]> git.proxmox.com Git - mirror_zfs.git/blob - zfs/lib/libzpool/zfs_fm.c
Initial Linux ZFS GIT Repo
[mirror_zfs.git] / zfs / lib / libzpool / zfs_fm.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #pragma ident "@(#)zfs_fm.c 1.6 08/04/01 SMI"
27
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/vdev.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33
34 #include <sys/fm/fs/zfs.h>
35 #include <sys/fm/protocol.h>
36 #include <sys/fm/util.h>
37 #include <sys/sysevent.h>
38
39 /*
40 * This general routine is responsible for generating all the different ZFS
41 * ereports. The payload is dependent on the class, and which arguments are
42 * supplied to the function:
43 *
44 * EREPORT POOL VDEV IO
45 * block X X X
46 * data X X
47 * device X X
48 * pool X
49 *
50 * If we are in a loading state, all errors are chained together by the same
51 * SPA-wide ENA.
52 *
53 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
54 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
55 * to chain together all ereports associated with a logical piece of data. For
56 * read I/Os, there are basically three 'types' of I/O, which form a roughly
57 * layered diagram:
58 *
59 * +---------------+
60 * | Aggregate I/O | No associated logical data or device
61 * +---------------+
62 * |
63 * V
64 * +---------------+ Reads associated with a piece of logical data.
65 * | Read I/O | This includes reads on behalf of RAID-Z,
66 * +---------------+ mirrors, gang blocks, retries, etc.
67 * |
68 * V
69 * +---------------+ Reads associated with a particular device, but
70 * | Physical I/O | no logical data. Issued as part of vdev caching
71 * +---------------+ and I/O aggregation.
72 *
73 * Note that 'physical I/O' here is not the same terminology as used in the rest
74 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
75 * blockpointer. But I/O with no associated block pointer can still be related
76 * to a logical piece of data (i.e. RAID-Z requests).
77 *
78 * Purely physical I/O always have unique ENAs. They are not related to a
79 * particular piece of logical data, and therefore cannot be chained together.
80 * We still generate an ereport, but the DE doesn't correlate it with any
81 * logical piece of data. When such an I/O fails, the delegated I/O requests
82 * will issue a retry, which will trigger the 'real' ereport with the correct
83 * ENA.
84 *
85 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
86 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
87 * then inherit this pointer, so that when it is first set subsequent failures
88 * will use the same ENA. If a physical I/O is issued (by passing the
89 * ZIO_FLAG_NOBOOKMARK flag), then this pointer is reset, guaranteeing that a
90 * unique ENA will be generated. For an aggregate I/O, this pointer is set to
91 * NULL, and no ereport will be generated (since it doesn't actually correspond
92 * to any particular device or piece of data).
93 */
94 void
95 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio,
96 uint64_t stateoroffset, uint64_t size)
97 {
98 #ifdef _KERNEL
99 nvlist_t *ereport, *detector;
100 uint64_t ena;
101 char class[64];
102
103 /*
104 * If we are doing a spa_tryimport(), ignore errors.
105 */
106 if (spa->spa_load_state == SPA_LOAD_TRYIMPORT)
107 return;
108
109 /*
110 * If we are in the middle of opening a pool, and the previous attempt
111 * failed, don't bother logging any new ereports - we're just going to
112 * get the same diagnosis anyway.
113 */
114 if (spa->spa_load_state != SPA_LOAD_NONE &&
115 spa->spa_last_open_failed)
116 return;
117
118 /*
119 * Ignore any errors from I/Os that we are going to retry anyway - we
120 * only generate errors from the final failure. Checksum errors are
121 * generated after the pipeline stage responsible for retrying the I/O
122 * (VDEV_IO_ASSESS), so this only applies to standard I/O errors.
123 */
124 if (zio && zio_should_retry(zio) && zio->io_error != ECKSUM)
125 return;
126
127 /*
128 * If this is not a read or write zio, ignore the error. This can occur
129 * if the DKIOCFLUSHWRITECACHE ioctl fails.
130 */
131 if (zio && zio->io_type != ZIO_TYPE_READ &&
132 zio->io_type != ZIO_TYPE_WRITE)
133 return;
134
135 if ((ereport = fm_nvlist_create(NULL)) == NULL)
136 return;
137
138 if ((detector = fm_nvlist_create(NULL)) == NULL) {
139 fm_nvlist_destroy(ereport, FM_NVA_FREE);
140 return;
141 }
142
143 /*
144 * Serialize ereport generation
145 */
146 mutex_enter(&spa->spa_errlist_lock);
147
148 /*
149 * Determine the ENA to use for this event. If we are in a loading
150 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
151 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
152 */
153 if (spa->spa_load_state != SPA_LOAD_NONE) {
154 if (spa->spa_ena == 0)
155 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
156 ena = spa->spa_ena;
157 } else if (zio != NULL && zio->io_logical != NULL) {
158 if (zio->io_logical->io_ena == 0)
159 zio->io_logical->io_ena =
160 fm_ena_generate(0, FM_ENA_FMT1);
161 ena = zio->io_logical->io_ena;
162 } else {
163 ena = fm_ena_generate(0, FM_ENA_FMT1);
164 }
165
166 /*
167 * Construct the full class, detector, and other standard FMA fields.
168 */
169 (void) snprintf(class, sizeof (class), "%s.%s",
170 ZFS_ERROR_CLASS, subclass);
171
172 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
173 vd != NULL ? vd->vdev_guid : 0);
174
175 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
176
177 /*
178 * Construct the per-ereport payload, depending on which parameters are
179 * passed in.
180 */
181
182 /*
183 * Generic payload members common to all ereports.
184 *
185 * The direct reference to spa_name is used rather than spa_name()
186 * because of the asynchronous nature of the zio pipeline. spa_name()
187 * asserts that the config lock is held in some form. This is always
188 * the case in I/O context, but because the check for RW_WRITER compares
189 * against 'curthread', we may be in an asynchronous context and blow
190 * this assert. Rather than loosen this assert, we acknowledge that all
191 * contexts in which this function is called (pool open, I/O) are safe,
192 * and dereference the name directly.
193 */
194 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL,
195 DATA_TYPE_STRING, spa->spa_name, FM_EREPORT_PAYLOAD_ZFS_POOL_GUID,
196 DATA_TYPE_UINT64, spa_guid(spa),
197 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
198 spa->spa_load_state, NULL);
199
200 if (vd != NULL) {
201 vdev_t *pvd = vd->vdev_parent;
202
203 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
204 DATA_TYPE_UINT64, vd->vdev_guid,
205 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
206 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
207 if (vd->vdev_path)
208 fm_payload_set(ereport,
209 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
210 DATA_TYPE_STRING, vd->vdev_path, NULL);
211 if (vd->vdev_devid)
212 fm_payload_set(ereport,
213 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
214 DATA_TYPE_STRING, vd->vdev_devid, NULL);
215
216 if (pvd != NULL) {
217 fm_payload_set(ereport,
218 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
219 DATA_TYPE_UINT64, pvd->vdev_guid,
220 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
221 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
222 NULL);
223 if (pvd->vdev_path)
224 fm_payload_set(ereport,
225 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
226 DATA_TYPE_STRING, pvd->vdev_path, NULL);
227 if (pvd->vdev_devid)
228 fm_payload_set(ereport,
229 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
230 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
231 }
232 }
233
234 if (zio != NULL) {
235 /*
236 * Payload common to all I/Os.
237 */
238 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
239 DATA_TYPE_INT32, zio->io_error, NULL);
240
241 /*
242 * If the 'size' parameter is non-zero, it indicates this is a
243 * RAID-Z or other I/O where the physical offset and length are
244 * provided for us, instead of within the zio_t.
245 */
246 if (vd != NULL) {
247 if (size)
248 fm_payload_set(ereport,
249 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
250 DATA_TYPE_UINT64, stateoroffset,
251 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
252 DATA_TYPE_UINT64, size, NULL);
253 else
254 fm_payload_set(ereport,
255 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
256 DATA_TYPE_UINT64, zio->io_offset,
257 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
258 DATA_TYPE_UINT64, zio->io_size, NULL);
259 }
260
261 /*
262 * Payload for I/Os with corresponding logical information.
263 */
264 if (zio->io_logical != NULL)
265 fm_payload_set(ereport,
266 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
267 DATA_TYPE_UINT64,
268 zio->io_logical->io_bookmark.zb_objset,
269 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
270 DATA_TYPE_UINT64,
271 zio->io_logical->io_bookmark.zb_object,
272 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
273 DATA_TYPE_INT64,
274 zio->io_logical->io_bookmark.zb_level,
275 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
276 DATA_TYPE_UINT64,
277 zio->io_logical->io_bookmark.zb_blkid, NULL);
278 } else if (vd != NULL) {
279 /*
280 * If we have a vdev but no zio, this is a device fault, and the
281 * 'stateoroffset' parameter indicates the previous state of the
282 * vdev.
283 */
284 fm_payload_set(ereport,
285 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
286 DATA_TYPE_UINT64, stateoroffset, NULL);
287 }
288 mutex_exit(&spa->spa_errlist_lock);
289
290 fm_ereport_post(ereport, EVCH_SLEEP);
291
292 fm_nvlist_destroy(ereport, FM_NVA_FREE);
293 fm_nvlist_destroy(detector, FM_NVA_FREE);
294 #endif
295 }
296
297 static void
298 zfs_post_common(spa_t *spa, vdev_t *vd, const char *name)
299 {
300 #ifdef _KERNEL
301 nvlist_t *resource;
302 char class[64];
303
304 if ((resource = fm_nvlist_create(NULL)) == NULL)
305 return;
306
307 (void) snprintf(class, sizeof (class), "%s.%s.%s", FM_RSRC_RESOURCE,
308 ZFS_ERROR_CLASS, name);
309 VERIFY(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION) == 0);
310 VERIFY(nvlist_add_string(resource, FM_CLASS, class) == 0);
311 VERIFY(nvlist_add_uint64(resource,
312 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)) == 0);
313 if (vd)
314 VERIFY(nvlist_add_uint64(resource,
315 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid) == 0);
316
317 fm_ereport_post(resource, EVCH_SLEEP);
318
319 fm_nvlist_destroy(resource, FM_NVA_FREE);
320 #endif
321 }
322
323 /*
324 * The 'resource.fs.zfs.ok' event is an internal signal that the associated
325 * resource (pool or disk) has been identified by ZFS as healthy. This will
326 * then trigger the DE to close the associated case, if any.
327 */
328 void
329 zfs_post_ok(spa_t *spa, vdev_t *vd)
330 {
331 zfs_post_common(spa, vd, FM_RESOURCE_OK);
332 }
333
334 /*
335 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
336 * has been removed from the system. This will cause the DE to ignore any
337 * recent I/O errors, inferring that they are due to the asynchronous device
338 * removal.
339 */
340 void
341 zfs_post_remove(spa_t *spa, vdev_t *vd)
342 {
343 zfs_post_common(spa, vd, FM_RESOURCE_REMOVED);
344 }
345
346 /*
347 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
348 * has the 'autoreplace' property set, and therefore any broken vdevs will be
349 * handled by higher level logic, and no vdev fault should be generated.
350 */
351 void
352 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
353 {
354 zfs_post_common(spa, vd, FM_RESOURCE_AUTOREPLACE);
355 }