]> git.proxmox.com Git - mirror_zfs.git/blob - zfs/lib/libzpool/metaslab.c
Rebase to OpenSolaris b103, in the process we are removing any code which did not...
[mirror_zfs.git] / zfs / lib / libzpool / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34
35 uint64_t metaslab_aliquot = 512ULL << 10;
36 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
37
38 /*
39 * ==========================================================================
40 * Metaslab classes
41 * ==========================================================================
42 */
43 metaslab_class_t *
44 metaslab_class_create(void)
45 {
46 metaslab_class_t *mc;
47
48 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
49
50 mc->mc_rotor = NULL;
51
52 return (mc);
53 }
54
55 void
56 metaslab_class_destroy(metaslab_class_t *mc)
57 {
58 metaslab_group_t *mg;
59
60 while ((mg = mc->mc_rotor) != NULL) {
61 metaslab_class_remove(mc, mg);
62 metaslab_group_destroy(mg);
63 }
64
65 kmem_free(mc, sizeof (metaslab_class_t));
66 }
67
68 void
69 metaslab_class_add(metaslab_class_t *mc, metaslab_group_t *mg)
70 {
71 metaslab_group_t *mgprev, *mgnext;
72
73 ASSERT(mg->mg_class == NULL);
74
75 if ((mgprev = mc->mc_rotor) == NULL) {
76 mg->mg_prev = mg;
77 mg->mg_next = mg;
78 } else {
79 mgnext = mgprev->mg_next;
80 mg->mg_prev = mgprev;
81 mg->mg_next = mgnext;
82 mgprev->mg_next = mg;
83 mgnext->mg_prev = mg;
84 }
85 mc->mc_rotor = mg;
86 mg->mg_class = mc;
87 }
88
89 void
90 metaslab_class_remove(metaslab_class_t *mc, metaslab_group_t *mg)
91 {
92 metaslab_group_t *mgprev, *mgnext;
93
94 ASSERT(mg->mg_class == mc);
95
96 mgprev = mg->mg_prev;
97 mgnext = mg->mg_next;
98
99 if (mg == mgnext) {
100 mc->mc_rotor = NULL;
101 } else {
102 mc->mc_rotor = mgnext;
103 mgprev->mg_next = mgnext;
104 mgnext->mg_prev = mgprev;
105 }
106
107 mg->mg_prev = NULL;
108 mg->mg_next = NULL;
109 mg->mg_class = NULL;
110 }
111
112 /*
113 * ==========================================================================
114 * Metaslab groups
115 * ==========================================================================
116 */
117 static int
118 metaslab_compare(const void *x1, const void *x2)
119 {
120 const metaslab_t *m1 = x1;
121 const metaslab_t *m2 = x2;
122
123 if (m1->ms_weight < m2->ms_weight)
124 return (1);
125 if (m1->ms_weight > m2->ms_weight)
126 return (-1);
127
128 /*
129 * If the weights are identical, use the offset to force uniqueness.
130 */
131 if (m1->ms_map.sm_start < m2->ms_map.sm_start)
132 return (-1);
133 if (m1->ms_map.sm_start > m2->ms_map.sm_start)
134 return (1);
135
136 ASSERT3P(m1, ==, m2);
137
138 return (0);
139 }
140
141 metaslab_group_t *
142 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
143 {
144 metaslab_group_t *mg;
145
146 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
147 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
148 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
149 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
150 mg->mg_aliquot = metaslab_aliquot * MAX(1, vd->vdev_children);
151 mg->mg_vd = vd;
152 metaslab_class_add(mc, mg);
153
154 return (mg);
155 }
156
157 void
158 metaslab_group_destroy(metaslab_group_t *mg)
159 {
160 avl_destroy(&mg->mg_metaslab_tree);
161 mutex_destroy(&mg->mg_lock);
162 kmem_free(mg, sizeof (metaslab_group_t));
163 }
164
165 static void
166 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
167 {
168 mutex_enter(&mg->mg_lock);
169 ASSERT(msp->ms_group == NULL);
170 msp->ms_group = mg;
171 msp->ms_weight = 0;
172 avl_add(&mg->mg_metaslab_tree, msp);
173 mutex_exit(&mg->mg_lock);
174 }
175
176 static void
177 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
178 {
179 mutex_enter(&mg->mg_lock);
180 ASSERT(msp->ms_group == mg);
181 avl_remove(&mg->mg_metaslab_tree, msp);
182 msp->ms_group = NULL;
183 mutex_exit(&mg->mg_lock);
184 }
185
186 static void
187 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
188 {
189 /*
190 * Although in principle the weight can be any value, in
191 * practice we do not use values in the range [1, 510].
192 */
193 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
194 ASSERT(MUTEX_HELD(&msp->ms_lock));
195
196 mutex_enter(&mg->mg_lock);
197 ASSERT(msp->ms_group == mg);
198 avl_remove(&mg->mg_metaslab_tree, msp);
199 msp->ms_weight = weight;
200 avl_add(&mg->mg_metaslab_tree, msp);
201 mutex_exit(&mg->mg_lock);
202 }
203
204 /*
205 * ==========================================================================
206 * The first-fit block allocator
207 * ==========================================================================
208 */
209 static void
210 metaslab_ff_load(space_map_t *sm)
211 {
212 ASSERT(sm->sm_ppd == NULL);
213 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
214 }
215
216 static void
217 metaslab_ff_unload(space_map_t *sm)
218 {
219 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
220 sm->sm_ppd = NULL;
221 }
222
223 static uint64_t
224 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
225 {
226 avl_tree_t *t = &sm->sm_root;
227 uint64_t align = size & -size;
228 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
229 space_seg_t *ss, ssearch;
230 avl_index_t where;
231
232 ssearch.ss_start = *cursor;
233 ssearch.ss_end = *cursor + size;
234
235 ss = avl_find(t, &ssearch, &where);
236 if (ss == NULL)
237 ss = avl_nearest(t, where, AVL_AFTER);
238
239 while (ss != NULL) {
240 uint64_t offset = P2ROUNDUP(ss->ss_start, align);
241
242 if (offset + size <= ss->ss_end) {
243 *cursor = offset + size;
244 return (offset);
245 }
246 ss = AVL_NEXT(t, ss);
247 }
248
249 /*
250 * If we know we've searched the whole map (*cursor == 0), give up.
251 * Otherwise, reset the cursor to the beginning and try again.
252 */
253 if (*cursor == 0)
254 return (-1ULL);
255
256 *cursor = 0;
257 return (metaslab_ff_alloc(sm, size));
258 }
259
260 /* ARGSUSED */
261 static void
262 metaslab_ff_claim(space_map_t *sm, uint64_t start, uint64_t size)
263 {
264 /* No need to update cursor */
265 }
266
267 /* ARGSUSED */
268 static void
269 metaslab_ff_free(space_map_t *sm, uint64_t start, uint64_t size)
270 {
271 /* No need to update cursor */
272 }
273
274 static space_map_ops_t metaslab_ff_ops = {
275 metaslab_ff_load,
276 metaslab_ff_unload,
277 metaslab_ff_alloc,
278 metaslab_ff_claim,
279 metaslab_ff_free
280 };
281
282 /*
283 * ==========================================================================
284 * Metaslabs
285 * ==========================================================================
286 */
287 metaslab_t *
288 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
289 uint64_t start, uint64_t size, uint64_t txg)
290 {
291 vdev_t *vd = mg->mg_vd;
292 metaslab_t *msp;
293
294 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
295 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
296
297 msp->ms_smo_syncing = *smo;
298
299 /*
300 * We create the main space map here, but we don't create the
301 * allocmaps and freemaps until metaslab_sync_done(). This serves
302 * two purposes: it allows metaslab_sync_done() to detect the
303 * addition of new space; and for debugging, it ensures that we'd
304 * data fault on any attempt to use this metaslab before it's ready.
305 */
306 space_map_create(&msp->ms_map, start, size,
307 vd->vdev_ashift, &msp->ms_lock);
308
309 metaslab_group_add(mg, msp);
310
311 /*
312 * If we're opening an existing pool (txg == 0) or creating
313 * a new one (txg == TXG_INITIAL), all space is available now.
314 * If we're adding space to an existing pool, the new space
315 * does not become available until after this txg has synced.
316 */
317 if (txg <= TXG_INITIAL)
318 metaslab_sync_done(msp, 0);
319
320 if (txg != 0) {
321 /*
322 * The vdev is dirty, but the metaslab isn't -- it just needs
323 * to have metaslab_sync_done() invoked from vdev_sync_done().
324 * [We could just dirty the metaslab, but that would cause us
325 * to allocate a space map object for it, which is wasteful
326 * and would mess up the locality logic in metaslab_weight().]
327 */
328 ASSERT(TXG_CLEAN(txg) == spa_last_synced_txg(vd->vdev_spa));
329 vdev_dirty(vd, 0, NULL, txg);
330 vdev_dirty(vd, VDD_METASLAB, msp, TXG_CLEAN(txg));
331 }
332
333 return (msp);
334 }
335
336 void
337 metaslab_fini(metaslab_t *msp)
338 {
339 metaslab_group_t *mg = msp->ms_group;
340 int t;
341
342 vdev_space_update(mg->mg_vd, -msp->ms_map.sm_size,
343 -msp->ms_smo.smo_alloc, B_TRUE);
344
345 metaslab_group_remove(mg, msp);
346
347 mutex_enter(&msp->ms_lock);
348
349 space_map_unload(&msp->ms_map);
350 space_map_destroy(&msp->ms_map);
351
352 for (t = 0; t < TXG_SIZE; t++) {
353 space_map_destroy(&msp->ms_allocmap[t]);
354 space_map_destroy(&msp->ms_freemap[t]);
355 }
356
357 mutex_exit(&msp->ms_lock);
358 mutex_destroy(&msp->ms_lock);
359
360 kmem_free(msp, sizeof (metaslab_t));
361 }
362
363 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
364 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
365 #define METASLAB_ACTIVE_MASK \
366 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
367 #define METASLAB_SMO_BONUS_MULTIPLIER 2
368
369 static uint64_t
370 metaslab_weight(metaslab_t *msp)
371 {
372 metaslab_group_t *mg = msp->ms_group;
373 space_map_t *sm = &msp->ms_map;
374 space_map_obj_t *smo = &msp->ms_smo;
375 vdev_t *vd = mg->mg_vd;
376 uint64_t weight, space;
377
378 ASSERT(MUTEX_HELD(&msp->ms_lock));
379
380 /*
381 * The baseline weight is the metaslab's free space.
382 */
383 space = sm->sm_size - smo->smo_alloc;
384 weight = space;
385
386 /*
387 * Modern disks have uniform bit density and constant angular velocity.
388 * Therefore, the outer recording zones are faster (higher bandwidth)
389 * than the inner zones by the ratio of outer to inner track diameter,
390 * which is typically around 2:1. We account for this by assigning
391 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
392 * In effect, this means that we'll select the metaslab with the most
393 * free bandwidth rather than simply the one with the most free space.
394 */
395 weight = 2 * weight -
396 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
397 ASSERT(weight >= space && weight <= 2 * space);
398
399 /*
400 * For locality, assign higher weight to metaslabs we've used before.
401 */
402 if (smo->smo_object != 0)
403 weight *= METASLAB_SMO_BONUS_MULTIPLIER;
404 ASSERT(weight >= space &&
405 weight <= 2 * METASLAB_SMO_BONUS_MULTIPLIER * space);
406
407 /*
408 * If this metaslab is one we're actively using, adjust its weight to
409 * make it preferable to any inactive metaslab so we'll polish it off.
410 */
411 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
412
413 return (weight);
414 }
415
416 static int
417 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
418 {
419 space_map_t *sm = &msp->ms_map;
420
421 ASSERT(MUTEX_HELD(&msp->ms_lock));
422
423 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
424 int error = space_map_load(sm, &metaslab_ff_ops,
425 SM_FREE, &msp->ms_smo,
426 msp->ms_group->mg_vd->vdev_spa->spa_meta_objset);
427 if (error) {
428 metaslab_group_sort(msp->ms_group, msp, 0);
429 return (error);
430 }
431 metaslab_group_sort(msp->ms_group, msp,
432 msp->ms_weight | activation_weight);
433 }
434 ASSERT(sm->sm_loaded);
435 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
436
437 return (0);
438 }
439
440 static void
441 metaslab_passivate(metaslab_t *msp, uint64_t size)
442 {
443 /*
444 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
445 * this metaslab again. In that case, it had better be empty,
446 * or we would be leaving space on the table.
447 */
448 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
449 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
450 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
451 }
452
453 /*
454 * Write a metaslab to disk in the context of the specified transaction group.
455 */
456 void
457 metaslab_sync(metaslab_t *msp, uint64_t txg)
458 {
459 vdev_t *vd = msp->ms_group->mg_vd;
460 spa_t *spa = vd->vdev_spa;
461 objset_t *mos = spa->spa_meta_objset;
462 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
463 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
464 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
465 space_map_t *sm = &msp->ms_map;
466 space_map_obj_t *smo = &msp->ms_smo_syncing;
467 dmu_buf_t *db;
468 dmu_tx_t *tx;
469 int t;
470
471 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
472
473 /*
474 * The only state that can actually be changing concurrently with
475 * metaslab_sync() is the metaslab's ms_map. No other thread can
476 * be modifying this txg's allocmap, freemap, freed_map, or smo.
477 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
478 * We drop it whenever we call into the DMU, because the DMU
479 * can call down to us (e.g. via zio_free()) at any time.
480 */
481 mutex_enter(&msp->ms_lock);
482
483 if (smo->smo_object == 0) {
484 ASSERT(smo->smo_objsize == 0);
485 ASSERT(smo->smo_alloc == 0);
486 mutex_exit(&msp->ms_lock);
487 smo->smo_object = dmu_object_alloc(mos,
488 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
489 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
490 ASSERT(smo->smo_object != 0);
491 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
492 (sm->sm_start >> vd->vdev_ms_shift),
493 sizeof (uint64_t), &smo->smo_object, tx);
494 mutex_enter(&msp->ms_lock);
495 }
496
497 space_map_walk(freemap, space_map_add, freed_map);
498
499 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
500 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
501 /*
502 * The in-core space map representation is twice as compact
503 * as the on-disk one, so it's time to condense the latter
504 * by generating a pure allocmap from first principles.
505 *
506 * This metaslab is 100% allocated,
507 * minus the content of the in-core map (sm),
508 * minus what's been freed this txg (freed_map),
509 * minus allocations from txgs in the future
510 * (because they haven't been committed yet).
511 */
512 space_map_vacate(allocmap, NULL, NULL);
513 space_map_vacate(freemap, NULL, NULL);
514
515 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
516
517 space_map_walk(sm, space_map_remove, allocmap);
518 space_map_walk(freed_map, space_map_remove, allocmap);
519
520 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
521 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
522 space_map_remove, allocmap);
523
524 mutex_exit(&msp->ms_lock);
525 space_map_truncate(smo, mos, tx);
526 mutex_enter(&msp->ms_lock);
527 }
528
529 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
530 space_map_sync(freemap, SM_FREE, smo, mos, tx);
531
532 mutex_exit(&msp->ms_lock);
533
534 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
535 dmu_buf_will_dirty(db, tx);
536 ASSERT3U(db->db_size, >=, sizeof (*smo));
537 bcopy(smo, db->db_data, sizeof (*smo));
538 dmu_buf_rele(db, FTAG);
539
540 dmu_tx_commit(tx);
541 }
542
543 /*
544 * Called after a transaction group has completely synced to mark
545 * all of the metaslab's free space as usable.
546 */
547 void
548 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
549 {
550 space_map_obj_t *smo = &msp->ms_smo;
551 space_map_obj_t *smosync = &msp->ms_smo_syncing;
552 space_map_t *sm = &msp->ms_map;
553 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
554 metaslab_group_t *mg = msp->ms_group;
555 vdev_t *vd = mg->mg_vd;
556 int t;
557
558 mutex_enter(&msp->ms_lock);
559
560 /*
561 * If this metaslab is just becoming available, initialize its
562 * allocmaps and freemaps and add its capacity to the vdev.
563 */
564 if (freed_map->sm_size == 0) {
565 for (t = 0; t < TXG_SIZE; t++) {
566 space_map_create(&msp->ms_allocmap[t], sm->sm_start,
567 sm->sm_size, sm->sm_shift, sm->sm_lock);
568 space_map_create(&msp->ms_freemap[t], sm->sm_start,
569 sm->sm_size, sm->sm_shift, sm->sm_lock);
570 }
571 vdev_space_update(vd, sm->sm_size, 0, B_TRUE);
572 }
573
574 vdev_space_update(vd, 0, smosync->smo_alloc - smo->smo_alloc, B_TRUE);
575
576 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
577 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
578
579 /*
580 * If there's a space_map_load() in progress, wait for it to complete
581 * so that we have a consistent view of the in-core space map.
582 * Then, add everything we freed in this txg to the map.
583 */
584 space_map_load_wait(sm);
585 space_map_vacate(freed_map, sm->sm_loaded ? space_map_free : NULL, sm);
586
587 *smo = *smosync;
588
589 /*
590 * If the map is loaded but no longer active, evict it as soon as all
591 * future allocations have synced. (If we unloaded it now and then
592 * loaded a moment later, the map wouldn't reflect those allocations.)
593 */
594 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
595 int evictable = 1;
596
597 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
598 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
599 evictable = 0;
600
601 if (evictable)
602 space_map_unload(sm);
603 }
604
605 metaslab_group_sort(mg, msp, metaslab_weight(msp));
606
607 mutex_exit(&msp->ms_lock);
608 }
609
610 static uint64_t
611 metaslab_distance(metaslab_t *msp, dva_t *dva)
612 {
613 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
614 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
615 uint64_t start = msp->ms_map.sm_start >> ms_shift;
616
617 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
618 return (1ULL << 63);
619
620 if (offset < start)
621 return ((start - offset) << ms_shift);
622 if (offset > start)
623 return ((offset - start) << ms_shift);
624 return (0);
625 }
626
627 static uint64_t
628 metaslab_group_alloc(metaslab_group_t *mg, uint64_t size, uint64_t txg,
629 uint64_t min_distance, dva_t *dva, int d)
630 {
631 metaslab_t *msp = NULL;
632 uint64_t offset = -1ULL;
633 avl_tree_t *t = &mg->mg_metaslab_tree;
634 uint64_t activation_weight;
635 uint64_t target_distance;
636 int i;
637
638 activation_weight = METASLAB_WEIGHT_PRIMARY;
639 for (i = 0; i < d; i++)
640 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id)
641 activation_weight = METASLAB_WEIGHT_SECONDARY;
642
643 for (;;) {
644 mutex_enter(&mg->mg_lock);
645 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
646 if (msp->ms_weight < size) {
647 mutex_exit(&mg->mg_lock);
648 return (-1ULL);
649 }
650
651 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
652 break;
653
654 target_distance = min_distance +
655 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
656
657 for (i = 0; i < d; i++)
658 if (metaslab_distance(msp, &dva[i]) <
659 target_distance)
660 break;
661 if (i == d)
662 break;
663 }
664 mutex_exit(&mg->mg_lock);
665 if (msp == NULL)
666 return (-1ULL);
667
668 mutex_enter(&msp->ms_lock);
669
670 /*
671 * Ensure that the metaslab we have selected is still
672 * capable of handling our request. It's possible that
673 * another thread may have changed the weight while we
674 * were blocked on the metaslab lock.
675 */
676 if (msp->ms_weight < size) {
677 mutex_exit(&msp->ms_lock);
678 continue;
679 }
680
681 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
682 activation_weight == METASLAB_WEIGHT_PRIMARY) {
683 metaslab_passivate(msp,
684 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
685 mutex_exit(&msp->ms_lock);
686 continue;
687 }
688
689 if (metaslab_activate(msp, activation_weight) != 0) {
690 mutex_exit(&msp->ms_lock);
691 continue;
692 }
693
694 if ((offset = space_map_alloc(&msp->ms_map, size)) != -1ULL)
695 break;
696
697 metaslab_passivate(msp, size - 1);
698
699 mutex_exit(&msp->ms_lock);
700 }
701
702 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
703 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
704
705 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
706
707 mutex_exit(&msp->ms_lock);
708
709 return (offset);
710 }
711
712 /*
713 * Allocate a block for the specified i/o.
714 */
715 static int
716 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
717 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
718 {
719 metaslab_group_t *mg, *rotor;
720 vdev_t *vd;
721 int dshift = 3;
722 int all_zero;
723 uint64_t offset = -1ULL;
724 uint64_t asize;
725 uint64_t distance;
726
727 ASSERT(!DVA_IS_VALID(&dva[d]));
728
729 /*
730 * For testing, make some blocks above a certain size be gang blocks.
731 */
732 if (psize >= metaslab_gang_bang && (lbolt & 3) == 0)
733 return (ENOSPC);
734
735 /*
736 * Start at the rotor and loop through all mgs until we find something.
737 * Note that there's no locking on mc_rotor or mc_allocated because
738 * nothing actually breaks if we miss a few updates -- we just won't
739 * allocate quite as evenly. It all balances out over time.
740 *
741 * If we are doing ditto or log blocks, try to spread them across
742 * consecutive vdevs. If we're forced to reuse a vdev before we've
743 * allocated all of our ditto blocks, then try and spread them out on
744 * that vdev as much as possible. If it turns out to not be possible,
745 * gradually lower our standards until anything becomes acceptable.
746 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
747 * gives us hope of containing our fault domains to something we're
748 * able to reason about. Otherwise, any two top-level vdev failures
749 * will guarantee the loss of data. With consecutive allocation,
750 * only two adjacent top-level vdev failures will result in data loss.
751 *
752 * If we are doing gang blocks (hintdva is non-NULL), try to keep
753 * ourselves on the same vdev as our gang block header. That
754 * way, we can hope for locality in vdev_cache, plus it makes our
755 * fault domains something tractable.
756 */
757 if (hintdva) {
758 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
759 if (flags & METASLAB_HINTBP_AVOID)
760 mg = vd->vdev_mg->mg_next;
761 else
762 mg = vd->vdev_mg;
763 } else if (d != 0) {
764 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
765 mg = vd->vdev_mg->mg_next;
766 } else {
767 mg = mc->mc_rotor;
768 }
769
770 /*
771 * If the hint put us into the wrong class, just follow the rotor.
772 */
773 if (mg->mg_class != mc)
774 mg = mc->mc_rotor;
775
776 rotor = mg;
777 top:
778 all_zero = B_TRUE;
779 do {
780 vd = mg->mg_vd;
781 /*
782 * Don't allocate from faulted devices.
783 */
784 if (!vdev_allocatable(vd))
785 goto next;
786 /*
787 * Avoid writing single-copy data to a failing vdev
788 */
789 if ((vd->vdev_stat.vs_write_errors > 0 ||
790 vd->vdev_state < VDEV_STATE_HEALTHY) &&
791 d == 0 && dshift == 3) {
792 all_zero = B_FALSE;
793 goto next;
794 }
795
796 ASSERT(mg->mg_class == mc);
797
798 distance = vd->vdev_asize >> dshift;
799 if (distance <= (1ULL << vd->vdev_ms_shift))
800 distance = 0;
801 else
802 all_zero = B_FALSE;
803
804 asize = vdev_psize_to_asize(vd, psize);
805 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
806
807 offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
808 if (offset != -1ULL) {
809 /*
810 * If we've just selected this metaslab group,
811 * figure out whether the corresponding vdev is
812 * over- or under-used relative to the pool,
813 * and set an allocation bias to even it out.
814 */
815 if (mc->mc_allocated == 0) {
816 vdev_stat_t *vs = &vd->vdev_stat;
817 uint64_t alloc, space;
818 int64_t vu, su;
819
820 alloc = spa_get_alloc(spa);
821 space = spa_get_space(spa);
822
823 /*
824 * Determine percent used in units of 0..1024.
825 * (This is just to avoid floating point.)
826 */
827 vu = (vs->vs_alloc << 10) / (vs->vs_space + 1);
828 su = (alloc << 10) / (space + 1);
829
830 /*
831 * Bias by at most +/- 25% of the aliquot.
832 */
833 mg->mg_bias = ((su - vu) *
834 (int64_t)mg->mg_aliquot) / (1024 * 4);
835 }
836
837 if (atomic_add_64_nv(&mc->mc_allocated, asize) >=
838 mg->mg_aliquot + mg->mg_bias) {
839 mc->mc_rotor = mg->mg_next;
840 mc->mc_allocated = 0;
841 }
842
843 DVA_SET_VDEV(&dva[d], vd->vdev_id);
844 DVA_SET_OFFSET(&dva[d], offset);
845 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
846 DVA_SET_ASIZE(&dva[d], asize);
847
848 return (0);
849 }
850 next:
851 mc->mc_rotor = mg->mg_next;
852 mc->mc_allocated = 0;
853 } while ((mg = mg->mg_next) != rotor);
854
855 if (!all_zero) {
856 dshift++;
857 ASSERT(dshift < 64);
858 goto top;
859 }
860
861 bzero(&dva[d], sizeof (dva_t));
862
863 return (ENOSPC);
864 }
865
866 /*
867 * Free the block represented by DVA in the context of the specified
868 * transaction group.
869 */
870 static void
871 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
872 {
873 uint64_t vdev = DVA_GET_VDEV(dva);
874 uint64_t offset = DVA_GET_OFFSET(dva);
875 uint64_t size = DVA_GET_ASIZE(dva);
876 vdev_t *vd;
877 metaslab_t *msp;
878
879 ASSERT(DVA_IS_VALID(dva));
880
881 if (txg > spa_freeze_txg(spa))
882 return;
883
884 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
885 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
886 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
887 (u_longlong_t)vdev, (u_longlong_t)offset);
888 ASSERT(0);
889 return;
890 }
891
892 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
893
894 if (DVA_GET_GANG(dva))
895 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
896
897 mutex_enter(&msp->ms_lock);
898
899 if (now) {
900 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
901 offset, size);
902 space_map_free(&msp->ms_map, offset, size);
903 } else {
904 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
905 vdev_dirty(vd, VDD_METASLAB, msp, txg);
906 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
907 }
908
909 mutex_exit(&msp->ms_lock);
910 }
911
912 /*
913 * Intent log support: upon opening the pool after a crash, notify the SPA
914 * of blocks that the intent log has allocated for immediate write, but
915 * which are still considered free by the SPA because the last transaction
916 * group didn't commit yet.
917 */
918 static int
919 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
920 {
921 uint64_t vdev = DVA_GET_VDEV(dva);
922 uint64_t offset = DVA_GET_OFFSET(dva);
923 uint64_t size = DVA_GET_ASIZE(dva);
924 vdev_t *vd;
925 metaslab_t *msp;
926 int error;
927
928 ASSERT(DVA_IS_VALID(dva));
929
930 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
931 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
932 return (ENXIO);
933
934 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
935
936 if (DVA_GET_GANG(dva))
937 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
938
939 mutex_enter(&msp->ms_lock);
940
941 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
942 if (error || txg == 0) { /* txg == 0 indicates dry run */
943 mutex_exit(&msp->ms_lock);
944 return (error);
945 }
946
947 space_map_claim(&msp->ms_map, offset, size);
948
949 if (spa_mode & FWRITE) { /* don't dirty if we're zdb(1M) */
950 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
951 vdev_dirty(vd, VDD_METASLAB, msp, txg);
952 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
953 }
954
955 mutex_exit(&msp->ms_lock);
956
957 return (0);
958 }
959
960 int
961 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
962 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
963 {
964 dva_t *dva = bp->blk_dva;
965 dva_t *hintdva = hintbp->blk_dva;
966 int error = 0;
967
968 ASSERT(bp->blk_birth == 0);
969
970 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
971
972 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
973 spa_config_exit(spa, SCL_ALLOC, FTAG);
974 return (ENOSPC);
975 }
976
977 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
978 ASSERT(BP_GET_NDVAS(bp) == 0);
979 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
980
981 for (int d = 0; d < ndvas; d++) {
982 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
983 txg, flags);
984 if (error) {
985 for (d--; d >= 0; d--) {
986 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
987 bzero(&dva[d], sizeof (dva_t));
988 }
989 spa_config_exit(spa, SCL_ALLOC, FTAG);
990 return (error);
991 }
992 }
993 ASSERT(error == 0);
994 ASSERT(BP_GET_NDVAS(bp) == ndvas);
995
996 spa_config_exit(spa, SCL_ALLOC, FTAG);
997
998 bp->blk_birth = txg;
999
1000 return (0);
1001 }
1002
1003 void
1004 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1005 {
1006 const dva_t *dva = bp->blk_dva;
1007 int ndvas = BP_GET_NDVAS(bp);
1008
1009 ASSERT(!BP_IS_HOLE(bp));
1010 ASSERT(!now || bp->blk_birth >= spa->spa_syncing_txg);
1011
1012 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1013
1014 for (int d = 0; d < ndvas; d++)
1015 metaslab_free_dva(spa, &dva[d], txg, now);
1016
1017 spa_config_exit(spa, SCL_FREE, FTAG);
1018 }
1019
1020 int
1021 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1022 {
1023 const dva_t *dva = bp->blk_dva;
1024 int ndvas = BP_GET_NDVAS(bp);
1025 int error = 0;
1026
1027 ASSERT(!BP_IS_HOLE(bp));
1028
1029 if (txg != 0) {
1030 /*
1031 * First do a dry run to make sure all DVAs are claimable,
1032 * so we don't have to unwind from partial failures below.
1033 */
1034 if ((error = metaslab_claim(spa, bp, 0)) != 0)
1035 return (error);
1036 }
1037
1038 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1039
1040 for (int d = 0; d < ndvas; d++)
1041 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
1042 break;
1043
1044 spa_config_exit(spa, SCL_ALLOC, FTAG);
1045
1046 ASSERT(error == 0 || txg == 0);
1047
1048 return (error);
1049 }