]> git.proxmox.com Git - mirror_zfs-debian.git/blob - zfs/lib/libavl/avl.c
Remove libumem, we will try and remove this dependency entirely. If we can't then...
[mirror_zfs-debian.git] / zfs / lib / libavl / avl.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #pragma ident "%Z%%M% %I% %E% SMI"
27
28
29 /*
30 * AVL - generic AVL tree implementation for kernel use
31 *
32 * A complete description of AVL trees can be found in many CS textbooks.
33 *
34 * Here is a very brief overview. An AVL tree is a binary search tree that is
35 * almost perfectly balanced. By "almost" perfectly balanced, we mean that at
36 * any given node, the left and right subtrees are allowed to differ in height
37 * by at most 1 level.
38 *
39 * This relaxation from a perfectly balanced binary tree allows doing
40 * insertion and deletion relatively efficiently. Searching the tree is
41 * still a fast operation, roughly O(log(N)).
42 *
43 * The key to insertion and deletion is a set of tree maniuplations called
44 * rotations, which bring unbalanced subtrees back into the semi-balanced state.
45 *
46 * This implementation of AVL trees has the following peculiarities:
47 *
48 * - The AVL specific data structures are physically embedded as fields
49 * in the "using" data structures. To maintain generality the code
50 * must constantly translate between "avl_node_t *" and containing
51 * data structure "void *"s by adding/subracting the avl_offset.
52 *
53 * - Since the AVL data is always embedded in other structures, there is
54 * no locking or memory allocation in the AVL routines. This must be
55 * provided for by the enclosing data structure's semantics. Typically,
56 * avl_insert()/_add()/_remove()/avl_insert_here() require some kind of
57 * exclusive write lock. Other operations require a read lock.
58 *
59 * - The implementation uses iteration instead of explicit recursion,
60 * since it is intended to run on limited size kernel stacks. Since
61 * there is no recursion stack present to move "up" in the tree,
62 * there is an explicit "parent" link in the avl_node_t.
63 *
64 * - The left/right children pointers of a node are in an array.
65 * In the code, variables (instead of constants) are used to represent
66 * left and right indices. The implementation is written as if it only
67 * dealt with left handed manipulations. By changing the value assigned
68 * to "left", the code also works for right handed trees. The
69 * following variables/terms are frequently used:
70 *
71 * int left; // 0 when dealing with left children,
72 * // 1 for dealing with right children
73 *
74 * int left_heavy; // -1 when left subtree is taller at some node,
75 * // +1 when right subtree is taller
76 *
77 * int right; // will be the opposite of left (0 or 1)
78 * int right_heavy;// will be the opposite of left_heavy (-1 or 1)
79 *
80 * int direction; // 0 for "<" (ie. left child); 1 for ">" (right)
81 *
82 * Though it is a little more confusing to read the code, the approach
83 * allows using half as much code (and hence cache footprint) for tree
84 * manipulations and eliminates many conditional branches.
85 *
86 * - The avl_index_t is an opaque "cookie" used to find nodes at or
87 * adjacent to where a new value would be inserted in the tree. The value
88 * is a modified "avl_node_t *". The bottom bit (normally 0 for a
89 * pointer) is set to indicate if that the new node has a value greater
90 * than the value of the indicated "avl_node_t *".
91 */
92
93 #include <sys/types.h>
94 #include <sys/param.h>
95 #include <sys/debug.h>
96 #include <sys/avl.h>
97 #include <sys/cmn_err.h>
98
99 /*
100 * Small arrays to translate between balance (or diff) values and child indeces.
101 *
102 * Code that deals with binary tree data structures will randomly use
103 * left and right children when examining a tree. C "if()" statements
104 * which evaluate randomly suffer from very poor hardware branch prediction.
105 * In this code we avoid some of the branch mispredictions by using the
106 * following translation arrays. They replace random branches with an
107 * additional memory reference. Since the translation arrays are both very
108 * small the data should remain efficiently in cache.
109 */
110 static const int avl_child2balance[2] = {-1, 1};
111 static const int avl_balance2child[] = {0, 0, 1};
112
113
114 /*
115 * Walk from one node to the previous valued node (ie. an infix walk
116 * towards the left). At any given node we do one of 2 things:
117 *
118 * - If there is a left child, go to it, then to it's rightmost descendant.
119 *
120 * - otherwise we return thru parent nodes until we've come from a right child.
121 *
122 * Return Value:
123 * NULL - if at the end of the nodes
124 * otherwise next node
125 */
126 void *
127 avl_walk(avl_tree_t *tree, void *oldnode, int left)
128 {
129 size_t off = tree->avl_offset;
130 avl_node_t *node = AVL_DATA2NODE(oldnode, off);
131 int right = 1 - left;
132 int was_child;
133
134
135 /*
136 * nowhere to walk to if tree is empty
137 */
138 if (node == NULL)
139 return (NULL);
140
141 /*
142 * Visit the previous valued node. There are two possibilities:
143 *
144 * If this node has a left child, go down one left, then all
145 * the way right.
146 */
147 if (node->avl_child[left] != NULL) {
148 for (node = node->avl_child[left];
149 node->avl_child[right] != NULL;
150 node = node->avl_child[right])
151 ;
152 /*
153 * Otherwise, return thru left children as far as we can.
154 */
155 } else {
156 for (;;) {
157 was_child = AVL_XCHILD(node);
158 node = AVL_XPARENT(node);
159 if (node == NULL)
160 return (NULL);
161 if (was_child == right)
162 break;
163 }
164 }
165
166 return (AVL_NODE2DATA(node, off));
167 }
168
169 /*
170 * Return the lowest valued node in a tree or NULL.
171 * (leftmost child from root of tree)
172 */
173 void *
174 avl_first(avl_tree_t *tree)
175 {
176 avl_node_t *node;
177 avl_node_t *prev = NULL;
178 size_t off = tree->avl_offset;
179
180 for (node = tree->avl_root; node != NULL; node = node->avl_child[0])
181 prev = node;
182
183 if (prev != NULL)
184 return (AVL_NODE2DATA(prev, off));
185 return (NULL);
186 }
187
188 /*
189 * Return the highest valued node in a tree or NULL.
190 * (rightmost child from root of tree)
191 */
192 void *
193 avl_last(avl_tree_t *tree)
194 {
195 avl_node_t *node;
196 avl_node_t *prev = NULL;
197 size_t off = tree->avl_offset;
198
199 for (node = tree->avl_root; node != NULL; node = node->avl_child[1])
200 prev = node;
201
202 if (prev != NULL)
203 return (AVL_NODE2DATA(prev, off));
204 return (NULL);
205 }
206
207 /*
208 * Access the node immediately before or after an insertion point.
209 *
210 * "avl_index_t" is a (avl_node_t *) with the bottom bit indicating a child
211 *
212 * Return value:
213 * NULL: no node in the given direction
214 * "void *" of the found tree node
215 */
216 void *
217 avl_nearest(avl_tree_t *tree, avl_index_t where, int direction)
218 {
219 int child = AVL_INDEX2CHILD(where);
220 avl_node_t *node = AVL_INDEX2NODE(where);
221 void *data;
222 size_t off = tree->avl_offset;
223
224 if (node == NULL) {
225 ASSERT(tree->avl_root == NULL);
226 return (NULL);
227 }
228 data = AVL_NODE2DATA(node, off);
229 if (child != direction)
230 return (data);
231
232 return (avl_walk(tree, data, direction));
233 }
234
235
236 /*
237 * Search for the node which contains "value". The algorithm is a
238 * simple binary tree search.
239 *
240 * return value:
241 * NULL: the value is not in the AVL tree
242 * *where (if not NULL) is set to indicate the insertion point
243 * "void *" of the found tree node
244 */
245 void *
246 avl_find(avl_tree_t *tree, void *value, avl_index_t *where)
247 {
248 avl_node_t *node;
249 avl_node_t *prev = NULL;
250 int child = 0;
251 int diff;
252 size_t off = tree->avl_offset;
253
254 for (node = tree->avl_root; node != NULL;
255 node = node->avl_child[child]) {
256
257 prev = node;
258
259 diff = tree->avl_compar(value, AVL_NODE2DATA(node, off));
260 ASSERT(-1 <= diff && diff <= 1);
261 if (diff == 0) {
262 #ifdef DEBUG
263 if (where != NULL)
264 *where = 0;
265 #endif
266 return (AVL_NODE2DATA(node, off));
267 }
268 child = avl_balance2child[1 + diff];
269
270 }
271
272 if (where != NULL)
273 *where = AVL_MKINDEX(prev, child);
274
275 return (NULL);
276 }
277
278
279 /*
280 * Perform a rotation to restore balance at the subtree given by depth.
281 *
282 * This routine is used by both insertion and deletion. The return value
283 * indicates:
284 * 0 : subtree did not change height
285 * !0 : subtree was reduced in height
286 *
287 * The code is written as if handling left rotations, right rotations are
288 * symmetric and handled by swapping values of variables right/left[_heavy]
289 *
290 * On input balance is the "new" balance at "node". This value is either
291 * -2 or +2.
292 */
293 static int
294 avl_rotation(avl_tree_t *tree, avl_node_t *node, int balance)
295 {
296 int left = !(balance < 0); /* when balance = -2, left will be 0 */
297 int right = 1 - left;
298 int left_heavy = balance >> 1;
299 int right_heavy = -left_heavy;
300 avl_node_t *parent = AVL_XPARENT(node);
301 avl_node_t *child = node->avl_child[left];
302 avl_node_t *cright;
303 avl_node_t *gchild;
304 avl_node_t *gright;
305 avl_node_t *gleft;
306 int which_child = AVL_XCHILD(node);
307 int child_bal = AVL_XBALANCE(child);
308
309 /* BEGIN CSTYLED */
310 /*
311 * case 1 : node is overly left heavy, the left child is balanced or
312 * also left heavy. This requires the following rotation.
313 *
314 * (node bal:-2)
315 * / \
316 * / \
317 * (child bal:0 or -1)
318 * / \
319 * / \
320 * cright
321 *
322 * becomes:
323 *
324 * (child bal:1 or 0)
325 * / \
326 * / \
327 * (node bal:-1 or 0)
328 * / \
329 * / \
330 * cright
331 *
332 * we detect this situation by noting that child's balance is not
333 * right_heavy.
334 */
335 /* END CSTYLED */
336 if (child_bal != right_heavy) {
337
338 /*
339 * compute new balance of nodes
340 *
341 * If child used to be left heavy (now balanced) we reduced
342 * the height of this sub-tree -- used in "return...;" below
343 */
344 child_bal += right_heavy; /* adjust towards right */
345
346 /*
347 * move "cright" to be node's left child
348 */
349 cright = child->avl_child[right];
350 node->avl_child[left] = cright;
351 if (cright != NULL) {
352 AVL_SETPARENT(cright, node);
353 AVL_SETCHILD(cright, left);
354 }
355
356 /*
357 * move node to be child's right child
358 */
359 child->avl_child[right] = node;
360 AVL_SETBALANCE(node, -child_bal);
361 AVL_SETCHILD(node, right);
362 AVL_SETPARENT(node, child);
363
364 /*
365 * update the pointer into this subtree
366 */
367 AVL_SETBALANCE(child, child_bal);
368 AVL_SETCHILD(child, which_child);
369 AVL_SETPARENT(child, parent);
370 if (parent != NULL)
371 parent->avl_child[which_child] = child;
372 else
373 tree->avl_root = child;
374
375 return (child_bal == 0);
376 }
377
378 /* BEGIN CSTYLED */
379 /*
380 * case 2 : When node is left heavy, but child is right heavy we use
381 * a different rotation.
382 *
383 * (node b:-2)
384 * / \
385 * / \
386 * / \
387 * (child b:+1)
388 * / \
389 * / \
390 * (gchild b: != 0)
391 * / \
392 * / \
393 * gleft gright
394 *
395 * becomes:
396 *
397 * (gchild b:0)
398 * / \
399 * / \
400 * / \
401 * (child b:?) (node b:?)
402 * / \ / \
403 * / \ / \
404 * gleft gright
405 *
406 * computing the new balances is more complicated. As an example:
407 * if gchild was right_heavy, then child is now left heavy
408 * else it is balanced
409 */
410 /* END CSTYLED */
411 gchild = child->avl_child[right];
412 gleft = gchild->avl_child[left];
413 gright = gchild->avl_child[right];
414
415 /*
416 * move gright to left child of node and
417 *
418 * move gleft to right child of node
419 */
420 node->avl_child[left] = gright;
421 if (gright != NULL) {
422 AVL_SETPARENT(gright, node);
423 AVL_SETCHILD(gright, left);
424 }
425
426 child->avl_child[right] = gleft;
427 if (gleft != NULL) {
428 AVL_SETPARENT(gleft, child);
429 AVL_SETCHILD(gleft, right);
430 }
431
432 /*
433 * move child to left child of gchild and
434 *
435 * move node to right child of gchild and
436 *
437 * fixup parent of all this to point to gchild
438 */
439 balance = AVL_XBALANCE(gchild);
440 gchild->avl_child[left] = child;
441 AVL_SETBALANCE(child, (balance == right_heavy ? left_heavy : 0));
442 AVL_SETPARENT(child, gchild);
443 AVL_SETCHILD(child, left);
444
445 gchild->avl_child[right] = node;
446 AVL_SETBALANCE(node, (balance == left_heavy ? right_heavy : 0));
447 AVL_SETPARENT(node, gchild);
448 AVL_SETCHILD(node, right);
449
450 AVL_SETBALANCE(gchild, 0);
451 AVL_SETPARENT(gchild, parent);
452 AVL_SETCHILD(gchild, which_child);
453 if (parent != NULL)
454 parent->avl_child[which_child] = gchild;
455 else
456 tree->avl_root = gchild;
457
458 return (1); /* the new tree is always shorter */
459 }
460
461
462 /*
463 * Insert a new node into an AVL tree at the specified (from avl_find()) place.
464 *
465 * Newly inserted nodes are always leaf nodes in the tree, since avl_find()
466 * searches out to the leaf positions. The avl_index_t indicates the node
467 * which will be the parent of the new node.
468 *
469 * After the node is inserted, a single rotation further up the tree may
470 * be necessary to maintain an acceptable AVL balance.
471 */
472 void
473 avl_insert(avl_tree_t *tree, void *new_data, avl_index_t where)
474 {
475 avl_node_t *node;
476 avl_node_t *parent = AVL_INDEX2NODE(where);
477 int old_balance;
478 int new_balance;
479 int which_child = AVL_INDEX2CHILD(where);
480 size_t off = tree->avl_offset;
481
482 ASSERT(tree);
483 #ifdef _LP64
484 ASSERT(((uintptr_t)new_data & 0x7) == 0);
485 #endif
486
487 node = AVL_DATA2NODE(new_data, off);
488
489 /*
490 * First, add the node to the tree at the indicated position.
491 */
492 ++tree->avl_numnodes;
493
494 node->avl_child[0] = NULL;
495 node->avl_child[1] = NULL;
496
497 AVL_SETCHILD(node, which_child);
498 AVL_SETBALANCE(node, 0);
499 AVL_SETPARENT(node, parent);
500 if (parent != NULL) {
501 ASSERT(parent->avl_child[which_child] == NULL);
502 parent->avl_child[which_child] = node;
503 } else {
504 ASSERT(tree->avl_root == NULL);
505 tree->avl_root = node;
506 }
507 /*
508 * Now, back up the tree modifying the balance of all nodes above the
509 * insertion point. If we get to a highly unbalanced ancestor, we
510 * need to do a rotation. If we back out of the tree we are done.
511 * If we brought any subtree into perfect balance (0), we are also done.
512 */
513 for (;;) {
514 node = parent;
515 if (node == NULL)
516 return;
517
518 /*
519 * Compute the new balance
520 */
521 old_balance = AVL_XBALANCE(node);
522 new_balance = old_balance + avl_child2balance[which_child];
523
524 /*
525 * If we introduced equal balance, then we are done immediately
526 */
527 if (new_balance == 0) {
528 AVL_SETBALANCE(node, 0);
529 return;
530 }
531
532 /*
533 * If both old and new are not zero we went
534 * from -1 to -2 balance, do a rotation.
535 */
536 if (old_balance != 0)
537 break;
538
539 AVL_SETBALANCE(node, new_balance);
540 parent = AVL_XPARENT(node);
541 which_child = AVL_XCHILD(node);
542 }
543
544 /*
545 * perform a rotation to fix the tree and return
546 */
547 (void) avl_rotation(tree, node, new_balance);
548 }
549
550 /*
551 * Insert "new_data" in "tree" in the given "direction" either after or
552 * before (AVL_AFTER, AVL_BEFORE) the data "here".
553 *
554 * Insertions can only be done at empty leaf points in the tree, therefore
555 * if the given child of the node is already present we move to either
556 * the AVL_PREV or AVL_NEXT and reverse the insertion direction. Since
557 * every other node in the tree is a leaf, this always works.
558 *
559 * To help developers using this interface, we assert that the new node
560 * is correctly ordered at every step of the way in DEBUG kernels.
561 */
562 void
563 avl_insert_here(
564 avl_tree_t *tree,
565 void *new_data,
566 void *here,
567 int direction)
568 {
569 avl_node_t *node;
570 int child = direction; /* rely on AVL_BEFORE == 0, AVL_AFTER == 1 */
571 #ifdef DEBUG
572 int diff;
573 #endif
574
575 ASSERT(tree != NULL);
576 ASSERT(new_data != NULL);
577 ASSERT(here != NULL);
578 ASSERT(direction == AVL_BEFORE || direction == AVL_AFTER);
579
580 /*
581 * If corresponding child of node is not NULL, go to the neighboring
582 * node and reverse the insertion direction.
583 */
584 node = AVL_DATA2NODE(here, tree->avl_offset);
585
586 #ifdef DEBUG
587 diff = tree->avl_compar(new_data, here);
588 ASSERT(-1 <= diff && diff <= 1);
589 ASSERT(diff != 0);
590 ASSERT(diff > 0 ? child == 1 : child == 0);
591 #endif
592
593 if (node->avl_child[child] != NULL) {
594 node = node->avl_child[child];
595 child = 1 - child;
596 while (node->avl_child[child] != NULL) {
597 #ifdef DEBUG
598 diff = tree->avl_compar(new_data,
599 AVL_NODE2DATA(node, tree->avl_offset));
600 ASSERT(-1 <= diff && diff <= 1);
601 ASSERT(diff != 0);
602 ASSERT(diff > 0 ? child == 1 : child == 0);
603 #endif
604 node = node->avl_child[child];
605 }
606 #ifdef DEBUG
607 diff = tree->avl_compar(new_data,
608 AVL_NODE2DATA(node, tree->avl_offset));
609 ASSERT(-1 <= diff && diff <= 1);
610 ASSERT(diff != 0);
611 ASSERT(diff > 0 ? child == 1 : child == 0);
612 #endif
613 }
614 ASSERT(node->avl_child[child] == NULL);
615
616 avl_insert(tree, new_data, AVL_MKINDEX(node, child));
617 }
618
619 /*
620 * Add a new node to an AVL tree.
621 */
622 void
623 avl_add(avl_tree_t *tree, void *new_node)
624 {
625 avl_index_t where;
626
627 /*
628 * This is unfortunate. We want to call panic() here, even for
629 * non-DEBUG kernels. In userland, however, we can't depend on anything
630 * in libc or else the rtld build process gets confused. So, all we can
631 * do in userland is resort to a normal ASSERT().
632 */
633 if (avl_find(tree, new_node, &where) != NULL)
634 #ifdef _KERNEL
635 panic("avl_find() succeeded inside avl_add()");
636 #else
637 ASSERT(0);
638 #endif
639 avl_insert(tree, new_node, where);
640 }
641
642 /*
643 * Delete a node from the AVL tree. Deletion is similar to insertion, but
644 * with 2 complications.
645 *
646 * First, we may be deleting an interior node. Consider the following subtree:
647 *
648 * d c c
649 * / \ / \ / \
650 * b e b e b e
651 * / \ / \ /
652 * a c a a
653 *
654 * When we are deleting node (d), we find and bring up an adjacent valued leaf
655 * node, say (c), to take the interior node's place. In the code this is
656 * handled by temporarily swapping (d) and (c) in the tree and then using
657 * common code to delete (d) from the leaf position.
658 *
659 * Secondly, an interior deletion from a deep tree may require more than one
660 * rotation to fix the balance. This is handled by moving up the tree through
661 * parents and applying rotations as needed. The return value from
662 * avl_rotation() is used to detect when a subtree did not change overall
663 * height due to a rotation.
664 */
665 void
666 avl_remove(avl_tree_t *tree, void *data)
667 {
668 avl_node_t *delete;
669 avl_node_t *parent;
670 avl_node_t *node;
671 avl_node_t tmp;
672 int old_balance;
673 int new_balance;
674 int left;
675 int right;
676 int which_child;
677 size_t off = tree->avl_offset;
678
679 ASSERT(tree);
680
681 delete = AVL_DATA2NODE(data, off);
682
683 /*
684 * Deletion is easiest with a node that has at most 1 child.
685 * We swap a node with 2 children with a sequentially valued
686 * neighbor node. That node will have at most 1 child. Note this
687 * has no effect on the ordering of the remaining nodes.
688 *
689 * As an optimization, we choose the greater neighbor if the tree
690 * is right heavy, otherwise the left neighbor. This reduces the
691 * number of rotations needed.
692 */
693 if (delete->avl_child[0] != NULL && delete->avl_child[1] != NULL) {
694
695 /*
696 * choose node to swap from whichever side is taller
697 */
698 old_balance = AVL_XBALANCE(delete);
699 left = avl_balance2child[old_balance + 1];
700 right = 1 - left;
701
702 /*
703 * get to the previous value'd node
704 * (down 1 left, as far as possible right)
705 */
706 for (node = delete->avl_child[left];
707 node->avl_child[right] != NULL;
708 node = node->avl_child[right])
709 ;
710
711 /*
712 * create a temp placeholder for 'node'
713 * move 'node' to delete's spot in the tree
714 */
715 tmp = *node;
716
717 *node = *delete;
718 if (node->avl_child[left] == node)
719 node->avl_child[left] = &tmp;
720
721 parent = AVL_XPARENT(node);
722 if (parent != NULL)
723 parent->avl_child[AVL_XCHILD(node)] = node;
724 else
725 tree->avl_root = node;
726 AVL_SETPARENT(node->avl_child[left], node);
727 AVL_SETPARENT(node->avl_child[right], node);
728
729 /*
730 * Put tmp where node used to be (just temporary).
731 * It always has a parent and at most 1 child.
732 */
733 delete = &tmp;
734 parent = AVL_XPARENT(delete);
735 parent->avl_child[AVL_XCHILD(delete)] = delete;
736 which_child = (delete->avl_child[1] != 0);
737 if (delete->avl_child[which_child] != NULL)
738 AVL_SETPARENT(delete->avl_child[which_child], delete);
739 }
740
741
742 /*
743 * Here we know "delete" is at least partially a leaf node. It can
744 * be easily removed from the tree.
745 */
746 ASSERT(tree->avl_numnodes > 0);
747 --tree->avl_numnodes;
748 parent = AVL_XPARENT(delete);
749 which_child = AVL_XCHILD(delete);
750 if (delete->avl_child[0] != NULL)
751 node = delete->avl_child[0];
752 else
753 node = delete->avl_child[1];
754
755 /*
756 * Connect parent directly to node (leaving out delete).
757 */
758 if (node != NULL) {
759 AVL_SETPARENT(node, parent);
760 AVL_SETCHILD(node, which_child);
761 }
762 if (parent == NULL) {
763 tree->avl_root = node;
764 return;
765 }
766 parent->avl_child[which_child] = node;
767
768
769 /*
770 * Since the subtree is now shorter, begin adjusting parent balances
771 * and performing any needed rotations.
772 */
773 do {
774
775 /*
776 * Move up the tree and adjust the balance
777 *
778 * Capture the parent and which_child values for the next
779 * iteration before any rotations occur.
780 */
781 node = parent;
782 old_balance = AVL_XBALANCE(node);
783 new_balance = old_balance - avl_child2balance[which_child];
784 parent = AVL_XPARENT(node);
785 which_child = AVL_XCHILD(node);
786
787 /*
788 * If a node was in perfect balance but isn't anymore then
789 * we can stop, since the height didn't change above this point
790 * due to a deletion.
791 */
792 if (old_balance == 0) {
793 AVL_SETBALANCE(node, new_balance);
794 break;
795 }
796
797 /*
798 * If the new balance is zero, we don't need to rotate
799 * else
800 * need a rotation to fix the balance.
801 * If the rotation doesn't change the height
802 * of the sub-tree we have finished adjusting.
803 */
804 if (new_balance == 0)
805 AVL_SETBALANCE(node, new_balance);
806 else if (!avl_rotation(tree, node, new_balance))
807 break;
808 } while (parent != NULL);
809 }
810
811 #define AVL_REINSERT(tree, obj) \
812 avl_remove((tree), (obj)); \
813 avl_add((tree), (obj))
814
815 boolean_t
816 avl_update_lt(avl_tree_t *t, void *obj)
817 {
818 void *neighbor;
819
820 ASSERT(((neighbor = AVL_NEXT(t, obj)) == NULL) ||
821 (t->avl_compar(obj, neighbor) <= 0));
822
823 neighbor = AVL_PREV(t, obj);
824 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
825 AVL_REINSERT(t, obj);
826 return (B_TRUE);
827 }
828
829 return (B_FALSE);
830 }
831
832 boolean_t
833 avl_update_gt(avl_tree_t *t, void *obj)
834 {
835 void *neighbor;
836
837 ASSERT(((neighbor = AVL_PREV(t, obj)) == NULL) ||
838 (t->avl_compar(obj, neighbor) >= 0));
839
840 neighbor = AVL_NEXT(t, obj);
841 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
842 AVL_REINSERT(t, obj);
843 return (B_TRUE);
844 }
845
846 return (B_FALSE);
847 }
848
849 boolean_t
850 avl_update(avl_tree_t *t, void *obj)
851 {
852 void *neighbor;
853
854 neighbor = AVL_PREV(t, obj);
855 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) < 0)) {
856 AVL_REINSERT(t, obj);
857 return (B_TRUE);
858 }
859
860 neighbor = AVL_NEXT(t, obj);
861 if ((neighbor != NULL) && (t->avl_compar(obj, neighbor) > 0)) {
862 AVL_REINSERT(t, obj);
863 return (B_TRUE);
864 }
865
866 return (B_FALSE);
867 }
868
869 /*
870 * initialize a new AVL tree
871 */
872 void
873 avl_create(avl_tree_t *tree, int (*compar) (const void *, const void *),
874 size_t size, size_t offset)
875 {
876 ASSERT(tree);
877 ASSERT(compar);
878 ASSERT(size > 0);
879 ASSERT(size >= offset + sizeof (avl_node_t));
880 #ifdef _LP64
881 ASSERT((offset & 0x7) == 0);
882 #endif
883
884 tree->avl_compar = compar;
885 tree->avl_root = NULL;
886 tree->avl_numnodes = 0;
887 tree->avl_size = size;
888 tree->avl_offset = offset;
889 }
890
891 /*
892 * Delete a tree.
893 */
894 /* ARGSUSED */
895 void
896 avl_destroy(avl_tree_t *tree)
897 {
898 ASSERT(tree);
899 ASSERT(tree->avl_numnodes == 0);
900 ASSERT(tree->avl_root == NULL);
901 }
902
903
904 /*
905 * Return the number of nodes in an AVL tree.
906 */
907 ulong_t
908 avl_numnodes(avl_tree_t *tree)
909 {
910 ASSERT(tree);
911 return (tree->avl_numnodes);
912 }
913
914 boolean_t
915 avl_is_empty(avl_tree_t *tree)
916 {
917 ASSERT(tree);
918 return (tree->avl_numnodes == 0);
919 }
920
921 #define CHILDBIT (1L)
922
923 /*
924 * Post-order tree walk used to visit all tree nodes and destroy the tree
925 * in post order. This is used for destroying a tree w/o paying any cost
926 * for rebalancing it.
927 *
928 * example:
929 *
930 * void *cookie = NULL;
931 * my_data_t *node;
932 *
933 * while ((node = avl_destroy_nodes(tree, &cookie)) != NULL)
934 * free(node);
935 * avl_destroy(tree);
936 *
937 * The cookie is really an avl_node_t to the current node's parent and
938 * an indication of which child you looked at last.
939 *
940 * On input, a cookie value of CHILDBIT indicates the tree is done.
941 */
942 void *
943 avl_destroy_nodes(avl_tree_t *tree, void **cookie)
944 {
945 avl_node_t *node;
946 avl_node_t *parent;
947 int child;
948 void *first;
949 size_t off = tree->avl_offset;
950
951 /*
952 * Initial calls go to the first node or it's right descendant.
953 */
954 if (*cookie == NULL) {
955 first = avl_first(tree);
956
957 /*
958 * deal with an empty tree
959 */
960 if (first == NULL) {
961 *cookie = (void *)CHILDBIT;
962 return (NULL);
963 }
964
965 node = AVL_DATA2NODE(first, off);
966 parent = AVL_XPARENT(node);
967 goto check_right_side;
968 }
969
970 /*
971 * If there is no parent to return to we are done.
972 */
973 parent = (avl_node_t *)((uintptr_t)(*cookie) & ~CHILDBIT);
974 if (parent == NULL) {
975 if (tree->avl_root != NULL) {
976 ASSERT(tree->avl_numnodes == 1);
977 tree->avl_root = NULL;
978 tree->avl_numnodes = 0;
979 }
980 return (NULL);
981 }
982
983 /*
984 * Remove the child pointer we just visited from the parent and tree.
985 */
986 child = (uintptr_t)(*cookie) & CHILDBIT;
987 parent->avl_child[child] = NULL;
988 ASSERT(tree->avl_numnodes > 1);
989 --tree->avl_numnodes;
990
991 /*
992 * If we just did a right child or there isn't one, go up to parent.
993 */
994 if (child == 1 || parent->avl_child[1] == NULL) {
995 node = parent;
996 parent = AVL_XPARENT(parent);
997 goto done;
998 }
999
1000 /*
1001 * Do parent's right child, then leftmost descendent.
1002 */
1003 node = parent->avl_child[1];
1004 while (node->avl_child[0] != NULL) {
1005 parent = node;
1006 node = node->avl_child[0];
1007 }
1008
1009 /*
1010 * If here, we moved to a left child. It may have one
1011 * child on the right (when balance == +1).
1012 */
1013 check_right_side:
1014 if (node->avl_child[1] != NULL) {
1015 ASSERT(AVL_XBALANCE(node) == 1);
1016 parent = node;
1017 node = node->avl_child[1];
1018 ASSERT(node->avl_child[0] == NULL &&
1019 node->avl_child[1] == NULL);
1020 } else {
1021 ASSERT(AVL_XBALANCE(node) <= 0);
1022 }
1023
1024 done:
1025 if (parent == NULL) {
1026 *cookie = (void *)CHILDBIT;
1027 ASSERT(node == tree->avl_root);
1028 } else {
1029 *cookie = (void *)((uintptr_t)parent | AVL_XCHILD(node));
1030 }
1031
1032 return (AVL_NODE2DATA(node, off));
1033 }