]> git.proxmox.com Git - mirror_zfs-debian.git/blob - zfs/lib/libdmu-ctl/zfs_fuid.c
Remove stray stub kernel files which should be brought in my linux-kernel-module...
[mirror_zfs-debian.git] / zfs / lib / libdmu-ctl / zfs_fuid.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #pragma ident "@(#)zfs_fuid.c 1.5 08/01/31 SMI"
27
28 #include <sys/zfs_context.h>
29 #include <sys/sunddi.h>
30 #include <sys/dmu.h>
31 #include <sys/avl.h>
32 #include <sys/zap.h>
33 #include <sys/refcount.h>
34 #include <sys/nvpair.h>
35 #ifdef _KERNEL
36 #include <sys/kidmap.h>
37 #include <sys/sid.h>
38 #include <sys/zfs_vfsops.h>
39 #include <sys/zfs_znode.h>
40 #endif
41 #include <sys/zfs_fuid.h>
42
43 /*
44 * FUID Domain table(s).
45 *
46 * The FUID table is stored as a packed nvlist of an array
47 * of nvlists which contain an index, domain string and offset
48 *
49 * During file system initialization the nvlist(s) are read and
50 * two AVL trees are created. One tree is keyed by the index number
51 * and the other by the domain string. Nodes are never removed from
52 * trees, but new entries may be added. If a new entry is added then the
53 * on-disk packed nvlist will also be updated.
54 */
55
56 #define FUID_IDX "fuid_idx"
57 #define FUID_DOMAIN "fuid_domain"
58 #define FUID_OFFSET "fuid_offset"
59 #define FUID_NVP_ARRAY "fuid_nvlist"
60
61 typedef struct fuid_domain {
62 avl_node_t f_domnode;
63 avl_node_t f_idxnode;
64 ksiddomain_t *f_ksid;
65 uint64_t f_idx;
66 } fuid_domain_t;
67
68 /*
69 * Compare two indexes.
70 */
71 static int
72 idx_compare(const void *arg1, const void *arg2)
73 {
74 const fuid_domain_t *node1 = arg1;
75 const fuid_domain_t *node2 = arg2;
76
77 if (node1->f_idx < node2->f_idx)
78 return (-1);
79 else if (node1->f_idx > node2->f_idx)
80 return (1);
81 return (0);
82 }
83
84 /*
85 * Compare two domain strings.
86 */
87 static int
88 domain_compare(const void *arg1, const void *arg2)
89 {
90 const fuid_domain_t *node1 = arg1;
91 const fuid_domain_t *node2 = arg2;
92 int val;
93
94 val = strcmp(node1->f_ksid->kd_name, node2->f_ksid->kd_name);
95 if (val == 0)
96 return (0);
97 return (val > 0 ? 1 : -1);
98 }
99
100 /*
101 * load initial fuid domain and idx trees. This function is used by
102 * both the kernel and zdb.
103 */
104 uint64_t
105 zfs_fuid_table_load(objset_t *os, uint64_t fuid_obj, avl_tree_t *idx_tree,
106 avl_tree_t *domain_tree)
107 {
108 dmu_buf_t *db;
109 uint64_t fuid_size;
110
111 avl_create(idx_tree, idx_compare,
112 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_idxnode));
113 avl_create(domain_tree, domain_compare,
114 sizeof (fuid_domain_t), offsetof(fuid_domain_t, f_domnode));
115
116 VERIFY(0 == dmu_bonus_hold(os, fuid_obj, FTAG, &db));
117 fuid_size = *(uint64_t *)db->db_data;
118 dmu_buf_rele(db, FTAG);
119
120 if (fuid_size) {
121 nvlist_t **fuidnvp;
122 nvlist_t *nvp = NULL;
123 uint_t count;
124 char *packed;
125 int i;
126
127 packed = kmem_alloc(fuid_size, KM_SLEEP);
128 VERIFY(dmu_read(os, fuid_obj, 0, fuid_size, packed) == 0);
129 VERIFY(nvlist_unpack(packed, fuid_size,
130 &nvp, 0) == 0);
131 VERIFY(nvlist_lookup_nvlist_array(nvp, FUID_NVP_ARRAY,
132 &fuidnvp, &count) == 0);
133
134 for (i = 0; i != count; i++) {
135 fuid_domain_t *domnode;
136 char *domain;
137 uint64_t idx;
138
139 VERIFY(nvlist_lookup_string(fuidnvp[i], FUID_DOMAIN,
140 &domain) == 0);
141 VERIFY(nvlist_lookup_uint64(fuidnvp[i], FUID_IDX,
142 &idx) == 0);
143
144 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
145
146 domnode->f_idx = idx;
147 domnode->f_ksid = ksid_lookupdomain(domain);
148 avl_add(idx_tree, domnode);
149 avl_add(domain_tree, domnode);
150 }
151 nvlist_free(nvp);
152 kmem_free(packed, fuid_size);
153 }
154 return (fuid_size);
155 }
156
157 void
158 zfs_fuid_table_destroy(avl_tree_t *idx_tree, avl_tree_t *domain_tree)
159 {
160 fuid_domain_t *domnode;
161 void *cookie;
162
163 cookie = NULL;
164 while (domnode = avl_destroy_nodes(domain_tree, &cookie))
165 ksiddomain_rele(domnode->f_ksid);
166
167 avl_destroy(domain_tree);
168 cookie = NULL;
169 while (domnode = avl_destroy_nodes(idx_tree, &cookie))
170 kmem_free(domnode, sizeof (fuid_domain_t));
171 avl_destroy(idx_tree);
172 }
173
174 char *
175 zfs_fuid_idx_domain(avl_tree_t *idx_tree, uint32_t idx)
176 {
177 fuid_domain_t searchnode, *findnode;
178 avl_index_t loc;
179
180 searchnode.f_idx = idx;
181
182 findnode = avl_find(idx_tree, &searchnode, &loc);
183
184 return (findnode->f_ksid->kd_name);
185 }
186
187 #ifdef _KERNEL
188 /*
189 * Load the fuid table(s) into memory.
190 */
191 static void
192 zfs_fuid_init(zfsvfs_t *zfsvfs, dmu_tx_t *tx)
193 {
194 int error = 0;
195
196 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
197
198 if (zfsvfs->z_fuid_loaded) {
199 rw_exit(&zfsvfs->z_fuid_lock);
200 return;
201 }
202
203 if (zfsvfs->z_fuid_obj == 0) {
204
205 /* first make sure we need to allocate object */
206
207 error = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
208 ZFS_FUID_TABLES, 8, 1, &zfsvfs->z_fuid_obj);
209 if (error == ENOENT && tx != NULL) {
210 zfsvfs->z_fuid_obj = dmu_object_alloc(zfsvfs->z_os,
211 DMU_OT_FUID, 1 << 14, DMU_OT_FUID_SIZE,
212 sizeof (uint64_t), tx);
213 VERIFY(zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
214 ZFS_FUID_TABLES, sizeof (uint64_t), 1,
215 &zfsvfs->z_fuid_obj, tx) == 0);
216 }
217 }
218
219 zfsvfs->z_fuid_size = zfs_fuid_table_load(zfsvfs->z_os,
220 zfsvfs->z_fuid_obj, &zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
221
222 zfsvfs->z_fuid_loaded = B_TRUE;
223 rw_exit(&zfsvfs->z_fuid_lock);
224 }
225
226 /*
227 * Query domain table for a given domain.
228 *
229 * If domain isn't found it is added to AVL trees and
230 * the results are pushed out to disk.
231 */
232 int
233 zfs_fuid_find_by_domain(zfsvfs_t *zfsvfs, const char *domain, char **retdomain,
234 dmu_tx_t *tx)
235 {
236 fuid_domain_t searchnode, *findnode;
237 avl_index_t loc;
238
239 /*
240 * If the dummy "nobody" domain then return an index of 0
241 * to cause the created FUID to be a standard POSIX id
242 * for the user nobody.
243 */
244 if (domain[0] == '\0') {
245 *retdomain = "";
246 return (0);
247 }
248
249 searchnode.f_ksid = ksid_lookupdomain(domain);
250 if (retdomain) {
251 *retdomain = searchnode.f_ksid->kd_name;
252 }
253 if (!zfsvfs->z_fuid_loaded)
254 zfs_fuid_init(zfsvfs, tx);
255
256 rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
257 findnode = avl_find(&zfsvfs->z_fuid_domain, &searchnode, &loc);
258 rw_exit(&zfsvfs->z_fuid_lock);
259
260 if (findnode) {
261 ksiddomain_rele(searchnode.f_ksid);
262 return (findnode->f_idx);
263 } else {
264 fuid_domain_t *domnode;
265 nvlist_t *nvp;
266 nvlist_t **fuids;
267 uint64_t retidx;
268 size_t nvsize = 0;
269 char *packed;
270 dmu_buf_t *db;
271 int i = 0;
272
273 domnode = kmem_alloc(sizeof (fuid_domain_t), KM_SLEEP);
274 domnode->f_ksid = searchnode.f_ksid;
275
276 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
277 retidx = domnode->f_idx = avl_numnodes(&zfsvfs->z_fuid_idx) + 1;
278
279 avl_add(&zfsvfs->z_fuid_domain, domnode);
280 avl_add(&zfsvfs->z_fuid_idx, domnode);
281 /*
282 * Now resync the on-disk nvlist.
283 */
284 VERIFY(nvlist_alloc(&nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
285
286 domnode = avl_first(&zfsvfs->z_fuid_domain);
287 fuids = kmem_alloc(retidx * sizeof (void *), KM_SLEEP);
288 while (domnode) {
289 VERIFY(nvlist_alloc(&fuids[i],
290 NV_UNIQUE_NAME, KM_SLEEP) == 0);
291 VERIFY(nvlist_add_uint64(fuids[i], FUID_IDX,
292 domnode->f_idx) == 0);
293 VERIFY(nvlist_add_uint64(fuids[i],
294 FUID_OFFSET, 0) == 0);
295 VERIFY(nvlist_add_string(fuids[i++], FUID_DOMAIN,
296 domnode->f_ksid->kd_name) == 0);
297 domnode = AVL_NEXT(&zfsvfs->z_fuid_domain, domnode);
298 }
299 VERIFY(nvlist_add_nvlist_array(nvp, FUID_NVP_ARRAY,
300 fuids, retidx) == 0);
301 for (i = 0; i != retidx; i++)
302 nvlist_free(fuids[i]);
303 kmem_free(fuids, retidx * sizeof (void *));
304 VERIFY(nvlist_size(nvp, &nvsize, NV_ENCODE_XDR) == 0);
305 packed = kmem_alloc(nvsize, KM_SLEEP);
306 VERIFY(nvlist_pack(nvp, &packed, &nvsize,
307 NV_ENCODE_XDR, KM_SLEEP) == 0);
308 nvlist_free(nvp);
309 zfsvfs->z_fuid_size = nvsize;
310 dmu_write(zfsvfs->z_os, zfsvfs->z_fuid_obj, 0,
311 zfsvfs->z_fuid_size, packed, tx);
312 kmem_free(packed, zfsvfs->z_fuid_size);
313 VERIFY(0 == dmu_bonus_hold(zfsvfs->z_os, zfsvfs->z_fuid_obj,
314 FTAG, &db));
315 dmu_buf_will_dirty(db, tx);
316 *(uint64_t *)db->db_data = zfsvfs->z_fuid_size;
317 dmu_buf_rele(db, FTAG);
318
319 rw_exit(&zfsvfs->z_fuid_lock);
320 return (retidx);
321 }
322 }
323
324 /*
325 * Query domain table by index, returning domain string
326 *
327 * Returns a pointer from an avl node of the domain string.
328 *
329 */
330 static char *
331 zfs_fuid_find_by_idx(zfsvfs_t *zfsvfs, uint32_t idx)
332 {
333 char *domain;
334
335 if (idx == 0 || !zfsvfs->z_use_fuids)
336 return (NULL);
337
338 if (!zfsvfs->z_fuid_loaded)
339 zfs_fuid_init(zfsvfs, NULL);
340
341 rw_enter(&zfsvfs->z_fuid_lock, RW_READER);
342 domain = zfs_fuid_idx_domain(&zfsvfs->z_fuid_idx, idx);
343 rw_exit(&zfsvfs->z_fuid_lock);
344
345 ASSERT(domain);
346 return (domain);
347 }
348
349 void
350 zfs_fuid_map_ids(znode_t *zp, cred_t *cr, uid_t *uidp, uid_t *gidp)
351 {
352 *uidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_uid,
353 cr, ZFS_OWNER);
354 *gidp = zfs_fuid_map_id(zp->z_zfsvfs, zp->z_phys->zp_gid,
355 cr, ZFS_GROUP);
356 }
357
358 uid_t
359 zfs_fuid_map_id(zfsvfs_t *zfsvfs, uint64_t fuid,
360 cred_t *cr, zfs_fuid_type_t type)
361 {
362 uint32_t index = FUID_INDEX(fuid);
363 char *domain;
364 uid_t id;
365
366 if (index == 0)
367 return (fuid);
368
369 domain = zfs_fuid_find_by_idx(zfsvfs, index);
370 ASSERT(domain != NULL);
371
372 if (type == ZFS_OWNER || type == ZFS_ACE_USER) {
373 (void) kidmap_getuidbysid(crgetzone(cr), domain,
374 FUID_RID(fuid), &id);
375 } else {
376 (void) kidmap_getgidbysid(crgetzone(cr), domain,
377 FUID_RID(fuid), &id);
378 }
379 return (id);
380 }
381
382 /*
383 * Add a FUID node to the list of fuid's being created for this
384 * ACL
385 *
386 * If ACL has multiple domains, then keep only one copy of each unique
387 * domain.
388 */
389 static void
390 zfs_fuid_node_add(zfs_fuid_info_t **fuidpp, const char *domain, uint32_t rid,
391 uint64_t idx, uint64_t id, zfs_fuid_type_t type)
392 {
393 zfs_fuid_t *fuid;
394 zfs_fuid_domain_t *fuid_domain;
395 zfs_fuid_info_t *fuidp;
396 uint64_t fuididx;
397 boolean_t found = B_FALSE;
398
399 if (*fuidpp == NULL)
400 *fuidpp = zfs_fuid_info_alloc();
401
402 fuidp = *fuidpp;
403 /*
404 * First find fuid domain index in linked list
405 *
406 * If one isn't found then create an entry.
407 */
408
409 for (fuididx = 1, fuid_domain = list_head(&fuidp->z_domains);
410 fuid_domain; fuid_domain = list_next(&fuidp->z_domains,
411 fuid_domain), fuididx++) {
412 if (idx == fuid_domain->z_domidx) {
413 found = B_TRUE;
414 break;
415 }
416 }
417
418 if (!found) {
419 fuid_domain = kmem_alloc(sizeof (zfs_fuid_domain_t), KM_SLEEP);
420 fuid_domain->z_domain = domain;
421 fuid_domain->z_domidx = idx;
422 list_insert_tail(&fuidp->z_domains, fuid_domain);
423 fuidp->z_domain_str_sz += strlen(domain) + 1;
424 fuidp->z_domain_cnt++;
425 }
426
427 if (type == ZFS_ACE_USER || type == ZFS_ACE_GROUP) {
428 /*
429 * Now allocate fuid entry and add it on the end of the list
430 */
431
432 fuid = kmem_alloc(sizeof (zfs_fuid_t), KM_SLEEP);
433 fuid->z_id = id;
434 fuid->z_domidx = idx;
435 fuid->z_logfuid = FUID_ENCODE(fuididx, rid);
436
437 list_insert_tail(&fuidp->z_fuids, fuid);
438 fuidp->z_fuid_cnt++;
439 } else {
440 if (type == ZFS_OWNER)
441 fuidp->z_fuid_owner = FUID_ENCODE(fuididx, rid);
442 else
443 fuidp->z_fuid_group = FUID_ENCODE(fuididx, rid);
444 }
445 }
446
447 /*
448 * Create a file system FUID, based on information in the users cred
449 */
450 uint64_t
451 zfs_fuid_create_cred(zfsvfs_t *zfsvfs, zfs_fuid_type_t type,
452 dmu_tx_t *tx, cred_t *cr, zfs_fuid_info_t **fuidp)
453 {
454 uint64_t idx;
455 ksid_t *ksid;
456 uint32_t rid;
457 char *kdomain;
458 const char *domain;
459 uid_t id;
460
461 VERIFY(type == ZFS_OWNER || type == ZFS_GROUP);
462
463 if (type == ZFS_OWNER)
464 id = crgetuid(cr);
465 else
466 id = crgetgid(cr);
467
468 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id))
469 return ((uint64_t)id);
470
471 ksid = crgetsid(cr, (type == ZFS_OWNER) ? KSID_OWNER : KSID_GROUP);
472
473 VERIFY(ksid != NULL);
474 rid = ksid_getrid(ksid);
475 domain = ksid_getdomain(ksid);
476
477 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx);
478
479 zfs_fuid_node_add(fuidp, kdomain, rid, idx, id, type);
480
481 return (FUID_ENCODE(idx, rid));
482 }
483
484 /*
485 * Create a file system FUID for an ACL ace
486 * or a chown/chgrp of the file.
487 * This is similar to zfs_fuid_create_cred, except that
488 * we can't find the domain + rid information in the
489 * cred. Instead we have to query Winchester for the
490 * domain and rid.
491 *
492 * During replay operations the domain+rid information is
493 * found in the zfs_fuid_info_t that the replay code has
494 * attached to the zfsvfs of the file system.
495 */
496 uint64_t
497 zfs_fuid_create(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr,
498 zfs_fuid_type_t type, dmu_tx_t *tx, zfs_fuid_info_t **fuidpp)
499 {
500 const char *domain;
501 char *kdomain;
502 uint32_t fuid_idx = FUID_INDEX(id);
503 uint32_t rid;
504 idmap_stat status;
505 uint64_t idx;
506 boolean_t is_replay = (zfsvfs->z_assign >= TXG_INITIAL);
507 zfs_fuid_t *zfuid = NULL;
508 zfs_fuid_info_t *fuidp;
509
510 /*
511 * If POSIX ID, or entry is already a FUID then
512 * just return the id
513 *
514 * We may also be handed an already FUID'ized id via
515 * chmod.
516 */
517
518 if (!zfsvfs->z_use_fuids || !IS_EPHEMERAL(id) || fuid_idx != 0)
519 return (id);
520
521 if (is_replay) {
522 fuidp = zfsvfs->z_fuid_replay;
523
524 /*
525 * If we are passed an ephemeral id, but no
526 * fuid_info was logged then return NOBODY.
527 * This is most likely a result of idmap service
528 * not being available.
529 */
530 if (fuidp == NULL)
531 return (UID_NOBODY);
532
533 switch (type) {
534 case ZFS_ACE_USER:
535 case ZFS_ACE_GROUP:
536 zfuid = list_head(&fuidp->z_fuids);
537 rid = FUID_RID(zfuid->z_logfuid);
538 idx = FUID_INDEX(zfuid->z_logfuid);
539 break;
540 case ZFS_OWNER:
541 rid = FUID_RID(fuidp->z_fuid_owner);
542 idx = FUID_INDEX(fuidp->z_fuid_owner);
543 break;
544 case ZFS_GROUP:
545 rid = FUID_RID(fuidp->z_fuid_group);
546 idx = FUID_INDEX(fuidp->z_fuid_group);
547 break;
548 };
549 domain = fuidp->z_domain_table[idx -1];
550 } else {
551 if (type == ZFS_OWNER || type == ZFS_ACE_USER)
552 status = kidmap_getsidbyuid(crgetzone(cr), id,
553 &domain, &rid);
554 else
555 status = kidmap_getsidbygid(crgetzone(cr), id,
556 &domain, &rid);
557
558 if (status != 0) {
559 /*
560 * When returning nobody we will need to
561 * make a dummy fuid table entry for logging
562 * purposes.
563 */
564 rid = UID_NOBODY;
565 domain = "";
566 }
567 }
568
569 idx = zfs_fuid_find_by_domain(zfsvfs, domain, &kdomain, tx);
570
571 if (!is_replay)
572 zfs_fuid_node_add(fuidpp, kdomain, rid, idx, id, type);
573 else if (zfuid != NULL) {
574 list_remove(&fuidp->z_fuids, zfuid);
575 kmem_free(zfuid, sizeof (zfs_fuid_t));
576 }
577 return (FUID_ENCODE(idx, rid));
578 }
579
580 void
581 zfs_fuid_destroy(zfsvfs_t *zfsvfs)
582 {
583 rw_enter(&zfsvfs->z_fuid_lock, RW_WRITER);
584 if (!zfsvfs->z_fuid_loaded) {
585 rw_exit(&zfsvfs->z_fuid_lock);
586 return;
587 }
588 zfs_fuid_table_destroy(&zfsvfs->z_fuid_idx, &zfsvfs->z_fuid_domain);
589 rw_exit(&zfsvfs->z_fuid_lock);
590 }
591
592 /*
593 * Allocate zfs_fuid_info for tracking FUIDs created during
594 * zfs_mknode, VOP_SETATTR() or VOP_SETSECATTR()
595 */
596 zfs_fuid_info_t *
597 zfs_fuid_info_alloc(void)
598 {
599 zfs_fuid_info_t *fuidp;
600
601 fuidp = kmem_zalloc(sizeof (zfs_fuid_info_t), KM_SLEEP);
602 list_create(&fuidp->z_domains, sizeof (zfs_fuid_domain_t),
603 offsetof(zfs_fuid_domain_t, z_next));
604 list_create(&fuidp->z_fuids, sizeof (zfs_fuid_t),
605 offsetof(zfs_fuid_t, z_next));
606 return (fuidp);
607 }
608
609 /*
610 * Release all memory associated with zfs_fuid_info_t
611 */
612 void
613 zfs_fuid_info_free(zfs_fuid_info_t *fuidp)
614 {
615 zfs_fuid_t *zfuid;
616 zfs_fuid_domain_t *zdomain;
617
618 while ((zfuid = list_head(&fuidp->z_fuids)) != NULL) {
619 list_remove(&fuidp->z_fuids, zfuid);
620 kmem_free(zfuid, sizeof (zfs_fuid_t));
621 }
622
623 if (fuidp->z_domain_table != NULL)
624 kmem_free(fuidp->z_domain_table,
625 (sizeof (char **)) * fuidp->z_domain_cnt);
626
627 while ((zdomain = list_head(&fuidp->z_domains)) != NULL) {
628 list_remove(&fuidp->z_domains, zdomain);
629 kmem_free(zdomain, sizeof (zfs_fuid_domain_t));
630 }
631
632 kmem_free(fuidp, sizeof (zfs_fuid_info_t));
633 }
634
635 /*
636 * Check to see if id is a groupmember. If cred
637 * has ksid info then sidlist is checked first
638 * and if still not found then POSIX groups are checked
639 *
640 * Will use a straight FUID compare when possible.
641 */
642 boolean_t
643 zfs_groupmember(zfsvfs_t *zfsvfs, uint64_t id, cred_t *cr)
644 {
645 ksid_t *ksid = crgetsid(cr, KSID_GROUP);
646 uid_t gid;
647
648 if (ksid) {
649 int i;
650 ksid_t *ksid_groups;
651 ksidlist_t *ksidlist = crgetsidlist(cr);
652 uint32_t idx = FUID_INDEX(id);
653 uint32_t rid = FUID_RID(id);
654
655 ASSERT(ksidlist);
656 ksid_groups = ksidlist->ksl_sids;
657
658 for (i = 0; i != ksidlist->ksl_nsid; i++) {
659 if (idx == 0) {
660 if (id != IDMAP_WK_CREATOR_GROUP_GID &&
661 id == ksid_groups[i].ks_id) {
662 return (B_TRUE);
663 }
664 } else {
665 char *domain;
666
667 domain = zfs_fuid_find_by_idx(zfsvfs, idx);
668 ASSERT(domain != NULL);
669
670 if (strcmp(domain,
671 IDMAP_WK_CREATOR_SID_AUTHORITY) == 0)
672 return (B_FALSE);
673
674 if ((strcmp(domain,
675 ksid_groups[i].ks_domain->kd_name) == 0) &&
676 rid == ksid_groups[i].ks_rid)
677 return (B_TRUE);
678 }
679 }
680 }
681
682 /*
683 * Not found in ksidlist, check posix groups
684 */
685 gid = zfs_fuid_map_id(zfsvfs, id, cr, ZFS_GROUP);
686 return (groupmember(gid, cr));
687 }
688 #endif