]> git.proxmox.com Git - mirror_zfs-debian.git/blob - zfs/lib/libzcommon/compress.c
Remove stray stub kernel files which should be brought in my linux-kernel-module...
[mirror_zfs-debian.git] / zfs / lib / libzcommon / compress.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright (c) 1998 by Sun Microsystems, Inc.
24 * All rights reserved.
25 */
26
27
28
29 /*
30 * NOTE: this file is compiled into the kernel, cprboot, and savecore.
31 * Therefore it must compile in kernel, boot, and userland source context;
32 * so if you ever change this code, avoid references to external symbols.
33 *
34 * This compression algorithm is a derivative of LZRW1, which I'll call
35 * LZJB in the classic LZ* spirit. All LZ* (Lempel-Ziv) algorithms are
36 * based on the same basic principle: when a "phrase" (sequences of bytes)
37 * is repeated in a data stream, we can save space by storing a reference to
38 * the previous instance of that phrase (a "copy item") rather than storing
39 * the phrase itself (a "literal item"). The compressor remembers phrases
40 * in a simple hash table (the "Lempel history") that maps three-character
41 * sequences (the minimum match) to the addresses where they were last seen.
42 *
43 * A copy item must encode both the length and the location of the matching
44 * phrase so that decompress() can reconstruct the original data stream.
45 * For example, here's how we'd encode "yadda yadda yadda, blah blah blah"
46 * (with "_" replacing spaces for readability):
47 *
48 * Original:
49 *
50 * y a d d a _ y a d d a _ y a d d a , _ b l a h _ b l a h _ b l a h
51 *
52 * Compressed:
53 *
54 * y a d d a _ 6 11 , _ b l a h 5 10
55 *
56 * In the compressed output, the "6 11" simply means "to get the original
57 * data, execute memmove(ptr, ptr - 6, 11)". Note that in this example,
58 * the match at "6 11" actually extends beyond the current location and
59 * overlaps it. That's OK; like memmove(), decompress() handles overlap.
60 *
61 * There's still one more thing decompress() needs to know, which is how to
62 * distinguish literal items from copy items. We encode this information
63 * in an 8-bit bitmap that precedes each 8 items of output; if the Nth bit
64 * is set, then the Nth item is a copy item. Thus the full encoding for
65 * the example above would be:
66 *
67 * 0x40 y a d d a _ 6 11 , 0x20 _ b l a h 5 10
68 *
69 * Finally, the "6 11" isn't really encoded as the two byte values 6 and 11
70 * in the output stream because, empirically, we get better compression by
71 * dedicating more bits to offset, fewer to match length. LZJB uses 6 bits
72 * to encode the match length, 10 bits to encode the offset. Since copy-item
73 * encoding consumes 2 bytes, we don't generate copy items unless the match
74 * length is at least 3; therefore, we can store (length - 3) in the 6-bit
75 * match length field, which extends the maximum match from 63 to 66 bytes.
76 * Thus the 2-byte encoding for a copy item is as follows:
77 *
78 * byte[0] = ((length - 3) << 2) | (offset >> 8);
79 * byte[1] = (uint8_t)offset;
80 *
81 * In our example above, an offset of 6 with length 11 would be encoded as:
82 *
83 * byte[0] = ((11 - 3) << 2) | (6 >> 8) = 0x20
84 * byte[1] = (uint8_t)6 = 0x6
85 *
86 * Similarly, an offset of 5 with length 10 would be encoded as:
87 *
88 * byte[0] = ((10 - 3) << 2) | (5 >> 8) = 0x1c
89 * byte[1] = (uint8_t)5 = 0x5
90 *
91 * Putting it all together, the actual LZJB output for our example is:
92 *
93 * 0x40 y a d d a _ 0x2006 , 0x20 _ b l a h 0x1c05
94 *
95 * The main differences between LZRW1 and LZJB are as follows:
96 *
97 * (1) LZRW1 is sloppy about buffer overruns. LZJB never reads past the
98 * end of its input, and never writes past the end of its output.
99 *
100 * (2) LZJB allows a maximum match length of 66 (vs. 18 for LZRW1), with
101 * the trade-off being a shorter look-behind (1K vs. 4K for LZRW1).
102 *
103 * (3) LZJB records only the low-order 16 bits of pointers in the Lempel
104 * history (which is all we need since the maximum look-behind is 1K),
105 * and uses only 256 hash entries (vs. 4096 for LZRW1). This makes
106 * the compression hash small enough to allocate on the stack, which
107 * solves two problems: (1) it saves 64K of kernel/cprboot memory,
108 * and (2) it makes the code MT-safe without any locking, since we
109 * don't have multiple threads sharing a common hash table.
110 *
111 * (4) LZJB is faster at both compression and decompression, has a
112 * better compression ratio, and is somewhat simpler than LZRW1.
113 *
114 * Finally, note that LZJB is non-deterministic: given the same input,
115 * two calls to compress() may produce different output. This is a
116 * general characteristic of most Lempel-Ziv derivatives because there's
117 * no need to initialize the Lempel history; not doing so saves time.
118 */
119
120 #include <sys/types.h>
121
122 #define MATCH_BITS 6
123 #define MATCH_MIN 3
124 #define MATCH_MAX ((1 << MATCH_BITS) + (MATCH_MIN - 1))
125 #define OFFSET_MASK ((1 << (16 - MATCH_BITS)) - 1)
126 #define LEMPEL_SIZE 256
127
128 size_t
129 compress(void *s_start, void *d_start, size_t s_len)
130 {
131 uchar_t *src = s_start;
132 uchar_t *dst = d_start;
133 uchar_t *cpy, *copymap;
134 int copymask = 1 << (NBBY - 1);
135 int mlen, offset;
136 uint16_t *hp;
137 uint16_t lempel[LEMPEL_SIZE]; /* uninitialized; see above */
138
139 while (src < (uchar_t *)s_start + s_len) {
140 if ((copymask <<= 1) == (1 << NBBY)) {
141 if (dst >= (uchar_t *)d_start + s_len - 1 - 2 * NBBY) {
142 mlen = s_len;
143 for (src = s_start, dst = d_start; mlen; mlen--)
144 *dst++ = *src++;
145 return (s_len);
146 }
147 copymask = 1;
148 copymap = dst;
149 *dst++ = 0;
150 }
151 if (src > (uchar_t *)s_start + s_len - MATCH_MAX) {
152 *dst++ = *src++;
153 continue;
154 }
155 hp = &lempel[((src[0] + 13) ^ (src[1] - 13) ^ src[2]) &
156 (LEMPEL_SIZE - 1)];
157 offset = (intptr_t)(src - *hp) & OFFSET_MASK;
158 *hp = (uint16_t)(uintptr_t)src;
159 cpy = src - offset;
160 if (cpy >= (uchar_t *)s_start && cpy != src &&
161 src[0] == cpy[0] && src[1] == cpy[1] && src[2] == cpy[2]) {
162 *copymap |= copymask;
163 for (mlen = MATCH_MIN; mlen < MATCH_MAX; mlen++)
164 if (src[mlen] != cpy[mlen])
165 break;
166 *dst++ = ((mlen - MATCH_MIN) << (NBBY - MATCH_BITS)) |
167 (offset >> NBBY);
168 *dst++ = (uchar_t)offset;
169 src += mlen;
170 } else {
171 *dst++ = *src++;
172 }
173 }
174 return (dst - (uchar_t *)d_start);
175 }
176
177 size_t
178 decompress(void *s_start, void *d_start, size_t s_len, size_t d_len)
179 {
180 uchar_t *src = s_start;
181 uchar_t *dst = d_start;
182 uchar_t *s_end = (uchar_t *)s_start + s_len;
183 uchar_t *d_end = (uchar_t *)d_start + d_len;
184 uchar_t *cpy, copymap;
185 int copymask = 1 << (NBBY - 1);
186
187 if (s_len >= d_len) {
188 size_t d_rem = d_len;
189 while (d_rem-- != 0)
190 *dst++ = *src++;
191 return (d_len);
192 }
193
194 while (src < s_end && dst < d_end) {
195 if ((copymask <<= 1) == (1 << NBBY)) {
196 copymask = 1;
197 copymap = *src++;
198 }
199 if (copymap & copymask) {
200 int mlen = (src[0] >> (NBBY - MATCH_BITS)) + MATCH_MIN;
201 int offset = ((src[0] << NBBY) | src[1]) & OFFSET_MASK;
202 src += 2;
203 if ((cpy = dst - offset) >= (uchar_t *)d_start)
204 while (--mlen >= 0 && dst < d_end)
205 *dst++ = *cpy++;
206 else
207 /*
208 * offset before start of destination buffer
209 * indicates corrupt source data
210 */
211 return (dst - (uchar_t *)d_start);
212 } else {
213 *dst++ = *src++;
214 }
215 }
216 return (dst - (uchar_t *)d_start);
217 }
218
219 uint32_t
220 checksum32(void *cp_arg, size_t length)
221 {
222 uchar_t *cp, *ep;
223 uint32_t sum = 0;
224
225 for (cp = cp_arg, ep = cp + length; cp < ep; cp++)
226 sum = ((sum >> 1) | (sum << 31)) + *cp;
227 return (sum);
228 }