]> git.proxmox.com Git - mirror_zfs.git/blob - zfs/lib/libdmu-ctl/zfs_rlock.c
Initial Linux ZFS GIT Repo
[mirror_zfs.git] / zfs / lib / libdmu-ctl / zfs_rlock.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #pragma ident "@(#)zfs_rlock.c 1.4 07/08/08 SMI"
27
28 /*
29 * This file contains the code to implement file range locking in
30 * ZFS, although there isn't much specific to ZFS (all that comes to mind
31 * support for growing the blocksize).
32 *
33 * Interface
34 * ---------
35 * Defined in zfs_rlock.h but essentially:
36 * rl = zfs_range_lock(zp, off, len, lock_type);
37 * zfs_range_unlock(rl);
38 * zfs_range_reduce(rl, off, len);
39 *
40 * AVL tree
41 * --------
42 * An AVL tree is used to maintain the state of the existing ranges
43 * that are locked for exclusive (writer) or shared (reader) use.
44 * The starting range offset is used for searching and sorting the tree.
45 *
46 * Common case
47 * -----------
48 * The (hopefully) usual case is of no overlaps or contention for
49 * locks. On entry to zfs_lock_range() a rl_t is allocated; the tree
50 * searched that finds no overlap, and *this* rl_t is placed in the tree.
51 *
52 * Overlaps/Reference counting/Proxy locks
53 * ---------------------------------------
54 * The avl code only allows one node at a particular offset. Also it's very
55 * inefficient to search through all previous entries looking for overlaps
56 * (because the very 1st in the ordered list might be at offset 0 but
57 * cover the whole file).
58 * So this implementation uses reference counts and proxy range locks.
59 * Firstly, only reader locks use reference counts and proxy locks,
60 * because writer locks are exclusive.
61 * When a reader lock overlaps with another then a proxy lock is created
62 * for that range and replaces the original lock. If the overlap
63 * is exact then the reference count of the proxy is simply incremented.
64 * Otherwise, the proxy lock is split into smaller lock ranges and
65 * new proxy locks created for non overlapping ranges.
66 * The reference counts are adjusted accordingly.
67 * Meanwhile, the orginal lock is kept around (this is the callers handle)
68 * and its offset and length are used when releasing the lock.
69 *
70 * Thread coordination
71 * -------------------
72 * In order to make wakeups efficient and to ensure multiple continuous
73 * readers on a range don't starve a writer for the same range lock,
74 * two condition variables are allocated in each rl_t.
75 * If a writer (or reader) can't get a range it initialises the writer
76 * (or reader) cv; sets a flag saying there's a writer (or reader) waiting;
77 * and waits on that cv. When a thread unlocks that range it wakes up all
78 * writers then all readers before destroying the lock.
79 *
80 * Append mode writes
81 * ------------------
82 * Append mode writes need to lock a range at the end of a file.
83 * The offset of the end of the file is determined under the
84 * range locking mutex, and the lock type converted from RL_APPEND to
85 * RL_WRITER and the range locked.
86 *
87 * Grow block handling
88 * -------------------
89 * ZFS supports multiple block sizes currently upto 128K. The smallest
90 * block size is used for the file which is grown as needed. During this
91 * growth all other writers and readers must be excluded.
92 * So if the block size needs to be grown then the whole file is
93 * exclusively locked, then later the caller will reduce the lock
94 * range to just the range to be written using zfs_reduce_range.
95 */
96
97 #include <sys/zfs_rlock.h>
98
99 /*
100 * Check if a write lock can be grabbed, or wait and recheck until available.
101 */
102 static void
103 zfs_range_lock_writer(znode_t *zp, rl_t *new)
104 {
105 avl_tree_t *tree = &zp->z_range_avl;
106 rl_t *rl;
107 avl_index_t where;
108 uint64_t end_size;
109 uint64_t off = new->r_off;
110 uint64_t len = new->r_len;
111
112 for (;;) {
113 /*
114 * Range locking is also used by zvol and uses a
115 * dummied up znode. However, for zvol, we don't need to
116 * append or grow blocksize, and besides we don't have
117 * a z_phys or z_zfsvfs - so skip that processing.
118 *
119 * Yes, this is ugly, and would be solved by not handling
120 * grow or append in range lock code. If that was done then
121 * we could make the range locking code generically available
122 * to other non-zfs consumers.
123 */
124 if (zp->z_vnode) { /* caller is ZPL */
125 /*
126 * If in append mode pick up the current end of file.
127 * This is done under z_range_lock to avoid races.
128 */
129 if (new->r_type == RL_APPEND)
130 new->r_off = zp->z_phys->zp_size;
131
132 /*
133 * If we need to grow the block size then grab the whole
134 * file range. This is also done under z_range_lock to
135 * avoid races.
136 */
137 end_size = MAX(zp->z_phys->zp_size, new->r_off + len);
138 if (end_size > zp->z_blksz && (!ISP2(zp->z_blksz) ||
139 zp->z_blksz < zp->z_zfsvfs->z_max_blksz)) {
140 new->r_off = 0;
141 new->r_len = UINT64_MAX;
142 }
143 }
144
145 /*
146 * First check for the usual case of no locks
147 */
148 if (avl_numnodes(tree) == 0) {
149 new->r_type = RL_WRITER; /* convert to writer */
150 avl_add(tree, new);
151 return;
152 }
153
154 /*
155 * Look for any locks in the range.
156 */
157 rl = avl_find(tree, new, &where);
158 if (rl)
159 goto wait; /* already locked at same offset */
160
161 rl = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
162 if (rl && (rl->r_off < new->r_off + new->r_len))
163 goto wait;
164
165 rl = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
166 if (rl && rl->r_off + rl->r_len > new->r_off)
167 goto wait;
168
169 new->r_type = RL_WRITER; /* convert possible RL_APPEND */
170 avl_insert(tree, new, where);
171 return;
172 wait:
173 if (!rl->r_write_wanted) {
174 cv_init(&rl->r_wr_cv, NULL, CV_DEFAULT, NULL);
175 rl->r_write_wanted = B_TRUE;
176 }
177 cv_wait(&rl->r_wr_cv, &zp->z_range_lock);
178
179 /* reset to original */
180 new->r_off = off;
181 new->r_len = len;
182 }
183 }
184
185 /*
186 * If this is an original (non-proxy) lock then replace it by
187 * a proxy and return the proxy.
188 */
189 static rl_t *
190 zfs_range_proxify(avl_tree_t *tree, rl_t *rl)
191 {
192 rl_t *proxy;
193
194 if (rl->r_proxy)
195 return (rl); /* already a proxy */
196
197 ASSERT3U(rl->r_cnt, ==, 1);
198 ASSERT(rl->r_write_wanted == B_FALSE);
199 ASSERT(rl->r_read_wanted == B_FALSE);
200 avl_remove(tree, rl);
201 rl->r_cnt = 0;
202
203 /* create a proxy range lock */
204 proxy = kmem_alloc(sizeof (rl_t), KM_SLEEP);
205 proxy->r_off = rl->r_off;
206 proxy->r_len = rl->r_len;
207 proxy->r_cnt = 1;
208 proxy->r_type = RL_READER;
209 proxy->r_proxy = B_TRUE;
210 proxy->r_write_wanted = B_FALSE;
211 proxy->r_read_wanted = B_FALSE;
212 avl_add(tree, proxy);
213
214 return (proxy);
215 }
216
217 /*
218 * Split the range lock at the supplied offset
219 * returning the *front* proxy.
220 */
221 static rl_t *
222 zfs_range_split(avl_tree_t *tree, rl_t *rl, uint64_t off)
223 {
224 rl_t *front, *rear;
225
226 ASSERT3U(rl->r_len, >, 1);
227 ASSERT3U(off, >, rl->r_off);
228 ASSERT3U(off, <, rl->r_off + rl->r_len);
229 ASSERT(rl->r_write_wanted == B_FALSE);
230 ASSERT(rl->r_read_wanted == B_FALSE);
231
232 /* create the rear proxy range lock */
233 rear = kmem_alloc(sizeof (rl_t), KM_SLEEP);
234 rear->r_off = off;
235 rear->r_len = rl->r_off + rl->r_len - off;
236 rear->r_cnt = rl->r_cnt;
237 rear->r_type = RL_READER;
238 rear->r_proxy = B_TRUE;
239 rear->r_write_wanted = B_FALSE;
240 rear->r_read_wanted = B_FALSE;
241
242 front = zfs_range_proxify(tree, rl);
243 front->r_len = off - rl->r_off;
244
245 avl_insert_here(tree, rear, front, AVL_AFTER);
246 return (front);
247 }
248
249 /*
250 * Create and add a new proxy range lock for the supplied range.
251 */
252 static void
253 zfs_range_new_proxy(avl_tree_t *tree, uint64_t off, uint64_t len)
254 {
255 rl_t *rl;
256
257 ASSERT(len);
258 rl = kmem_alloc(sizeof (rl_t), KM_SLEEP);
259 rl->r_off = off;
260 rl->r_len = len;
261 rl->r_cnt = 1;
262 rl->r_type = RL_READER;
263 rl->r_proxy = B_TRUE;
264 rl->r_write_wanted = B_FALSE;
265 rl->r_read_wanted = B_FALSE;
266 avl_add(tree, rl);
267 }
268
269 static void
270 zfs_range_add_reader(avl_tree_t *tree, rl_t *new, rl_t *prev, avl_index_t where)
271 {
272 rl_t *next;
273 uint64_t off = new->r_off;
274 uint64_t len = new->r_len;
275
276 /*
277 * prev arrives either:
278 * - pointing to an entry at the same offset
279 * - pointing to the entry with the closest previous offset whose
280 * range may overlap with the new range
281 * - null, if there were no ranges starting before the new one
282 */
283 if (prev) {
284 if (prev->r_off + prev->r_len <= off) {
285 prev = NULL;
286 } else if (prev->r_off != off) {
287 /*
288 * convert to proxy if needed then
289 * split this entry and bump ref count
290 */
291 prev = zfs_range_split(tree, prev, off);
292 prev = AVL_NEXT(tree, prev); /* move to rear range */
293 }
294 }
295 ASSERT((prev == NULL) || (prev->r_off == off));
296
297 if (prev)
298 next = prev;
299 else
300 next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
301
302 if (next == NULL || off + len <= next->r_off) {
303 /* no overlaps, use the original new rl_t in the tree */
304 avl_insert(tree, new, where);
305 return;
306 }
307
308 if (off < next->r_off) {
309 /* Add a proxy for initial range before the overlap */
310 zfs_range_new_proxy(tree, off, next->r_off - off);
311 }
312
313 new->r_cnt = 0; /* will use proxies in tree */
314 /*
315 * We now search forward through the ranges, until we go past the end
316 * of the new range. For each entry we make it a proxy if it
317 * isn't already, then bump its reference count. If there's any
318 * gaps between the ranges then we create a new proxy range.
319 */
320 for (prev = NULL; next; prev = next, next = AVL_NEXT(tree, next)) {
321 if (off + len <= next->r_off)
322 break;
323 if (prev && prev->r_off + prev->r_len < next->r_off) {
324 /* there's a gap */
325 ASSERT3U(next->r_off, >, prev->r_off + prev->r_len);
326 zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
327 next->r_off - (prev->r_off + prev->r_len));
328 }
329 if (off + len == next->r_off + next->r_len) {
330 /* exact overlap with end */
331 next = zfs_range_proxify(tree, next);
332 next->r_cnt++;
333 return;
334 }
335 if (off + len < next->r_off + next->r_len) {
336 /* new range ends in the middle of this block */
337 next = zfs_range_split(tree, next, off + len);
338 next->r_cnt++;
339 return;
340 }
341 ASSERT3U(off + len, >, next->r_off + next->r_len);
342 next = zfs_range_proxify(tree, next);
343 next->r_cnt++;
344 }
345
346 /* Add the remaining end range. */
347 zfs_range_new_proxy(tree, prev->r_off + prev->r_len,
348 (off + len) - (prev->r_off + prev->r_len));
349 }
350
351 /*
352 * Check if a reader lock can be grabbed, or wait and recheck until available.
353 */
354 static void
355 zfs_range_lock_reader(znode_t *zp, rl_t *new)
356 {
357 avl_tree_t *tree = &zp->z_range_avl;
358 rl_t *prev, *next;
359 avl_index_t where;
360 uint64_t off = new->r_off;
361 uint64_t len = new->r_len;
362
363 /*
364 * Look for any writer locks in the range.
365 */
366 retry:
367 prev = avl_find(tree, new, &where);
368 if (prev == NULL)
369 prev = (rl_t *)avl_nearest(tree, where, AVL_BEFORE);
370
371 /*
372 * Check the previous range for a writer lock overlap.
373 */
374 if (prev && (off < prev->r_off + prev->r_len)) {
375 if ((prev->r_type == RL_WRITER) || (prev->r_write_wanted)) {
376 if (!prev->r_read_wanted) {
377 cv_init(&prev->r_rd_cv, NULL, CV_DEFAULT, NULL);
378 prev->r_read_wanted = B_TRUE;
379 }
380 cv_wait(&prev->r_rd_cv, &zp->z_range_lock);
381 goto retry;
382 }
383 if (off + len < prev->r_off + prev->r_len)
384 goto got_lock;
385 }
386
387 /*
388 * Search through the following ranges to see if there's
389 * write lock any overlap.
390 */
391 if (prev)
392 next = AVL_NEXT(tree, prev);
393 else
394 next = (rl_t *)avl_nearest(tree, where, AVL_AFTER);
395 for (; next; next = AVL_NEXT(tree, next)) {
396 if (off + len <= next->r_off)
397 goto got_lock;
398 if ((next->r_type == RL_WRITER) || (next->r_write_wanted)) {
399 if (!next->r_read_wanted) {
400 cv_init(&next->r_rd_cv, NULL, CV_DEFAULT, NULL);
401 next->r_read_wanted = B_TRUE;
402 }
403 cv_wait(&next->r_rd_cv, &zp->z_range_lock);
404 goto retry;
405 }
406 if (off + len <= next->r_off + next->r_len)
407 goto got_lock;
408 }
409
410 got_lock:
411 /*
412 * Add the read lock, which may involve splitting existing
413 * locks and bumping ref counts (r_cnt).
414 */
415 zfs_range_add_reader(tree, new, prev, where);
416 }
417
418 /*
419 * Lock a range (offset, length) as either shared (RL_READER)
420 * or exclusive (RL_WRITER). Returns the range lock structure
421 * for later unlocking or reduce range (if entire file
422 * previously locked as RL_WRITER).
423 */
424 rl_t *
425 zfs_range_lock(znode_t *zp, uint64_t off, uint64_t len, rl_type_t type)
426 {
427 rl_t *new;
428
429 ASSERT(type == RL_READER || type == RL_WRITER || type == RL_APPEND);
430
431 new = kmem_alloc(sizeof (rl_t), KM_SLEEP);
432 new->r_zp = zp;
433 new->r_off = off;
434 new->r_len = len;
435 new->r_cnt = 1; /* assume it's going to be in the tree */
436 new->r_type = type;
437 new->r_proxy = B_FALSE;
438 new->r_write_wanted = B_FALSE;
439 new->r_read_wanted = B_FALSE;
440
441 mutex_enter(&zp->z_range_lock);
442 if (type == RL_READER) {
443 /*
444 * First check for the usual case of no locks
445 */
446 if (avl_numnodes(&zp->z_range_avl) == 0)
447 avl_add(&zp->z_range_avl, new);
448 else
449 zfs_range_lock_reader(zp, new);
450 } else
451 zfs_range_lock_writer(zp, new); /* RL_WRITER or RL_APPEND */
452 mutex_exit(&zp->z_range_lock);
453 return (new);
454 }
455
456 /*
457 * Unlock a reader lock
458 */
459 static void
460 zfs_range_unlock_reader(znode_t *zp, rl_t *remove)
461 {
462 avl_tree_t *tree = &zp->z_range_avl;
463 rl_t *rl, *next;
464 uint64_t len;
465
466 /*
467 * The common case is when the remove entry is in the tree
468 * (cnt == 1) meaning there's been no other reader locks overlapping
469 * with this one. Otherwise the remove entry will have been
470 * removed from the tree and replaced by proxies (one or
471 * more ranges mapping to the entire range).
472 */
473 if (remove->r_cnt == 1) {
474 avl_remove(tree, remove);
475 if (remove->r_write_wanted) {
476 cv_broadcast(&remove->r_wr_cv);
477 cv_destroy(&remove->r_wr_cv);
478 }
479 if (remove->r_read_wanted) {
480 cv_broadcast(&remove->r_rd_cv);
481 cv_destroy(&remove->r_rd_cv);
482 }
483 } else {
484 ASSERT3U(remove->r_cnt, ==, 0);
485 ASSERT3U(remove->r_write_wanted, ==, 0);
486 ASSERT3U(remove->r_read_wanted, ==, 0);
487 /*
488 * Find start proxy representing this reader lock,
489 * then decrement ref count on all proxies
490 * that make up this range, freeing them as needed.
491 */
492 rl = avl_find(tree, remove, NULL);
493 ASSERT(rl);
494 ASSERT(rl->r_cnt);
495 ASSERT(rl->r_type == RL_READER);
496 for (len = remove->r_len; len != 0; rl = next) {
497 len -= rl->r_len;
498 if (len) {
499 next = AVL_NEXT(tree, rl);
500 ASSERT(next);
501 ASSERT(rl->r_off + rl->r_len == next->r_off);
502 ASSERT(next->r_cnt);
503 ASSERT(next->r_type == RL_READER);
504 }
505 rl->r_cnt--;
506 if (rl->r_cnt == 0) {
507 avl_remove(tree, rl);
508 if (rl->r_write_wanted) {
509 cv_broadcast(&rl->r_wr_cv);
510 cv_destroy(&rl->r_wr_cv);
511 }
512 if (rl->r_read_wanted) {
513 cv_broadcast(&rl->r_rd_cv);
514 cv_destroy(&rl->r_rd_cv);
515 }
516 kmem_free(rl, sizeof (rl_t));
517 }
518 }
519 }
520 kmem_free(remove, sizeof (rl_t));
521 }
522
523 /*
524 * Unlock range and destroy range lock structure.
525 */
526 void
527 zfs_range_unlock(rl_t *rl)
528 {
529 znode_t *zp = rl->r_zp;
530
531 ASSERT(rl->r_type == RL_WRITER || rl->r_type == RL_READER);
532 ASSERT(rl->r_cnt == 1 || rl->r_cnt == 0);
533 ASSERT(!rl->r_proxy);
534
535 mutex_enter(&zp->z_range_lock);
536 if (rl->r_type == RL_WRITER) {
537 /* writer locks can't be shared or split */
538 avl_remove(&zp->z_range_avl, rl);
539 mutex_exit(&zp->z_range_lock);
540 if (rl->r_write_wanted) {
541 cv_broadcast(&rl->r_wr_cv);
542 cv_destroy(&rl->r_wr_cv);
543 }
544 if (rl->r_read_wanted) {
545 cv_broadcast(&rl->r_rd_cv);
546 cv_destroy(&rl->r_rd_cv);
547 }
548 kmem_free(rl, sizeof (rl_t));
549 } else {
550 /*
551 * lock may be shared, let zfs_range_unlock_reader()
552 * release the lock and free the rl_t
553 */
554 zfs_range_unlock_reader(zp, rl);
555 mutex_exit(&zp->z_range_lock);
556 }
557 }
558
559 /*
560 * Reduce range locked as RL_WRITER from whole file to specified range.
561 * Asserts the whole file is exclusivly locked and so there's only one
562 * entry in the tree.
563 */
564 void
565 zfs_range_reduce(rl_t *rl, uint64_t off, uint64_t len)
566 {
567 znode_t *zp = rl->r_zp;
568
569 /* Ensure there are no other locks */
570 ASSERT(avl_numnodes(&zp->z_range_avl) == 1);
571 ASSERT(rl->r_off == 0);
572 ASSERT(rl->r_type == RL_WRITER);
573 ASSERT(!rl->r_proxy);
574 ASSERT3U(rl->r_len, ==, UINT64_MAX);
575 ASSERT3U(rl->r_cnt, ==, 1);
576
577 mutex_enter(&zp->z_range_lock);
578 rl->r_off = off;
579 rl->r_len = len;
580 mutex_exit(&zp->z_range_lock);
581 if (rl->r_write_wanted)
582 cv_broadcast(&rl->r_wr_cv);
583 if (rl->r_read_wanted)
584 cv_broadcast(&rl->r_rd_cv);
585 }
586
587 /*
588 * AVL comparison function used to order range locks
589 * Locks are ordered on the start offset of the range.
590 */
591 int
592 zfs_range_compare(const void *arg1, const void *arg2)
593 {
594 const rl_t *rl1 = arg1;
595 const rl_t *rl2 = arg2;
596
597 if (rl1->r_off > rl2->r_off)
598 return (1);
599 if (rl1->r_off < rl2->r_off)
600 return (-1);
601 return (0);
602 }