]> git.proxmox.com Git - mirror_zfs.git/blob - zfs/lib/libdmu-ctl/zfs_dir.c
Initial Linux ZFS GIT Repo
[mirror_zfs.git] / zfs / lib / libdmu-ctl / zfs_dir.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #pragma ident "@(#)zfs_dir.c 1.25 08/04/27 SMI"
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vnode.h>
36 #include <sys/file.h>
37 #include <sys/mode.h>
38 #include <sys/kmem.h>
39 #include <sys/uio.h>
40 #include <sys/pathname.h>
41 #include <sys/cmn_err.h>
42 #include <sys/errno.h>
43 #include <sys/stat.h>
44 #include <sys/unistd.h>
45 #include <sys/sunddi.h>
46 #include <sys/random.h>
47 #include <sys/policy.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/fs/zfs.h>
51 #include "fs/fs_subr.h"
52 #include <sys/zap.h>
53 #include <sys/dmu.h>
54 #include <sys/atomic.h>
55 #include <sys/zfs_ctldir.h>
56 #include <sys/zfs_fuid.h>
57 #include <sys/dnlc.h>
58 #include <sys/extdirent.h>
59
60 /*
61 * zfs_match_find() is used by zfs_dirent_lock() to peform zap lookups
62 * of names after deciding which is the appropriate lookup interface.
63 */
64 static int
65 zfs_match_find(zfsvfs_t *zfsvfs, znode_t *dzp, char *name, boolean_t exact,
66 boolean_t update, int *deflags, pathname_t *rpnp, uint64_t *zoid)
67 {
68 int error;
69
70 if (zfsvfs->z_norm) {
71 matchtype_t mt = MT_FIRST;
72 boolean_t conflict = B_FALSE;
73 size_t bufsz = 0;
74 char *buf = NULL;
75
76 if (rpnp) {
77 buf = rpnp->pn_buf;
78 bufsz = rpnp->pn_bufsize;
79 }
80 if (exact)
81 mt = MT_EXACT;
82 /*
83 * In the non-mixed case we only expect there would ever
84 * be one match, but we need to use the normalizing lookup.
85 */
86 error = zap_lookup_norm(zfsvfs->z_os, dzp->z_id, name, 8, 1,
87 zoid, mt, buf, bufsz, &conflict);
88 if (!error && deflags)
89 *deflags = conflict ? ED_CASE_CONFLICT : 0;
90 } else {
91 error = zap_lookup(zfsvfs->z_os, dzp->z_id, name, 8, 1, zoid);
92 }
93 *zoid = ZFS_DIRENT_OBJ(*zoid);
94
95 if (error == ENOENT && update)
96 dnlc_update(ZTOV(dzp), name, DNLC_NO_VNODE);
97
98 return (error);
99 }
100
101 /*
102 * Lock a directory entry. A dirlock on <dzp, name> protects that name
103 * in dzp's directory zap object. As long as you hold a dirlock, you can
104 * assume two things: (1) dzp cannot be reaped, and (2) no other thread
105 * can change the zap entry for (i.e. link or unlink) this name.
106 *
107 * Input arguments:
108 * dzp - znode for directory
109 * name - name of entry to lock
110 * flag - ZNEW: if the entry already exists, fail with EEXIST.
111 * ZEXISTS: if the entry does not exist, fail with ENOENT.
112 * ZSHARED: allow concurrent access with other ZSHARED callers.
113 * ZXATTR: we want dzp's xattr directory
114 * ZCILOOK: On a mixed sensitivity file system,
115 * this lookup should be case-insensitive.
116 * ZCIEXACT: On a purely case-insensitive file system,
117 * this lookup should be case-sensitive.
118 * ZRENAMING: we are locking for renaming, force narrow locks
119 *
120 * Output arguments:
121 * zpp - pointer to the znode for the entry (NULL if there isn't one)
122 * dlpp - pointer to the dirlock for this entry (NULL on error)
123 * direntflags - (case-insensitive lookup only)
124 * flags if multiple case-sensitive matches exist in directory
125 * realpnp - (case-insensitive lookup only)
126 * actual name matched within the directory
127 *
128 * Return value: 0 on success or errno on failure.
129 *
130 * NOTE: Always checks for, and rejects, '.' and '..'.
131 * NOTE: For case-insensitive file systems we take wide locks (see below),
132 * but return znode pointers to a single match.
133 */
134 int
135 zfs_dirent_lock(zfs_dirlock_t **dlpp, znode_t *dzp, char *name, znode_t **zpp,
136 int flag, int *direntflags, pathname_t *realpnp)
137 {
138 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
139 zfs_dirlock_t *dl;
140 boolean_t update;
141 boolean_t exact;
142 uint64_t zoid;
143 vnode_t *vp = NULL;
144 int error = 0;
145 int cmpflags;
146
147 *zpp = NULL;
148 *dlpp = NULL;
149
150 /*
151 * Verify that we are not trying to lock '.', '..', or '.zfs'
152 */
153 if (name[0] == '.' &&
154 (name[1] == '\0' || (name[1] == '.' && name[2] == '\0')) ||
155 zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0)
156 return (EEXIST);
157
158 /*
159 * Case sensitivity and normalization preferences are set when
160 * the file system is created. These are stored in the
161 * zfsvfs->z_case and zfsvfs->z_norm fields. These choices
162 * affect what vnodes can be cached in the DNLC, how we
163 * perform zap lookups, and the "width" of our dirlocks.
164 *
165 * A normal dirlock locks a single name. Note that with
166 * normalization a name can be composed multiple ways, but
167 * when normalized, these names all compare equal. A wide
168 * dirlock locks multiple names. We need these when the file
169 * system is supporting mixed-mode access. It is sometimes
170 * necessary to lock all case permutations of file name at
171 * once so that simultaneous case-insensitive/case-sensitive
172 * behaves as rationally as possible.
173 */
174
175 /*
176 * Decide if exact matches should be requested when performing
177 * a zap lookup on file systems supporting case-insensitive
178 * access.
179 */
180 exact =
181 ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE) && (flag & ZCIEXACT)) ||
182 ((zfsvfs->z_case == ZFS_CASE_MIXED) && !(flag & ZCILOOK));
183
184 /*
185 * Only look in or update the DNLC if we are looking for the
186 * name on a file system that does not require normalization
187 * or case folding. We can also look there if we happen to be
188 * on a non-normalizing, mixed sensitivity file system IF we
189 * are looking for the exact name.
190 *
191 * Maybe can add TO-UPPERed version of name to dnlc in ci-only
192 * case for performance improvement?
193 */
194 update = !zfsvfs->z_norm ||
195 ((zfsvfs->z_case == ZFS_CASE_MIXED) &&
196 !(zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER) && !(flag & ZCILOOK));
197
198 /*
199 * ZRENAMING indicates we are in a situation where we should
200 * take narrow locks regardless of the file system's
201 * preferences for normalizing and case folding. This will
202 * prevent us deadlocking trying to grab the same wide lock
203 * twice if the two names happen to be case-insensitive
204 * matches.
205 */
206 if (flag & ZRENAMING)
207 cmpflags = 0;
208 else
209 cmpflags = zfsvfs->z_norm;
210
211 /*
212 * Wait until there are no locks on this name.
213 */
214 rw_enter(&dzp->z_name_lock, RW_READER);
215 mutex_enter(&dzp->z_lock);
216 for (;;) {
217 if (dzp->z_unlinked) {
218 mutex_exit(&dzp->z_lock);
219 rw_exit(&dzp->z_name_lock);
220 return (ENOENT);
221 }
222 for (dl = dzp->z_dirlocks; dl != NULL; dl = dl->dl_next) {
223 if ((u8_strcmp(name, dl->dl_name, 0, cmpflags,
224 U8_UNICODE_LATEST, &error) == 0) || error != 0)
225 break;
226 }
227 if (error != 0) {
228 mutex_exit(&dzp->z_lock);
229 rw_exit(&dzp->z_name_lock);
230 return (ENOENT);
231 }
232 if (dl == NULL) {
233 /*
234 * Allocate a new dirlock and add it to the list.
235 */
236 dl = kmem_alloc(sizeof (zfs_dirlock_t), KM_SLEEP);
237 cv_init(&dl->dl_cv, NULL, CV_DEFAULT, NULL);
238 dl->dl_name = name;
239 dl->dl_sharecnt = 0;
240 dl->dl_namesize = 0;
241 dl->dl_dzp = dzp;
242 dl->dl_next = dzp->z_dirlocks;
243 dzp->z_dirlocks = dl;
244 break;
245 }
246 if ((flag & ZSHARED) && dl->dl_sharecnt != 0)
247 break;
248 cv_wait(&dl->dl_cv, &dzp->z_lock);
249 }
250
251 if ((flag & ZSHARED) && ++dl->dl_sharecnt > 1 && dl->dl_namesize == 0) {
252 /*
253 * We're the second shared reference to dl. Make a copy of
254 * dl_name in case the first thread goes away before we do.
255 * Note that we initialize the new name before storing its
256 * pointer into dl_name, because the first thread may load
257 * dl->dl_name at any time. He'll either see the old value,
258 * which is his, or the new shared copy; either is OK.
259 */
260 dl->dl_namesize = strlen(dl->dl_name) + 1;
261 name = kmem_alloc(dl->dl_namesize, KM_SLEEP);
262 bcopy(dl->dl_name, name, dl->dl_namesize);
263 dl->dl_name = name;
264 }
265
266 mutex_exit(&dzp->z_lock);
267
268 /*
269 * We have a dirlock on the name. (Note that it is the dirlock,
270 * not the dzp's z_lock, that protects the name in the zap object.)
271 * See if there's an object by this name; if so, put a hold on it.
272 */
273 if (flag & ZXATTR) {
274 zoid = dzp->z_phys->zp_xattr;
275 error = (zoid == 0 ? ENOENT : 0);
276 } else {
277 if (update)
278 vp = dnlc_lookup(ZTOV(dzp), name);
279 if (vp == DNLC_NO_VNODE) {
280 VN_RELE(vp);
281 error = ENOENT;
282 } else if (vp) {
283 if (flag & ZNEW) {
284 zfs_dirent_unlock(dl);
285 VN_RELE(vp);
286 return (EEXIST);
287 }
288 *dlpp = dl;
289 *zpp = VTOZ(vp);
290 return (0);
291 } else {
292 error = zfs_match_find(zfsvfs, dzp, name, exact,
293 update, direntflags, realpnp, &zoid);
294 }
295 }
296 if (error) {
297 if (error != ENOENT || (flag & ZEXISTS)) {
298 zfs_dirent_unlock(dl);
299 return (error);
300 }
301 } else {
302 if (flag & ZNEW) {
303 zfs_dirent_unlock(dl);
304 return (EEXIST);
305 }
306 error = zfs_zget(zfsvfs, zoid, zpp);
307 if (error) {
308 zfs_dirent_unlock(dl);
309 return (error);
310 }
311 if (!(flag & ZXATTR) && update)
312 dnlc_update(ZTOV(dzp), name, ZTOV(*zpp));
313 }
314
315 *dlpp = dl;
316
317 return (0);
318 }
319
320 /*
321 * Unlock this directory entry and wake anyone who was waiting for it.
322 */
323 void
324 zfs_dirent_unlock(zfs_dirlock_t *dl)
325 {
326 znode_t *dzp = dl->dl_dzp;
327 zfs_dirlock_t **prev_dl, *cur_dl;
328
329 mutex_enter(&dzp->z_lock);
330 rw_exit(&dzp->z_name_lock);
331 if (dl->dl_sharecnt > 1) {
332 dl->dl_sharecnt--;
333 mutex_exit(&dzp->z_lock);
334 return;
335 }
336 prev_dl = &dzp->z_dirlocks;
337 while ((cur_dl = *prev_dl) != dl)
338 prev_dl = &cur_dl->dl_next;
339 *prev_dl = dl->dl_next;
340 cv_broadcast(&dl->dl_cv);
341 mutex_exit(&dzp->z_lock);
342
343 if (dl->dl_namesize != 0)
344 kmem_free(dl->dl_name, dl->dl_namesize);
345 cv_destroy(&dl->dl_cv);
346 kmem_free(dl, sizeof (*dl));
347 }
348
349 /*
350 * Look up an entry in a directory.
351 *
352 * NOTE: '.' and '..' are handled as special cases because
353 * no directory entries are actually stored for them. If this is
354 * the root of a filesystem, then '.zfs' is also treated as a
355 * special pseudo-directory.
356 */
357 int
358 zfs_dirlook(znode_t *dzp, char *name, vnode_t **vpp, int flags,
359 int *deflg, pathname_t *rpnp)
360 {
361 zfs_dirlock_t *dl;
362 znode_t *zp;
363 int error = 0;
364
365 if (name[0] == 0 || (name[0] == '.' && name[1] == 0)) {
366 *vpp = ZTOV(dzp);
367 VN_HOLD(*vpp);
368 } else if (name[0] == '.' && name[1] == '.' && name[2] == 0) {
369 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
370 /*
371 * If we are a snapshot mounted under .zfs, return
372 * the vp for the snapshot directory.
373 */
374 if (dzp->z_phys->zp_parent == dzp->z_id &&
375 zfsvfs->z_parent != zfsvfs) {
376 error = zfsctl_root_lookup(zfsvfs->z_parent->z_ctldir,
377 "snapshot", vpp, NULL, 0, NULL, kcred,
378 NULL, NULL, NULL);
379 return (error);
380 }
381 rw_enter(&dzp->z_parent_lock, RW_READER);
382 error = zfs_zget(zfsvfs, dzp->z_phys->zp_parent, &zp);
383 if (error == 0)
384 *vpp = ZTOV(zp);
385 rw_exit(&dzp->z_parent_lock);
386 } else if (zfs_has_ctldir(dzp) && strcmp(name, ZFS_CTLDIR_NAME) == 0) {
387 *vpp = zfsctl_root(dzp);
388 } else {
389 int zf;
390
391 zf = ZEXISTS | ZSHARED;
392 if (flags & FIGNORECASE)
393 zf |= ZCILOOK;
394
395 error = zfs_dirent_lock(&dl, dzp, name, &zp, zf, deflg, rpnp);
396 if (error == 0) {
397 *vpp = ZTOV(zp);
398 zfs_dirent_unlock(dl);
399 dzp->z_zn_prefetch = B_TRUE; /* enable prefetching */
400 }
401 rpnp = NULL;
402 }
403
404 if ((flags & FIGNORECASE) && rpnp && !error)
405 (void) strlcpy(rpnp->pn_buf, name, rpnp->pn_bufsize);
406
407 return (error);
408 }
409
410 static char *
411 zfs_unlinked_hexname(char namebuf[17], uint64_t x)
412 {
413 char *name = &namebuf[16];
414 const char digits[16] = "0123456789abcdef";
415
416 *name = '\0';
417 do {
418 *--name = digits[x & 0xf];
419 x >>= 4;
420 } while (x != 0);
421
422 return (name);
423 }
424
425 /*
426 * unlinked Set (formerly known as the "delete queue") Error Handling
427 *
428 * When dealing with the unlinked set, we dmu_tx_hold_zap(), but we
429 * don't specify the name of the entry that we will be manipulating. We
430 * also fib and say that we won't be adding any new entries to the
431 * unlinked set, even though we might (this is to lower the minimum file
432 * size that can be deleted in a full filesystem). So on the small
433 * chance that the nlink list is using a fat zap (ie. has more than
434 * 2000 entries), we *may* not pre-read a block that's needed.
435 * Therefore it is remotely possible for some of the assertions
436 * regarding the unlinked set below to fail due to i/o error. On a
437 * nondebug system, this will result in the space being leaked.
438 */
439 void
440 zfs_unlinked_add(znode_t *zp, dmu_tx_t *tx)
441 {
442 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
443 char obj_name[17];
444 int error;
445
446 ASSERT(zp->z_unlinked);
447 ASSERT3U(zp->z_phys->zp_links, ==, 0);
448
449 error = zap_add(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
450 zfs_unlinked_hexname(obj_name, zp->z_id), 8, 1, &zp->z_id, tx);
451 ASSERT3U(error, ==, 0);
452 }
453
454 /*
455 * Clean up any znodes that had no links when we either crashed or
456 * (force) umounted the file system.
457 */
458 void
459 zfs_unlinked_drain(zfsvfs_t *zfsvfs)
460 {
461 zap_cursor_t zc;
462 zap_attribute_t zap;
463 dmu_object_info_t doi;
464 znode_t *zp;
465 int error;
466
467 /*
468 * Interate over the contents of the unlinked set.
469 */
470 for (zap_cursor_init(&zc, zfsvfs->z_os, zfsvfs->z_unlinkedobj);
471 zap_cursor_retrieve(&zc, &zap) == 0;
472 zap_cursor_advance(&zc)) {
473
474 /*
475 * See what kind of object we have in list
476 */
477
478 error = dmu_object_info(zfsvfs->z_os,
479 zap.za_first_integer, &doi);
480 if (error != 0)
481 continue;
482
483 ASSERT((doi.doi_type == DMU_OT_PLAIN_FILE_CONTENTS) ||
484 (doi.doi_type == DMU_OT_DIRECTORY_CONTENTS));
485 /*
486 * We need to re-mark these list entries for deletion,
487 * so we pull them back into core and set zp->z_unlinked.
488 */
489 error = zfs_zget(zfsvfs, zap.za_first_integer, &zp);
490
491 /*
492 * We may pick up znodes that are already marked for deletion.
493 * This could happen during the purge of an extended attribute
494 * directory. All we need to do is skip over them, since they
495 * are already in the system marked z_unlinked.
496 */
497 if (error != 0)
498 continue;
499
500 zp->z_unlinked = B_TRUE;
501 VN_RELE(ZTOV(zp));
502 }
503 zap_cursor_fini(&zc);
504 }
505
506 /*
507 * Delete the entire contents of a directory. Return a count
508 * of the number of entries that could not be deleted. If we encounter
509 * an error, return a count of at least one so that the directory stays
510 * in the unlinked set.
511 *
512 * NOTE: this function assumes that the directory is inactive,
513 * so there is no need to lock its entries before deletion.
514 * Also, it assumes the directory contents is *only* regular
515 * files.
516 */
517 static int
518 zfs_purgedir(znode_t *dzp)
519 {
520 zap_cursor_t zc;
521 zap_attribute_t zap;
522 znode_t *xzp;
523 dmu_tx_t *tx;
524 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
525 zfs_dirlock_t dl;
526 int skipped = 0;
527 int error;
528
529 for (zap_cursor_init(&zc, zfsvfs->z_os, dzp->z_id);
530 (error = zap_cursor_retrieve(&zc, &zap)) == 0;
531 zap_cursor_advance(&zc)) {
532 error = zfs_zget(zfsvfs,
533 ZFS_DIRENT_OBJ(zap.za_first_integer), &xzp);
534 if (error) {
535 skipped += 1;
536 continue;
537 }
538
539 ASSERT((ZTOV(xzp)->v_type == VREG) ||
540 (ZTOV(xzp)->v_type == VLNK));
541
542 tx = dmu_tx_create(zfsvfs->z_os);
543 dmu_tx_hold_bonus(tx, dzp->z_id);
544 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, zap.za_name);
545 dmu_tx_hold_bonus(tx, xzp->z_id);
546 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
547 error = dmu_tx_assign(tx, TXG_WAIT);
548 if (error) {
549 dmu_tx_abort(tx);
550 VN_RELE(ZTOV(xzp));
551 skipped += 1;
552 continue;
553 }
554 bzero(&dl, sizeof (dl));
555 dl.dl_dzp = dzp;
556 dl.dl_name = zap.za_name;
557
558 error = zfs_link_destroy(&dl, xzp, tx, 0, NULL);
559 if (error)
560 skipped += 1;
561 dmu_tx_commit(tx);
562
563 VN_RELE(ZTOV(xzp));
564 }
565 zap_cursor_fini(&zc);
566 if (error != ENOENT)
567 skipped += 1;
568 return (skipped);
569 }
570
571 void
572 zfs_rmnode(znode_t *zp)
573 {
574 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
575 objset_t *os = zfsvfs->z_os;
576 znode_t *xzp = NULL;
577 char obj_name[17];
578 dmu_tx_t *tx;
579 uint64_t acl_obj;
580 int error;
581
582 ASSERT(ZTOV(zp)->v_count == 0);
583 ASSERT(zp->z_phys->zp_links == 0);
584
585 /*
586 * If this is an attribute directory, purge its contents.
587 */
588 if (ZTOV(zp)->v_type == VDIR && (zp->z_phys->zp_flags & ZFS_XATTR)) {
589 if (zfs_purgedir(zp) != 0) {
590 /*
591 * Not enough space to delete some xattrs.
592 * Leave it on the unlinked set.
593 */
594 zfs_znode_dmu_fini(zp);
595 zfs_znode_free(zp);
596 return;
597 }
598 }
599
600 /*
601 * If the file has extended attributes, we're going to unlink
602 * the xattr dir.
603 */
604 if (zp->z_phys->zp_xattr) {
605 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp);
606 ASSERT(error == 0);
607 }
608
609 acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj;
610
611 /*
612 * Set up the transaction.
613 */
614 tx = dmu_tx_create(os);
615 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END);
616 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
617 if (xzp) {
618 dmu_tx_hold_bonus(tx, xzp->z_id);
619 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, TRUE, NULL);
620 }
621 if (acl_obj)
622 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
623 error = dmu_tx_assign(tx, TXG_WAIT);
624 if (error) {
625 /*
626 * Not enough space to delete the file. Leave it in the
627 * unlinked set, leaking it until the fs is remounted (at
628 * which point we'll call zfs_unlinked_drain() to process it).
629 */
630 dmu_tx_abort(tx);
631 zfs_znode_dmu_fini(zp);
632 zfs_znode_free(zp);
633 goto out;
634 }
635
636 if (xzp) {
637 dmu_buf_will_dirty(xzp->z_dbuf, tx);
638 mutex_enter(&xzp->z_lock);
639 xzp->z_unlinked = B_TRUE; /* mark xzp for deletion */
640 xzp->z_phys->zp_links = 0; /* no more links to it */
641 mutex_exit(&xzp->z_lock);
642 zfs_unlinked_add(xzp, tx);
643 }
644
645 /* Remove this znode from the unlinked set */
646 error = zap_remove(os, zfsvfs->z_unlinkedobj,
647 zfs_unlinked_hexname(obj_name, zp->z_id), tx);
648 ASSERT3U(error, ==, 0);
649
650 zfs_znode_delete(zp, tx);
651
652 dmu_tx_commit(tx);
653 out:
654 if (xzp)
655 VN_RELE(ZTOV(xzp));
656 }
657
658 static uint64_t
659 zfs_dirent(znode_t *zp)
660 {
661 uint64_t de = zp->z_id;
662 if (zp->z_zfsvfs->z_version >= ZPL_VERSION_DIRENT_TYPE)
663 de |= IFTODT((zp)->z_phys->zp_mode) << 60;
664 return (de);
665 }
666
667 /*
668 * Link zp into dl. Can only fail if zp has been unlinked.
669 */
670 int
671 zfs_link_create(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag)
672 {
673 znode_t *dzp = dl->dl_dzp;
674 vnode_t *vp = ZTOV(zp);
675 uint64_t value;
676 int zp_is_dir = (vp->v_type == VDIR);
677 int error;
678
679 dmu_buf_will_dirty(zp->z_dbuf, tx);
680 mutex_enter(&zp->z_lock);
681
682 if (!(flag & ZRENAMING)) {
683 if (zp->z_unlinked) { /* no new links to unlinked zp */
684 ASSERT(!(flag & (ZNEW | ZEXISTS)));
685 mutex_exit(&zp->z_lock);
686 return (ENOENT);
687 }
688 zp->z_phys->zp_links++;
689 }
690 zp->z_phys->zp_parent = dzp->z_id; /* dzp is now zp's parent */
691
692 if (!(flag & ZNEW))
693 zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
694 mutex_exit(&zp->z_lock);
695
696 dmu_buf_will_dirty(dzp->z_dbuf, tx);
697 mutex_enter(&dzp->z_lock);
698 dzp->z_phys->zp_size++; /* one dirent added */
699 dzp->z_phys->zp_links += zp_is_dir; /* ".." link from zp */
700 zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx);
701 mutex_exit(&dzp->z_lock);
702
703 value = zfs_dirent(zp);
704 error = zap_add(zp->z_zfsvfs->z_os, dzp->z_id, dl->dl_name,
705 8, 1, &value, tx);
706 ASSERT(error == 0);
707
708 dnlc_update(ZTOV(dzp), dl->dl_name, vp);
709
710 return (0);
711 }
712
713 /*
714 * Unlink zp from dl, and mark zp for deletion if this was the last link.
715 * Can fail if zp is a mount point (EBUSY) or a non-empty directory (EEXIST).
716 * If 'unlinkedp' is NULL, we put unlinked znodes on the unlinked list.
717 * If it's non-NULL, we use it to indicate whether the znode needs deletion,
718 * and it's the caller's job to do it.
719 */
720 int
721 zfs_link_destroy(zfs_dirlock_t *dl, znode_t *zp, dmu_tx_t *tx, int flag,
722 boolean_t *unlinkedp)
723 {
724 znode_t *dzp = dl->dl_dzp;
725 vnode_t *vp = ZTOV(zp);
726 int zp_is_dir = (vp->v_type == VDIR);
727 boolean_t unlinked = B_FALSE;
728 int error;
729
730 dnlc_remove(ZTOV(dzp), dl->dl_name);
731
732 if (!(flag & ZRENAMING)) {
733 dmu_buf_will_dirty(zp->z_dbuf, tx);
734
735 if (vn_vfswlock(vp)) /* prevent new mounts on zp */
736 return (EBUSY);
737
738 if (vn_ismntpt(vp)) { /* don't remove mount point */
739 vn_vfsunlock(vp);
740 return (EBUSY);
741 }
742
743 mutex_enter(&zp->z_lock);
744 if (zp_is_dir && !zfs_dirempty(zp)) { /* dir not empty */
745 mutex_exit(&zp->z_lock);
746 vn_vfsunlock(vp);
747 return (EEXIST);
748 }
749 if (zp->z_phys->zp_links <= zp_is_dir) {
750 zfs_panic_recover("zfs: link count on %s is %u, "
751 "should be at least %u",
752 zp->z_vnode->v_path ? zp->z_vnode->v_path :
753 "<unknown>", (int)zp->z_phys->zp_links,
754 zp_is_dir + 1);
755 zp->z_phys->zp_links = zp_is_dir + 1;
756 }
757 if (--zp->z_phys->zp_links == zp_is_dir) {
758 zp->z_unlinked = B_TRUE;
759 zp->z_phys->zp_links = 0;
760 unlinked = B_TRUE;
761 } else {
762 zfs_time_stamper_locked(zp, STATE_CHANGED, tx);
763 }
764 mutex_exit(&zp->z_lock);
765 vn_vfsunlock(vp);
766 }
767
768 dmu_buf_will_dirty(dzp->z_dbuf, tx);
769 mutex_enter(&dzp->z_lock);
770 dzp->z_phys->zp_size--; /* one dirent removed */
771 dzp->z_phys->zp_links -= zp_is_dir; /* ".." link from zp */
772 zfs_time_stamper_locked(dzp, CONTENT_MODIFIED, tx);
773 mutex_exit(&dzp->z_lock);
774
775 if (zp->z_zfsvfs->z_norm) {
776 if (((zp->z_zfsvfs->z_case == ZFS_CASE_INSENSITIVE) &&
777 (flag & ZCIEXACT)) ||
778 ((zp->z_zfsvfs->z_case == ZFS_CASE_MIXED) &&
779 !(flag & ZCILOOK)))
780 error = zap_remove_norm(zp->z_zfsvfs->z_os,
781 dzp->z_id, dl->dl_name, MT_EXACT, tx);
782 else
783 error = zap_remove_norm(zp->z_zfsvfs->z_os,
784 dzp->z_id, dl->dl_name, MT_FIRST, tx);
785 } else {
786 error = zap_remove(zp->z_zfsvfs->z_os,
787 dzp->z_id, dl->dl_name, tx);
788 }
789 ASSERT(error == 0);
790
791 if (unlinkedp != NULL)
792 *unlinkedp = unlinked;
793 else if (unlinked)
794 zfs_unlinked_add(zp, tx);
795
796 return (0);
797 }
798
799 /*
800 * Indicate whether the directory is empty. Works with or without z_lock
801 * held, but can only be consider a hint in the latter case. Returns true
802 * if only "." and ".." remain and there's no work in progress.
803 */
804 boolean_t
805 zfs_dirempty(znode_t *dzp)
806 {
807 return (dzp->z_phys->zp_size == 2 && dzp->z_dirlocks == 0);
808 }
809
810 int
811 zfs_make_xattrdir(znode_t *zp, vattr_t *vap, vnode_t **xvpp, cred_t *cr)
812 {
813 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
814 znode_t *xzp;
815 dmu_tx_t *tx;
816 int error;
817 zfs_fuid_info_t *fuidp = NULL;
818
819 *xvpp = NULL;
820
821 if (error = zfs_zaccess(zp, ACE_WRITE_NAMED_ATTRS, 0, B_FALSE, cr))
822 return (error);
823
824 tx = dmu_tx_create(zfsvfs->z_os);
825 dmu_tx_hold_bonus(tx, zp->z_id);
826 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
827 if (IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr))) {
828 if (zfsvfs->z_fuid_obj == 0) {
829 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
830 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
831 FUID_SIZE_ESTIMATE(zfsvfs));
832 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL);
833 } else {
834 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj);
835 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0,
836 FUID_SIZE_ESTIMATE(zfsvfs));
837 }
838 }
839 error = dmu_tx_assign(tx, zfsvfs->z_assign);
840 if (error) {
841 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT)
842 dmu_tx_wait(tx);
843 dmu_tx_abort(tx);
844 return (error);
845 }
846 zfs_mknode(zp, vap, tx, cr, IS_XATTR, &xzp, 0, NULL, &fuidp);
847 ASSERT(xzp->z_phys->zp_parent == zp->z_id);
848 dmu_buf_will_dirty(zp->z_dbuf, tx);
849 zp->z_phys->zp_xattr = xzp->z_id;
850
851 (void) zfs_log_create(zfsvfs->z_log, tx, TX_MKXATTR, zp,
852 xzp, "", NULL, fuidp, vap);
853 if (fuidp)
854 zfs_fuid_info_free(fuidp);
855 dmu_tx_commit(tx);
856
857 *xvpp = ZTOV(xzp);
858
859 return (0);
860 }
861
862 /*
863 * Return a znode for the extended attribute directory for zp.
864 * ** If the directory does not already exist, it is created **
865 *
866 * IN: zp - znode to obtain attribute directory from
867 * cr - credentials of caller
868 * flags - flags from the VOP_LOOKUP call
869 *
870 * OUT: xzpp - pointer to extended attribute znode
871 *
872 * RETURN: 0 on success
873 * error number on failure
874 */
875 int
876 zfs_get_xattrdir(znode_t *zp, vnode_t **xvpp, cred_t *cr, int flags)
877 {
878 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
879 znode_t *xzp;
880 zfs_dirlock_t *dl;
881 vattr_t va;
882 int error;
883 top:
884 error = zfs_dirent_lock(&dl, zp, "", &xzp, ZXATTR, NULL, NULL);
885 if (error)
886 return (error);
887
888 if (xzp != NULL) {
889 *xvpp = ZTOV(xzp);
890 zfs_dirent_unlock(dl);
891 return (0);
892 }
893
894 ASSERT(zp->z_phys->zp_xattr == 0);
895
896 if (!(flags & CREATE_XATTR_DIR)) {
897 zfs_dirent_unlock(dl);
898 return (ENOENT);
899 }
900
901 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
902 zfs_dirent_unlock(dl);
903 return (EROFS);
904 }
905
906 /*
907 * The ability to 'create' files in an attribute
908 * directory comes from the write_xattr permission on the base file.
909 *
910 * The ability to 'search' an attribute directory requires
911 * read_xattr permission on the base file.
912 *
913 * Once in a directory the ability to read/write attributes
914 * is controlled by the permissions on the attribute file.
915 */
916 va.va_mask = AT_TYPE | AT_MODE | AT_UID | AT_GID;
917 va.va_type = VDIR;
918 va.va_mode = S_IFDIR | S_ISVTX | 0777;
919 zfs_fuid_map_ids(zp, cr, &va.va_uid, &va.va_gid);
920
921 error = zfs_make_xattrdir(zp, &va, xvpp, cr);
922 zfs_dirent_unlock(dl);
923
924 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) {
925 /* NB: we already did dmu_tx_wait() if necessary */
926 goto top;
927 }
928
929 return (error);
930 }
931
932 /*
933 * Decide whether it is okay to remove within a sticky directory.
934 *
935 * In sticky directories, write access is not sufficient;
936 * you can remove entries from a directory only if:
937 *
938 * you own the directory,
939 * you own the entry,
940 * the entry is a plain file and you have write access,
941 * or you are privileged (checked in secpolicy...).
942 *
943 * The function returns 0 if remove access is granted.
944 */
945 int
946 zfs_sticky_remove_access(znode_t *zdp, znode_t *zp, cred_t *cr)
947 {
948 uid_t uid;
949 uid_t downer;
950 uid_t fowner;
951 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
952
953 if (zdp->z_zfsvfs->z_assign >= TXG_INITIAL) /* ZIL replay */
954 return (0);
955
956 if ((zdp->z_phys->zp_mode & S_ISVTX) == 0)
957 return (0);
958
959 downer = zfs_fuid_map_id(zfsvfs, zdp->z_phys->zp_uid, cr, ZFS_OWNER);
960 fowner = zfs_fuid_map_id(zfsvfs, zp->z_phys->zp_uid, cr, ZFS_OWNER);
961
962 if ((uid = crgetuid(cr)) == downer || uid == fowner ||
963 (ZTOV(zp)->v_type == VREG &&
964 zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr) == 0))
965 return (0);
966 else
967 return (secpolicy_vnode_remove(cr));
968 }