = env->vfp.standard_fp_status;
3340 float_status *s = &dummy_status;
3341 float64 q;
3342 int64_t q_int;
3343
3344 if (float64_lt(a, float64_half, s)) {
3345 /* range 0.25 <= a < 0.5 */
3346
3347 /* a in units of 1/512 rounded down */
3348 /* q0 = (int)(a * 512.0); */
3349 q = float64_mul(float64_512, a, s);
3350 q_int = float64_to_int64_round_to_zero(q, s);
3351
3352 /* reciprocal root r */
3353 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
3354 q = int64_to_float64(q_int, s);
3355 q = float64_add(q, float64_half, s);
3356 q = float64_div(q, float64_512, s);
3357 q = float64_sqrt(q, s);
3358 q = float64_div(float64_one, q, s);
3359 } else {
3360 /* range 0.5 <= a < 1.0 */
3361
3362 /* a in units of 1/256 rounded down */
3363 /* q1 = (int)(a * 256.0); */
3364 q = float64_mul(float64_256, a, s);
3365 int64_t q_int = float64_to_int64_round_to_zero(q, s);
3366
3367 /* reciprocal root r */
3368 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
3369 q = int64_to_float64(q_int, s);
3370 q = float64_add(q, float64_half, s);
3371 q = float64_div(q, float64_256, s);
3372 q = float64_sqrt(q, s);
3373 q = float64_div(float64_one, q, s);
3374 }
3375 /* r in units of 1/256 rounded to nearest */
3376 /* s = (int)(256.0 * r + 0.5); */
3377
3378 q = float64_mul(q, float64_256,s );
3379 q = float64_add(q, float64_half, s);
3380 q_int = float64_to_int64_round_to_zero(q, s);
3381
3382 /* return (double)s / 256.0;*/
3383 return float64_div(int64_to_float64(q_int, s), float64_256, s);
3384 }
3385
3386 float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
3387 {
3388 float_status *s = &env->vfp.standard_fp_status;
3389 int result_exp;
3390 float64 f64;
3391 uint32_t val;
3392 uint64_t val64;
3393
3394 val = float32_val(a);
3395
3396 if (float32_is_any_nan(a)) {
3397 if (float32_is_signaling_nan(a)) {
3398 float_raise(float_flag_invalid, s);
3399 }
3400 return float32_default_nan;
3401 } else if (float32_is_zero_or_denormal(a)) {
3402 if (!float32_is_zero(a)) {
3403 float_raise(float_flag_input_denormal, s);
3404 }
3405 float_raise(float_flag_divbyzero, s);
3406 return float32_set_sign(float32_infinity, float32_is_neg(a));
3407 } else if (float32_is_neg(a)) {
3408 float_raise(float_flag_invalid, s);
3409 return float32_default_nan;
3410 } else if (float32_is_infinity(a)) {
3411 return float32_zero;
3412 }
3413
3414 /* Normalize to a double-precision value between 0.25 and 1.0,
3415 * preserving the parity of the exponent. */
3416 if ((val & 0x800000) == 0) {
3417 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3418 | (0x3feULL << 52)
3419 | ((uint64_t)(val & 0x7fffff) << 29));
3420 } else {
3421 f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
3422 | (0x3fdULL << 52)
3423 | ((uint64_t)(val & 0x7fffff) << 29));
3424 }
3425
3426 result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
3427
3428 f64 = recip_sqrt_estimate(f64, env);
3429
3430 val64 = float64_val(f64);
3431
3432 val = ((result_exp & 0xff) << 23)
3433 | ((val64 >> 29) & 0x7fffff);
3434 return make_float32(val);
3435 }
3436
3437 uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
3438 {
3439 float64 f64;
3440
3441 if ((a & 0x80000000) == 0) {
3442 return 0xffffffff;
3443 }
3444
3445 f64 = make_float64((0x3feULL << 52)
3446 | ((int64_t)(a & 0x7fffffff) << 21));
3447
3448 f64 = recip_estimate (f64, env);
3449
3450 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3451 }
3452
3453 uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
3454 {
3455 float64 f64;
3456
3457 if ((a & 0xc0000000) == 0) {
3458 return 0xffffffff;
3459 }
3460
3461 if (a & 0x80000000) {
3462 f64 = make_float64((0x3feULL << 52)
3463 | ((uint64_t)(a & 0x7fffffff) << 21));
3464 } else { /* bits 31-30 == '01' */
3465 f64 = make_float64((0x3fdULL << 52)
3466 | ((uint64_t)(a & 0x3fffffff) << 22));
3467 }
3468
3469 f64 = recip_sqrt_estimate(f64, env);
3470
3471 return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
3472 }
3473
3474 /* VFPv4 fused multiply-accumulate */
3475 float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
3476 {
3477 float_status *fpst = fpstp;
3478 return float32_muladd(a, b, c, 0, fpst);
3479 }
3480
3481 float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
3482 {
3483 float_status *fpst = fpstp;
3484 return float64_muladd(a, b, c, 0, fpst);
3485 }