]> git.proxmox.com Git - mirror_zfs.git/blobdiff - module/zfs/dmu_zfetch.c
ddt: move entry compression into ddt_zap
[mirror_zfs.git] / module / zfs / dmu_zfetch.c
index 9064b261431765c67aefe13b39d7e674599f79a9..2b2d72671001661391c7636337c205d436297fd3 100644 (file)
@@ -6,7 +6,7 @@
  * You may not use this file except in compliance with the License.
  *
  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
+ * or https://opensource.org/licenses/CDDL-1.0.
  * See the License for the specific language governing permissions
  * and limitations under the License.
  *
  */
 
 /*
- * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
+ * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
  */
 
 #include <sys/zfs_context.h>
+#include <sys/arc_impl.h>
 #include <sys/dnode.h>
 #include <sys/dmu_objset.h>
 #include <sys/dmu_zfetch.h>
 #include <sys/dmu.h>
 #include <sys/dbuf.h>
 #include <sys/kstat.h>
+#include <sys/wmsum.h>
 
 /*
  * This tunable disables predictive prefetch.  Note that it leaves "prescient"
  * so it can't hurt performance.
  */
 
-int zfs_prefetch_disable = B_FALSE;
+static int zfs_prefetch_disable = B_FALSE;
 
 /* max # of streams per zfetch */
-unsigned int   zfetch_max_streams = 8;
+static unsigned int    zfetch_max_streams = 8;
 /* min time before stream reclaim */
-unsigned int   zfetch_min_sec_reap = 2;
+static unsigned int    zfetch_min_sec_reap = 1;
+/* max time before stream delete */
+static unsigned int    zfetch_max_sec_reap = 2;
+#ifdef _ILP32
+/* min bytes to prefetch per stream (default 2MB) */
+static unsigned int    zfetch_min_distance = 2 * 1024 * 1024;
 /* max bytes to prefetch per stream (default 8MB) */
 unsigned int   zfetch_max_distance = 8 * 1024 * 1024;
-/* max number of bytes in an array_read in which we allow prefetching (1MB) */
-unsigned long  zfetch_array_rd_sz = 1024 * 1024;
+#else
+/* min bytes to prefetch per stream (default 4MB) */
+static unsigned int    zfetch_min_distance = 4 * 1024 * 1024;
+/* max bytes to prefetch per stream (default 64MB) */
+unsigned int   zfetch_max_distance = 64 * 1024 * 1024;
+#endif
+/* max bytes to prefetch indirects for per stream (default 64MB) */
+unsigned int   zfetch_max_idistance = 64 * 1024 * 1024;
 
 typedef struct zfetch_stats {
        kstat_named_t zfetchstat_hits;
        kstat_named_t zfetchstat_misses;
        kstat_named_t zfetchstat_max_streams;
+       kstat_named_t zfetchstat_io_issued;
+       kstat_named_t zfetchstat_io_active;
 } zfetch_stats_t;
 
 static zfetch_stats_t zfetch_stats = {
        { "hits",                       KSTAT_DATA_UINT64 },
        { "misses",                     KSTAT_DATA_UINT64 },
        { "max_streams",                KSTAT_DATA_UINT64 },
+       { "io_issued",                  KSTAT_DATA_UINT64 },
+       { "io_active",                  KSTAT_DATA_UINT64 },
 };
 
-#define        ZFETCHSTAT_BUMP(stat) \
-       atomic_inc_64(&zfetch_stats.stat.value.ui64);
+struct {
+       wmsum_t zfetchstat_hits;
+       wmsum_t zfetchstat_misses;
+       wmsum_t zfetchstat_max_streams;
+       wmsum_t zfetchstat_io_issued;
+       aggsum_t zfetchstat_io_active;
+} zfetch_sums;
+
+#define        ZFETCHSTAT_BUMP(stat)                                   \
+       wmsum_add(&zfetch_sums.stat, 1)
+#define        ZFETCHSTAT_ADD(stat, val)                               \
+       wmsum_add(&zfetch_sums.stat, val)
+
 
-kstat_t                *zfetch_ksp;
+static kstat_t         *zfetch_ksp;
+
+static int
+zfetch_kstats_update(kstat_t *ksp, int rw)
+{
+       zfetch_stats_t *zs = ksp->ks_data;
+
+       if (rw == KSTAT_WRITE)
+               return (EACCES);
+       zs->zfetchstat_hits.value.ui64 =
+           wmsum_value(&zfetch_sums.zfetchstat_hits);
+       zs->zfetchstat_misses.value.ui64 =
+           wmsum_value(&zfetch_sums.zfetchstat_misses);
+       zs->zfetchstat_max_streams.value.ui64 =
+           wmsum_value(&zfetch_sums.zfetchstat_max_streams);
+       zs->zfetchstat_io_issued.value.ui64 =
+           wmsum_value(&zfetch_sums.zfetchstat_io_issued);
+       zs->zfetchstat_io_active.value.ui64 =
+           aggsum_value(&zfetch_sums.zfetchstat_io_active);
+       return (0);
+}
 
 void
 zfetch_init(void)
 {
+       wmsum_init(&zfetch_sums.zfetchstat_hits, 0);
+       wmsum_init(&zfetch_sums.zfetchstat_misses, 0);
+       wmsum_init(&zfetch_sums.zfetchstat_max_streams, 0);
+       wmsum_init(&zfetch_sums.zfetchstat_io_issued, 0);
+       aggsum_init(&zfetch_sums.zfetchstat_io_active, 0);
+
        zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
            KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
            KSTAT_FLAG_VIRTUAL);
 
        if (zfetch_ksp != NULL) {
                zfetch_ksp->ks_data = &zfetch_stats;
+               zfetch_ksp->ks_update = zfetch_kstats_update;
                kstat_install(zfetch_ksp);
        }
 }
@@ -90,6 +145,13 @@ zfetch_fini(void)
                kstat_delete(zfetch_ksp);
                zfetch_ksp = NULL;
        }
+
+       wmsum_fini(&zfetch_sums.zfetchstat_hits);
+       wmsum_fini(&zfetch_sums.zfetchstat_misses);
+       wmsum_fini(&zfetch_sums.zfetchstat_max_streams);
+       wmsum_fini(&zfetch_sums.zfetchstat_io_issued);
+       ASSERT0(aggsum_value(&zfetch_sums.zfetchstat_io_active));
+       aggsum_fini(&zfetch_sums.zfetchstat_io_active);
 }
 
 /*
@@ -102,22 +164,33 @@ dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
 {
        if (zf == NULL)
                return;
-
        zf->zf_dnode = dno;
+       zf->zf_numstreams = 0;
 
        list_create(&zf->zf_stream, sizeof (zstream_t),
            offsetof(zstream_t, zs_node));
 
-       rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
+       mutex_init(&zf->zf_lock, NULL, MUTEX_DEFAULT, NULL);
+}
+
+static void
+dmu_zfetch_stream_fini(zstream_t *zs)
+{
+       ASSERT(!list_link_active(&zs->zs_node));
+       zfs_refcount_destroy(&zs->zs_callers);
+       zfs_refcount_destroy(&zs->zs_refs);
+       kmem_free(zs, sizeof (*zs));
 }
 
 static void
 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
 {
-       ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
+       ASSERT(MUTEX_HELD(&zf->zf_lock));
        list_remove(&zf->zf_stream, zs);
-       mutex_destroy(&zs->zs_lock);
-       kmem_free(zs, sizeof (*zs));
+       zf->zf_numstreams--;
+       membar_producer();
+       if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
+               dmu_zfetch_stream_fini(zs);
 }
 
 /*
@@ -129,178 +202,391 @@ dmu_zfetch_fini(zfetch_t *zf)
 {
        zstream_t *zs;
 
-       ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
-
-       rw_enter(&zf->zf_rwlock, RW_WRITER);
+       mutex_enter(&zf->zf_lock);
        while ((zs = list_head(&zf->zf_stream)) != NULL)
                dmu_zfetch_stream_remove(zf, zs);
-       rw_exit(&zf->zf_rwlock);
+       mutex_exit(&zf->zf_lock);
        list_destroy(&zf->zf_stream);
-       rw_destroy(&zf->zf_rwlock);
+       mutex_destroy(&zf->zf_lock);
 
        zf->zf_dnode = NULL;
 }
 
 /*
- * If there aren't too many streams already, create a new stream.
+ * If there aren't too many active streams already, create one more.
+ * In process delete/reuse all streams without hits for zfetch_max_sec_reap.
+ * If needed, reuse oldest stream without hits for zfetch_min_sec_reap or ever.
  * The "blkid" argument is the next block that we expect this stream to access.
- * While we're here, clean up old streams (which haven't been
- * accessed for at least zfetch_min_sec_reap seconds).
  */
 static void
 dmu_zfetch_stream_create(zfetch_t *zf, uint64_t blkid)
 {
-       zstream_t *zs;
-       zstream_t *zs_next;
-       int numstreams = 0;
-       uint32_t max_streams;
+       zstream_t *zs, *zs_next, *zs_old = NULL;
+       hrtime_t now = gethrtime(), t;
 
-       ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
+       ASSERT(MUTEX_HELD(&zf->zf_lock));
 
        /*
-        * Clean up old streams.
+        * Delete too old streams, reusing the first found one.
         */
-       for (zs = list_head(&zf->zf_stream);
-           zs != NULL; zs = zs_next) {
+       t = now - SEC2NSEC(zfetch_max_sec_reap);
+       for (zs = list_head(&zf->zf_stream); zs != NULL; zs = zs_next) {
                zs_next = list_next(&zf->zf_stream, zs);
-               if (((gethrtime() - zs->zs_atime) / NANOSEC) >
-                   zfetch_min_sec_reap)
+               /*
+                * Skip if still active.  1 -- zf_stream reference.
+                */
+               if (zfs_refcount_count(&zs->zs_refs) != 1)
+                       continue;
+               if (zs->zs_atime > t)
+                       continue;
+               if (zs_old)
                        dmu_zfetch_stream_remove(zf, zs);
                else
-                       numstreams++;
+                       zs_old = zs;
+       }
+       if (zs_old) {
+               zs = zs_old;
+               goto reuse;
        }
 
        /*
         * The maximum number of streams is normally zfetch_max_streams,
         * but for small files we lower it such that it's at least possible
         * for all the streams to be non-overlapping.
-        *
-        * If we are already at the maximum number of streams for this file,
-        * even after removing old streams, then don't create this stream.
         */
-       max_streams = MAX(1, MIN(zfetch_max_streams,
+       uint32_t max_streams = MAX(1, MIN(zfetch_max_streams,
            zf->zf_dnode->dn_maxblkid * zf->zf_dnode->dn_datablksz /
            zfetch_max_distance));
-       if (numstreams >= max_streams) {
+       if (zf->zf_numstreams >= max_streams) {
+               t = now - SEC2NSEC(zfetch_min_sec_reap);
+               for (zs = list_head(&zf->zf_stream); zs != NULL;
+                   zs = list_next(&zf->zf_stream, zs)) {
+                       if (zfs_refcount_count(&zs->zs_refs) != 1)
+                               continue;
+                       if (zs->zs_atime > t)
+                               continue;
+                       if (zs_old == NULL || zs->zs_atime < zs_old->zs_atime)
+                               zs_old = zs;
+               }
+               if (zs_old) {
+                       zs = zs_old;
+                       goto reuse;
+               }
                ZFETCHSTAT_BUMP(zfetchstat_max_streams);
                return;
        }
 
        zs = kmem_zalloc(sizeof (*zs), KM_SLEEP);
+       zs->zs_fetch = zf;
+       zfs_refcount_create(&zs->zs_callers);
+       zfs_refcount_create(&zs->zs_refs);
+       /* One reference for zf_stream. */
+       zfs_refcount_add(&zs->zs_refs, NULL);
+       zf->zf_numstreams++;
+       list_insert_head(&zf->zf_stream, zs);
+
+reuse:
        zs->zs_blkid = blkid;
-       zs->zs_pf_blkid = blkid;
-       zs->zs_atime = gethrtime();
-       mutex_init(&zs->zs_lock, NULL, MUTEX_DEFAULT, NULL);
+       zs->zs_pf_dist = 0;
+       zs->zs_pf_start = blkid;
+       zs->zs_pf_end = blkid;
+       zs->zs_ipf_dist = 0;
+       zs->zs_ipf_start = blkid;
+       zs->zs_ipf_end = blkid;
+       /* Allow immediate stream reuse until first hit. */
+       zs->zs_atime = now - SEC2NSEC(zfetch_min_sec_reap);
+       zs->zs_missed = B_FALSE;
+       zs->zs_more = B_FALSE;
+}
 
-       list_insert_head(&zf->zf_stream, zs);
+static void
+dmu_zfetch_done(void *arg, uint64_t level, uint64_t blkid, boolean_t io_issued)
+{
+       zstream_t *zs = arg;
+
+       if (io_issued && level == 0 && blkid < zs->zs_blkid)
+               zs->zs_more = B_TRUE;
+       if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
+               dmu_zfetch_stream_fini(zs);
+       aggsum_add(&zfetch_sums.zfetchstat_io_active, -1);
 }
 
 /*
- * This is the prefetch entry point.  It calls all of the other dmu_zfetch
- * routines to create, delete, find, or operate upon prefetch streams.
+ * This is the predictive prefetch entry point.  dmu_zfetch_prepare()
+ * associates dnode access specified with blkid and nblks arguments with
+ * prefetch stream, predicts further accesses based on that stats and returns
+ * the stream pointer on success.  That pointer must later be passed to
+ * dmu_zfetch_run() to initiate the speculative prefetch for the stream and
+ * release it.  dmu_zfetch() is a wrapper for simple cases when window between
+ * prediction and prefetch initiation is not needed.
+ * fetch_data argument specifies whether actual data blocks should be fetched:
+ *   FALSE -- prefetch only indirect blocks for predicted data blocks;
+ *   TRUE -- prefetch predicted data blocks plus following indirect blocks.
  */
-void
-dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks)
+zstream_t *
+dmu_zfetch_prepare(zfetch_t *zf, uint64_t blkid, uint64_t nblks,
+    boolean_t fetch_data, boolean_t have_lock)
 {
        zstream_t *zs;
-       int64_t pf_start;
-       int pf_nblks;
-       int i;
+       spa_t *spa = zf->zf_dnode->dn_objset->os_spa;
+       zfs_prefetch_type_t os_prefetch = zf->zf_dnode->dn_objset->os_prefetch;
 
-       if (zfs_prefetch_disable)
-               return;
+       if (zfs_prefetch_disable || os_prefetch == ZFS_PREFETCH_NONE)
+               return (NULL);
+
+       if (os_prefetch == ZFS_PREFETCH_METADATA)
+               fetch_data = B_FALSE;
+
+       /*
+        * If we haven't yet loaded the indirect vdevs' mappings, we
+        * can only read from blocks that we carefully ensure are on
+        * concrete vdevs (or previously-loaded indirect vdevs).  So we
+        * can't allow the predictive prefetcher to attempt reads of other
+        * blocks (e.g. of the MOS's dnode object).
+        */
+       if (!spa_indirect_vdevs_loaded(spa))
+               return (NULL);
 
        /*
         * As a fast path for small (single-block) files, ignore access
         * to the first block.
         */
-       if (blkid == 0)
-               return;
+       if (!have_lock && blkid == 0)
+               return (NULL);
+
+       if (!have_lock)
+               rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
 
-       rw_enter(&zf->zf_rwlock, RW_READER);
+       /*
+        * A fast path for small files for which no prefetch will
+        * happen.
+        */
+       uint64_t maxblkid = zf->zf_dnode->dn_maxblkid;
+       if (maxblkid < 2) {
+               if (!have_lock)
+                       rw_exit(&zf->zf_dnode->dn_struct_rwlock);
+               return (NULL);
+       }
+       mutex_enter(&zf->zf_lock);
 
+       /*
+        * Find matching prefetch stream.  Depending on whether the accesses
+        * are block-aligned, first block of the new access may either follow
+        * the last block of the previous access, or be equal to it.
+        */
        for (zs = list_head(&zf->zf_stream); zs != NULL;
            zs = list_next(&zf->zf_stream, zs)) {
                if (blkid == zs->zs_blkid) {
-                       mutex_enter(&zs->zs_lock);
-                       /*
-                        * zs_blkid could have changed before we
-                        * acquired zs_lock; re-check them here.
-                        */
-                       if (blkid != zs->zs_blkid) {
-                               mutex_exit(&zs->zs_lock);
-                               continue;
-                       }
+                       break;
+               } else if (blkid + 1 == zs->zs_blkid) {
+                       blkid++;
+                       nblks--;
                        break;
                }
        }
 
+       /*
+        * If the file is ending, remove the matching stream if found.
+        * If not found then it is too late to create a new one now.
+        */
+       uint64_t end_of_access_blkid = blkid + nblks;
+       if (end_of_access_blkid >= maxblkid) {
+               if (zs != NULL)
+                       dmu_zfetch_stream_remove(zf, zs);
+               mutex_exit(&zf->zf_lock);
+               if (!have_lock)
+                       rw_exit(&zf->zf_dnode->dn_struct_rwlock);
+               return (NULL);
+       }
+
+       /* Exit if we already prefetched this block before. */
+       if (nblks == 0) {
+               mutex_exit(&zf->zf_lock);
+               if (!have_lock)
+                       rw_exit(&zf->zf_dnode->dn_struct_rwlock);
+               return (NULL);
+       }
+
        if (zs == NULL) {
                /*
                 * This access is not part of any existing stream.  Create
                 * a new stream for it.
                 */
+               dmu_zfetch_stream_create(zf, end_of_access_blkid);
+               mutex_exit(&zf->zf_lock);
+               if (!have_lock)
+                       rw_exit(&zf->zf_dnode->dn_struct_rwlock);
                ZFETCHSTAT_BUMP(zfetchstat_misses);
-               if (rw_tryupgrade(&zf->zf_rwlock))
-                       dmu_zfetch_stream_create(zf, blkid + nblks);
-               rw_exit(&zf->zf_rwlock);
-               return;
+               return (NULL);
        }
 
        /*
         * This access was to a block that we issued a prefetch for on
-        * behalf of this stream. Issue further prefetches for this stream.
+        * behalf of this stream.  Calculate further prefetch distances.
+        *
+        * Start prefetch from the demand access size (nblks).  Double the
+        * distance every access up to zfetch_min_distance.  After that only
+        * if needed increase the distance by 1/8 up to zfetch_max_distance.
         *
-        * Normally, we start prefetching where we stopped
-        * prefetching last (zs_pf_blkid).  But when we get our first
-        * hit on this stream, zs_pf_blkid == zs_blkid, we don't
-        * want to prefetch to block we just accessed.  In this case,
-        * start just after the block we just accessed.
+        * Don't double the distance beyond single block if we have more
+        * than ~6% of ARC held by active prefetches.  It should help with
+        * getting out of RAM on some badly mispredicted read patterns.
         */
-       pf_start = MAX(zs->zs_pf_blkid, blkid + nblks);
+       unsigned int dbs = zf->zf_dnode->dn_datablkshift;
+       unsigned int nbytes = nblks << dbs;
+       unsigned int pf_nblks;
+       if (fetch_data) {
+               if (unlikely(zs->zs_pf_dist < nbytes))
+                       zs->zs_pf_dist = nbytes;
+               else if (zs->zs_pf_dist < zfetch_min_distance &&
+                   (zs->zs_pf_dist < (1 << dbs) ||
+                   aggsum_compare(&zfetch_sums.zfetchstat_io_active,
+                   arc_c_max >> (4 + dbs)) < 0))
+                       zs->zs_pf_dist *= 2;
+               else if (zs->zs_more)
+                       zs->zs_pf_dist += zs->zs_pf_dist / 8;
+               zs->zs_more = B_FALSE;
+               if (zs->zs_pf_dist > zfetch_max_distance)
+                       zs->zs_pf_dist = zfetch_max_distance;
+               pf_nblks = zs->zs_pf_dist >> dbs;
+       } else {
+               pf_nblks = 0;
+       }
+       if (zs->zs_pf_start < end_of_access_blkid)
+               zs->zs_pf_start = end_of_access_blkid;
+       if (zs->zs_pf_end < end_of_access_blkid + pf_nblks)
+               zs->zs_pf_end = end_of_access_blkid + pf_nblks;
 
        /*
-        * Double our amount of prefetched data, but don't let the
-        * prefetch get further ahead than zfetch_max_distance.
+        * Do the same for indirects, starting where we will stop reading
+        * data blocks (and the indirects that point to them).
         */
-       pf_nblks =
-           MIN((int64_t)zs->zs_pf_blkid - zs->zs_blkid + nblks,
-           zs->zs_blkid + nblks +
-           (zfetch_max_distance >> zf->zf_dnode->dn_datablkshift) - pf_start);
-
-       zs->zs_pf_blkid = pf_start + pf_nblks;
+       if (unlikely(zs->zs_ipf_dist < nbytes))
+               zs->zs_ipf_dist = nbytes;
+       else
+               zs->zs_ipf_dist *= 2;
+       if (zs->zs_ipf_dist > zfetch_max_idistance)
+               zs->zs_ipf_dist = zfetch_max_idistance;
+       pf_nblks = zs->zs_ipf_dist >> dbs;
+       if (zs->zs_ipf_start < zs->zs_pf_end)
+               zs->zs_ipf_start = zs->zs_pf_end;
+       if (zs->zs_ipf_end < zs->zs_pf_end + pf_nblks)
+               zs->zs_ipf_end = zs->zs_pf_end + pf_nblks;
+
+       zs->zs_blkid = end_of_access_blkid;
+       /* Protect the stream from reclamation. */
        zs->zs_atime = gethrtime();
-       zs->zs_blkid = blkid + nblks;
+       zfs_refcount_add(&zs->zs_refs, NULL);
+       /* Count concurrent callers. */
+       zfs_refcount_add(&zs->zs_callers, NULL);
+       mutex_exit(&zf->zf_lock);
+
+       if (!have_lock)
+               rw_exit(&zf->zf_dnode->dn_struct_rwlock);
+
+       ZFETCHSTAT_BUMP(zfetchstat_hits);
+       return (zs);
+}
+
+void
+dmu_zfetch_run(zstream_t *zs, boolean_t missed, boolean_t have_lock)
+{
+       zfetch_t *zf = zs->zs_fetch;
+       int64_t pf_start, pf_end, ipf_start, ipf_end;
+       int epbs, issued;
+
+       if (missed)
+               zs->zs_missed = missed;
 
        /*
-        * dbuf_prefetch() issues the prefetch i/o
-        * asynchronously, but it may need to wait for an
-        * indirect block to be read from disk.  Therefore
-        * we do not want to hold any locks while we call it.
+        * Postpone the prefetch if there are more concurrent callers.
+        * It happens when multiple requests are waiting for the same
+        * indirect block.  The last one will run the prefetch for all.
         */
-       mutex_exit(&zs->zs_lock);
-       rw_exit(&zf->zf_rwlock);
-       for (i = 0; i < pf_nblks; i++) {
-               dbuf_prefetch(zf->zf_dnode, 0, pf_start + i,
-                   ZIO_PRIORITY_ASYNC_READ, ARC_FLAG_PREDICTIVE_PREFETCH);
+       if (zfs_refcount_remove(&zs->zs_callers, NULL) != 0) {
+               /* Drop reference taken in dmu_zfetch_prepare(). */
+               if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
+                       dmu_zfetch_stream_fini(zs);
+               return;
        }
-       ZFETCHSTAT_BUMP(zfetchstat_hits);
+
+       mutex_enter(&zf->zf_lock);
+       if (zs->zs_missed) {
+               pf_start = zs->zs_pf_start;
+               pf_end = zs->zs_pf_start = zs->zs_pf_end;
+       } else {
+               pf_start = pf_end = 0;
+       }
+       ipf_start = zs->zs_ipf_start;
+       ipf_end = zs->zs_ipf_start = zs->zs_ipf_end;
+       mutex_exit(&zf->zf_lock);
+       ASSERT3S(pf_start, <=, pf_end);
+       ASSERT3S(ipf_start, <=, ipf_end);
+
+       epbs = zf->zf_dnode->dn_indblkshift - SPA_BLKPTRSHIFT;
+       ipf_start = P2ROUNDUP(ipf_start, 1 << epbs) >> epbs;
+       ipf_end = P2ROUNDUP(ipf_end, 1 << epbs) >> epbs;
+       ASSERT3S(ipf_start, <=, ipf_end);
+       issued = pf_end - pf_start + ipf_end - ipf_start;
+       if (issued > 1) {
+               /* More references on top of taken in dmu_zfetch_prepare(). */
+               zfs_refcount_add_few(&zs->zs_refs, issued - 1, NULL);
+       } else if (issued == 0) {
+               /* Some other thread has done our work, so drop the ref. */
+               if (zfs_refcount_remove(&zs->zs_refs, NULL) == 0)
+                       dmu_zfetch_stream_fini(zs);
+               return;
+       }
+       aggsum_add(&zfetch_sums.zfetchstat_io_active, issued);
+
+       if (!have_lock)
+               rw_enter(&zf->zf_dnode->dn_struct_rwlock, RW_READER);
+
+       issued = 0;
+       for (int64_t blk = pf_start; blk < pf_end; blk++) {
+               issued += dbuf_prefetch_impl(zf->zf_dnode, 0, blk,
+                   ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
+       }
+       for (int64_t iblk = ipf_start; iblk < ipf_end; iblk++) {
+               issued += dbuf_prefetch_impl(zf->zf_dnode, 1, iblk,
+                   ZIO_PRIORITY_ASYNC_READ, 0, dmu_zfetch_done, zs);
+       }
+
+       if (!have_lock)
+               rw_exit(&zf->zf_dnode->dn_struct_rwlock);
+
+       if (issued)
+               ZFETCHSTAT_ADD(zfetchstat_io_issued, issued);
 }
 
-#if defined(_KERNEL) && defined(HAVE_SPL)
-module_param(zfs_prefetch_disable, int, 0644);
-MODULE_PARM_DESC(zfs_prefetch_disable, "Disable all ZFS prefetching");
+void
+dmu_zfetch(zfetch_t *zf, uint64_t blkid, uint64_t nblks, boolean_t fetch_data,
+    boolean_t missed, boolean_t have_lock)
+{
+       zstream_t *zs;
 
-module_param(zfetch_max_streams, uint, 0644);
-MODULE_PARM_DESC(zfetch_max_streams, "Max number of streams per zfetch");
+       zs = dmu_zfetch_prepare(zf, blkid, nblks, fetch_data, have_lock);
+       if (zs)
+               dmu_zfetch_run(zs, missed, have_lock);
+}
 
-module_param(zfetch_min_sec_reap, uint, 0644);
-MODULE_PARM_DESC(zfetch_min_sec_reap, "Min time before stream reclaim");
+ZFS_MODULE_PARAM(zfs_prefetch, zfs_prefetch_, disable, INT, ZMOD_RW,
+       "Disable all ZFS prefetching");
 
-module_param(zfetch_max_distance, uint, 0644);
-MODULE_PARM_DESC(zfetch_max_distance,
-       "Max bytes to prefetch per stream (default 8MB)");
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_streams, UINT, ZMOD_RW,
+       "Max number of streams per zfetch");
 
-module_param(zfetch_array_rd_sz, ulong, 0644);
-MODULE_PARM_DESC(zfetch_array_rd_sz, "Number of bytes in a array_read");
-#endif
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_sec_reap, UINT, ZMOD_RW,
+       "Min time before stream reclaim");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_sec_reap, UINT, ZMOD_RW,
+       "Max time before stream delete");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, min_distance, UINT, ZMOD_RW,
+       "Min bytes to prefetch per stream");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_distance, UINT, ZMOD_RW,
+       "Max bytes to prefetch per stream");
+
+ZFS_MODULE_PARAM(zfs_prefetch, zfetch_, max_idistance, UINT, ZMOD_RW,
+       "Max bytes to prefetch indirects for per stream");