]> git.proxmox.com Git - mirror_zfs.git/blobdiff - module/zfs/vdev_raidz.c
Provide macros for setting and getting blkptr birth times
[mirror_zfs.git] / module / zfs / vdev_raidz.c
index a92d3cbaad3b107bfe76057ef5101a6ba8c6d3d0..b03331ec69c62457b40e2284d882f0d6d91aa93e 100644 (file)
@@ -6,7 +6,7 @@
  * You may not use this file except in compliance with the License.
  *
  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
- * or http://www.opensolaris.org/os/licensing.
+ * or https://opensource.org/licenses/CDDL-1.0.
  * See the License for the specific language governing permissions
  * and limitations under the License.
  *
 
 /*
  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
- * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
+ * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
  * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
  */
 
 #include <sys/zfs_context.h>
 #include <sys/spa.h>
+#include <sys/spa_impl.h>
+#include <sys/zap.h>
 #include <sys/vdev_impl.h>
+#include <sys/metaslab_impl.h>
 #include <sys/zio.h>
 #include <sys/zio_checksum.h>
+#include <sys/dmu_tx.h>
 #include <sys/abd.h>
+#include <sys/zfs_rlock.h>
 #include <sys/fs/zfs.h>
 #include <sys/fm/fs/zfs.h>
 #include <sys/vdev_raidz.h>
 #include <sys/vdev_raidz_impl.h>
+#include <sys/vdev_draid.h>
+#include <sys/uberblock_impl.h>
+#include <sys/dsl_scan.h>
+
+#ifdef ZFS_DEBUG
+#include <sys/vdev.h>  /* For vdev_xlate() in vdev_raidz_io_verify() */
+#endif
 
 /*
  * Virtual device vector for RAID-Z.
  *     R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
  *       = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
  *
- * We chose 1, 2, and 4 as our generators because 1 corresponds to the trival
+ * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
  * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
  * independent coefficients. (There are no additional coefficients that have
  * this property which is why the uncorrected Plank method breaks down.)
        VDEV_RAIDZ_64MUL_2((x), mask); \
 }
 
+
+/*
+ * Big Theory Statement for how a RAIDZ VDEV is expanded
+ *
+ * An existing RAIDZ VDEV can be expanded by attaching a new disk. Expansion
+ * works with all three RAIDZ parity choices, including RAIDZ1, 2, or 3. VDEVs
+ * that have been previously expanded can be expanded again.
+ *
+ * The RAIDZ VDEV must be healthy (must be able to write to all the drives in
+ * the VDEV) when an expansion starts.  And the expansion will pause if any
+ * disk in the VDEV fails, and resume once the VDEV is healthy again. All other
+ * operations on the pool can continue while an expansion is in progress (e.g.
+ * read/write, snapshot, zpool add, etc). Except zpool checkpoint, zpool trim,
+ * and zpool initialize which can't be run during an expansion.  Following a
+ * reboot or export/import, the expansion resumes where it left off.
+ *
+ * == Reflowing the Data ==
+ *
+ * The expansion involves reflowing (copying) the data from the current set
+ * of disks to spread it across the new set which now has one more disk. This
+ * reflow operation is similar to reflowing text when the column width of a
+ * text editor window is expanded. The text doesn’t change but the location of
+ * the text changes to accommodate the new width. An example reflow result for
+ * a 4-wide RAIDZ1 to a 5-wide is shown below.
+ *
+ *                            Reflow End State
+ *            Each letter indicates a parity group (logical stripe)
+ *
+ *         Before expansion                         After Expansion
+ *     D1     D2     D3     D4               D1     D2     D3     D4     D5
+ *  +------+------+------+------+         +------+------+------+------+------+
+ *  |      |      |      |      |         |      |      |      |      |      |
+ *  |  A   |  A   |  A   |  A   |         |  A   |  A   |  A   |  A   |  B   |
+ *  |     1|     2|     3|     4|         |     1|     2|     3|     4|     5|
+ *  +------+------+------+------+         +------+------+------+------+------+
+ *  |      |      |      |      |         |      |      |      |      |      |
+ *  |  B   |  B   |  C   |  C   |         |  B   |  C   |  C   |  C   |  C   |
+ *  |     5|     6|     7|     8|         |     6|     7|     8|     9|    10|
+ *  +------+------+------+------+         +------+------+------+------+------+
+ *  |      |      |      |      |         |      |      |      |      |      |
+ *  |  C   |  C   |  D   |  D   |         |  D   |  D   |  E   |  E   |  E   |
+ *  |     9|    10|    11|    12|         |    11|    12|    13|    14|    15|
+ *  +------+------+------+------+         +------+------+------+------+------+
+ *  |      |      |      |      |         |      |      |      |      |      |
+ *  |  E   |  E   |  E   |  E   |   -->   |  E   |  F   |  F   |  G   |  G   |
+ *  |    13|    14|    15|    16|         |    16|    17|    18|p   19|    20|
+ *  +------+------+------+------+         +------+------+------+------+------+
+ *  |      |      |      |      |         |      |      |      |      |      |
+ *  |  F   |  F   |  G   |  G   |         |  G   |  G   |  H   |  H   |  H   |
+ *  |    17|    18|    19|    20|         |    21|    22|    23|    24|    25|
+ *  +------+------+------+------+         +------+------+------+------+------+
+ *  |      |      |      |      |         |      |      |      |      |      |
+ *  |  G   |  G   |  H   |  H   |         |  H   |  I   |  I   |  J   |  J   |
+ *  |    21|    22|    23|    24|         |    26|    27|    28|    29|    30|
+ *  +------+------+------+------+         +------+------+------+------+------+
+ *  |      |      |      |      |         |      |      |      |      |      |
+ *  |  H   |  H   |  I   |  I   |         |  J   |  J   |      |      |  K   |
+ *  |    25|    26|    27|    28|         |    31|    32|    33|    34|    35|
+ *  +------+------+------+------+         +------+------+------+------+------+
+ *
+ * This reflow approach has several advantages. There is no need to read or
+ * modify the block pointers or recompute any block checksums.  The reflow
+ * doesn’t need to know where the parity sectors reside. We can read and write
+ * data sequentially and the copy can occur in a background thread in open
+ * context. The design also allows for fast discovery of what data to copy.
+ *
+ * The VDEV metaslabs are processed, one at a time, to copy the block data to
+ * have it flow across all the disks. The metaslab is disabled for allocations
+ * during the copy. As an optimization, we only copy the allocated data which
+ * can be determined by looking at the metaslab range tree. During the copy we
+ * must maintain the redundancy guarantees of the RAIDZ VDEV (i.e., we still
+ * need to be able to survive losing parity count disks).  This means we
+ * cannot overwrite data during the reflow that would be needed if a disk is
+ * lost.
+ *
+ * After the reflow completes, all newly-written blocks will have the new
+ * layout, i.e., they will have the parity to data ratio implied by the new
+ * number of disks in the RAIDZ group.  Even though the reflow copies all of
+ * the allocated space (data and parity), it is only rearranged, not changed.
+ *
+ * This act of reflowing the data has a few implications about blocks
+ * that were written before the reflow completes:
+ *
+ *  - Old blocks will still use the same amount of space (i.e., they will have
+ *    the parity to data ratio implied by the old number of disks in the RAIDZ
+ *    group).
+ *  - Reading old blocks will be slightly slower than before the reflow, for
+ *    two reasons. First, we will have to read from all disks in the RAIDZ
+ *    VDEV, rather than being able to skip the children that contain only
+ *    parity of this block (because the data of a single block is now spread
+ *    out across all the disks).  Second, in most cases there will be an extra
+ *    bcopy, needed to rearrange the data back to its original layout in memory.
+ *
+ * == Scratch Area ==
+ *
+ * As we copy the block data, we can only progress to the point that writes
+ * will not overlap with blocks whose progress has not yet been recorded on
+ * disk.  Since partially-copied rows are always read from the old location,
+ * we need to stop one row before the sector-wise overlap, to prevent any
+ * row-wise overlap. For example, in the diagram above, when we reflow sector
+ * B6 it will overwite the original location for B5.
+ *
+ * To get around this, a scratch space is used so that we can start copying
+ * without risking data loss by overlapping the row. As an added benefit, it
+ * improves performance at the beginning of the reflow, but that small perf
+ * boost wouldn't be worth the complexity on its own.
+ *
+ * Ideally we want to copy at least 2 * (new_width)^2 so that we have a
+ * separation of 2*(new_width+1) and a chunk size of new_width+2. With the max
+ * RAIDZ width of 255 and 4K sectors this would be 2MB per disk. In practice
+ * the widths will likely be single digits so we can get a substantial chuck
+ * size using only a few MB of scratch per disk.
+ *
+ * The scratch area is persisted to disk which holds a large amount of reflowed
+ * state. We can always read the partially written stripes when a disk fails or
+ * the copy is interrupted (crash) during the initial copying phase and also
+ * get past a small chunk size restriction.  At a minimum, the scratch space
+ * must be large enough to get us to the point that one row does not overlap
+ * itself when moved (i.e new_width^2).  But going larger is even better. We
+ * use the 3.5 MiB reserved "boot" space that resides after the ZFS disk labels
+ * as our scratch space to handle overwriting the initial part of the VDEV.
+ *
+ *     0     256K   512K                    4M
+ *     +------+------+-----------------------+-----------------------------
+ *     | VDEV | VDEV |   Boot Block (3.5M)   |  Allocatable space ...
+ *     |  L0  |  L1  |       Reserved        |     (Metaslabs)
+ *     +------+------+-----------------------+-------------------------------
+ *                        Scratch Area
+ *
+ * == Reflow Progress Updates ==
+ * After the initial scratch-based reflow, the expansion process works
+ * similarly to device removal. We create a new open context thread which
+ * reflows the data, and periodically kicks off sync tasks to update logical
+ * state. In this case, state is the committed progress (offset of next data
+ * to copy). We need to persist the completed offset on disk, so that if we
+ * crash we know which format each VDEV offset is in.
+ *
+ * == Time Dependent Geometry ==
+ *
+ * In non-expanded RAIDZ, blocks are read from disk in a column by column
+ * fashion. For a multi-row block, the second sector is in the first column
+ * not in the second column. This allows us to issue full reads for each
+ * column directly into the request buffer. The block data is thus laid out
+ * sequentially in a column-by-column fashion.
+ *
+ * For example, in the before expansion diagram above, one logical block might
+ * be sectors G19-H26. The parity is in G19,H23; and the data is in
+ * G20,H24,G21,H25,G22,H26.
+ *
+ * After a block is reflowed, the sectors that were all in the original column
+ * data can now reside in different columns. When reading from an expanded
+ * VDEV, we need to know the logical stripe width for each block so we can
+ * reconstitute the block’s data after the reads are completed. Likewise,
+ * when we perform the combinatorial reconstruction we need to know the
+ * original width so we can retry combinations from the past layouts.
+ *
+ * Time dependent geometry is what we call having blocks with different layouts
+ * (stripe widths) in the same VDEV. This time-dependent geometry uses the
+ * block’s birth time (+ the time expansion ended) to establish the correct
+ * width for a given block. After an expansion completes, we record the time
+ * for blocks written with a particular width (geometry).
+ *
+ * == On Disk Format Changes ==
+ *
+ * New pool feature flag, 'raidz_expansion' whose reference count is the number
+ * of RAIDZ VDEVs that have been expanded.
+ *
+ * The blocks on expanded RAIDZ VDEV can have different logical stripe widths.
+ *
+ * Since the uberblock can point to arbitrary blocks, which might be on the
+ * expanding RAIDZ, and might or might not have been expanded. We need to know
+ * which way a block is laid out before reading it. This info is the next
+ * offset that needs to be reflowed and we persist that in the uberblock, in
+ * the new ub_raidz_reflow_info field, as opposed to the MOS or the vdev label.
+ * After the expansion is complete, we then use the raidz_expand_txgs array
+ * (see below) to determine how to read a block and the ub_raidz_reflow_info
+ * field no longer required.
+ *
+ * The uberblock's ub_raidz_reflow_info field also holds the scratch space
+ * state (i.e., active or not) which is also required before reading a block
+ * during the initial phase of reflowing the data.
+ *
+ * The top-level RAIDZ VDEV has two new entries in the nvlist:
+ *
+ * 'raidz_expand_txgs' array: logical stripe widths by txg are recorded here
+ *                            and used after the expansion is complete to
+ *                            determine how to read a raidz block
+ * 'raidz_expanding' boolean: present during reflow and removed after completion
+ *                            used during a spa import to resume an unfinished
+ *                            expansion
+ *
+ * And finally the VDEVs top zap adds the following informational entries:
+ *   VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE
+ *   VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME
+ *   VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME
+ *   VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED
+ */
+
+/*
+ * For testing only: pause the raidz expansion after reflowing this amount.
+ * (accessed by ZTS and ztest)
+ */
+#ifdef _KERNEL
+static
+#endif /* _KERNEL */
+unsigned long raidz_expand_max_reflow_bytes = 0;
+
+/*
+ * For testing only: pause the raidz expansion at a certain point.
+ */
+uint_t raidz_expand_pause_point = 0;
+
+/*
+ * Maximum amount of copy io's outstanding at once.
+ */
+static unsigned long raidz_expand_max_copy_bytes = 10 * SPA_MAXBLOCKSIZE;
+
+/*
+ * Apply raidz map abds aggregation if the number of rows in the map is equal
+ * or greater than the value below.
+ */
+static unsigned long raidz_io_aggregate_rows = 4;
+
+/*
+ * Automatically start a pool scrub when a RAIDZ expansion completes in
+ * order to verify the checksums of all blocks which have been copied
+ * during the expansion.  Automatic scrubbing is enabled by default and
+ * is strongly recommended.
+ */
+static int zfs_scrub_after_expand = 1;
+
+static void
+vdev_raidz_row_free(raidz_row_t *rr)
+{
+       for (int c = 0; c < rr->rr_cols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
+
+               if (rc->rc_size != 0)
+                       abd_free(rc->rc_abd);
+               if (rc->rc_orig_data != NULL)
+                       abd_free(rc->rc_orig_data);
+       }
+
+       if (rr->rr_abd_empty != NULL)
+               abd_free(rr->rr_abd_empty);
+
+       kmem_free(rr, offsetof(raidz_row_t, rr_col[rr->rr_scols]));
+}
+
 void
 vdev_raidz_map_free(raidz_map_t *rm)
 {
-       int c;
-       size_t size;
+       for (int i = 0; i < rm->rm_nrows; i++)
+               vdev_raidz_row_free(rm->rm_row[i]);
 
-       for (c = 0; c < rm->rm_firstdatacol; c++) {
-               abd_free(rm->rm_col[c].rc_abd);
-
-               if (rm->rm_col[c].rc_gdata != NULL)
-                       zio_buf_free(rm->rm_col[c].rc_gdata,
-                           rm->rm_col[c].rc_size);
-       }
+       if (rm->rm_nphys_cols) {
+               for (int i = 0; i < rm->rm_nphys_cols; i++) {
+                       if (rm->rm_phys_col[i].rc_abd != NULL)
+                               abd_free(rm->rm_phys_col[i].rc_abd);
+               }
 
-       size = 0;
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               abd_put(rm->rm_col[c].rc_abd);
-               size += rm->rm_col[c].rc_size;
+               kmem_free(rm->rm_phys_col, sizeof (raidz_col_t) *
+                   rm->rm_nphys_cols);
        }
 
-       if (rm->rm_abd_copy != NULL)
-               abd_free(rm->rm_abd_copy);
-
-       kmem_free(rm, offsetof(raidz_map_t, rm_col[rm->rm_scols]));
+       ASSERT3P(rm->rm_lr, ==, NULL);
+       kmem_free(rm, offsetof(raidz_map_t, rm_row[rm->rm_nrows]));
 }
 
 static void
@@ -161,173 +416,148 @@ vdev_raidz_map_free_vsd(zio_t *zio)
 {
        raidz_map_t *rm = zio->io_vsd;
 
-       ASSERT0(rm->rm_freed);
-       rm->rm_freed = 1;
-
-       if (rm->rm_reports == 0)
-               vdev_raidz_map_free(rm);
+       vdev_raidz_map_free(rm);
 }
 
-/*ARGSUSED*/
-static void
-vdev_raidz_cksum_free(void *arg, size_t ignored)
+static int
+vdev_raidz_reflow_compare(const void *x1, const void *x2)
 {
-       raidz_map_t *rm = arg;
-
-       ASSERT3U(rm->rm_reports, >, 0);
+       const reflow_node_t *l = x1;
+       const reflow_node_t *r = x2;
 
-       if (--rm->rm_reports == 0 && rm->rm_freed != 0)
-               vdev_raidz_map_free(rm);
+       return (TREE_CMP(l->re_txg, r->re_txg));
 }
 
-static void
-vdev_raidz_cksum_finish(zio_cksum_report_t *zcr, const void *good_data)
+const zio_vsd_ops_t vdev_raidz_vsd_ops = {
+       .vsd_free = vdev_raidz_map_free_vsd,
+};
+
+raidz_row_t *
+vdev_raidz_row_alloc(int cols)
 {
-       raidz_map_t *rm = zcr->zcr_cbdata;
-       size_t c = zcr->zcr_cbinfo;
-       size_t x;
+       raidz_row_t *rr =
+           kmem_zalloc(offsetof(raidz_row_t, rr_col[cols]), KM_SLEEP);
 
-       const char *good = NULL;
-       char *bad;
+       rr->rr_cols = cols;
+       rr->rr_scols = cols;
 
-       if (good_data == NULL) {
-               zfs_ereport_finish_checksum(zcr, NULL, NULL, B_FALSE);
-               return;
+       for (int c = 0; c < cols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
+               rc->rc_shadow_devidx = INT_MAX;
+               rc->rc_shadow_offset = UINT64_MAX;
+               rc->rc_allow_repair = 1;
        }
+       return (rr);
+}
 
-       if (c < rm->rm_firstdatacol) {
-               /*
-                * The first time through, calculate the parity blocks for
-                * the good data (this relies on the fact that the good
-                * data never changes for a given logical ZIO)
-                */
-               if (rm->rm_col[0].rc_gdata == NULL) {
-                       abd_t *bad_parity[VDEV_RAIDZ_MAXPARITY];
-                       char *buf;
-                       int offset;
+static void
+vdev_raidz_map_alloc_write(zio_t *zio, raidz_map_t *rm, uint64_t ashift)
+{
+       int c;
+       int nwrapped = 0;
+       uint64_t off = 0;
+       raidz_row_t *rr = rm->rm_row[0];
 
-                       /*
-                        * Set up the rm_col[]s to generate the parity for
-                        * good_data, first saving the parity bufs and
-                        * replacing them with buffers to hold the result.
-                        */
-                       for (x = 0; x < rm->rm_firstdatacol; x++) {
-                               bad_parity[x] = rm->rm_col[x].rc_abd;
-                               rm->rm_col[x].rc_gdata =
-                                   zio_buf_alloc(rm->rm_col[x].rc_size);
-                               rm->rm_col[x].rc_abd =
-                                   abd_get_from_buf(rm->rm_col[x].rc_gdata,
-                                   rm->rm_col[x].rc_size);
-                       }
+       ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
+       ASSERT3U(rm->rm_nrows, ==, 1);
 
-                       /* fill in the data columns from good_data */
-                       buf = (char *)good_data;
-                       for (; x < rm->rm_cols; x++) {
-                               abd_put(rm->rm_col[x].rc_abd);
-                               rm->rm_col[x].rc_abd = abd_get_from_buf(buf,
-                                   rm->rm_col[x].rc_size);
-                               buf += rm->rm_col[x].rc_size;
-                       }
+       /*
+        * Pad any parity columns with additional space to account for skip
+        * sectors.
+        */
+       if (rm->rm_skipstart < rr->rr_firstdatacol) {
+               ASSERT0(rm->rm_skipstart);
+               nwrapped = rm->rm_nskip;
+       } else if (rr->rr_scols < (rm->rm_skipstart + rm->rm_nskip)) {
+               nwrapped =
+                   (rm->rm_skipstart + rm->rm_nskip) % rr->rr_scols;
+       }
 
-                       /*
-                        * Construct the parity from the good data.
-                        */
-                       vdev_raidz_generate_parity(rm);
+       /*
+        * Optional single skip sectors (rc_size == 0) will be handled in
+        * vdev_raidz_io_start_write().
+        */
+       int skipped = rr->rr_scols - rr->rr_cols;
 
-                       /* restore everything back to its original state */
-                       for (x = 0; x < rm->rm_firstdatacol; x++) {
-                               abd_put(rm->rm_col[x].rc_abd);
-                               rm->rm_col[x].rc_abd = bad_parity[x];
-                       }
+       /* Allocate buffers for the parity columns */
+       for (c = 0; c < rr->rr_firstdatacol; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
 
-                       offset = 0;
-                       for (x = rm->rm_firstdatacol; x < rm->rm_cols; x++) {
-                               abd_put(rm->rm_col[x].rc_abd);
-                               rm->rm_col[x].rc_abd = abd_get_offset_size(
-                                   rm->rm_abd_copy, offset,
-                                   rm->rm_col[x].rc_size);
-                               offset += rm->rm_col[x].rc_size;
-                       }
+               /*
+                * Parity columns will pad out a linear ABD to account for
+                * the skip sector. A linear ABD is used here because
+                * parity calculations use the ABD buffer directly to calculate
+                * parity. This avoids doing a memcpy back to the ABD after the
+                * parity has been calculated. By issuing the parity column
+                * with the skip sector we can reduce contention on the child
+                * VDEV queue locks (vq_lock).
+                */
+               if (c < nwrapped) {
+                       rc->rc_abd = abd_alloc_linear(
+                           rc->rc_size + (1ULL << ashift), B_FALSE);
+                       abd_zero_off(rc->rc_abd, rc->rc_size, 1ULL << ashift);
+                       skipped++;
+               } else {
+                       rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
                }
+       }
 
-               ASSERT3P(rm->rm_col[c].rc_gdata, !=, NULL);
-               good = rm->rm_col[c].rc_gdata;
-       } else {
-               /* adjust good_data to point at the start of our column */
-               good = good_data;
+       for (off = 0; c < rr->rr_cols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
+               abd_t *abd = abd_get_offset_struct(&rc->rc_abdstruct,
+                   zio->io_abd, off, rc->rc_size);
 
-               for (x = rm->rm_firstdatacol; x < c; x++)
-                       good += rm->rm_col[x].rc_size;
+               /*
+                * Generate I/O for skip sectors to improve aggregation
+                * continuity. We will use gang ABD's to reduce contention
+                * on the child VDEV queue locks (vq_lock) by issuing
+                * a single I/O that contains the data and skip sector.
+                *
+                * It is important to make sure that rc_size is not updated
+                * even though we are adding a skip sector to the ABD. When
+                * calculating the parity in vdev_raidz_generate_parity_row()
+                * the rc_size is used to iterate through the ABD's. We can
+                * not have zero'd out skip sectors used for calculating
+                * parity for raidz, because those same sectors are not used
+                * during reconstruction.
+                */
+               if (c >= rm->rm_skipstart && skipped < rm->rm_nskip) {
+                       rc->rc_abd = abd_alloc_gang();
+                       abd_gang_add(rc->rc_abd, abd, B_TRUE);
+                       abd_gang_add(rc->rc_abd,
+                           abd_get_zeros(1ULL << ashift), B_TRUE);
+                       skipped++;
+               } else {
+                       rc->rc_abd = abd;
+               }
+               off += rc->rc_size;
        }
 
-       bad = abd_borrow_buf_copy(rm->rm_col[c].rc_abd, rm->rm_col[c].rc_size);
-       /* we drop the ereport if it ends up that the data was good */
-       zfs_ereport_finish_checksum(zcr, good, bad, B_TRUE);
-       abd_return_buf(rm->rm_col[c].rc_abd, bad, rm->rm_col[c].rc_size);
+       ASSERT3U(off, ==, zio->io_size);
+       ASSERT3S(skipped, ==, rm->rm_nskip);
 }
 
-/*
- * Invoked indirectly by zfs_ereport_start_checksum(), called
- * below when our read operation fails completely.  The main point
- * is to keep a copy of everything we read from disk, so that at
- * vdev_raidz_cksum_finish() time we can compare it with the good data.
- */
 static void
-vdev_raidz_cksum_report(zio_t *zio, zio_cksum_report_t *zcr, void *arg)
+vdev_raidz_map_alloc_read(zio_t *zio, raidz_map_t *rm)
 {
-       size_t c = (size_t)(uintptr_t)arg;
-       size_t offset;
-
-       raidz_map_t *rm = zio->io_vsd;
-       size_t size;
-
-       /* set up the report and bump the refcount  */
-       zcr->zcr_cbdata = rm;
-       zcr->zcr_cbinfo = c;
-       zcr->zcr_finish = vdev_raidz_cksum_finish;
-       zcr->zcr_free = vdev_raidz_cksum_free;
-
-       rm->rm_reports++;
-       ASSERT3U(rm->rm_reports, >, 0);
-
-       if (rm->rm_abd_copy != NULL)
-               return;
-
-       /*
-        * It's the first time we're called for this raidz_map_t, so we need
-        * to copy the data aside; there's no guarantee that our zio's buffer
-        * won't be re-used for something else.
-        *
-        * Our parity data is already in separate buffers, so there's no need
-        * to copy them.
-        */
-
-       size = 0;
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++)
-               size += rm->rm_col[c].rc_size;
-
-       rm->rm_abd_copy =
-           abd_alloc_sametype(rm->rm_col[rm->rm_firstdatacol].rc_abd, size);
+       int c;
+       raidz_row_t *rr = rm->rm_row[0];
 
-       for (offset = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               raidz_col_t *col = &rm->rm_col[c];
-               abd_t *tmp = abd_get_offset_size(rm->rm_abd_copy, offset,
-                   col->rc_size);
+       ASSERT3U(rm->rm_nrows, ==, 1);
 
-               abd_copy(tmp, col->rc_abd, col->rc_size);
-               abd_put(col->rc_abd);
-               col->rc_abd = tmp;
+       /* Allocate buffers for the parity columns */
+       for (c = 0; c < rr->rr_firstdatacol; c++)
+               rr->rr_col[c].rc_abd =
+                   abd_alloc_linear(rr->rr_col[c].rc_size, B_FALSE);
 
-               offset += col->rc_size;
+       for (uint64_t off = 0; c < rr->rr_cols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
+               rc->rc_abd = abd_get_offset_struct(&rc->rc_abdstruct,
+                   zio->io_abd, off, rc->rc_size);
+               off += rc->rc_size;
        }
-       ASSERT3U(offset, ==, size);
 }
 
-static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
-       vdev_raidz_map_free_vsd,
-       vdev_raidz_cksum_report
-};
-
 /*
  * Divides the IO evenly across all child vdevs; usually, dcols is
  * the number of children in the target vdev.
@@ -336,44 +566,49 @@ static const zio_vsd_ops_t vdev_raidz_vsd_ops = {
  * is this functions only caller, as small as possible on the stack.
  */
 noinline raidz_map_t *
-vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
+vdev_raidz_map_alloc(zio_t *zio, uint64_t ashift, uint64_t dcols,
     uint64_t nparity)
 {
-       raidz_map_t *rm;
+       raidz_row_t *rr;
        /* The starting RAIDZ (parent) vdev sector of the block. */
-       uint64_t b = zio->io_offset >> unit_shift;
+       uint64_t b = zio->io_offset >> ashift;
        /* The zio's size in units of the vdev's minimum sector size. */
-       uint64_t s = zio->io_size >> unit_shift;
+       uint64_t s = zio->io_size >> ashift;
        /* The first column for this stripe. */
        uint64_t f = b % dcols;
        /* The starting byte offset on each child vdev. */
-       uint64_t o = (b / dcols) << unit_shift;
-       uint64_t q, r, c, bc, col, acols, scols, coff, devidx, asize, tot;
-       uint64_t off = 0;
+       uint64_t o = (b / dcols) << ashift;
+       uint64_t acols, scols;
+
+       raidz_map_t *rm =
+           kmem_zalloc(offsetof(raidz_map_t, rm_row[1]), KM_SLEEP);
+       rm->rm_nrows = 1;
 
        /*
         * "Quotient": The number of data sectors for this stripe on all but
         * the "big column" child vdevs that also contain "remainder" data.
         */
-       q = s / (dcols - nparity);
+       uint64_t q = s / (dcols - nparity);
 
        /*
         * "Remainder": The number of partial stripe data sectors in this I/O.
         * This will add a sector to some, but not all, child vdevs.
         */
-       r = s - q * (dcols - nparity);
+       uint64_t r = s - q * (dcols - nparity);
 
        /* The number of "big columns" - those which contain remainder data. */
-       bc = (r == 0 ? 0 : r + nparity);
+       uint64_t bc = (r == 0 ? 0 : r + nparity);
 
        /*
         * The total number of data and parity sectors associated with
         * this I/O.
         */
-       tot = s + nparity * (q + (r == 0 ? 0 : 1));
+       uint64_t tot = s + nparity * (q + (r == 0 ? 0 : 1));
 
-       /* acols: The columns that will be accessed. */
-       /* scols: The columns that will be accessed or skipped. */
+       /*
+        * acols: The columns that will be accessed.
+        * scols: The columns that will be accessed or skipped.
+        */
        if (q == 0) {
                /* Our I/O request doesn't span all child vdevs. */
                acols = bc;
@@ -384,72 +619,47 @@ vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
        }
 
        ASSERT3U(acols, <=, scols);
-
-       rm = kmem_alloc(offsetof(raidz_map_t, rm_col[scols]), KM_SLEEP);
-
-       rm->rm_cols = acols;
-       rm->rm_scols = scols;
-       rm->rm_bigcols = bc;
-       rm->rm_skipstart = bc;
-       rm->rm_missingdata = 0;
-       rm->rm_missingparity = 0;
-       rm->rm_firstdatacol = nparity;
-       rm->rm_abd_copy = NULL;
-       rm->rm_reports = 0;
-       rm->rm_freed = 0;
-       rm->rm_ecksuminjected = 0;
-
-       asize = 0;
-
-       for (c = 0; c < scols; c++) {
-               col = f + c;
-               coff = o;
+       rr = vdev_raidz_row_alloc(scols);
+       rm->rm_row[0] = rr;
+       rr->rr_cols = acols;
+       rr->rr_bigcols = bc;
+       rr->rr_firstdatacol = nparity;
+#ifdef ZFS_DEBUG
+       rr->rr_offset = zio->io_offset;
+       rr->rr_size = zio->io_size;
+#endif
+
+       uint64_t asize = 0;
+
+       for (uint64_t c = 0; c < scols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
+               uint64_t col = f + c;
+               uint64_t coff = o;
                if (col >= dcols) {
                        col -= dcols;
-                       coff += 1ULL << unit_shift;
+                       coff += 1ULL << ashift;
                }
-               rm->rm_col[c].rc_devidx = col;
-               rm->rm_col[c].rc_offset = coff;
-               rm->rm_col[c].rc_abd = NULL;
-               rm->rm_col[c].rc_gdata = NULL;
-               rm->rm_col[c].rc_error = 0;
-               rm->rm_col[c].rc_tried = 0;
-               rm->rm_col[c].rc_skipped = 0;
+               rc->rc_devidx = col;
+               rc->rc_offset = coff;
 
                if (c >= acols)
-                       rm->rm_col[c].rc_size = 0;
+                       rc->rc_size = 0;
                else if (c < bc)
-                       rm->rm_col[c].rc_size = (q + 1) << unit_shift;
+                       rc->rc_size = (q + 1) << ashift;
                else
-                       rm->rm_col[c].rc_size = q << unit_shift;
+                       rc->rc_size = q << ashift;
 
-               asize += rm->rm_col[c].rc_size;
+               asize += rc->rc_size;
        }
 
-       ASSERT3U(asize, ==, tot << unit_shift);
-       rm->rm_asize = roundup(asize, (nparity + 1) << unit_shift);
+       ASSERT3U(asize, ==, tot << ashift);
        rm->rm_nskip = roundup(tot, nparity + 1) - tot;
-       ASSERT3U(rm->rm_asize - asize, ==, rm->rm_nskip << unit_shift);
-       ASSERT3U(rm->rm_nskip, <=, nparity);
-
-       for (c = 0; c < rm->rm_firstdatacol; c++)
-               rm->rm_col[c].rc_abd =
-                   abd_alloc_linear(rm->rm_col[c].rc_size, B_FALSE);
-
-       rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, 0,
-           rm->rm_col[c].rc_size);
-       off = rm->rm_col[c].rc_size;
-
-       for (c = c + 1; c < acols; c++) {
-               rm->rm_col[c].rc_abd = abd_get_offset_size(zio->io_abd, off,
-                   rm->rm_col[c].rc_size);
-               off += rm->rm_col[c].rc_size;
-       }
+       rm->rm_skipstart = bc;
 
        /*
         * If all data stored spans all columns, there's a danger that parity
         * will always be on the same device and, since parity isn't read
-        * during normal operation, that that device's I/O bandwidth won't be
+        * during normal operation, that device's I/O bandwidth won't be
         * used effectively. We therefore switch the parity every 1MB.
         *
         * ... at least that was, ostensibly, the theory. As a practical
@@ -466,24 +676,357 @@ vdev_raidz_map_alloc(zio_t *zio, uint64_t unit_shift, uint64_t dcols,
         * skip the first column since at least one data and one parity
         * column must appear in each row.
         */
-       ASSERT(rm->rm_cols >= 2);
-       ASSERT(rm->rm_col[0].rc_size == rm->rm_col[1].rc_size);
-
-       if (rm->rm_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
-               devidx = rm->rm_col[0].rc_devidx;
-               o = rm->rm_col[0].rc_offset;
-               rm->rm_col[0].rc_devidx = rm->rm_col[1].rc_devidx;
-               rm->rm_col[0].rc_offset = rm->rm_col[1].rc_offset;
-               rm->rm_col[1].rc_devidx = devidx;
-               rm->rm_col[1].rc_offset = o;
-
+       ASSERT(rr->rr_cols >= 2);
+       ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
+
+       if (rr->rr_firstdatacol == 1 && (zio->io_offset & (1ULL << 20))) {
+               uint64_t devidx = rr->rr_col[0].rc_devidx;
+               o = rr->rr_col[0].rc_offset;
+               rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
+               rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
+               rr->rr_col[1].rc_devidx = devidx;
+               rr->rr_col[1].rc_offset = o;
                if (rm->rm_skipstart == 0)
                        rm->rm_skipstart = 1;
        }
 
-       zio->io_vsd = rm;
-       zio->io_vsd_ops = &vdev_raidz_vsd_ops;
+       if (zio->io_type == ZIO_TYPE_WRITE) {
+               vdev_raidz_map_alloc_write(zio, rm, ashift);
+       } else {
+               vdev_raidz_map_alloc_read(zio, rm);
+       }
+       /* init RAIDZ parity ops */
+       rm->rm_ops = vdev_raidz_math_get_ops();
+
+       return (rm);
+}
+
+/*
+ * Everything before reflow_offset_synced should have been moved to the new
+ * location (read and write completed).  However, this may not yet be reflected
+ * in the on-disk format (e.g. raidz_reflow_sync() has been called but the
+ * uberblock has not yet been written). If reflow is not in progress,
+ * reflow_offset_synced should be UINT64_MAX. For each row, if the row is
+ * entirely before reflow_offset_synced, it will come from the new location.
+ * Otherwise this row will come from the old location.  Therefore, rows that
+ * straddle the reflow_offset_synced will come from the old location.
+ *
+ * For writes, reflow_offset_next is the next offset to copy.  If a sector has
+ * been copied, but not yet reflected in the on-disk progress
+ * (reflow_offset_synced), it will also be written to the new (already copied)
+ * offset.
+ */
+noinline raidz_map_t *
+vdev_raidz_map_alloc_expanded(zio_t *zio,
+    uint64_t ashift, uint64_t physical_cols, uint64_t logical_cols,
+    uint64_t nparity, uint64_t reflow_offset_synced,
+    uint64_t reflow_offset_next, boolean_t use_scratch)
+{
+       abd_t *abd = zio->io_abd;
+       uint64_t offset = zio->io_offset;
+       uint64_t size = zio->io_size;
+
+       /* The zio's size in units of the vdev's minimum sector size. */
+       uint64_t s = size >> ashift;
+
+       /*
+        * "Quotient": The number of data sectors for this stripe on all but
+        * the "big column" child vdevs that also contain "remainder" data.
+        * AKA "full rows"
+        */
+       uint64_t q = s / (logical_cols - nparity);
+
+       /*
+        * "Remainder": The number of partial stripe data sectors in this I/O.
+        * This will add a sector to some, but not all, child vdevs.
+        */
+       uint64_t r = s - q * (logical_cols - nparity);
+
+       /* The number of "big columns" - those which contain remainder data. */
+       uint64_t bc = (r == 0 ? 0 : r + nparity);
+
+       /*
+        * The total number of data and parity sectors associated with
+        * this I/O.
+        */
+       uint64_t tot = s + nparity * (q + (r == 0 ? 0 : 1));
+
+       /* How many rows contain data (not skip) */
+       uint64_t rows = howmany(tot, logical_cols);
+       int cols = MIN(tot, logical_cols);
+
+       raidz_map_t *rm =
+           kmem_zalloc(offsetof(raidz_map_t, rm_row[rows]),
+           KM_SLEEP);
+       rm->rm_nrows = rows;
+       rm->rm_nskip = roundup(tot, nparity + 1) - tot;
+       rm->rm_skipstart = bc;
+       uint64_t asize = 0;
+
+       for (uint64_t row = 0; row < rows; row++) {
+               boolean_t row_use_scratch = B_FALSE;
+               raidz_row_t *rr = vdev_raidz_row_alloc(cols);
+               rm->rm_row[row] = rr;
+
+               /* The starting RAIDZ (parent) vdev sector of the row. */
+               uint64_t b = (offset >> ashift) + row * logical_cols;
+
+               /*
+                * If we are in the middle of a reflow, and the copying has
+                * not yet completed for any part of this row, then use the
+                * old location of this row.  Note that reflow_offset_synced
+                * reflects the i/o that's been completed, because it's
+                * updated by a synctask, after zio_wait(spa_txg_zio[]).
+                * This is sufficient for our check, even if that progress
+                * has not yet been recorded to disk (reflected in
+                * spa_ubsync).  Also note that we consider the last row to
+                * be "full width" (`cols`-wide rather than `bc`-wide) for
+                * this calculation. This causes a tiny bit of unnecessary
+                * double-writes but is safe and simpler to calculate.
+                */
+               int row_phys_cols = physical_cols;
+               if (b + cols > reflow_offset_synced >> ashift)
+                       row_phys_cols--;
+               else if (use_scratch)
+                       row_use_scratch = B_TRUE;
+
+               /* starting child of this row */
+               uint64_t child_id = b % row_phys_cols;
+               /* The starting byte offset on each child vdev. */
+               uint64_t child_offset = (b / row_phys_cols) << ashift;
+
+               /*
+                * Note, rr_cols is the entire width of the block, even
+                * if this row is shorter.  This is needed because parity
+                * generation (for Q and R) needs to know the entire width,
+                * because it treats the short row as though it was
+                * full-width (and the "phantom" sectors were zero-filled).
+                *
+                * Another approach to this would be to set cols shorter
+                * (to just the number of columns that we might do i/o to)
+                * and have another mechanism to tell the parity generation
+                * about the "entire width".  Reconstruction (at least
+                * vdev_raidz_reconstruct_general()) would also need to
+                * know about the "entire width".
+                */
+               rr->rr_firstdatacol = nparity;
+#ifdef ZFS_DEBUG
+               /*
+                * note: rr_size is PSIZE, not ASIZE
+                */
+               rr->rr_offset = b << ashift;
+               rr->rr_size = (rr->rr_cols - rr->rr_firstdatacol) << ashift;
+#endif
+
+               for (int c = 0; c < rr->rr_cols; c++, child_id++) {
+                       if (child_id >= row_phys_cols) {
+                               child_id -= row_phys_cols;
+                               child_offset += 1ULL << ashift;
+                       }
+                       raidz_col_t *rc = &rr->rr_col[c];
+                       rc->rc_devidx = child_id;
+                       rc->rc_offset = child_offset;
+
+                       /*
+                        * Get this from the scratch space if appropriate.
+                        * This only happens if we crashed in the middle of
+                        * raidz_reflow_scratch_sync() (while it's running,
+                        * the rangelock prevents us from doing concurrent
+                        * io), and even then only during zpool import or
+                        * when the pool is imported readonly.
+                        */
+                       if (row_use_scratch)
+                               rc->rc_offset -= VDEV_BOOT_SIZE;
+
+                       uint64_t dc = c - rr->rr_firstdatacol;
+                       if (c < rr->rr_firstdatacol) {
+                               rc->rc_size = 1ULL << ashift;
+
+                               /*
+                                * Parity sectors' rc_abd's are set below
+                                * after determining if this is an aggregation.
+                                */
+                       } else if (row == rows - 1 && bc != 0 && c >= bc) {
+                               /*
+                                * Past the end of the block (even including
+                                * skip sectors).  This sector is part of the
+                                * map so that we have full rows for p/q parity
+                                * generation.
+                                */
+                               rc->rc_size = 0;
+                               rc->rc_abd = NULL;
+                       } else {
+                               /* "data column" (col excluding parity) */
+                               uint64_t off;
+
+                               if (c < bc || r == 0) {
+                                       off = dc * rows + row;
+                               } else {
+                                       off = r * rows +
+                                           (dc - r) * (rows - 1) + row;
+                               }
+                               rc->rc_size = 1ULL << ashift;
+                               rc->rc_abd = abd_get_offset_struct(
+                                   &rc->rc_abdstruct, abd, off << ashift,
+                                   rc->rc_size);
+                       }
+
+                       if (rc->rc_size == 0)
+                               continue;
+
+                       /*
+                        * If any part of this row is in both old and new
+                        * locations, the primary location is the old
+                        * location. If this sector was already copied to the
+                        * new location, we need to also write to the new,
+                        * "shadow" location.
+                        *
+                        * Note, `row_phys_cols != physical_cols` indicates
+                        * that the primary location is the old location.
+                        * `b+c < reflow_offset_next` indicates that the copy
+                        * to the new location has been initiated. We know
+                        * that the copy has completed because we have the
+                        * rangelock, which is held exclusively while the
+                        * copy is in progress.
+                        */
+                       if (row_use_scratch ||
+                           (row_phys_cols != physical_cols &&
+                           b + c < reflow_offset_next >> ashift)) {
+                               rc->rc_shadow_devidx = (b + c) % physical_cols;
+                               rc->rc_shadow_offset =
+                                   ((b + c) / physical_cols) << ashift;
+                               if (row_use_scratch)
+                                       rc->rc_shadow_offset -= VDEV_BOOT_SIZE;
+                       }
+
+                       asize += rc->rc_size;
+               }
+
+               /*
+                * See comment in vdev_raidz_map_alloc()
+                */
+               if (rr->rr_firstdatacol == 1 && rr->rr_cols > 1 &&
+                   (offset & (1ULL << 20))) {
+                       ASSERT(rr->rr_cols >= 2);
+                       ASSERT(rr->rr_col[0].rc_size == rr->rr_col[1].rc_size);
+
+                       int devidx0 = rr->rr_col[0].rc_devidx;
+                       uint64_t offset0 = rr->rr_col[0].rc_offset;
+                       int shadow_devidx0 = rr->rr_col[0].rc_shadow_devidx;
+                       uint64_t shadow_offset0 =
+                           rr->rr_col[0].rc_shadow_offset;
+
+                       rr->rr_col[0].rc_devidx = rr->rr_col[1].rc_devidx;
+                       rr->rr_col[0].rc_offset = rr->rr_col[1].rc_offset;
+                       rr->rr_col[0].rc_shadow_devidx =
+                           rr->rr_col[1].rc_shadow_devidx;
+                       rr->rr_col[0].rc_shadow_offset =
+                           rr->rr_col[1].rc_shadow_offset;
+
+                       rr->rr_col[1].rc_devidx = devidx0;
+                       rr->rr_col[1].rc_offset = offset0;
+                       rr->rr_col[1].rc_shadow_devidx = shadow_devidx0;
+                       rr->rr_col[1].rc_shadow_offset = shadow_offset0;
+               }
+       }
+       ASSERT3U(asize, ==, tot << ashift);
+
+       /*
+        * Determine if the block is contiguous, in which case we can use
+        * an aggregation.
+        */
+       if (rows >= raidz_io_aggregate_rows) {
+               rm->rm_nphys_cols = physical_cols;
+               rm->rm_phys_col =
+                   kmem_zalloc(sizeof (raidz_col_t) * rm->rm_nphys_cols,
+                   KM_SLEEP);
+
+               /*
+                * Determine the aggregate io's offset and size, and check
+                * that the io is contiguous.
+                */
+               for (int i = 0;
+                   i < rm->rm_nrows && rm->rm_phys_col != NULL; i++) {
+                       raidz_row_t *rr = rm->rm_row[i];
+                       for (int c = 0; c < rr->rr_cols; c++) {
+                               raidz_col_t *rc = &rr->rr_col[c];
+                               raidz_col_t *prc =
+                                   &rm->rm_phys_col[rc->rc_devidx];
+
+                               if (rc->rc_size == 0)
+                                       continue;
+
+                               if (prc->rc_size == 0) {
+                                       ASSERT0(prc->rc_offset);
+                                       prc->rc_offset = rc->rc_offset;
+                               } else if (prc->rc_offset + prc->rc_size !=
+                                   rc->rc_offset) {
+                                       /*
+                                        * This block is not contiguous and
+                                        * therefore can't be aggregated.
+                                        * This is expected to be rare, so
+                                        * the cost of allocating and then
+                                        * freeing rm_phys_col is not
+                                        * significant.
+                                        */
+                                       kmem_free(rm->rm_phys_col,
+                                           sizeof (raidz_col_t) *
+                                           rm->rm_nphys_cols);
+                                       rm->rm_phys_col = NULL;
+                                       rm->rm_nphys_cols = 0;
+                                       break;
+                               }
+                               prc->rc_size += rc->rc_size;
+                       }
+               }
+       }
+       if (rm->rm_phys_col != NULL) {
+               /*
+                * Allocate aggregate ABD's.
+                */
+               for (int i = 0; i < rm->rm_nphys_cols; i++) {
+                       raidz_col_t *prc = &rm->rm_phys_col[i];
+
+                       prc->rc_devidx = i;
+
+                       if (prc->rc_size == 0)
+                               continue;
 
+                       prc->rc_abd =
+                           abd_alloc_linear(rm->rm_phys_col[i].rc_size,
+                           B_FALSE);
+               }
+
+               /*
+                * Point the parity abd's into the aggregate abd's.
+                */
+               for (int i = 0; i < rm->rm_nrows; i++) {
+                       raidz_row_t *rr = rm->rm_row[i];
+                       for (int c = 0; c < rr->rr_firstdatacol; c++) {
+                               raidz_col_t *rc = &rr->rr_col[c];
+                               raidz_col_t *prc =
+                                   &rm->rm_phys_col[rc->rc_devidx];
+                               rc->rc_abd =
+                                   abd_get_offset_struct(&rc->rc_abdstruct,
+                                   prc->rc_abd,
+                                   rc->rc_offset - prc->rc_offset,
+                                   rc->rc_size);
+                       }
+               }
+       } else {
+               /*
+                * Allocate new abd's for the parity sectors.
+                */
+               for (int i = 0; i < rm->rm_nrows; i++) {
+                       raidz_row_t *rr = rm->rm_row[i];
+                       for (int c = 0; c < rr->rr_firstdatacol; c++) {
+                               raidz_col_t *rc = &rr->rr_col[c];
+                               rc->rc_abd =
+                                   abd_alloc_linear(rc->rc_size,
+                                   B_TRUE);
+                       }
+               }
+       }
        /* init RAIDZ parity ops */
        rm->rm_ops = vdev_raidz_math_get_ops();
 
@@ -501,11 +1044,11 @@ vdev_raidz_p_func(void *buf, size_t size, void *private)
 {
        struct pqr_struct *pqr = private;
        const uint64_t *src = buf;
-       int i, cnt = size / sizeof (src[0]);
+       int cnt = size / sizeof (src[0]);
 
        ASSERT(pqr->p && !pqr->q && !pqr->r);
 
-       for (i = 0; i < cnt; i++, src++, pqr->p++)
+       for (int i = 0; i < cnt; i++, src++, pqr->p++)
                *pqr->p ^= *src;
 
        return (0);
@@ -517,11 +1060,11 @@ vdev_raidz_pq_func(void *buf, size_t size, void *private)
        struct pqr_struct *pqr = private;
        const uint64_t *src = buf;
        uint64_t mask;
-       int i, cnt = size / sizeof (src[0]);
+       int cnt = size / sizeof (src[0]);
 
        ASSERT(pqr->p && pqr->q && !pqr->r);
 
-       for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
+       for (int i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++) {
                *pqr->p ^= *src;
                VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
                *pqr->q ^= *src;
@@ -536,11 +1079,11 @@ vdev_raidz_pqr_func(void *buf, size_t size, void *private)
        struct pqr_struct *pqr = private;
        const uint64_t *src = buf;
        uint64_t mask;
-       int i, cnt = size / sizeof (src[0]);
+       int cnt = size / sizeof (src[0]);
 
        ASSERT(pqr->p && pqr->q && pqr->r);
 
-       for (i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
+       for (int i = 0; i < cnt; i++, src++, pqr->p++, pqr->q++, pqr->r++) {
                *pqr->p ^= *src;
                VDEV_RAIDZ_64MUL_2(*pqr->q, mask);
                *pqr->q ^= *src;
@@ -552,65 +1095,59 @@ vdev_raidz_pqr_func(void *buf, size_t size, void *private)
 }
 
 static void
-vdev_raidz_generate_parity_p(raidz_map_t *rm)
+vdev_raidz_generate_parity_p(raidz_row_t *rr)
 {
-       uint64_t *p;
-       int c;
-       abd_t *src;
+       uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
 
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               src = rm->rm_col[c].rc_abd;
-               p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
+       for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+               abd_t *src = rr->rr_col[c].rc_abd;
 
-               if (c == rm->rm_firstdatacol) {
-                       abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
+               if (c == rr->rr_firstdatacol) {
+                       abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
                } else {
                        struct pqr_struct pqr = { p, NULL, NULL };
-                       (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
+                       (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
                            vdev_raidz_p_func, &pqr);
                }
        }
 }
 
 static void
-vdev_raidz_generate_parity_pq(raidz_map_t *rm)
+vdev_raidz_generate_parity_pq(raidz_row_t *rr)
 {
-       uint64_t *p, *q, pcnt, ccnt, mask, i;
-       int c;
-       abd_t *src;
-
-       pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
-       ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
-           rm->rm_col[VDEV_RAIDZ_Q].rc_size);
+       uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
+       uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
+       uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
+       ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
+           rr->rr_col[VDEV_RAIDZ_Q].rc_size);
 
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               src = rm->rm_col[c].rc_abd;
-               p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
-               q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
+       for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+               abd_t *src = rr->rr_col[c].rc_abd;
 
-               ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
+               uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
 
-               if (c == rm->rm_firstdatacol) {
-                       abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
-                       (void) memcpy(q, p, rm->rm_col[c].rc_size);
-               } else {
-                       struct pqr_struct pqr = { p, q, NULL };
-                       (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
-                           vdev_raidz_pq_func, &pqr);
-               }
+               if (c == rr->rr_firstdatacol) {
+                       ASSERT(ccnt == pcnt || ccnt == 0);
+                       abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
+                       (void) memcpy(q, p, rr->rr_col[c].rc_size);
 
-               if (c == rm->rm_firstdatacol) {
-                       for (i = ccnt; i < pcnt; i++) {
+                       for (uint64_t i = ccnt; i < pcnt; i++) {
                                p[i] = 0;
                                q[i] = 0;
                        }
                } else {
+                       struct pqr_struct pqr = { p, q, NULL };
+
+                       ASSERT(ccnt <= pcnt);
+                       (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
+                           vdev_raidz_pq_func, &pqr);
 
                        /*
                         * Treat short columns as though they are full of 0s.
                         * Note that there's therefore nothing needed for P.
                         */
-                       for (i = ccnt; i < pcnt; i++) {
+                       uint64_t mask;
+                       for (uint64_t i = ccnt; i < pcnt; i++) {
                                VDEV_RAIDZ_64MUL_2(q[i], mask);
                        }
                }
@@ -618,48 +1155,46 @@ vdev_raidz_generate_parity_pq(raidz_map_t *rm)
 }
 
 static void
-vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
+vdev_raidz_generate_parity_pqr(raidz_row_t *rr)
 {
-       uint64_t *p, *q, *r, pcnt, ccnt, mask, i;
-       int c;
-       abd_t *src;
-
-       pcnt = rm->rm_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
-       ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
-           rm->rm_col[VDEV_RAIDZ_Q].rc_size);
-       ASSERT(rm->rm_col[VDEV_RAIDZ_P].rc_size ==
-           rm->rm_col[VDEV_RAIDZ_R].rc_size);
-
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               src = rm->rm_col[c].rc_abd;
-               p = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
-               q = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
-               r = abd_to_buf(rm->rm_col[VDEV_RAIDZ_R].rc_abd);
-
-               ccnt = rm->rm_col[c].rc_size / sizeof (p[0]);
-
-               if (c == rm->rm_firstdatacol) {
-                       abd_copy_to_buf(p, src, rm->rm_col[c].rc_size);
-                       (void) memcpy(q, p, rm->rm_col[c].rc_size);
-                       (void) memcpy(r, p, rm->rm_col[c].rc_size);
-               } else {
-                       struct pqr_struct pqr = { p, q, r };
-                       (void) abd_iterate_func(src, 0, rm->rm_col[c].rc_size,
-                           vdev_raidz_pqr_func, &pqr);
-               }
-
-               if (c == rm->rm_firstdatacol) {
-                       for (i = ccnt; i < pcnt; i++) {
+       uint64_t *p = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
+       uint64_t *q = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
+       uint64_t *r = abd_to_buf(rr->rr_col[VDEV_RAIDZ_R].rc_abd);
+       uint64_t pcnt = rr->rr_col[VDEV_RAIDZ_P].rc_size / sizeof (p[0]);
+       ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
+           rr->rr_col[VDEV_RAIDZ_Q].rc_size);
+       ASSERT(rr->rr_col[VDEV_RAIDZ_P].rc_size ==
+           rr->rr_col[VDEV_RAIDZ_R].rc_size);
+
+       for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+               abd_t *src = rr->rr_col[c].rc_abd;
+
+               uint64_t ccnt = rr->rr_col[c].rc_size / sizeof (p[0]);
+
+               if (c == rr->rr_firstdatacol) {
+                       ASSERT(ccnt == pcnt || ccnt == 0);
+                       abd_copy_to_buf(p, src, rr->rr_col[c].rc_size);
+                       (void) memcpy(q, p, rr->rr_col[c].rc_size);
+                       (void) memcpy(r, p, rr->rr_col[c].rc_size);
+
+                       for (uint64_t i = ccnt; i < pcnt; i++) {
                                p[i] = 0;
                                q[i] = 0;
                                r[i] = 0;
                        }
                } else {
+                       struct pqr_struct pqr = { p, q, r };
+
+                       ASSERT(ccnt <= pcnt);
+                       (void) abd_iterate_func(src, 0, rr->rr_col[c].rc_size,
+                           vdev_raidz_pqr_func, &pqr);
+
                        /*
                         * Treat short columns as though they are full of 0s.
                         * Note that there's therefore nothing needed for P.
                         */
-                       for (i = ccnt; i < pcnt; i++) {
+                       uint64_t mask;
+                       for (uint64_t i = ccnt; i < pcnt; i++) {
                                VDEV_RAIDZ_64MUL_2(q[i], mask);
                                VDEV_RAIDZ_64MUL_4(r[i], mask);
                        }
@@ -672,55 +1207,72 @@ vdev_raidz_generate_parity_pqr(raidz_map_t *rm)
  * parity columns available.
  */
 void
-vdev_raidz_generate_parity(raidz_map_t *rm)
+vdev_raidz_generate_parity_row(raidz_map_t *rm, raidz_row_t *rr)
 {
+       if (rr->rr_cols == 0) {
+               /*
+                * We are handling this block one row at a time (because
+                * this block has a different logical vs physical width,
+                * due to RAIDZ expansion), and this is a pad-only row,
+                * which has no parity.
+                */
+               return;
+       }
+
        /* Generate using the new math implementation */
-       if (vdev_raidz_math_generate(rm) != RAIDZ_ORIGINAL_IMPL)
+       if (vdev_raidz_math_generate(rm, rr) != RAIDZ_ORIGINAL_IMPL)
                return;
 
-       switch (rm->rm_firstdatacol) {
+       switch (rr->rr_firstdatacol) {
        case 1:
-               vdev_raidz_generate_parity_p(rm);
+               vdev_raidz_generate_parity_p(rr);
                break;
        case 2:
-               vdev_raidz_generate_parity_pq(rm);
+               vdev_raidz_generate_parity_pq(rr);
                break;
        case 3:
-               vdev_raidz_generate_parity_pqr(rm);
+               vdev_raidz_generate_parity_pqr(rr);
                break;
        default:
                cmn_err(CE_PANIC, "invalid RAID-Z configuration");
        }
 }
 
-/* ARGSUSED */
+void
+vdev_raidz_generate_parity(raidz_map_t *rm)
+{
+       for (int i = 0; i < rm->rm_nrows; i++) {
+               raidz_row_t *rr = rm->rm_row[i];
+               vdev_raidz_generate_parity_row(rm, rr);
+       }
+}
+
 static int
 vdev_raidz_reconst_p_func(void *dbuf, void *sbuf, size_t size, void *private)
 {
+       (void) private;
        uint64_t *dst = dbuf;
        uint64_t *src = sbuf;
        int cnt = size / sizeof (src[0]);
-       int i;
 
-       for (i = 0; i < cnt; i++) {
+       for (int i = 0; i < cnt; i++) {
                dst[i] ^= src[i];
        }
 
        return (0);
 }
 
-/* ARGSUSED */
 static int
 vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
     void *private)
 {
+       (void) private;
        uint64_t *dst = dbuf;
        uint64_t *src = sbuf;
        uint64_t mask;
        int cnt = size / sizeof (dst[0]);
-       int i;
 
-       for (i = 0; i < cnt; i++, dst++, src++) {
+       for (int i = 0; i < cnt; i++, dst++, src++) {
                VDEV_RAIDZ_64MUL_2(*dst, mask);
                *dst ^= *src;
        }
@@ -728,16 +1280,15 @@ vdev_raidz_reconst_q_pre_func(void *dbuf, void *sbuf, size_t size,
        return (0);
 }
 
-/* ARGSUSED */
 static int
 vdev_raidz_reconst_q_pre_tail_func(void *buf, size_t size, void *private)
 {
+       (void) private;
        uint64_t *dst = buf;
        uint64_t mask;
        int cnt = size / sizeof (dst[0]);
-       int i;
 
-       for (i = 0; i < cnt; i++, dst++) {
+       for (int i = 0; i < cnt; i++, dst++) {
                /* same operation as vdev_raidz_reconst_q_pre_func() on dst */
                VDEV_RAIDZ_64MUL_2(*dst, mask);
        }
@@ -756,9 +1307,8 @@ vdev_raidz_reconst_q_post_func(void *buf, size_t size, void *private)
        struct reconst_q_struct *rq = private;
        uint64_t *dst = buf;
        int cnt = size / sizeof (dst[0]);
-       int i;
 
-       for (i = 0; i < cnt; i++, dst++, rq->q++) {
+       for (int i = 0; i < cnt; i++, dst++, rq->q++) {
                int j;
                uint8_t *b;
 
@@ -786,9 +1336,8 @@ vdev_raidz_reconst_pq_func(void *xbuf, void *ybuf, size_t size, void *private)
        struct reconst_pq_struct *rpq = private;
        uint8_t *xd = xbuf;
        uint8_t *yd = ybuf;
-       int i;
 
-       for (i = 0; i < size;
+       for (int i = 0; i < size;
            i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++, yd++) {
                *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
                    vdev_raidz_exp2(*rpq->q ^ *rpq->qxy, rpq->bexp);
@@ -803,9 +1352,8 @@ vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
 {
        struct reconst_pq_struct *rpq = private;
        uint8_t *xd = xbuf;
-       int i;
 
-       for (i = 0; i < size;
+       for (int i = 0; i < size;
            i++, rpq->p++, rpq->q++, rpq->pxy++, rpq->qxy++, xd++) {
                /* same operation as vdev_raidz_reconst_pq_func() on xd */
                *xd = vdev_raidz_exp2(*rpq->p ^ *rpq->pxy, rpq->aexp) ^
@@ -815,31 +1363,31 @@ vdev_raidz_reconst_pq_tail_func(void *xbuf, size_t size, void *private)
        return (0);
 }
 
-static int
-vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
+static void
+vdev_raidz_reconstruct_p(raidz_row_t *rr, int *tgts, int ntgts)
 {
        int x = tgts[0];
-       int c;
        abd_t *dst, *src;
 
-       ASSERT(ntgts == 1);
-       ASSERT(x >= rm->rm_firstdatacol);
-       ASSERT(x < rm->rm_cols);
+       if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
+               zfs_dbgmsg("reconstruct_p(rm=%px x=%u)", rr, x);
+
+       ASSERT3U(ntgts, ==, 1);
+       ASSERT3U(x, >=, rr->rr_firstdatacol);
+       ASSERT3U(x, <, rr->rr_cols);
 
-       ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_P].rc_size);
-       ASSERT(rm->rm_col[x].rc_size > 0);
+       ASSERT3U(rr->rr_col[x].rc_size, <=, rr->rr_col[VDEV_RAIDZ_P].rc_size);
 
-       src = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
-       dst = rm->rm_col[x].rc_abd;
+       src = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
+       dst = rr->rr_col[x].rc_abd;
 
-       abd_copy_from_buf(dst, abd_to_buf(src), rm->rm_col[x].rc_size);
+       abd_copy_from_buf(dst, abd_to_buf(src), rr->rr_col[x].rc_size);
 
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               uint64_t size = MIN(rm->rm_col[x].rc_size,
-                   rm->rm_col[c].rc_size);
+       for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+               uint64_t size = MIN(rr->rr_col[x].rc_size,
+                   rr->rr_col[c].rc_size);
 
-               src = rm->rm_col[c].rc_abd;
-               dst = rm->rm_col[x].rc_abd;
+               src = rr->rr_col[c].rc_abd;
 
                if (c == x)
                        continue;
@@ -847,59 +1395,56 @@ vdev_raidz_reconstruct_p(raidz_map_t *rm, int *tgts, int ntgts)
                (void) abd_iterate_func2(dst, src, 0, 0, size,
                    vdev_raidz_reconst_p_func, NULL);
        }
-
-       return (1 << VDEV_RAIDZ_P);
 }
 
-static int
-vdev_raidz_reconstruct_q(raidz_map_t *rm, int *tgts, int ntgts)
+static void
+vdev_raidz_reconstruct_q(raidz_row_t *rr, int *tgts, int ntgts)
 {
        int x = tgts[0];
        int c, exp;
        abd_t *dst, *src;
-       struct reconst_q_struct rq;
+
+       if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
+               zfs_dbgmsg("reconstruct_q(rm=%px x=%u)", rr, x);
 
        ASSERT(ntgts == 1);
 
-       ASSERT(rm->rm_col[x].rc_size <= rm->rm_col[VDEV_RAIDZ_Q].rc_size);
+       ASSERT(rr->rr_col[x].rc_size <= rr->rr_col[VDEV_RAIDZ_Q].rc_size);
 
-       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-               uint64_t size = (c == x) ? 0 : MIN(rm->rm_col[x].rc_size,
-                   rm->rm_col[c].rc_size);
+       for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+               uint64_t size = (c == x) ? 0 : MIN(rr->rr_col[x].rc_size,
+                   rr->rr_col[c].rc_size);
 
-               src = rm->rm_col[c].rc_abd;
-               dst = rm->rm_col[x].rc_abd;
+               src = rr->rr_col[c].rc_abd;
+               dst = rr->rr_col[x].rc_abd;
 
-               if (c == rm->rm_firstdatacol) {
+               if (c == rr->rr_firstdatacol) {
                        abd_copy(dst, src, size);
-                       if (rm->rm_col[x].rc_size > size)
+                       if (rr->rr_col[x].rc_size > size) {
                                abd_zero_off(dst, size,
-                                   rm->rm_col[x].rc_size - size);
-
+                                   rr->rr_col[x].rc_size - size);
+                       }
                } else {
-                       ASSERT3U(size, <=, rm->rm_col[x].rc_size);
+                       ASSERT3U(size, <=, rr->rr_col[x].rc_size);
                        (void) abd_iterate_func2(dst, src, 0, 0, size,
                            vdev_raidz_reconst_q_pre_func, NULL);
                        (void) abd_iterate_func(dst,
-                           size, rm->rm_col[x].rc_size - size,
+                           size, rr->rr_col[x].rc_size - size,
                            vdev_raidz_reconst_q_pre_tail_func, NULL);
                }
        }
 
-       src = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
-       dst = rm->rm_col[x].rc_abd;
-       exp = 255 - (rm->rm_cols - 1 - x);
-       rq.q = abd_to_buf(src);
-       rq.exp = exp;
+       src = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
+       dst = rr->rr_col[x].rc_abd;
+       exp = 255 - (rr->rr_cols - 1 - x);
 
-       (void) abd_iterate_func(dst, 0, rm->rm_col[x].rc_size,
+       struct reconst_q_struct rq = { abd_to_buf(src), exp };
+       (void) abd_iterate_func(dst, 0, rr->rr_col[x].rc_size,
            vdev_raidz_reconst_q_post_func, &rq);
-
-       return (1 << VDEV_RAIDZ_Q);
 }
 
-static int
-vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
+static void
+vdev_raidz_reconstruct_pq(raidz_row_t *rr, int *tgts, int ntgts)
 {
        uint8_t *p, *q, *pxy, *qxy, tmp, a, b, aexp, bexp;
        abd_t *pdata, *qdata;
@@ -907,14 +1452,16 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
        int x = tgts[0];
        int y = tgts[1];
        abd_t *xd, *yd;
-       struct reconst_pq_struct rpq;
+
+       if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
+               zfs_dbgmsg("reconstruct_pq(rm=%px x=%u y=%u)", rr, x, y);
 
        ASSERT(ntgts == 2);
        ASSERT(x < y);
-       ASSERT(x >= rm->rm_firstdatacol);
-       ASSERT(y < rm->rm_cols);
+       ASSERT(x >= rr->rr_firstdatacol);
+       ASSERT(y < rr->rr_cols);
 
-       ASSERT(rm->rm_col[x].rc_size >= rm->rm_col[y].rc_size);
+       ASSERT(rr->rr_col[x].rc_size >= rr->rr_col[y].rc_size);
 
        /*
         * Move the parity data aside -- we're going to compute parity as
@@ -923,29 +1470,29 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
         * parity so we make those columns appear to be full of zeros by
         * setting their lengths to zero.
         */
-       pdata = rm->rm_col[VDEV_RAIDZ_P].rc_abd;
-       qdata = rm->rm_col[VDEV_RAIDZ_Q].rc_abd;
-       xsize = rm->rm_col[x].rc_size;
-       ysize = rm->rm_col[y].rc_size;
+       pdata = rr->rr_col[VDEV_RAIDZ_P].rc_abd;
+       qdata = rr->rr_col[VDEV_RAIDZ_Q].rc_abd;
+       xsize = rr->rr_col[x].rc_size;
+       ysize = rr->rr_col[y].rc_size;
 
-       rm->rm_col[VDEV_RAIDZ_P].rc_abd =
-           abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
-       rm->rm_col[VDEV_RAIDZ_Q].rc_abd =
-           abd_alloc_linear(rm->rm_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
-       rm->rm_col[x].rc_size = 0;
-       rm->rm_col[y].rc_size = 0;
+       rr->rr_col[VDEV_RAIDZ_P].rc_abd =
+           abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_P].rc_size, B_TRUE);
+       rr->rr_col[VDEV_RAIDZ_Q].rc_abd =
+           abd_alloc_linear(rr->rr_col[VDEV_RAIDZ_Q].rc_size, B_TRUE);
+       rr->rr_col[x].rc_size = 0;
+       rr->rr_col[y].rc_size = 0;
 
-       vdev_raidz_generate_parity_pq(rm);
+       vdev_raidz_generate_parity_pq(rr);
 
-       rm->rm_col[x].rc_size = xsize;
-       rm->rm_col[y].rc_size = ysize;
+       rr->rr_col[x].rc_size = xsize;
+       rr->rr_col[y].rc_size = ysize;
 
        p = abd_to_buf(pdata);
        q = abd_to_buf(qdata);
-       pxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
-       qxy = abd_to_buf(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
-       xd = rm->rm_col[x].rc_abd;
-       yd = rm->rm_col[y].rc_abd;
+       pxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
+       qxy = abd_to_buf(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
+       xd = rr->rr_col[x].rc_abd;
+       yd = rr->rr_col[y].rc_abd;
 
        /*
         * We now have:
@@ -963,41 +1510,33 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
         */
 
        a = vdev_raidz_pow2[255 + x - y];
-       b = vdev_raidz_pow2[255 - (rm->rm_cols - 1 - x)];
+       b = vdev_raidz_pow2[255 - (rr->rr_cols - 1 - x)];
        tmp = 255 - vdev_raidz_log2[a ^ 1];
 
        aexp = vdev_raidz_log2[vdev_raidz_exp2(a, tmp)];
        bexp = vdev_raidz_log2[vdev_raidz_exp2(b, tmp)];
 
        ASSERT3U(xsize, >=, ysize);
-       rpq.p = p;
-       rpq.q = q;
-       rpq.pxy = pxy;
-       rpq.qxy = qxy;
-       rpq.aexp = aexp;
-       rpq.bexp = bexp;
+       struct reconst_pq_struct rpq = { p, q, pxy, qxy, aexp, bexp };
 
        (void) abd_iterate_func2(xd, yd, 0, 0, ysize,
            vdev_raidz_reconst_pq_func, &rpq);
        (void) abd_iterate_func(xd, ysize, xsize - ysize,
            vdev_raidz_reconst_pq_tail_func, &rpq);
 
-       abd_free(rm->rm_col[VDEV_RAIDZ_P].rc_abd);
-       abd_free(rm->rm_col[VDEV_RAIDZ_Q].rc_abd);
+       abd_free(rr->rr_col[VDEV_RAIDZ_P].rc_abd);
+       abd_free(rr->rr_col[VDEV_RAIDZ_Q].rc_abd);
 
        /*
         * Restore the saved parity data.
         */
-       rm->rm_col[VDEV_RAIDZ_P].rc_abd = pdata;
-       rm->rm_col[VDEV_RAIDZ_Q].rc_abd = qdata;
-
-       return ((1 << VDEV_RAIDZ_P) | (1 << VDEV_RAIDZ_Q));
+       rr->rr_col[VDEV_RAIDZ_P].rc_abd = pdata;
+       rr->rr_col[VDEV_RAIDZ_Q].rc_abd = qdata;
 }
 
-/* BEGIN CSTYLED */
 /*
  * In the general case of reconstruction, we must solve the system of linear
- * equations defined by the coeffecients used to generate parity as well as
+ * equations defined by the coefficients used to generate parity as well as
  * the contents of the data and parity disks. This can be expressed with
  * vectors for the original data (D) and the actual data (d) and parity (p)
  * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
@@ -1011,7 +1550,7 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
  *            ~~   ~~                     ~~     ~~
  *
  * I is simply a square identity matrix of size n, and V is a vandermonde
- * matrix defined by the coeffecients we chose for the various parity columns
+ * matrix defined by the coefficients we chose for the various parity columns
  * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
  * computation as well as linear separability.
  *
@@ -1146,16 +1685,15 @@ vdev_raidz_reconstruct_pq(raidz_map_t *rm, int *tgts, int ntgts)
  * that reason, we only build the coefficients in the rows that correspond to
  * targeted columns.
  */
-/* END CSTYLED */
 
 static void
-vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
+vdev_raidz_matrix_init(raidz_row_t *rr, int n, int nmap, int *map,
     uint8_t **rows)
 {
        int i, j;
        int pow;
 
-       ASSERT(n == rm->rm_cols - rm->rm_firstdatacol);
+       ASSERT(n == rr->rr_cols - rr->rr_firstdatacol);
 
        /*
         * Fill in the missing rows of interest.
@@ -1179,7 +1717,7 @@ vdev_raidz_matrix_init(raidz_map_t *rm, int n, int nmap, int *map,
 }
 
 static void
-vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
+vdev_raidz_matrix_invert(raidz_row_t *rr, int n, int nmissing, int *missing,
     uint8_t **rows, uint8_t **invrows, const uint8_t *used)
 {
        int i, j, ii, jj;
@@ -1191,10 +1729,10 @@ vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
         * correspond to data columns.
         */
        for (i = 0; i < nmissing; i++) {
-               ASSERT3S(used[i], <, rm->rm_firstdatacol);
+               ASSERT3S(used[i], <, rr->rr_firstdatacol);
        }
        for (; i < n; i++) {
-               ASSERT3S(used[i], >=, rm->rm_firstdatacol);
+               ASSERT3S(used[i], >=, rr->rr_firstdatacol);
        }
 
        /*
@@ -1211,8 +1749,8 @@ vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
         */
        for (i = 0; i < nmissing; i++) {
                for (j = nmissing; j < n; j++) {
-                       ASSERT3U(used[j], >=, rm->rm_firstdatacol);
-                       jj = used[j] - rm->rm_firstdatacol;
+                       ASSERT3U(used[j], >=, rr->rr_firstdatacol);
+                       jj = used[j] - rr->rr_firstdatacol;
                        ASSERT3S(jj, <, n);
                        invrows[i][j] = rows[i][jj];
                        rows[i][jj] = 0;
@@ -1273,7 +1811,7 @@ vdev_raidz_matrix_invert(raidz_map_t *rm, int n, int nmissing, int *missing,
 }
 
 static void
-vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
+vdev_raidz_matrix_reconstruct(raidz_row_t *rr, int n, int nmissing,
     int *missing, uint8_t **invrows, const uint8_t *used)
 {
        int i, j, x, cc, c;
@@ -1305,22 +1843,24 @@ vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
 
        for (i = 0; i < n; i++) {
                c = used[i];
-               ASSERT3U(c, <, rm->rm_cols);
+               ASSERT3U(c, <, rr->rr_cols);
 
-               src = abd_to_buf(rm->rm_col[c].rc_abd);
-               ccount = rm->rm_col[c].rc_size;
+               ccount = rr->rr_col[c].rc_size;
+               ASSERT(ccount >= rr->rr_col[missing[0]].rc_size || i > 0);
+               if (ccount == 0)
+                       continue;
+               src = abd_to_buf(rr->rr_col[c].rc_abd);
                for (j = 0; j < nmissing; j++) {
-                       cc = missing[j] + rm->rm_firstdatacol;
-                       ASSERT3U(cc, >=, rm->rm_firstdatacol);
-                       ASSERT3U(cc, <, rm->rm_cols);
+                       cc = missing[j] + rr->rr_firstdatacol;
+                       ASSERT3U(cc, >=, rr->rr_firstdatacol);
+                       ASSERT3U(cc, <, rr->rr_cols);
                        ASSERT3U(cc, !=, c);
 
-                       dst[j] = abd_to_buf(rm->rm_col[cc].rc_abd);
-                       dcount[j] = rm->rm_col[cc].rc_size;
+                       dcount[j] = rr->rr_col[cc].rc_size;
+                       if (dcount[j] != 0)
+                               dst[j] = abd_to_buf(rr->rr_col[cc].rc_abd);
                }
 
-               ASSERT(ccount >= rm->rm_col[missing[0]].rc_size || i > 0);
-
                for (x = 0; x < ccount; x++, src++) {
                        if (*src != 0)
                                log = vdev_raidz_log2[*src];
@@ -1348,51 +1888,59 @@ vdev_raidz_matrix_reconstruct(raidz_map_t *rm, int n, int nmissing,
        kmem_free(p, psize);
 }
 
-static int
-vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
+static void
+vdev_raidz_reconstruct_general(raidz_row_t *rr, int *tgts, int ntgts)
 {
        int n, i, c, t, tt;
        int nmissing_rows;
        int missing_rows[VDEV_RAIDZ_MAXPARITY];
        int parity_map[VDEV_RAIDZ_MAXPARITY];
-
        uint8_t *p, *pp;
        size_t psize;
-
        uint8_t *rows[VDEV_RAIDZ_MAXPARITY];
        uint8_t *invrows[VDEV_RAIDZ_MAXPARITY];
        uint8_t *used;
 
        abd_t **bufs = NULL;
 
-       int code = 0;
-
+       if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
+               zfs_dbgmsg("reconstruct_general(rm=%px ntgts=%u)", rr, ntgts);
        /*
         * Matrix reconstruction can't use scatter ABDs yet, so we allocate
-        * temporary linear ABDs.
+        * temporary linear ABDs if any non-linear ABDs are found.
         */
-       if (!abd_is_linear(rm->rm_col[rm->rm_firstdatacol].rc_abd)) {
-               bufs = kmem_alloc(rm->rm_cols * sizeof (abd_t *), KM_PUSHPAGE);
-
-               for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-                       raidz_col_t *col = &rm->rm_col[c];
+       for (i = rr->rr_firstdatacol; i < rr->rr_cols; i++) {
+               ASSERT(rr->rr_col[i].rc_abd != NULL);
+               if (!abd_is_linear(rr->rr_col[i].rc_abd)) {
+                       bufs = kmem_alloc(rr->rr_cols * sizeof (abd_t *),
+                           KM_PUSHPAGE);
+
+                       for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+                               raidz_col_t *col = &rr->rr_col[c];
+
+                               bufs[c] = col->rc_abd;
+                               if (bufs[c] != NULL) {
+                                       col->rc_abd = abd_alloc_linear(
+                                           col->rc_size, B_TRUE);
+                                       abd_copy(col->rc_abd, bufs[c],
+                                           col->rc_size);
+                               }
+                       }
 
-                       bufs[c] = col->rc_abd;
-                       col->rc_abd = abd_alloc_linear(col->rc_size, B_TRUE);
-                       abd_copy(col->rc_abd, bufs[c], col->rc_size);
+                       break;
                }
        }
 
-       n = rm->rm_cols - rm->rm_firstdatacol;
+       n = rr->rr_cols - rr->rr_firstdatacol;
 
        /*
         * Figure out which data columns are missing.
         */
        nmissing_rows = 0;
        for (t = 0; t < ntgts; t++) {
-               if (tgts[t] >= rm->rm_firstdatacol) {
+               if (tgts[t] >= rr->rr_firstdatacol) {
                        missing_rows[nmissing_rows++] =
-                           tgts[t] - rm->rm_firstdatacol;
+                           tgts[t] - rr->rr_firstdatacol;
                }
        }
 
@@ -1402,7 +1950,7 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
         */
        for (tt = 0, c = 0, i = 0; i < nmissing_rows; c++) {
                ASSERT(tt < ntgts);
-               ASSERT(c < rm->rm_firstdatacol);
+               ASSERT(c < rr->rr_firstdatacol);
 
                /*
                 * Skip any targeted parity columns.
@@ -1412,15 +1960,10 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
                        continue;
                }
 
-               code |= 1 << c;
-
                parity_map[i] = c;
                i++;
        }
 
-       ASSERT(code != 0);
-       ASSERT3U(code, <, 1 << VDEV_RAIDZ_MAXPARITY);
-
        psize = (sizeof (rows[0][0]) + sizeof (invrows[0][0])) *
            nmissing_rows * n + sizeof (used[0]) * n;
        p = kmem_alloc(psize, KM_SLEEP);
@@ -1437,9 +1980,9 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
                used[i] = parity_map[i];
        }
 
-       for (tt = 0, c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
+       for (tt = 0, c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
                if (tt < nmissing_rows &&
-                   c == missing_rows[tt] + rm->rm_firstdatacol) {
+                   c == missing_rows[tt] + rr->rr_firstdatacol) {
                        tt++;
                        continue;
                }
@@ -1452,18 +1995,18 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
        /*
         * Initialize the interesting rows of the matrix.
         */
-       vdev_raidz_matrix_init(rm, n, nmissing_rows, parity_map, rows);
+       vdev_raidz_matrix_init(rr, n, nmissing_rows, parity_map, rows);
 
        /*
         * Invert the matrix.
         */
-       vdev_raidz_matrix_invert(rm, n, nmissing_rows, missing_rows, rows,
+       vdev_raidz_matrix_invert(rr, n, nmissing_rows, missing_rows, rows,
            invrows, used);
 
        /*
         * Reconstruct the missing data using the generated matrix.
         */
-       vdev_raidz_matrix_reconstruct(rm, n, nmissing_rows, missing_rows,
+       vdev_raidz_matrix_reconstruct(rr, n, nmissing_rows, missing_rows,
            invrows, used);
 
        kmem_free(p, psize);
@@ -1472,49 +2015,55 @@ vdev_raidz_reconstruct_general(raidz_map_t *rm, int *tgts, int ntgts)
         * copy back from temporary linear abds and free them
         */
        if (bufs) {
-               for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-                       raidz_col_t *col = &rm->rm_col[c];
+               for (c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+                       raidz_col_t *col = &rr->rr_col[c];
 
-                       abd_copy(bufs[c], col->rc_abd, col->rc_size);
-                       abd_free(col->rc_abd);
+                       if (bufs[c] != NULL) {
+                               abd_copy(bufs[c], col->rc_abd, col->rc_size);
+                               abd_free(col->rc_abd);
+                       }
                        col->rc_abd = bufs[c];
                }
-               kmem_free(bufs, rm->rm_cols * sizeof (abd_t *));
+               kmem_free(bufs, rr->rr_cols * sizeof (abd_t *));
        }
-
-       return (code);
 }
 
-int
-vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
+static void
+vdev_raidz_reconstruct_row(raidz_map_t *rm, raidz_row_t *rr,
+    const int *t, int nt)
 {
        int tgts[VDEV_RAIDZ_MAXPARITY], *dt;
        int ntgts;
        int i, c, ret;
-       int code;
        int nbadparity, nbaddata;
        int parity_valid[VDEV_RAIDZ_MAXPARITY];
 
-       /*
-        * The tgts list must already be sorted.
-        */
-       for (i = 1; i < nt; i++) {
-               ASSERT(t[i] > t[i - 1]);
+       if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
+               zfs_dbgmsg("reconstruct(rm=%px nt=%u cols=%u md=%u mp=%u)",
+                   rr, nt, (int)rr->rr_cols, (int)rr->rr_missingdata,
+                   (int)rr->rr_missingparity);
        }
 
-       nbadparity = rm->rm_firstdatacol;
-       nbaddata = rm->rm_cols - nbadparity;
+       nbadparity = rr->rr_firstdatacol;
+       nbaddata = rr->rr_cols - nbadparity;
        ntgts = 0;
-       for (i = 0, c = 0; c < rm->rm_cols; c++) {
-               if (c < rm->rm_firstdatacol)
+       for (i = 0, c = 0; c < rr->rr_cols; c++) {
+               if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
+                       zfs_dbgmsg("reconstruct(rm=%px col=%u devid=%u "
+                           "offset=%llx error=%u)",
+                           rr, c, (int)rr->rr_col[c].rc_devidx,
+                           (long long)rr->rr_col[c].rc_offset,
+                           (int)rr->rr_col[c].rc_error);
+               }
+               if (c < rr->rr_firstdatacol)
                        parity_valid[c] = B_FALSE;
 
                if (i < nt && c == t[i]) {
                        tgts[ntgts++] = c;
                        i++;
-               } else if (rm->rm_col[c].rc_error != 0) {
+               } else if (rr->rr_col[c].rc_error != 0) {
                        tgts[ntgts++] = c;
-               } else if (c >= rm->rm_firstdatacol) {
+               } else if (c >= rr->rr_firstdatacol) {
                        nbaddata--;
                } else {
                        parity_valid[c] = B_TRUE;
@@ -1529,50 +2078,53 @@ vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
        dt = &tgts[nbadparity];
 
        /* Reconstruct using the new math implementation */
-       ret = vdev_raidz_math_reconstruct(rm, parity_valid, dt, nbaddata);
+       ret = vdev_raidz_math_reconstruct(rm, rr, parity_valid, dt, nbaddata);
        if (ret != RAIDZ_ORIGINAL_IMPL)
-               return (ret);
+               return;
 
        /*
         * See if we can use any of our optimized reconstruction routines.
         */
        switch (nbaddata) {
        case 1:
-               if (parity_valid[VDEV_RAIDZ_P])
-                       return (vdev_raidz_reconstruct_p(rm, dt, 1));
+               if (parity_valid[VDEV_RAIDZ_P]) {
+                       vdev_raidz_reconstruct_p(rr, dt, 1);
+                       return;
+               }
 
-               ASSERT(rm->rm_firstdatacol > 1);
+               ASSERT(rr->rr_firstdatacol > 1);
 
-               if (parity_valid[VDEV_RAIDZ_Q])
-                       return (vdev_raidz_reconstruct_q(rm, dt, 1));
+               if (parity_valid[VDEV_RAIDZ_Q]) {
+                       vdev_raidz_reconstruct_q(rr, dt, 1);
+                       return;
+               }
 
-               ASSERT(rm->rm_firstdatacol > 2);
+               ASSERT(rr->rr_firstdatacol > 2);
                break;
 
        case 2:
-               ASSERT(rm->rm_firstdatacol > 1);
+               ASSERT(rr->rr_firstdatacol > 1);
 
                if (parity_valid[VDEV_RAIDZ_P] &&
-                   parity_valid[VDEV_RAIDZ_Q])
-                       return (vdev_raidz_reconstruct_pq(rm, dt, 2));
+                   parity_valid[VDEV_RAIDZ_Q]) {
+                       vdev_raidz_reconstruct_pq(rr, dt, 2);
+                       return;
+               }
 
-               ASSERT(rm->rm_firstdatacol > 2);
+               ASSERT(rr->rr_firstdatacol > 2);
 
                break;
        }
 
-       code = vdev_raidz_reconstruct_general(rm, tgts, ntgts);
-       ASSERT(code < (1 << VDEV_RAIDZ_MAXPARITY));
-       ASSERT(code > 0);
-       return (code);
+       vdev_raidz_reconstruct_general(rr, tgts, ntgts);
 }
 
 static int
 vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
-    uint64_t *ashift)
+    uint64_t *logical_ashift, uint64_t *physical_ashift)
 {
-       vdev_t *cvd;
-       uint64_t nparity = vd->vdev_nparity;
+       vdev_raidz_t *vdrz = vd->vdev_tsd;
+       uint64_t nparity = vdrz->vd_nparity;
        int c;
        int lasterror = 0;
        int numerrors = 0;
@@ -1588,7 +2140,7 @@ vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
        vdev_open_children(vd);
 
        for (c = 0; c < vd->vdev_children; c++) {
-               cvd = vd->vdev_child[c];
+               vdev_t *cvd = vd->vdev_child[c];
 
                if (cvd->vdev_open_error != 0) {
                        lasterror = cvd->vdev_open_error;
@@ -1598,11 +2150,26 @@ vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
 
                *asize = MIN(*asize - 1, cvd->vdev_asize - 1) + 1;
                *max_asize = MIN(*max_asize - 1, cvd->vdev_max_asize - 1) + 1;
-               *ashift = MAX(*ashift, cvd->vdev_ashift);
+               *logical_ashift = MAX(*logical_ashift, cvd->vdev_ashift);
+       }
+       for (c = 0; c < vd->vdev_children; c++) {
+               vdev_t *cvd = vd->vdev_child[c];
+
+               if (cvd->vdev_open_error != 0)
+                       continue;
+               *physical_ashift = vdev_best_ashift(*logical_ashift,
+                   *physical_ashift, cvd->vdev_physical_ashift);
        }
 
-       *asize *= vd->vdev_children;
-       *max_asize *= vd->vdev_children;
+       if (vd->vdev_rz_expanding) {
+               *asize *= vd->vdev_children - 1;
+               *max_asize *= vd->vdev_children - 1;
+
+               vd->vdev_min_asize = *asize;
+       } else {
+               *asize *= vd->vdev_children;
+               *max_asize *= vd->vdev_children;
+       }
 
        if (numerrors > nparity) {
                vd->vdev_stat.vs_aux = VDEV_AUX_NO_REPLICAS;
@@ -1615,131 +2182,256 @@ vdev_raidz_open(vdev_t *vd, uint64_t *asize, uint64_t *max_asize,
 static void
 vdev_raidz_close(vdev_t *vd)
 {
-       int c;
+       for (int c = 0; c < vd->vdev_children; c++) {
+               if (vd->vdev_child[c] != NULL)
+                       vdev_close(vd->vdev_child[c]);
+       }
+}
 
-       for (c = 0; c < vd->vdev_children; c++)
-               vdev_close(vd->vdev_child[c]);
+/*
+ * Return the logical width to use, given the txg in which the allocation
+ * happened.  Note that BP_GET_BIRTH() is usually the txg in which the
+ * BP was allocated.  Remapped BP's (that were relocated due to device
+ * removal, see remap_blkptr_cb()), will have a more recent physical birth
+ * which reflects when the BP was relocated, but we can ignore these because
+ * they can't be on RAIDZ (device removal doesn't support RAIDZ).
+ */
+static uint64_t
+vdev_raidz_get_logical_width(vdev_raidz_t *vdrz, uint64_t txg)
+{
+       reflow_node_t lookup = {
+               .re_txg = txg,
+       };
+       avl_index_t where;
+
+       uint64_t width;
+       mutex_enter(&vdrz->vd_expand_lock);
+       reflow_node_t *re = avl_find(&vdrz->vd_expand_txgs, &lookup, &where);
+       if (re != NULL) {
+               width = re->re_logical_width;
+       } else {
+               re = avl_nearest(&vdrz->vd_expand_txgs, where, AVL_BEFORE);
+               if (re != NULL)
+                       width = re->re_logical_width;
+               else
+                       width = vdrz->vd_original_width;
+       }
+       mutex_exit(&vdrz->vd_expand_lock);
+       return (width);
 }
 
+/*
+ * Note: If the RAIDZ vdev has been expanded, older BP's may have allocated
+ * more space due to the lower data-to-parity ratio.  In this case it's
+ * important to pass in the correct txg.  Note that vdev_gang_header_asize()
+ * relies on a constant asize for psize=SPA_GANGBLOCKSIZE=SPA_MINBLOCKSIZE,
+ * regardless of txg.  This is assured because for a single data sector, we
+ * allocate P+1 sectors regardless of width ("cols", which is at least P+1).
+ */
 static uint64_t
-vdev_raidz_asize(vdev_t *vd, uint64_t psize)
+vdev_raidz_asize(vdev_t *vd, uint64_t psize, uint64_t txg)
 {
+       vdev_raidz_t *vdrz = vd->vdev_tsd;
        uint64_t asize;
        uint64_t ashift = vd->vdev_top->vdev_ashift;
-       uint64_t cols = vd->vdev_children;
-       uint64_t nparity = vd->vdev_nparity;
+       uint64_t cols = vdrz->vd_original_width;
+       uint64_t nparity = vdrz->vd_nparity;
+
+       cols = vdev_raidz_get_logical_width(vdrz, txg);
 
        asize = ((psize - 1) >> ashift) + 1;
        asize += nparity * ((asize + cols - nparity - 1) / (cols - nparity));
        asize = roundup(asize, nparity + 1) << ashift;
 
+#ifdef ZFS_DEBUG
+       uint64_t asize_new = ((psize - 1) >> ashift) + 1;
+       uint64_t ncols_new = vdrz->vd_physical_width;
+       asize_new += nparity * ((asize_new + ncols_new - nparity - 1) /
+           (ncols_new - nparity));
+       asize_new = roundup(asize_new, nparity + 1) << ashift;
+       VERIFY3U(asize_new, <=, asize);
+#endif
+
        return (asize);
 }
 
-static void
+/*
+ * The allocatable space for a raidz vdev is N * sizeof(smallest child)
+ * so each child must provide at least 1/Nth of its asize.
+ */
+static uint64_t
+vdev_raidz_min_asize(vdev_t *vd)
+{
+       return ((vd->vdev_min_asize + vd->vdev_children - 1) /
+           vd->vdev_children);
+}
+
+void
 vdev_raidz_child_done(zio_t *zio)
 {
        raidz_col_t *rc = zio->io_private;
 
+       ASSERT3P(rc->rc_abd, !=, NULL);
        rc->rc_error = zio->io_error;
        rc->rc_tried = 1;
        rc->rc_skipped = 0;
 }
 
-/*
- * Start an IO operation on a RAIDZ VDev
- *
- * Outline:
- * - For write operations:
- *   1. Generate the parity data
- *   2. Create child zio write operations to each column's vdev, for both
- *      data and parity.
- *   3. If the column skips any sectors for padding, create optional dummy
- *      write zio children for those areas to improve aggregation continuity.
- * - For read operations:
- *   1. Create child zio read operations to each data column's vdev to read
- *      the range of data required for zio.
- *   2. If this is a scrub or resilver operation, or if any of the data
- *      vdevs have had errors, then create zio read operations to the parity
- *      columns' VDevs as well.
- */
 static void
-vdev_raidz_io_start(zio_t *zio)
+vdev_raidz_shadow_child_done(zio_t *zio)
+{
+       raidz_col_t *rc = zio->io_private;
+
+       rc->rc_shadow_error = zio->io_error;
+}
+
+static void
+vdev_raidz_io_verify(zio_t *zio, raidz_map_t *rm, raidz_row_t *rr, int col)
+{
+       (void) rm;
+#ifdef ZFS_DEBUG
+       range_seg64_t logical_rs, physical_rs, remain_rs;
+       logical_rs.rs_start = rr->rr_offset;
+       logical_rs.rs_end = logical_rs.rs_start +
+           vdev_raidz_asize(zio->io_vd, rr->rr_size,
+           BP_GET_BIRTH(zio->io_bp));
+
+       raidz_col_t *rc = &rr->rr_col[col];
+       vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
+
+       vdev_xlate(cvd, &logical_rs, &physical_rs, &remain_rs);
+       ASSERT(vdev_xlate_is_empty(&remain_rs));
+       if (vdev_xlate_is_empty(&physical_rs)) {
+               /*
+                * If we are in the middle of expansion, the
+                * physical->logical mapping is changing so vdev_xlate()
+                * can't give us a reliable answer.
+                */
+               return;
+       }
+       ASSERT3U(rc->rc_offset, ==, physical_rs.rs_start);
+       ASSERT3U(rc->rc_offset, <, physical_rs.rs_end);
+       /*
+        * It would be nice to assert that rs_end is equal
+        * to rc_offset + rc_size but there might be an
+        * optional I/O at the end that is not accounted in
+        * rc_size.
+        */
+       if (physical_rs.rs_end > rc->rc_offset + rc->rc_size) {
+               ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset +
+                   rc->rc_size + (1 << zio->io_vd->vdev_top->vdev_ashift));
+       } else {
+               ASSERT3U(physical_rs.rs_end, ==, rc->rc_offset + rc->rc_size);
+       }
+#endif
+}
+
+static void
+vdev_raidz_io_start_write(zio_t *zio, raidz_row_t *rr)
 {
        vdev_t *vd = zio->io_vd;
-       vdev_t *tvd = vd->vdev_top;
-       vdev_t *cvd;
-       raidz_map_t *rm;
-       raidz_col_t *rc;
-       int c, i;
+       raidz_map_t *rm = zio->io_vsd;
 
-       rm = vdev_raidz_map_alloc(zio, tvd->vdev_ashift, vd->vdev_children,
-           vd->vdev_nparity);
+       vdev_raidz_generate_parity_row(rm, rr);
 
-       ASSERT3U(rm->rm_asize, ==, vdev_psize_to_asize(vd, zio->io_size));
+       for (int c = 0; c < rr->rr_scols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
+               vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
 
-       if (zio->io_type == ZIO_TYPE_WRITE) {
-               vdev_raidz_generate_parity(rm);
+               /* Verify physical to logical translation */
+               vdev_raidz_io_verify(zio, rm, rr, c);
 
-               for (c = 0; c < rm->rm_cols; c++) {
-                       rc = &rm->rm_col[c];
-                       cvd = vd->vdev_child[rc->rc_devidx];
-                       zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
-                           rc->rc_offset, rc->rc_abd, rc->rc_size,
+               if (rc->rc_size == 0)
+                       continue;
+
+               ASSERT3U(rc->rc_offset + rc->rc_size, <,
+                   cvd->vdev_psize - VDEV_LABEL_END_SIZE);
+
+               ASSERT3P(rc->rc_abd, !=, NULL);
+               zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
+                   rc->rc_offset, rc->rc_abd,
+                   abd_get_size(rc->rc_abd), zio->io_type,
+                   zio->io_priority, 0, vdev_raidz_child_done, rc));
+
+               if (rc->rc_shadow_devidx != INT_MAX) {
+                       vdev_t *cvd2 = vd->vdev_child[rc->rc_shadow_devidx];
+
+                       ASSERT3U(
+                           rc->rc_shadow_offset + abd_get_size(rc->rc_abd), <,
+                           cvd2->vdev_psize - VDEV_LABEL_END_SIZE);
+
+                       zio_nowait(zio_vdev_child_io(zio, NULL, cvd2,
+                           rc->rc_shadow_offset, rc->rc_abd,
+                           abd_get_size(rc->rc_abd),
                            zio->io_type, zio->io_priority, 0,
-                           vdev_raidz_child_done, rc));
+                           vdev_raidz_shadow_child_done, rc));
                }
+       }
+}
 
-               /*
-                * Generate optional I/Os for any skipped sectors to improve
-                * aggregation contiguity.
-                */
-               for (c = rm->rm_skipstart, i = 0; i < rm->rm_nskip; c++, i++) {
-                       ASSERT(c <= rm->rm_scols);
-                       if (c == rm->rm_scols)
-                               c = 0;
-                       rc = &rm->rm_col[c];
-                       cvd = vd->vdev_child[rc->rc_devidx];
-                       zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
-                           rc->rc_offset + rc->rc_size, NULL,
-                           1 << tvd->vdev_ashift,
-                           zio->io_type, zio->io_priority,
-                           ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
-               }
+/*
+ * Generate optional I/Os for skip sectors to improve aggregation contiguity.
+ * This only works for vdev_raidz_map_alloc() (not _expanded()).
+ */
+static void
+raidz_start_skip_writes(zio_t *zio)
+{
+       vdev_t *vd = zio->io_vd;
+       uint64_t ashift = vd->vdev_top->vdev_ashift;
+       raidz_map_t *rm = zio->io_vsd;
+       ASSERT3U(rm->rm_nrows, ==, 1);
+       raidz_row_t *rr = rm->rm_row[0];
+       for (int c = 0; c < rr->rr_scols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
+               vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
+               if (rc->rc_size != 0)
+                       continue;
+               ASSERT3P(rc->rc_abd, ==, NULL);
 
-               zio_execute(zio);
-               return;
+               ASSERT3U(rc->rc_offset, <,
+                   cvd->vdev_psize - VDEV_LABEL_END_SIZE);
+
+               zio_nowait(zio_vdev_child_io(zio, NULL, cvd, rc->rc_offset,
+                   NULL, 1ULL << ashift, zio->io_type, zio->io_priority,
+                   ZIO_FLAG_NODATA | ZIO_FLAG_OPTIONAL, NULL, NULL));
        }
+}
 
-       ASSERT(zio->io_type == ZIO_TYPE_READ);
+static void
+vdev_raidz_io_start_read_row(zio_t *zio, raidz_row_t *rr, boolean_t forceparity)
+{
+       vdev_t *vd = zio->io_vd;
 
        /*
         * Iterate over the columns in reverse order so that we hit the parity
         * last -- any errors along the way will force us to read the parity.
         */
-       for (c = rm->rm_cols - 1; c >= 0; c--) {
-               rc = &rm->rm_col[c];
-               cvd = vd->vdev_child[rc->rc_devidx];
+       for (int c = rr->rr_cols - 1; c >= 0; c--) {
+               raidz_col_t *rc = &rr->rr_col[c];
+               if (rc->rc_size == 0)
+                       continue;
+               vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
                if (!vdev_readable(cvd)) {
-                       if (c >= rm->rm_firstdatacol)
-                               rm->rm_missingdata++;
+                       if (c >= rr->rr_firstdatacol)
+                               rr->rr_missingdata++;
                        else
-                               rm->rm_missingparity++;
+                               rr->rr_missingparity++;
                        rc->rc_error = SET_ERROR(ENXIO);
                        rc->rc_tried = 1;       /* don't even try */
                        rc->rc_skipped = 1;
                        continue;
                }
                if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
-                       if (c >= rm->rm_firstdatacol)
-                               rm->rm_missingdata++;
+                       if (c >= rr->rr_firstdatacol)
+                               rr->rr_missingdata++;
                        else
-                               rm->rm_missingparity++;
+                               rr->rr_missingparity++;
                        rc->rc_error = SET_ERROR(ESTALE);
                        rc->rc_skipped = 1;
                        continue;
                }
-               if (c >= rm->rm_firstdatacol || rm->rm_missingdata > 0 ||
+               if (forceparity ||
+                   c >= rr->rr_firstdatacol || rr->rr_missingdata > 0 ||
                    (zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))) {
                        zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
                            rc->rc_offset, rc->rc_abd, rc->rc_size,
@@ -1747,36 +2439,185 @@ vdev_raidz_io_start(zio_t *zio)
                            vdev_raidz_child_done, rc));
                }
        }
+}
 
-       zio_execute(zio);
+static void
+vdev_raidz_io_start_read_phys_cols(zio_t *zio, raidz_map_t *rm)
+{
+       vdev_t *vd = zio->io_vd;
+
+       for (int i = 0; i < rm->rm_nphys_cols; i++) {
+               raidz_col_t *prc = &rm->rm_phys_col[i];
+               if (prc->rc_size == 0)
+                       continue;
+
+               ASSERT3U(prc->rc_devidx, ==, i);
+               vdev_t *cvd = vd->vdev_child[i];
+               if (!vdev_readable(cvd)) {
+                       prc->rc_error = SET_ERROR(ENXIO);
+                       prc->rc_tried = 1;      /* don't even try */
+                       prc->rc_skipped = 1;
+                       continue;
+               }
+               if (vdev_dtl_contains(cvd, DTL_MISSING, zio->io_txg, 1)) {
+                       prc->rc_error = SET_ERROR(ESTALE);
+                       prc->rc_skipped = 1;
+                       continue;
+               }
+               zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
+                   prc->rc_offset, prc->rc_abd, prc->rc_size,
+                   zio->io_type, zio->io_priority, 0,
+                   vdev_raidz_child_done, prc));
+       }
+}
+
+static void
+vdev_raidz_io_start_read(zio_t *zio, raidz_map_t *rm)
+{
+       /*
+        * If there are multiple rows, we will be hitting
+        * all disks, so go ahead and read the parity so
+        * that we are reading in decent size chunks.
+        */
+       boolean_t forceparity = rm->rm_nrows > 1;
+
+       if (rm->rm_phys_col) {
+               vdev_raidz_io_start_read_phys_cols(zio, rm);
+       } else {
+               for (int i = 0; i < rm->rm_nrows; i++) {
+                       raidz_row_t *rr = rm->rm_row[i];
+                       vdev_raidz_io_start_read_row(zio, rr, forceparity);
+               }
+       }
 }
 
+/*
+ * Start an IO operation on a RAIDZ VDev
+ *
+ * Outline:
+ * - For write operations:
+ *   1. Generate the parity data
+ *   2. Create child zio write operations to each column's vdev, for both
+ *      data and parity.
+ *   3. If the column skips any sectors for padding, create optional dummy
+ *      write zio children for those areas to improve aggregation continuity.
+ * - For read operations:
+ *   1. Create child zio read operations to each data column's vdev to read
+ *      the range of data required for zio.
+ *   2. If this is a scrub or resilver operation, or if any of the data
+ *      vdevs have had errors, then create zio read operations to the parity
+ *      columns' VDevs as well.
+ */
+static void
+vdev_raidz_io_start(zio_t *zio)
+{
+       vdev_t *vd = zio->io_vd;
+       vdev_t *tvd = vd->vdev_top;
+       vdev_raidz_t *vdrz = vd->vdev_tsd;
+       raidz_map_t *rm;
+
+       uint64_t logical_width = vdev_raidz_get_logical_width(vdrz,
+           BP_GET_BIRTH(zio->io_bp));
+       if (logical_width != vdrz->vd_physical_width) {
+               zfs_locked_range_t *lr = NULL;
+               uint64_t synced_offset = UINT64_MAX;
+               uint64_t next_offset = UINT64_MAX;
+               boolean_t use_scratch = B_FALSE;
+               /*
+                * Note: when the expansion is completing, we set
+                * vre_state=DSS_FINISHED (in raidz_reflow_complete_sync())
+                * in a later txg than when we last update spa_ubsync's state
+                * (see the end of spa_raidz_expand_thread()).  Therefore we
+                * may see vre_state!=SCANNING before
+                * VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE=DSS_FINISHED is reflected
+                * on disk, but the copying progress has been synced to disk
+                * (and reflected in spa_ubsync).  In this case it's fine to
+                * treat the expansion as completed, since if we crash there's
+                * no additional copying to do.
+                */
+               if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
+                       ASSERT3P(vd->vdev_spa->spa_raidz_expand, ==,
+                           &vdrz->vn_vre);
+                       lr = zfs_rangelock_enter(&vdrz->vn_vre.vre_rangelock,
+                           zio->io_offset, zio->io_size, RL_READER);
+                       use_scratch =
+                           (RRSS_GET_STATE(&vd->vdev_spa->spa_ubsync) ==
+                           RRSS_SCRATCH_VALID);
+                       synced_offset =
+                           RRSS_GET_OFFSET(&vd->vdev_spa->spa_ubsync);
+                       next_offset = vdrz->vn_vre.vre_offset;
+                       /*
+                        * If we haven't resumed expanding since importing the
+                        * pool, vre_offset won't have been set yet.  In
+                        * this case the next offset to be copied is the same
+                        * as what was synced.
+                        */
+                       if (next_offset == UINT64_MAX) {
+                               next_offset = synced_offset;
+                       }
+               }
+               if (use_scratch) {
+                       zfs_dbgmsg("zio=%px %s io_offset=%llu offset_synced="
+                           "%lld next_offset=%lld use_scratch=%u",
+                           zio,
+                           zio->io_type == ZIO_TYPE_WRITE ? "WRITE" : "READ",
+                           (long long)zio->io_offset,
+                           (long long)synced_offset,
+                           (long long)next_offset,
+                           use_scratch);
+               }
+
+               rm = vdev_raidz_map_alloc_expanded(zio,
+                   tvd->vdev_ashift, vdrz->vd_physical_width,
+                   logical_width, vdrz->vd_nparity,
+                   synced_offset, next_offset, use_scratch);
+               rm->rm_lr = lr;
+       } else {
+               rm = vdev_raidz_map_alloc(zio,
+                   tvd->vdev_ashift, logical_width, vdrz->vd_nparity);
+       }
+       rm->rm_original_width = vdrz->vd_original_width;
+
+       zio->io_vsd = rm;
+       zio->io_vsd_ops = &vdev_raidz_vsd_ops;
+       if (zio->io_type == ZIO_TYPE_WRITE) {
+               for (int i = 0; i < rm->rm_nrows; i++) {
+                       vdev_raidz_io_start_write(zio, rm->rm_row[i]);
+               }
+
+               if (logical_width == vdrz->vd_physical_width) {
+                       raidz_start_skip_writes(zio);
+               }
+       } else {
+               ASSERT(zio->io_type == ZIO_TYPE_READ);
+               vdev_raidz_io_start_read(zio, rm);
+       }
+
+       zio_execute(zio);
+}
 
 /*
  * Report a checksum error for a child of a RAID-Z device.
  */
-static void
-raidz_checksum_error(zio_t *zio, raidz_col_t *rc, void *bad_data)
+void
+vdev_raidz_checksum_error(zio_t *zio, raidz_col_t *rc, abd_t *bad_data)
 {
-       void *buf;
        vdev_t *vd = zio->io_vd->vdev_child[rc->rc_devidx];
 
-       if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
+       if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE) &&
+           zio->io_priority != ZIO_PRIORITY_REBUILD) {
                zio_bad_cksum_t zbc;
                raidz_map_t *rm = zio->io_vsd;
 
-               mutex_enter(&vd->vdev_stat_lock);
-               vd->vdev_stat.vs_checksum_errors++;
-               mutex_exit(&vd->vdev_stat_lock);
-
                zbc.zbc_has_cksum = 0;
                zbc.zbc_injected = rm->rm_ecksuminjected;
 
-               buf = abd_borrow_buf_copy(rc->rc_abd, rc->rc_size);
-               zfs_ereport_post_checksum(zio->io_spa, vd, zio,
-                   rc->rc_offset, rc->rc_size, buf, bad_data,
-                   &zbc);
-               abd_return_buf(rc->rc_abd, buf, rc->rc_size);
+               mutex_enter(&vd->vdev_stat_lock);
+               vd->vdev_stat.vs_checksum_errors++;
+               mutex_exit(&vd->vdev_stat_lock);
+               (void) zfs_ereport_post_checksum(zio->io_spa, vd,
+                   &zio->io_bookmark, zio, rc->rc_offset, rc->rc_size,
+                   rc->rc_abd, bad_data, &zbc);
        }
 }
 
@@ -1787,13 +2628,10 @@ raidz_checksum_error(zio_t *zio, raidz_col_t *rc, void *bad_data)
 static int
 raidz_checksum_verify(zio_t *zio)
 {
-       zio_bad_cksum_t zbc;
+       zio_bad_cksum_t zbc = {0};
        raidz_map_t *rm = zio->io_vsd;
-       int ret;
 
-       bzero(&zbc, sizeof (zio_bad_cksum_t));
-
-       ret = zio_checksum_error(zio, &zbc);
+       int ret = zio_checksum_error(zio, &zbc);
        if (ret != 0 && zbc.zbc_injected != 0)
                rm->rm_ecksuminjected = 1;
 
@@ -1804,13 +2642,14 @@ raidz_checksum_verify(zio_t *zio)
  * Generate the parity from the data columns. If we tried and were able to
  * read the parity without error, verify that the generated parity matches the
  * data we read. If it doesn't, we fire off a checksum error. Return the
- * number such failures.
+ * number of such failures.
  */
 static int
-raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
+raidz_parity_verify(zio_t *zio, raidz_row_t *rr)
 {
-       void *orig[VDEV_RAIDZ_MAXPARITY];
+       abd_t *orig[VDEV_RAIDZ_MAXPARITY];
        int c, ret = 0;
+       raidz_map_t *rm = zio->io_vsd;
        raidz_col_t *rc;
 
        blkptr_t *bp = zio->io_bp;
@@ -1820,503 +2659,2362 @@ raidz_parity_verify(zio_t *zio, raidz_map_t *rm)
        if (checksum == ZIO_CHECKSUM_NOPARITY)
                return (ret);
 
-       for (c = 0; c < rm->rm_firstdatacol; c++) {
-               rc = &rm->rm_col[c];
+       for (c = 0; c < rr->rr_firstdatacol; c++) {
+               rc = &rr->rr_col[c];
                if (!rc->rc_tried || rc->rc_error != 0)
                        continue;
-               orig[c] = zio_buf_alloc(rc->rc_size);
-               abd_copy_to_buf(orig[c], rc->rc_abd, rc->rc_size);
+
+               orig[c] = rc->rc_abd;
+               ASSERT3U(abd_get_size(rc->rc_abd), ==, rc->rc_size);
+               rc->rc_abd = abd_alloc_linear(rc->rc_size, B_FALSE);
        }
 
-       vdev_raidz_generate_parity(rm);
+       /*
+        * Verify any empty sectors are zero filled to ensure the parity
+        * is calculated correctly even if these non-data sectors are damaged.
+        */
+       if (rr->rr_nempty && rr->rr_abd_empty != NULL)
+               ret += vdev_draid_map_verify_empty(zio, rr);
 
-       for (c = 0; c < rm->rm_firstdatacol; c++) {
-               rc = &rm->rm_col[c];
-               if (!rc->rc_tried || rc->rc_error != 0)
-                       continue;
-               if (bcmp(orig[c], abd_to_buf(rc->rc_abd), rc->rc_size) != 0) {
-                       raidz_checksum_error(zio, rc, orig[c]);
-                       rc->rc_error = SET_ERROR(ECKSUM);
+       /*
+        * Regenerates parity even for !tried||rc_error!=0 columns.  This
+        * isn't harmful but it does have the side effect of fixing stuff
+        * we didn't realize was necessary (i.e. even if we return 0).
+        */
+       vdev_raidz_generate_parity_row(rm, rr);
+
+       for (c = 0; c < rr->rr_firstdatacol; c++) {
+               rc = &rr->rr_col[c];
+
+               if (!rc->rc_tried || rc->rc_error != 0)
+                       continue;
+
+               if (abd_cmp(orig[c], rc->rc_abd) != 0) {
+                       zfs_dbgmsg("found error on col=%u devidx=%u off %llx",
+                           c, (int)rc->rc_devidx, (u_longlong_t)rc->rc_offset);
+                       vdev_raidz_checksum_error(zio, rc, orig[c]);
+                       rc->rc_error = SET_ERROR(ECKSUM);
                        ret++;
                }
-               zio_buf_free(orig[c], rc->rc_size);
+               abd_free(orig[c]);
        }
 
        return (ret);
 }
 
 static int
-vdev_raidz_worst_error(raidz_map_t *rm)
+vdev_raidz_worst_error(raidz_row_t *rr)
 {
-       int c, error = 0;
+       int error = 0;
 
-       for (c = 0; c < rm->rm_cols; c++)
-               error = zio_worst_error(error, rm->rm_col[c].rc_error);
+       for (int c = 0; c < rr->rr_cols; c++) {
+               error = zio_worst_error(error, rr->rr_col[c].rc_error);
+               error = zio_worst_error(error, rr->rr_col[c].rc_shadow_error);
+       }
 
        return (error);
 }
 
-/*
- * Iterate over all combinations of bad data and attempt a reconstruction.
- * Note that the algorithm below is non-optimal because it doesn't take into
- * account how reconstruction is actually performed. For example, with
- * triple-parity RAID-Z the reconstruction procedure is the same if column 4
- * is targeted as invalid as if columns 1 and 4 are targeted since in both
- * cases we'd only use parity information in column 0.
- */
-static int
-vdev_raidz_combrec(zio_t *zio, int total_errors, int data_errors)
+static void
+vdev_raidz_io_done_verified(zio_t *zio, raidz_row_t *rr)
 {
-       raidz_map_t *rm = zio->io_vsd;
-       raidz_col_t *rc;
-       void *orig[VDEV_RAIDZ_MAXPARITY];
-       int tstore[VDEV_RAIDZ_MAXPARITY + 2];
-       int *tgts = &tstore[1];
-       int curr, next, i, c, n;
-       int code, ret = 0;
+       int unexpected_errors = 0;
+       int parity_errors = 0;
+       int parity_untried = 0;
+       int data_errors = 0;
+
+       ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
+
+       for (int c = 0; c < rr->rr_cols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
+
+               if (rc->rc_error) {
+                       if (c < rr->rr_firstdatacol)
+                               parity_errors++;
+                       else
+                               data_errors++;
+
+                       if (!rc->rc_skipped)
+                               unexpected_errors++;
+               } else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
+                       parity_untried++;
+               }
 
-       ASSERT(total_errors < rm->rm_firstdatacol);
+               if (rc->rc_force_repair)
+                       unexpected_errors++;
+       }
 
        /*
-        * This simplifies one edge condition.
+        * If we read more parity disks than were used for
+        * reconstruction, confirm that the other parity disks produced
+        * correct data.
+        *
+        * Note that we also regenerate parity when resilvering so we
+        * can write it out to failed devices later.
         */
-       tgts[-1] = -1;
+       if (parity_errors + parity_untried <
+           rr->rr_firstdatacol - data_errors ||
+           (zio->io_flags & ZIO_FLAG_RESILVER)) {
+               int n = raidz_parity_verify(zio, rr);
+               unexpected_errors += n;
+       }
 
-       for (n = 1; n <= rm->rm_firstdatacol - total_errors; n++) {
+       if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
+           (unexpected_errors > 0 || (zio->io_flags & ZIO_FLAG_RESILVER))) {
                /*
-                * Initialize the targets array by finding the first n columns
-                * that contain no error.
-                *
-                * If there were no data errors, we need to ensure that we're
-                * always explicitly attempting to reconstruct at least one
-                * data column. To do this, we simply push the highest target
-                * up into the data columns.
+                * Use the good data we have in hand to repair damaged children.
                 */
-               for (c = 0, i = 0; i < n; i++) {
-                       if (i == n - 1 && data_errors == 0 &&
-                           c < rm->rm_firstdatacol) {
-                               c = rm->rm_firstdatacol;
-                       }
+               for (int c = 0; c < rr->rr_cols; c++) {
+                       raidz_col_t *rc = &rr->rr_col[c];
+                       vdev_t *vd = zio->io_vd;
+                       vdev_t *cvd = vd->vdev_child[rc->rc_devidx];
 
-                       while (rm->rm_col[c].rc_error != 0) {
-                               c++;
-                               ASSERT3S(c, <, rm->rm_cols);
+                       if (!rc->rc_allow_repair) {
+                               continue;
+                       } else if (!rc->rc_force_repair &&
+                           (rc->rc_error == 0 || rc->rc_size == 0)) {
+                               continue;
                        }
 
-                       tgts[i] = c++;
-               }
-
-               /*
-                * Setting tgts[n] simplifies the other edge condition.
-                */
-               tgts[n] = rm->rm_cols;
+                       zfs_dbgmsg("zio=%px repairing c=%u devidx=%u "
+                           "offset=%llx",
+                           zio, c, rc->rc_devidx, (long long)rc->rc_offset);
 
-               /*
-                * These buffers were allocated in previous iterations.
-                */
-               for (i = 0; i < n - 1; i++) {
-                       ASSERT(orig[i] != NULL);
+                       zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
+                           rc->rc_offset, rc->rc_abd, rc->rc_size,
+                           ZIO_TYPE_WRITE,
+                           zio->io_priority == ZIO_PRIORITY_REBUILD ?
+                           ZIO_PRIORITY_REBUILD : ZIO_PRIORITY_ASYNC_WRITE,
+                           ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
+                           ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
                }
+       }
 
-               orig[n - 1] = zio_buf_alloc(rm->rm_col[0].rc_size);
-
-               curr = 0;
-               next = tgts[curr];
+       /*
+        * Scrub or resilver i/o's: overwrite any shadow locations with the
+        * good data.  This ensures that if we've already copied this sector,
+        * it will be corrected if it was damaged.  This writes more than is
+        * necessary, but since expansion is paused during scrub/resilver, at
+        * most a single row will have a shadow location.
+        */
+       if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
+           (zio->io_flags & (ZIO_FLAG_RESILVER | ZIO_FLAG_SCRUB))) {
+               for (int c = 0; c < rr->rr_cols; c++) {
+                       raidz_col_t *rc = &rr->rr_col[c];
+                       vdev_t *vd = zio->io_vd;
 
-               while (curr != n) {
-                       tgts[curr] = next;
-                       curr = 0;
+                       if (rc->rc_shadow_devidx == INT_MAX || rc->rc_size == 0)
+                               continue;
+                       vdev_t *cvd = vd->vdev_child[rc->rc_shadow_devidx];
 
                        /*
-                        * Save off the original data that we're going to
-                        * attempt to reconstruct.
+                        * Note: We don't want to update the repair stats
+                        * because that would incorrectly indicate that there
+                        * was bad data to repair, which we aren't sure about.
+                        * By clearing the SCAN_THREAD flag, we prevent this
+                        * from happening, despite having the REPAIR flag set.
+                        * We need to set SELF_HEAL so that this i/o can't be
+                        * bypassed by zio_vdev_io_start().
                         */
-                       for (i = 0; i < n; i++) {
-                               ASSERT(orig[i] != NULL);
-                               c = tgts[i];
-                               ASSERT3S(c, >=, 0);
-                               ASSERT3S(c, <, rm->rm_cols);
-                               rc = &rm->rm_col[c];
-                               abd_copy_to_buf(orig[i], rc->rc_abd,
-                                   rc->rc_size);
+                       zio_t *cio = zio_vdev_child_io(zio, NULL, cvd,
+                           rc->rc_shadow_offset, rc->rc_abd, rc->rc_size,
+                           ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
+                           ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
+                           NULL, NULL);
+                       cio->io_flags &= ~ZIO_FLAG_SCAN_THREAD;
+                       zio_nowait(cio);
+               }
+       }
+}
+
+static void
+raidz_restore_orig_data(raidz_map_t *rm)
+{
+       for (int i = 0; i < rm->rm_nrows; i++) {
+               raidz_row_t *rr = rm->rm_row[i];
+               for (int c = 0; c < rr->rr_cols; c++) {
+                       raidz_col_t *rc = &rr->rr_col[c];
+                       if (rc->rc_need_orig_restore) {
+                               abd_copy(rc->rc_abd,
+                                   rc->rc_orig_data, rc->rc_size);
+                               rc->rc_need_orig_restore = B_FALSE;
                        }
+               }
+       }
+}
 
-                       /*
-                        * Attempt a reconstruction and exit the outer loop on
-                        * success.
-                        */
-                       code = vdev_raidz_reconstruct(rm, tgts, n);
-                       if (raidz_checksum_verify(zio) == 0) {
-
-                               for (i = 0; i < n; i++) {
-                                       c = tgts[i];
-                                       rc = &rm->rm_col[c];
-                                       ASSERT(rc->rc_error == 0);
-                                       if (rc->rc_tried)
-                                               raidz_checksum_error(zio, rc,
-                                                   orig[i]);
-                                       rc->rc_error = SET_ERROR(ECKSUM);
-                               }
+/*
+ * During raidz_reconstruct() for expanded VDEV, we need special consideration
+ * failure simulations.  See note in raidz_reconstruct() on simulating failure
+ * of a pre-expansion device.
+ *
+ * Treating logical child i as failed, return TRUE if the given column should
+ * be treated as failed.  The idea of logical children allows us to imagine
+ * that a disk silently failed before a RAIDZ expansion (reads from this disk
+ * succeed but return the wrong data).  Since the expansion doesn't verify
+ * checksums, the incorrect data will be moved to new locations spread among
+ * the children (going diagonally across them).
+ *
+ * Higher "logical child failures" (values of `i`) indicate these
+ * "pre-expansion failures".  The first physical_width values imagine that a
+ * current child failed; the next physical_width-1 values imagine that a
+ * child failed before the most recent expansion; the next physical_width-2
+ * values imagine a child failed in the expansion before that, etc.
+ */
+static boolean_t
+raidz_simulate_failure(int physical_width, int original_width, int ashift,
+    int i, raidz_col_t *rc)
+{
+       uint64_t sector_id =
+           physical_width * (rc->rc_offset >> ashift) +
+           rc->rc_devidx;
 
-                               ret = code;
-                               goto done;
+       for (int w = physical_width; w >= original_width; w--) {
+               if (i < w) {
+                       return (sector_id % w == i);
+               } else {
+                       i -= w;
+               }
+       }
+       ASSERT(!"invalid logical child id");
+       return (B_FALSE);
+}
+
+/*
+ * returns EINVAL if reconstruction of the block will not be possible
+ * returns ECKSUM if this specific reconstruction failed
+ * returns 0 on successful reconstruction
+ */
+static int
+raidz_reconstruct(zio_t *zio, int *ltgts, int ntgts, int nparity)
+{
+       raidz_map_t *rm = zio->io_vsd;
+       int physical_width = zio->io_vd->vdev_children;
+       int original_width = (rm->rm_original_width != 0) ?
+           rm->rm_original_width : physical_width;
+       int dbgmsg = zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT;
+
+       if (dbgmsg) {
+               zfs_dbgmsg("raidz_reconstruct_expanded(zio=%px ltgts=%u,%u,%u "
+                   "ntgts=%u", zio, ltgts[0], ltgts[1], ltgts[2], ntgts);
+       }
+
+       /* Reconstruct each row */
+       for (int r = 0; r < rm->rm_nrows; r++) {
+               raidz_row_t *rr = rm->rm_row[r];
+               int my_tgts[VDEV_RAIDZ_MAXPARITY]; /* value is child id */
+               int t = 0;
+               int dead = 0;
+               int dead_data = 0;
+
+               if (dbgmsg)
+                       zfs_dbgmsg("raidz_reconstruct_expanded(row=%u)", r);
+
+               for (int c = 0; c < rr->rr_cols; c++) {
+                       raidz_col_t *rc = &rr->rr_col[c];
+                       ASSERT0(rc->rc_need_orig_restore);
+                       if (rc->rc_error != 0) {
+                               dead++;
+                               if (c >= nparity)
+                                       dead_data++;
+                               continue;
+                       }
+                       if (rc->rc_size == 0)
+                               continue;
+                       for (int lt = 0; lt < ntgts; lt++) {
+                               if (raidz_simulate_failure(physical_width,
+                                   original_width,
+                                   zio->io_vd->vdev_top->vdev_ashift,
+                                   ltgts[lt], rc)) {
+                                       if (rc->rc_orig_data == NULL) {
+                                               rc->rc_orig_data =
+                                                   abd_alloc_linear(
+                                                   rc->rc_size, B_TRUE);
+                                               abd_copy(rc->rc_orig_data,
+                                                   rc->rc_abd, rc->rc_size);
+                                       }
+                                       rc->rc_need_orig_restore = B_TRUE;
+
+                                       dead++;
+                                       if (c >= nparity)
+                                               dead_data++;
+                                       /*
+                                        * Note: simulating failure of a
+                                        * pre-expansion device can hit more
+                                        * than one column, in which case we
+                                        * might try to simulate more failures
+                                        * than can be reconstructed, which is
+                                        * also more than the size of my_tgts.
+                                        * This check prevents accessing past
+                                        * the end of my_tgts.  The "dead >
+                                        * nparity" check below will fail this
+                                        * reconstruction attempt.
+                                        */
+                                       if (t < VDEV_RAIDZ_MAXPARITY) {
+                                               my_tgts[t++] = c;
+                                               if (dbgmsg) {
+                                                       zfs_dbgmsg("simulating "
+                                                           "failure of col %u "
+                                                           "devidx %u", c,
+                                                           (int)rc->rc_devidx);
+                                               }
+                                       }
+                                       break;
+                               }
+                       }
+               }
+               if (dead > nparity) {
+                       /* reconstruction not possible */
+                       if (dbgmsg) {
+                               zfs_dbgmsg("reconstruction not possible; "
+                                   "too many failures");
                        }
+                       raidz_restore_orig_data(rm);
+                       return (EINVAL);
+               }
+               if (dead_data > 0)
+                       vdev_raidz_reconstruct_row(rm, rr, my_tgts, t);
+       }
 
-                       /*
-                        * Restore the original data.
-                        */
-                       for (i = 0; i < n; i++) {
-                               c = tgts[i];
-                               rc = &rm->rm_col[c];
-                               abd_copy_from_buf(rc->rc_abd, orig[i],
-                                   rc->rc_size);
+       /* Check for success */
+       if (raidz_checksum_verify(zio) == 0) {
+
+               /* Reconstruction succeeded - report errors */
+               for (int i = 0; i < rm->rm_nrows; i++) {
+                       raidz_row_t *rr = rm->rm_row[i];
+
+                       for (int c = 0; c < rr->rr_cols; c++) {
+                               raidz_col_t *rc = &rr->rr_col[c];
+                               if (rc->rc_need_orig_restore) {
+                                       /*
+                                        * Note: if this is a parity column,
+                                        * we don't really know if it's wrong.
+                                        * We need to let
+                                        * vdev_raidz_io_done_verified() check
+                                        * it, and if we set rc_error, it will
+                                        * think that it is a "known" error
+                                        * that doesn't need to be checked
+                                        * or corrected.
+                                        */
+                                       if (rc->rc_error == 0 &&
+                                           c >= rr->rr_firstdatacol) {
+                                               vdev_raidz_checksum_error(zio,
+                                                   rc, rc->rc_orig_data);
+                                               rc->rc_error =
+                                                   SET_ERROR(ECKSUM);
+                                       }
+                                       rc->rc_need_orig_restore = B_FALSE;
+                               }
                        }
 
-                       do {
+                       vdev_raidz_io_done_verified(zio, rr);
+               }
+
+               zio_checksum_verified(zio);
+
+               if (dbgmsg) {
+                       zfs_dbgmsg("reconstruction successful "
+                           "(checksum verified)");
+               }
+               return (0);
+       }
+
+       /* Reconstruction failed - restore original data */
+       raidz_restore_orig_data(rm);
+       if (dbgmsg) {
+               zfs_dbgmsg("raidz_reconstruct_expanded(zio=%px) checksum "
+                   "failed", zio);
+       }
+       return (ECKSUM);
+}
+
+/*
+ * Iterate over all combinations of N bad vdevs and attempt a reconstruction.
+ * Note that the algorithm below is non-optimal because it doesn't take into
+ * account how reconstruction is actually performed. For example, with
+ * triple-parity RAID-Z the reconstruction procedure is the same if column 4
+ * is targeted as invalid as if columns 1 and 4 are targeted since in both
+ * cases we'd only use parity information in column 0.
+ *
+ * The order that we find the various possible combinations of failed
+ * disks is dictated by these rules:
+ * - Examine each "slot" (the "i" in tgts[i])
+ *   - Try to increment this slot (tgts[i] += 1)
+ *   - if we can't increment because it runs into the next slot,
+ *     reset our slot to the minimum, and examine the next slot
+ *
+ *  For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose
+ *  3 columns to reconstruct), we will generate the following sequence:
+ *
+ *  STATE        ACTION
+ *  0 1 2        special case: skip since these are all parity
+ *  0 1   3      first slot: reset to 0; middle slot: increment to 2
+ *  0   2 3      first slot: increment to 1
+ *    1 2 3      first: reset to 0; middle: reset to 1; last: increment to 4
+ *  0 1     4    first: reset to 0; middle: increment to 2
+ *  0   2   4    first: increment to 1
+ *    1 2   4    first: reset to 0; middle: increment to 3
+ *  0     3 4    first: increment to 1
+ *    1   3 4    first: increment to 2
+ *      2 3 4    first: reset to 0; middle: reset to 1; last: increment to 5
+ *  0 1       5  first: reset to 0; middle: increment to 2
+ *  0   2     5  first: increment to 1
+ *    1 2     5  first: reset to 0; middle: increment to 3
+ *  0     3   5  first: increment to 1
+ *    1   3   5  first: increment to 2
+ *      2 3   5  first: reset to 0; middle: increment to 4
+ *  0       4 5  first: increment to 1
+ *    1     4 5  first: increment to 2
+ *      2   4 5  first: increment to 3
+ *        3 4 5  done
+ *
+ * This strategy works for dRAID but is less efficient when there are a large
+ * number of child vdevs and therefore permutations to check. Furthermore,
+ * since the raidz_map_t rows likely do not overlap, reconstruction would be
+ * possible as long as there are no more than nparity data errors per row.
+ * These additional permutations are not currently checked but could be as
+ * a future improvement.
+ *
+ * Returns 0 on success, ECKSUM on failure.
+ */
+static int
+vdev_raidz_combrec(zio_t *zio)
+{
+       int nparity = vdev_get_nparity(zio->io_vd);
+       raidz_map_t *rm = zio->io_vsd;
+       int physical_width = zio->io_vd->vdev_children;
+       int original_width = (rm->rm_original_width != 0) ?
+           rm->rm_original_width : physical_width;
+
+       for (int i = 0; i < rm->rm_nrows; i++) {
+               raidz_row_t *rr = rm->rm_row[i];
+               int total_errors = 0;
+
+               for (int c = 0; c < rr->rr_cols; c++) {
+                       if (rr->rr_col[c].rc_error)
+                               total_errors++;
+               }
+
+               if (total_errors > nparity)
+                       return (vdev_raidz_worst_error(rr));
+       }
+
+       for (int num_failures = 1; num_failures <= nparity; num_failures++) {
+               int tstore[VDEV_RAIDZ_MAXPARITY + 2];
+               int *ltgts = &tstore[1]; /* value is logical child ID */
+
+
+               /*
+                * Determine number of logical children, n.  See comment
+                * above raidz_simulate_failure().
+                */
+               int n = 0;
+               for (int w = physical_width;
+                   w >= original_width; w--) {
+                       n += w;
+               }
+
+               ASSERT3U(num_failures, <=, nparity);
+               ASSERT3U(num_failures, <=, VDEV_RAIDZ_MAXPARITY);
+
+               /* Handle corner cases in combrec logic */
+               ltgts[-1] = -1;
+               for (int i = 0; i < num_failures; i++) {
+                       ltgts[i] = i;
+               }
+               ltgts[num_failures] = n;
+
+               for (;;) {
+                       int err = raidz_reconstruct(zio, ltgts, num_failures,
+                           nparity);
+                       if (err == EINVAL) {
                                /*
-                                * Find the next valid column after the curr
-                                * position..
+                                * Reconstruction not possible with this #
+                                * failures; try more failures.
                                 */
-                               for (next = tgts[curr] + 1;
-                                   next < rm->rm_cols &&
-                                   rm->rm_col[next].rc_error != 0; next++)
-                                       continue;
+                               break;
+                       } else if (err == 0)
+                               return (0);
+
+                       /* Compute next targets to try */
+                       for (int t = 0; ; t++) {
+                               ASSERT3U(t, <, num_failures);
+                               ltgts[t]++;
+                               if (ltgts[t] == n) {
+                                       /* try more failures */
+                                       ASSERT3U(t, ==, num_failures - 1);
+                                       if (zfs_flags &
+                                           ZFS_DEBUG_RAIDZ_RECONSTRUCT) {
+                                               zfs_dbgmsg("reconstruction "
+                                                   "failed for num_failures="
+                                                   "%u; tried all "
+                                                   "combinations",
+                                                   num_failures);
+                                       }
+                                       break;
+                               }
 
-                               ASSERT(next <= tgts[curr + 1]);
+                               ASSERT3U(ltgts[t], <, n);
+                               ASSERT3U(ltgts[t], <=, ltgts[t + 1]);
 
                                /*
                                 * If that spot is available, we're done here.
+                                * Try the next combination.
                                 */
-                               if (next != tgts[curr + 1])
-                                       break;
+                               if (ltgts[t] != ltgts[t + 1])
+                                       break; // found next combination
 
                                /*
-                                * Otherwise, find the next valid column after
-                                * the previous position.
+                                * Otherwise, reset this tgt to the minimum,
+                                * and move on to the next tgt.
                                 */
-                               for (c = tgts[curr - 1] + 1;
-                                   rm->rm_col[c].rc_error != 0; c++)
-                                       continue;
-
-                               tgts[curr] = c;
-                               curr++;
+                               ltgts[t] = ltgts[t - 1] + 1;
+                               ASSERT3U(ltgts[t], ==, t);
+                       }
 
-                       } while (curr != n);
+                       /* Increase the number of failures and keep trying. */
+                       if (ltgts[num_failures - 1] == n)
+                               break;
                }
        }
-       n--;
-done:
-       for (i = 0; i < n; i++) {
-               zio_buf_free(orig[i], rm->rm_col[0].rc_size);
-       }
+       if (zfs_flags & ZFS_DEBUG_RAIDZ_RECONSTRUCT)
+               zfs_dbgmsg("reconstruction failed for all num_failures");
+       return (ECKSUM);
+}
 
-       return (ret);
+void
+vdev_raidz_reconstruct(raidz_map_t *rm, const int *t, int nt)
+{
+       for (uint64_t row = 0; row < rm->rm_nrows; row++) {
+               raidz_row_t *rr = rm->rm_row[row];
+               vdev_raidz_reconstruct_row(rm, rr, t, nt);
+       }
 }
 
 /*
- * Complete an IO operation on a RAIDZ VDev
+ * Complete a write IO operation on a RAIDZ VDev
  *
  * Outline:
- * - For write operations:
  *   1. Check for errors on the child IOs.
  *   2. Return, setting an error code if too few child VDevs were written
  *      to reconstruct the data later.  Note that partial writes are
  *      considered successful if they can be reconstructed at all.
- * - For read operations:
- *   1. Check for errors on the child IOs.
- *   2. If data errors occurred:
- *      a. Try to reassemble the data from the parity available.
- *      b. If we haven't yet read the parity drives, read them now.
- *      c. If all parity drives have been read but the data still doesn't
- *         reassemble with a correct checksum, then try combinatorial
- *         reconstruction.
- *      d. If that doesn't work, return an error.
- *   3. If there were unexpected errors or this is a resilver operation,
- *      rewrite the vdevs that had errors.
  */
 static void
-vdev_raidz_io_done(zio_t *zio)
+vdev_raidz_io_done_write_impl(zio_t *zio, raidz_row_t *rr)
+{
+       int normal_errors = 0;
+       int shadow_errors = 0;
+
+       ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
+       ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
+       ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
+
+       for (int c = 0; c < rr->rr_cols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
+
+               if (rc->rc_error != 0) {
+                       ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
+                       normal_errors++;
+               }
+               if (rc->rc_shadow_error != 0) {
+                       ASSERT(rc->rc_shadow_error != ECKSUM);
+                       shadow_errors++;
+               }
+       }
+
+       /*
+        * Treat partial writes as a success. If we couldn't write enough
+        * columns to reconstruct the data, the I/O failed.  Otherwise, good
+        * enough.  Note that in the case of a shadow write (during raidz
+        * expansion), depending on if we crash, either the normal (old) or
+        * shadow (new) location may become the "real" version of the block,
+        * so both locations must have sufficient redundancy.
+        *
+        * Now that we support write reallocation, it would be better
+        * to treat partial failure as real failure unless there are
+        * no non-degraded top-level vdevs left, and not update DTLs
+        * if we intend to reallocate.
+        */
+       if (normal_errors > rr->rr_firstdatacol ||
+           shadow_errors > rr->rr_firstdatacol) {
+               zio->io_error = zio_worst_error(zio->io_error,
+                   vdev_raidz_worst_error(rr));
+       }
+}
+
+static void
+vdev_raidz_io_done_reconstruct_known_missing(zio_t *zio, raidz_map_t *rm,
+    raidz_row_t *rr)
 {
-       vdev_t *vd = zio->io_vd;
-       vdev_t *cvd;
-       raidz_map_t *rm = zio->io_vsd;
-       raidz_col_t *rc = NULL;
-       int unexpected_errors = 0;
        int parity_errors = 0;
        int parity_untried = 0;
        int data_errors = 0;
        int total_errors = 0;
-       int n, c;
-       int tgts[VDEV_RAIDZ_MAXPARITY];
-       int code;
 
-       ASSERT(zio->io_bp != NULL);  /* XXX need to add code to enforce this */
+       ASSERT3U(rr->rr_missingparity, <=, rr->rr_firstdatacol);
+       ASSERT3U(rr->rr_missingdata, <=, rr->rr_cols - rr->rr_firstdatacol);
 
-       ASSERT(rm->rm_missingparity <= rm->rm_firstdatacol);
-       ASSERT(rm->rm_missingdata <= rm->rm_cols - rm->rm_firstdatacol);
+       for (int c = 0; c < rr->rr_cols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
 
-       for (c = 0; c < rm->rm_cols; c++) {
-               rc = &rm->rm_col[c];
+               /*
+                * If scrubbing and a replacing/sparing child vdev determined
+                * that not all of its children have an identical copy of the
+                * data, then clear the error so the column is treated like
+                * any other read and force a repair to correct the damage.
+                */
+               if (rc->rc_error == ECKSUM) {
+                       ASSERT(zio->io_flags & ZIO_FLAG_SCRUB);
+                       vdev_raidz_checksum_error(zio, rc, rc->rc_abd);
+                       rc->rc_force_repair = 1;
+                       rc->rc_error = 0;
+               }
 
                if (rc->rc_error) {
-                       ASSERT(rc->rc_error != ECKSUM); /* child has no bp */
-
-                       if (c < rm->rm_firstdatacol)
+                       if (c < rr->rr_firstdatacol)
                                parity_errors++;
                        else
                                data_errors++;
 
-                       if (!rc->rc_skipped)
-                               unexpected_errors++;
-
                        total_errors++;
-               } else if (c < rm->rm_firstdatacol && !rc->rc_tried) {
+               } else if (c < rr->rr_firstdatacol && !rc->rc_tried) {
                        parity_untried++;
                }
        }
 
-       if (zio->io_type == ZIO_TYPE_WRITE) {
+       /*
+        * If there were data errors and the number of errors we saw was
+        * correctable -- less than or equal to the number of parity disks read
+        * -- reconstruct based on the missing data.
+        */
+       if (data_errors != 0 &&
+           total_errors <= rr->rr_firstdatacol - parity_untried) {
                /*
-                * XXX -- for now, treat partial writes as a success.
-                * (If we couldn't write enough columns to reconstruct
-                * the data, the I/O failed.  Otherwise, good enough.)
-                *
-                * Now that we support write reallocation, it would be better
-                * to treat partial failure as real failure unless there are
-                * no non-degraded top-level vdevs left, and not update DTLs
-                * if we intend to reallocate.
+                * We either attempt to read all the parity columns or
+                * none of them. If we didn't try to read parity, we
+                * wouldn't be here in the correctable case. There must
+                * also have been fewer parity errors than parity
+                * columns or, again, we wouldn't be in this code path.
                 */
-               /* XXPOLICY */
-               if (total_errors > rm->rm_firstdatacol)
-                       zio->io_error = vdev_raidz_worst_error(rm);
+               ASSERT(parity_untried == 0);
+               ASSERT(parity_errors < rr->rr_firstdatacol);
 
-               return;
+               /*
+                * Identify the data columns that reported an error.
+                */
+               int n = 0;
+               int tgts[VDEV_RAIDZ_MAXPARITY];
+               for (int c = rr->rr_firstdatacol; c < rr->rr_cols; c++) {
+                       raidz_col_t *rc = &rr->rr_col[c];
+                       if (rc->rc_error != 0) {
+                               ASSERT(n < VDEV_RAIDZ_MAXPARITY);
+                               tgts[n++] = c;
+                       }
+               }
+
+               ASSERT(rr->rr_firstdatacol >= n);
+
+               vdev_raidz_reconstruct_row(rm, rr, tgts, n);
        }
+}
 
-       ASSERT(zio->io_type == ZIO_TYPE_READ);
-       /*
-        * There are three potential phases for a read:
-        *      1. produce valid data from the columns read
-        *      2. read all disks and try again
-        *      3. perform combinatorial reconstruction
-        *
-        * Each phase is progressively both more expensive and less likely to
-        * occur. If we encounter more errors than we can repair or all phases
-        * fail, we have no choice but to return an error.
-        */
+/*
+ * Return the number of reads issued.
+ */
+static int
+vdev_raidz_read_all(zio_t *zio, raidz_row_t *rr)
+{
+       vdev_t *vd = zio->io_vd;
+       int nread = 0;
+
+       rr->rr_missingdata = 0;
+       rr->rr_missingparity = 0;
 
        /*
-        * If the number of errors we saw was correctable -- less than or equal
-        * to the number of parity disks read -- attempt to produce data that
-        * has a valid checksum. Naturally, this case applies in the absence of
-        * any errors.
+        * If this rows contains empty sectors which are not required
+        * for a normal read then allocate an ABD for them now so they
+        * may be read, verified, and any needed repairs performed.
         */
-       if (total_errors <= rm->rm_firstdatacol - parity_untried) {
-               if (data_errors == 0) {
-                       if (raidz_checksum_verify(zio) == 0) {
-                               /*
-                                * If we read parity information (unnecessarily
-                                * as it happens since no reconstruction was
-                                * needed) regenerate and verify the parity.
-                                * We also regenerate parity when resilvering
-                                * so we can write it out to the failed device
-                                * later.
-                                */
-                               if (parity_errors + parity_untried <
-                                   rm->rm_firstdatacol ||
-                                   (zio->io_flags & ZIO_FLAG_RESILVER)) {
-                                       n = raidz_parity_verify(zio, rm);
-                                       unexpected_errors += n;
-                                       ASSERT(parity_errors + n <=
-                                           rm->rm_firstdatacol);
+       if (rr->rr_nempty != 0 && rr->rr_abd_empty == NULL)
+               vdev_draid_map_alloc_empty(zio, rr);
+
+       for (int c = 0; c < rr->rr_cols; c++) {
+               raidz_col_t *rc = &rr->rr_col[c];
+               if (rc->rc_tried || rc->rc_size == 0)
+                       continue;
+
+               zio_nowait(zio_vdev_child_io(zio, NULL,
+                   vd->vdev_child[rc->rc_devidx],
+                   rc->rc_offset, rc->rc_abd, rc->rc_size,
+                   zio->io_type, zio->io_priority, 0,
+                   vdev_raidz_child_done, rc));
+               nread++;
+       }
+       return (nread);
+}
+
+/*
+ * We're here because either there were too many errors to even attempt
+ * reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec()
+ * failed. In either case, there is enough bad data to prevent reconstruction.
+ * Start checksum ereports for all children which haven't failed.
+ */
+static void
+vdev_raidz_io_done_unrecoverable(zio_t *zio)
+{
+       raidz_map_t *rm = zio->io_vsd;
+
+       for (int i = 0; i < rm->rm_nrows; i++) {
+               raidz_row_t *rr = rm->rm_row[i];
+
+               for (int c = 0; c < rr->rr_cols; c++) {
+                       raidz_col_t *rc = &rr->rr_col[c];
+                       vdev_t *cvd = zio->io_vd->vdev_child[rc->rc_devidx];
+
+                       if (rc->rc_error != 0)
+                               continue;
+
+                       zio_bad_cksum_t zbc;
+                       zbc.zbc_has_cksum = 0;
+                       zbc.zbc_injected = rm->rm_ecksuminjected;
+
+                       mutex_enter(&cvd->vdev_stat_lock);
+                       cvd->vdev_stat.vs_checksum_errors++;
+                       mutex_exit(&cvd->vdev_stat_lock);
+                       (void) zfs_ereport_start_checksum(zio->io_spa,
+                           cvd, &zio->io_bookmark, zio, rc->rc_offset,
+                           rc->rc_size, &zbc);
+               }
+       }
+}
+
+void
+vdev_raidz_io_done(zio_t *zio)
+{
+       raidz_map_t *rm = zio->io_vsd;
+
+       ASSERT(zio->io_bp != NULL);
+       if (zio->io_type == ZIO_TYPE_WRITE) {
+               for (int i = 0; i < rm->rm_nrows; i++) {
+                       vdev_raidz_io_done_write_impl(zio, rm->rm_row[i]);
+               }
+       } else {
+               if (rm->rm_phys_col) {
+                       /*
+                        * This is an aggregated read.  Copy the data and status
+                        * from the aggregate abd's to the individual rows.
+                        */
+                       for (int i = 0; i < rm->rm_nrows; i++) {
+                               raidz_row_t *rr = rm->rm_row[i];
+
+                               for (int c = 0; c < rr->rr_cols; c++) {
+                                       raidz_col_t *rc = &rr->rr_col[c];
+                                       if (rc->rc_tried || rc->rc_size == 0)
+                                               continue;
+
+                                       raidz_col_t *prc =
+                                           &rm->rm_phys_col[rc->rc_devidx];
+                                       rc->rc_error = prc->rc_error;
+                                       rc->rc_tried = prc->rc_tried;
+                                       rc->rc_skipped = prc->rc_skipped;
+                                       if (c >= rr->rr_firstdatacol) {
+                                               /*
+                                                * Note: this is slightly faster
+                                                * than using abd_copy_off().
+                                                */
+                                               char *physbuf = abd_to_buf(
+                                                   prc->rc_abd);
+                                               void *physloc = physbuf +
+                                                   rc->rc_offset -
+                                                   prc->rc_offset;
+
+                                               abd_copy_from_buf(rc->rc_abd,
+                                                   physloc, rc->rc_size);
+                                       }
                                }
-                               goto done;
                        }
+               }
+
+               for (int i = 0; i < rm->rm_nrows; i++) {
+                       raidz_row_t *rr = rm->rm_row[i];
+                       vdev_raidz_io_done_reconstruct_known_missing(zio,
+                           rm, rr);
+               }
+
+               if (raidz_checksum_verify(zio) == 0) {
+                       for (int i = 0; i < rm->rm_nrows; i++) {
+                               raidz_row_t *rr = rm->rm_row[i];
+                               vdev_raidz_io_done_verified(zio, rr);
+                       }
+                       zio_checksum_verified(zio);
                } else {
                        /*
-                        * We either attempt to read all the parity columns or
-                        * none of them. If we didn't try to read parity, we
-                        * wouldn't be here in the correctable case. There must
-                        * also have been fewer parity errors than parity
-                        * columns or, again, we wouldn't be in this code path.
+                        * A sequential resilver has no checksum which makes
+                        * combinatoral reconstruction impossible. This code
+                        * path is unreachable since raidz_checksum_verify()
+                        * has no checksum to verify and must succeed.
                         */
-                       ASSERT(parity_untried == 0);
-                       ASSERT(parity_errors < rm->rm_firstdatacol);
+                       ASSERT3U(zio->io_priority, !=, ZIO_PRIORITY_REBUILD);
 
                        /*
-                        * Identify the data columns that reported an error.
+                        * This isn't a typical situation -- either we got a
+                        * read error or a child silently returned bad data.
+                        * Read every block so we can try again with as much
+                        * data and parity as we can track down. If we've
+                        * already been through once before, all children will
+                        * be marked as tried so we'll proceed to combinatorial
+                        * reconstruction.
                         */
-                       n = 0;
-                       for (c = rm->rm_firstdatacol; c < rm->rm_cols; c++) {
-                               rc = &rm->rm_col[c];
-                               if (rc->rc_error != 0) {
-                                       ASSERT(n < VDEV_RAIDZ_MAXPARITY);
-                                       tgts[n++] = c;
-                               }
+                       int nread = 0;
+                       for (int i = 0; i < rm->rm_nrows; i++) {
+                               nread += vdev_raidz_read_all(zio,
+                                   rm->rm_row[i]);
                        }
-
-                       ASSERT(rm->rm_firstdatacol >= n);
-
-                       code = vdev_raidz_reconstruct(rm, tgts, n);
-
-                       if (raidz_checksum_verify(zio) == 0) {
+                       if (nread != 0) {
                                /*
-                                * If we read more parity disks than were used
-                                * for reconstruction, confirm that the other
-                                * parity disks produced correct data. This
-                                * routine is suboptimal in that it regenerates
-                                * the parity that we already used in addition
-                                * to the parity that we're attempting to
-                                * verify, but this should be a relatively
-                                * uncommon case, and can be optimized if it
-                                * becomes a problem. Note that we regenerate
-                                * parity when resilvering so we can write it
-                                * out to failed devices later.
+                                * Normally our stage is VDEV_IO_DONE, but if
+                                * we've already called redone(), it will have
+                                * changed to VDEV_IO_START, in which case we
+                                * don't want to call redone() again.
                                 */
-                               if (parity_errors < rm->rm_firstdatacol - n ||
-                                   (zio->io_flags & ZIO_FLAG_RESILVER)) {
-                                       n = raidz_parity_verify(zio, rm);
-                                       unexpected_errors += n;
-                                       ASSERT(parity_errors + n <=
-                                           rm->rm_firstdatacol);
-                               }
-
-                               goto done;
+                               if (zio->io_stage != ZIO_STAGE_VDEV_IO_START)
+                                       zio_vdev_io_redone(zio);
+                               return;
                        }
-               }
+                       /*
+                        * It would be too expensive to try every possible
+                        * combination of failed sectors in every row, so
+                        * instead we try every combination of failed current or
+                        * past physical disk. This means that if the incorrect
+                        * sectors were all on Nparity disks at any point in the
+                        * past, we will find the correct data.  The only known
+                        * case where this is less durable than a non-expanded
+                        * RAIDZ, is if we have a silent failure during
+                        * expansion.  In that case, one block could be
+                        * partially in the old format and partially in the
+                        * new format, so we'd lost some sectors from the old
+                        * format and some from the new format.
+                        *
+                        * e.g. logical_width=4 physical_width=6
+                        * the 15 (6+5+4) possible failed disks are:
+                        * width=6 child=0
+                        * width=6 child=1
+                        * width=6 child=2
+                        * width=6 child=3
+                        * width=6 child=4
+                        * width=6 child=5
+                        * width=5 child=0
+                        * width=5 child=1
+                        * width=5 child=2
+                        * width=5 child=3
+                        * width=5 child=4
+                        * width=4 child=0
+                        * width=4 child=1
+                        * width=4 child=2
+                        * width=4 child=3
+                        * And we will try every combination of Nparity of these
+                        * failing.
+                        *
+                        * As a first pass, we can generate every combo,
+                        * and try reconstructing, ignoring any known
+                        * failures.  If any row has too many known + simulated
+                        * failures, then we bail on reconstructing with this
+                        * number of simulated failures.  As an improvement,
+                        * we could detect the number of whole known failures
+                        * (i.e. we have known failures on these disks for
+                        * every row; the disks never succeeded), and
+                        * subtract that from the max # failures to simulate.
+                        * We could go even further like the current
+                        * combrec code, but that doesn't seem like it
+                        * gains us very much.  If we simulate a failure
+                        * that is also a known failure, that's fine.
+                        */
+                       zio->io_error = vdev_raidz_combrec(zio);
+                       if (zio->io_error == ECKSUM &&
+                           !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
+                               vdev_raidz_io_done_unrecoverable(zio);
+                       }
+               }
        }
+       if (rm->rm_lr != NULL) {
+               zfs_rangelock_exit(rm->rm_lr);
+               rm->rm_lr = NULL;
+       }
+}
+
+static void
+vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
+{
+       vdev_raidz_t *vdrz = vd->vdev_tsd;
+       if (faulted > vdrz->vd_nparity)
+               vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
+                   VDEV_AUX_NO_REPLICAS);
+       else if (degraded + faulted != 0)
+               vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
+       else
+               vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
+}
+
+/*
+ * Determine if any portion of the provided block resides on a child vdev
+ * with a dirty DTL and therefore needs to be resilvered.  The function
+ * assumes that at least one DTL is dirty which implies that full stripe
+ * width blocks must be resilvered.
+ */
+static boolean_t
+vdev_raidz_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize,
+    uint64_t phys_birth)
+{
+       vdev_raidz_t *vdrz = vd->vdev_tsd;
 
        /*
-        * This isn't a typical situation -- either we got a read error or
-        * a child silently returned bad data. Read every block so we can
-        * try again with as much data and parity as we can track down. If
-        * we've already been through once before, all children will be marked
-        * as tried so we'll proceed to combinatorial reconstruction.
+        * If we're in the middle of a RAIDZ expansion, this block may be in
+        * the old and/or new location.  For simplicity, always resilver it.
         */
-       unexpected_errors = 1;
-       rm->rm_missingdata = 0;
-       rm->rm_missingparity = 0;
+       if (vdrz->vn_vre.vre_state == DSS_SCANNING)
+               return (B_TRUE);
 
-       for (c = 0; c < rm->rm_cols; c++) {
-               if (rm->rm_col[c].rc_tried)
-                       continue;
+       uint64_t dcols = vd->vdev_children;
+       uint64_t nparity = vdrz->vd_nparity;
+       uint64_t ashift = vd->vdev_top->vdev_ashift;
+       /* The starting RAIDZ (parent) vdev sector of the block. */
+       uint64_t b = DVA_GET_OFFSET(dva) >> ashift;
+       /* The zio's size in units of the vdev's minimum sector size. */
+       uint64_t s = ((psize - 1) >> ashift) + 1;
+       /* The first column for this stripe. */
+       uint64_t f = b % dcols;
 
-               zio_vdev_io_redone(zio);
-               do {
-                       rc = &rm->rm_col[c];
-                       if (rc->rc_tried)
-                               continue;
-                       zio_nowait(zio_vdev_child_io(zio, NULL,
-                           vd->vdev_child[rc->rc_devidx],
-                           rc->rc_offset, rc->rc_abd, rc->rc_size,
-                           zio->io_type, zio->io_priority, 0,
-                           vdev_raidz_child_done, rc));
-               } while (++c < rm->rm_cols);
+       /* Unreachable by sequential resilver. */
+       ASSERT3U(phys_birth, !=, TXG_UNKNOWN);
+
+       if (!vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1))
+               return (B_FALSE);
+
+       if (s + nparity >= dcols)
+               return (B_TRUE);
+
+       for (uint64_t c = 0; c < s + nparity; c++) {
+               uint64_t devidx = (f + c) % dcols;
+               vdev_t *cvd = vd->vdev_child[devidx];
+
+               /*
+                * dsl_scan_need_resilver() already checked vd with
+                * vdev_dtl_contains(). So here just check cvd with
+                * vdev_dtl_empty(), cheaper and a good approximation.
+                */
+               if (!vdev_dtl_empty(cvd, DTL_PARTIAL))
+                       return (B_TRUE);
+       }
+
+       return (B_FALSE);
+}
+
+static void
+vdev_raidz_xlate(vdev_t *cvd, const range_seg64_t *logical_rs,
+    range_seg64_t *physical_rs, range_seg64_t *remain_rs)
+{
+       (void) remain_rs;
+
+       vdev_t *raidvd = cvd->vdev_parent;
+       ASSERT(raidvd->vdev_ops == &vdev_raidz_ops);
+
+       vdev_raidz_t *vdrz = raidvd->vdev_tsd;
+
+       if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
+               /*
+                * We're in the middle of expansion, in which case the
+                * translation is in flux.  Any answer we give may be wrong
+                * by the time we return, so it isn't safe for the caller to
+                * act on it.  Therefore we say that this range isn't present
+                * on any children.  The only consumers of this are "zpool
+                * initialize" and trimming, both of which are "best effort"
+                * anyway.
+                */
+               physical_rs->rs_start = physical_rs->rs_end = 0;
+               remain_rs->rs_start = remain_rs->rs_end = 0;
+               return;
+       }
+
+       uint64_t width = vdrz->vd_physical_width;
+       uint64_t tgt_col = cvd->vdev_id;
+       uint64_t ashift = raidvd->vdev_top->vdev_ashift;
+
+       /* make sure the offsets are block-aligned */
+       ASSERT0(logical_rs->rs_start % (1 << ashift));
+       ASSERT0(logical_rs->rs_end % (1 << ashift));
+       uint64_t b_start = logical_rs->rs_start >> ashift;
+       uint64_t b_end = logical_rs->rs_end >> ashift;
+
+       uint64_t start_row = 0;
+       if (b_start > tgt_col) /* avoid underflow */
+               start_row = ((b_start - tgt_col - 1) / width) + 1;
+
+       uint64_t end_row = 0;
+       if (b_end > tgt_col)
+               end_row = ((b_end - tgt_col - 1) / width) + 1;
+
+       physical_rs->rs_start = start_row << ashift;
+       physical_rs->rs_end = end_row << ashift;
+
+       ASSERT3U(physical_rs->rs_start, <=, logical_rs->rs_start);
+       ASSERT3U(physical_rs->rs_end - physical_rs->rs_start, <=,
+           logical_rs->rs_end - logical_rs->rs_start);
+}
+
+static void
+raidz_reflow_sync(void *arg, dmu_tx_t *tx)
+{
+       spa_t *spa = arg;
+       int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
+       vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
+
+       /*
+        * Ensure there are no i/os to the range that is being committed.
+        */
+       uint64_t old_offset = RRSS_GET_OFFSET(&spa->spa_uberblock);
+       ASSERT3U(vre->vre_offset_pertxg[txgoff], >=, old_offset);
+
+       mutex_enter(&vre->vre_lock);
+       uint64_t new_offset =
+           MIN(vre->vre_offset_pertxg[txgoff], vre->vre_failed_offset);
+       /*
+        * We should not have committed anything that failed.
+        */
+       VERIFY3U(vre->vre_failed_offset, >=, old_offset);
+       mutex_exit(&vre->vre_lock);
+
+       zfs_locked_range_t *lr = zfs_rangelock_enter(&vre->vre_rangelock,
+           old_offset, new_offset - old_offset,
+           RL_WRITER);
+
+       /*
+        * Update the uberblock that will be written when this txg completes.
+        */
+       RAIDZ_REFLOW_SET(&spa->spa_uberblock,
+           RRSS_SCRATCH_INVALID_SYNCED_REFLOW, new_offset);
+       vre->vre_offset_pertxg[txgoff] = 0;
+       zfs_rangelock_exit(lr);
+
+       mutex_enter(&vre->vre_lock);
+       vre->vre_bytes_copied += vre->vre_bytes_copied_pertxg[txgoff];
+       vre->vre_bytes_copied_pertxg[txgoff] = 0;
+       mutex_exit(&vre->vre_lock);
+
+       vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
+       VERIFY0(zap_update(spa->spa_meta_objset,
+           vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED,
+           sizeof (vre->vre_bytes_copied), 1, &vre->vre_bytes_copied, tx));
+}
+
+static void
+raidz_reflow_complete_sync(void *arg, dmu_tx_t *tx)
+{
+       spa_t *spa = arg;
+       vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
+       vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
+       vdev_raidz_t *vdrz = raidvd->vdev_tsd;
+
+       for (int i = 0; i < TXG_SIZE; i++)
+               VERIFY0(vre->vre_offset_pertxg[i]);
+
+       reflow_node_t *re = kmem_zalloc(sizeof (*re), KM_SLEEP);
+       re->re_txg = tx->tx_txg + TXG_CONCURRENT_STATES;
+       re->re_logical_width = vdrz->vd_physical_width;
+       mutex_enter(&vdrz->vd_expand_lock);
+       avl_add(&vdrz->vd_expand_txgs, re);
+       mutex_exit(&vdrz->vd_expand_lock);
+
+       vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
+
+       /*
+        * Dirty the config so that the updated ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS
+        * will get written (based on vd_expand_txgs).
+        */
+       vdev_config_dirty(vd);
+
+       /*
+        * Before we change vre_state, the on-disk state must reflect that we
+        * have completed all copying, so that vdev_raidz_io_start() can use
+        * vre_state to determine if the reflow is in progress.  See also the
+        * end of spa_raidz_expand_thread().
+        */
+       VERIFY3U(RRSS_GET_OFFSET(&spa->spa_ubsync), ==,
+           raidvd->vdev_ms_count << raidvd->vdev_ms_shift);
+
+       vre->vre_end_time = gethrestime_sec();
+       vre->vre_state = DSS_FINISHED;
+
+       uint64_t state = vre->vre_state;
+       VERIFY0(zap_update(spa->spa_meta_objset,
+           vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
+           sizeof (state), 1, &state, tx));
+
+       uint64_t end_time = vre->vre_end_time;
+       VERIFY0(zap_update(spa->spa_meta_objset,
+           vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME,
+           sizeof (end_time), 1, &end_time, tx));
+
+       spa->spa_uberblock.ub_raidz_reflow_info = 0;
+
+       spa_history_log_internal(spa, "raidz vdev expansion completed",  tx,
+           "%s vdev %llu new width %llu", spa_name(spa),
+           (unsigned long long)vd->vdev_id,
+           (unsigned long long)vd->vdev_children);
+
+       spa->spa_raidz_expand = NULL;
+       raidvd->vdev_rz_expanding = B_FALSE;
+
+       spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
+       spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
+       spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
+
+       spa_notify_waiters(spa);
+
+       /*
+        * While we're in syncing context take the opportunity to
+        * setup a scrub. All the data has been sucessfully copied
+        * but we have not validated any checksums.
+        */
+       pool_scan_func_t func = POOL_SCAN_SCRUB;
+       if (zfs_scrub_after_expand && dsl_scan_setup_check(&func, tx) == 0)
+               dsl_scan_setup_sync(&func, tx);
+}
+
+/*
+ * Struct for one copy zio.
+ */
+typedef struct raidz_reflow_arg {
+       vdev_raidz_expand_t *rra_vre;
+       zfs_locked_range_t *rra_lr;
+       uint64_t rra_txg;
+} raidz_reflow_arg_t;
+
+/*
+ * The write of the new location is done.
+ */
+static void
+raidz_reflow_write_done(zio_t *zio)
+{
+       raidz_reflow_arg_t *rra = zio->io_private;
+       vdev_raidz_expand_t *vre = rra->rra_vre;
+
+       abd_free(zio->io_abd);
+
+       mutex_enter(&vre->vre_lock);
+       if (zio->io_error != 0) {
+               /* Force a reflow pause on errors */
+               vre->vre_failed_offset =
+                   MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
+       }
+       ASSERT3U(vre->vre_outstanding_bytes, >=, zio->io_size);
+       vre->vre_outstanding_bytes -= zio->io_size;
+       if (rra->rra_lr->lr_offset + rra->rra_lr->lr_length <
+           vre->vre_failed_offset) {
+               vre->vre_bytes_copied_pertxg[rra->rra_txg & TXG_MASK] +=
+                   zio->io_size;
+       }
+       cv_signal(&vre->vre_cv);
+       mutex_exit(&vre->vre_lock);
+
+       zfs_rangelock_exit(rra->rra_lr);
+
+       kmem_free(rra, sizeof (*rra));
+       spa_config_exit(zio->io_spa, SCL_STATE, zio->io_spa);
+}
+
+/*
+ * The read of the old location is done.  The parent zio is the write to
+ * the new location.  Allow it to start.
+ */
+static void
+raidz_reflow_read_done(zio_t *zio)
+{
+       raidz_reflow_arg_t *rra = zio->io_private;
+       vdev_raidz_expand_t *vre = rra->rra_vre;
+
+       /*
+        * If the read failed, or if it was done on a vdev that is not fully
+        * healthy (e.g. a child that has a resilver in progress), we may not
+        * have the correct data.  Note that it's OK if the write proceeds.
+        * It may write garbage but the location is otherwise unused and we
+        * will retry later due to vre_failed_offset.
+        */
+       if (zio->io_error != 0 || !vdev_dtl_empty(zio->io_vd, DTL_MISSING)) {
+               zfs_dbgmsg("reflow read failed off=%llu size=%llu txg=%llu "
+                   "err=%u partial_dtl_empty=%u missing_dtl_empty=%u",
+                   (long long)rra->rra_lr->lr_offset,
+                   (long long)rra->rra_lr->lr_length,
+                   (long long)rra->rra_txg,
+                   zio->io_error,
+                   vdev_dtl_empty(zio->io_vd, DTL_PARTIAL),
+                   vdev_dtl_empty(zio->io_vd, DTL_MISSING));
+               mutex_enter(&vre->vre_lock);
+               /* Force a reflow pause on errors */
+               vre->vre_failed_offset =
+                   MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
+               mutex_exit(&vre->vre_lock);
+       }
+
+       zio_nowait(zio_unique_parent(zio));
+}
 
+static void
+raidz_reflow_record_progress(vdev_raidz_expand_t *vre, uint64_t offset,
+    dmu_tx_t *tx)
+{
+       int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
+       spa_t *spa = dmu_tx_pool(tx)->dp_spa;
+
+       if (offset == 0)
                return;
+
+       mutex_enter(&vre->vre_lock);
+       ASSERT3U(vre->vre_offset, <=, offset);
+       vre->vre_offset = offset;
+       mutex_exit(&vre->vre_lock);
+
+       if (vre->vre_offset_pertxg[txgoff] == 0) {
+               dsl_sync_task_nowait(dmu_tx_pool(tx), raidz_reflow_sync,
+                   spa, tx);
+       }
+       vre->vre_offset_pertxg[txgoff] = offset;
+}
+
+static boolean_t
+vdev_raidz_expand_child_replacing(vdev_t *raidz_vd)
+{
+       for (int i = 0; i < raidz_vd->vdev_children; i++) {
+               /* Quick check if a child is being replaced */
+               if (!raidz_vd->vdev_child[i]->vdev_ops->vdev_op_leaf)
+                       return (B_TRUE);
+       }
+       return (B_FALSE);
+}
+
+static boolean_t
+raidz_reflow_impl(vdev_t *vd, vdev_raidz_expand_t *vre, range_tree_t *rt,
+    dmu_tx_t *tx)
+{
+       spa_t *spa = vd->vdev_spa;
+       int ashift = vd->vdev_top->vdev_ashift;
+       uint64_t offset, size;
+
+       if (!range_tree_find_in(rt, 0, vd->vdev_top->vdev_asize,
+           &offset, &size)) {
+               return (B_FALSE);
+       }
+       ASSERT(IS_P2ALIGNED(offset, 1 << ashift));
+       ASSERT3U(size, >=, 1 << ashift);
+       uint64_t length = 1 << ashift;
+       int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
+
+       uint64_t blkid = offset >> ashift;
+
+       int old_children = vd->vdev_children - 1;
+
+       /*
+        * We can only progress to the point that writes will not overlap
+        * with blocks whose progress has not yet been recorded on disk.
+        * Since partially-copied rows are still read from the old location,
+        * we need to stop one row before the sector-wise overlap, to prevent
+        * row-wise overlap.
+        *
+        * Note that even if we are skipping over a large unallocated region,
+        * we can't move the on-disk progress to `offset`, because concurrent
+        * writes/allocations could still use the currently-unallocated
+        * region.
+        */
+       uint64_t ubsync_blkid =
+           RRSS_GET_OFFSET(&spa->spa_ubsync) >> ashift;
+       uint64_t next_overwrite_blkid = ubsync_blkid +
+           ubsync_blkid / old_children - old_children;
+       VERIFY3U(next_overwrite_blkid, >, ubsync_blkid);
+
+       if (blkid >= next_overwrite_blkid) {
+               raidz_reflow_record_progress(vre,
+                   next_overwrite_blkid << ashift, tx);
+               return (B_TRUE);
+       }
+
+       range_tree_remove(rt, offset, length);
+
+       raidz_reflow_arg_t *rra = kmem_zalloc(sizeof (*rra), KM_SLEEP);
+       rra->rra_vre = vre;
+       rra->rra_lr = zfs_rangelock_enter(&vre->vre_rangelock,
+           offset, length, RL_WRITER);
+       rra->rra_txg = dmu_tx_get_txg(tx);
+
+       raidz_reflow_record_progress(vre, offset + length, tx);
+
+       mutex_enter(&vre->vre_lock);
+       vre->vre_outstanding_bytes += length;
+       mutex_exit(&vre->vre_lock);
+
+       /*
+        * SCL_STATE will be released when the read and write are done,
+        * by raidz_reflow_write_done().
+        */
+       spa_config_enter(spa, SCL_STATE, spa, RW_READER);
+
+       /* check if a replacing vdev was added, if so treat it as an error */
+       if (vdev_raidz_expand_child_replacing(vd)) {
+               zfs_dbgmsg("replacing vdev encountered, reflow paused at "
+                   "offset=%llu txg=%llu",
+                   (long long)rra->rra_lr->lr_offset,
+                   (long long)rra->rra_txg);
+
+               mutex_enter(&vre->vre_lock);
+               vre->vre_failed_offset =
+                   MIN(vre->vre_failed_offset, rra->rra_lr->lr_offset);
+               cv_signal(&vre->vre_cv);
+               mutex_exit(&vre->vre_lock);
+
+               /* drop everything we acquired */
+               zfs_rangelock_exit(rra->rra_lr);
+               kmem_free(rra, sizeof (*rra));
+               spa_config_exit(spa, SCL_STATE, spa);
+               return (B_TRUE);
+       }
+
+       zio_t *pio = spa->spa_txg_zio[txgoff];
+       abd_t *abd = abd_alloc_for_io(length, B_FALSE);
+       zio_t *write_zio = zio_vdev_child_io(pio, NULL,
+           vd->vdev_child[blkid % vd->vdev_children],
+           (blkid / vd->vdev_children) << ashift,
+           abd, length,
+           ZIO_TYPE_WRITE, ZIO_PRIORITY_REMOVAL,
+           ZIO_FLAG_CANFAIL,
+           raidz_reflow_write_done, rra);
+
+       zio_nowait(zio_vdev_child_io(write_zio, NULL,
+           vd->vdev_child[blkid % old_children],
+           (blkid / old_children) << ashift,
+           abd, length,
+           ZIO_TYPE_READ, ZIO_PRIORITY_REMOVAL,
+           ZIO_FLAG_CANFAIL,
+           raidz_reflow_read_done, rra));
+
+       return (B_FALSE);
+}
+
+/*
+ * For testing (ztest specific)
+ */
+static void
+raidz_expand_pause(uint_t pause_point)
+{
+       while (raidz_expand_pause_point != 0 &&
+           raidz_expand_pause_point <= pause_point)
+               delay(hz);
+}
+
+static void
+raidz_scratch_child_done(zio_t *zio)
+{
+       zio_t *pio = zio->io_private;
+
+       mutex_enter(&pio->io_lock);
+       pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
+       mutex_exit(&pio->io_lock);
+}
+
+/*
+ * Reflow the beginning portion of the vdev into an intermediate scratch area
+ * in memory and on disk. This operation must be persisted on disk before we
+ * proceed to overwrite the beginning portion with the reflowed data.
+ *
+ * This multi-step task can fail to complete if disk errors are encountered
+ * and we can return here after a pause (waiting for disk to become healthy).
+ */
+static void
+raidz_reflow_scratch_sync(void *arg, dmu_tx_t *tx)
+{
+       vdev_raidz_expand_t *vre = arg;
+       spa_t *spa = dmu_tx_pool(tx)->dp_spa;
+       zio_t *pio;
+       int error;
+
+       spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
+       vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
+       int ashift = raidvd->vdev_ashift;
+       uint64_t write_size = P2ALIGN(VDEV_BOOT_SIZE, 1 << ashift);
+       uint64_t logical_size = write_size * raidvd->vdev_children;
+       uint64_t read_size =
+           P2ROUNDUP(DIV_ROUND_UP(logical_size, (raidvd->vdev_children - 1)),
+           1 << ashift);
+
+       /*
+        * The scratch space must be large enough to get us to the point
+        * that one row does not overlap itself when moved.  This is checked
+        * by vdev_raidz_attach_check().
+        */
+       VERIFY3U(write_size, >=, raidvd->vdev_children << ashift);
+       VERIFY3U(write_size, <=, VDEV_BOOT_SIZE);
+       VERIFY3U(write_size, <=, read_size);
+
+       zfs_locked_range_t *lr = zfs_rangelock_enter(&vre->vre_rangelock,
+           0, logical_size, RL_WRITER);
+
+       abd_t **abds = kmem_alloc(raidvd->vdev_children * sizeof (abd_t *),
+           KM_SLEEP);
+       for (int i = 0; i < raidvd->vdev_children; i++) {
+               abds[i] = abd_alloc_linear(read_size, B_FALSE);
+       }
+
+       raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_1);
+
+       /*
+        * If we have already written the scratch area then we must read from
+        * there, since new writes were redirected there while we were paused
+        * or the original location may have been partially overwritten with
+        * reflowed data.
+        */
+       if (RRSS_GET_STATE(&spa->spa_ubsync) == RRSS_SCRATCH_VALID) {
+               VERIFY3U(RRSS_GET_OFFSET(&spa->spa_ubsync), ==, logical_size);
+               /*
+                * Read from scratch space.
+                */
+               pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
+               for (int i = 0; i < raidvd->vdev_children; i++) {
+                       /*
+                        * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE
+                        * to the offset to calculate the physical offset to
+                        * write to.  Passing in a negative offset makes us
+                        * access the scratch area.
+                        */
+                       zio_nowait(zio_vdev_child_io(pio, NULL,
+                           raidvd->vdev_child[i],
+                           VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
+                           write_size, ZIO_TYPE_READ, ZIO_PRIORITY_ASYNC_READ,
+                           ZIO_FLAG_CANFAIL, raidz_scratch_child_done, pio));
+               }
+               error = zio_wait(pio);
+               if (error != 0) {
+                       zfs_dbgmsg("reflow: error %d reading scratch location",
+                           error);
+                       goto io_error_exit;
+               }
+               goto overwrite;
+       }
+
+       /*
+        * Read from original location.
+        */
+       pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
+       for (int i = 0; i < raidvd->vdev_children - 1; i++) {
+               ASSERT0(vdev_is_dead(raidvd->vdev_child[i]));
+               zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
+                   0, abds[i], read_size, ZIO_TYPE_READ,
+                   ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
+                   raidz_scratch_child_done, pio));
+       }
+       error = zio_wait(pio);
+       if (error != 0) {
+               zfs_dbgmsg("reflow: error %d reading original location", error);
+io_error_exit:
+               for (int i = 0; i < raidvd->vdev_children; i++)
+                       abd_free(abds[i]);
+               kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
+               zfs_rangelock_exit(lr);
+               spa_config_exit(spa, SCL_STATE, FTAG);
+               return;
+       }
+
+       raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_2);
+
+       /*
+        * Reflow in memory.
+        */
+       uint64_t logical_sectors = logical_size >> ashift;
+       for (int i = raidvd->vdev_children - 1; i < logical_sectors; i++) {
+               int oldchild = i % (raidvd->vdev_children - 1);
+               uint64_t oldoff = (i / (raidvd->vdev_children - 1)) << ashift;
+
+               int newchild = i % raidvd->vdev_children;
+               uint64_t newoff = (i / raidvd->vdev_children) << ashift;
+
+               /* a single sector should not be copying over itself */
+               ASSERT(!(newchild == oldchild && newoff == oldoff));
+
+               abd_copy_off(abds[newchild], abds[oldchild],
+                   newoff, oldoff, 1 << ashift);
+       }
+
+       /*
+        * Verify that we filled in everything we intended to (write_size on
+        * each child).
+        */
+       VERIFY0(logical_sectors % raidvd->vdev_children);
+       VERIFY3U((logical_sectors / raidvd->vdev_children) << ashift, ==,
+           write_size);
+
+       /*
+        * Write to scratch location (boot area).
+        */
+       pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
+       for (int i = 0; i < raidvd->vdev_children; i++) {
+               /*
+                * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE to
+                * the offset to calculate the physical offset to write to.
+                * Passing in a negative offset lets us access the boot area.
+                */
+               zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
+                   VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
+                   write_size, ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
+                   ZIO_FLAG_CANFAIL, raidz_scratch_child_done, pio));
+       }
+       error = zio_wait(pio);
+       if (error != 0) {
+               zfs_dbgmsg("reflow: error %d writing scratch location", error);
+               goto io_error_exit;
+       }
+       pio = zio_root(spa, NULL, NULL, 0);
+       zio_flush(pio, raidvd);
+       zio_wait(pio);
+
+       zfs_dbgmsg("reflow: wrote %llu bytes (logical) to scratch area",
+           (long long)logical_size);
+
+       raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_3);
+
+       /*
+        * Update uberblock to indicate that scratch space is valid.  This is
+        * needed because after this point, the real location may be
+        * overwritten.  If we crash, we need to get the data from the
+        * scratch space, rather than the real location.
+        *
+        * Note: ub_timestamp is bumped so that vdev_uberblock_compare()
+        * will prefer this uberblock.
+        */
+       RAIDZ_REFLOW_SET(&spa->spa_ubsync, RRSS_SCRATCH_VALID, logical_size);
+       spa->spa_ubsync.ub_timestamp++;
+       ASSERT0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
+           &spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
+       if (spa_multihost(spa))
+               mmp_update_uberblock(spa, &spa->spa_ubsync);
+
+       zfs_dbgmsg("reflow: uberblock updated "
+           "(txg %llu, SCRATCH_VALID, size %llu, ts %llu)",
+           (long long)spa->spa_ubsync.ub_txg,
+           (long long)logical_size,
+           (long long)spa->spa_ubsync.ub_timestamp);
+
+       raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_VALID);
+
+       /*
+        * Overwrite with reflow'ed data.
+        */
+overwrite:
+       pio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
+       for (int i = 0; i < raidvd->vdev_children; i++) {
+               zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
+                   0, abds[i], write_size, ZIO_TYPE_WRITE,
+                   ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL,
+                   raidz_scratch_child_done, pio));
+       }
+       error = zio_wait(pio);
+       if (error != 0) {
+               /*
+                * When we exit early here and drop the range lock, new
+                * writes will go into the scratch area so we'll need to
+                * read from there when we return after pausing.
+                */
+               zfs_dbgmsg("reflow: error %d writing real location", error);
+               /*
+                * Update the uberblock that is written when this txg completes.
+                */
+               RAIDZ_REFLOW_SET(&spa->spa_uberblock, RRSS_SCRATCH_VALID,
+                   logical_size);
+               goto io_error_exit;
        }
+       pio = zio_root(spa, NULL, NULL, 0);
+       zio_flush(pio, raidvd);
+       zio_wait(pio);
+
+       zfs_dbgmsg("reflow: overwrote %llu bytes (logical) to real location",
+           (long long)logical_size);
+       for (int i = 0; i < raidvd->vdev_children; i++)
+               abd_free(abds[i]);
+       kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
+
+       raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_REFLOWED);
+
+       /*
+        * Update uberblock to indicate that the initial part has been
+        * reflow'ed.  This is needed because after this point (when we exit
+        * the rangelock), we allow regular writes to this region, which will
+        * be written to the new location only (because reflow_offset_next ==
+        * reflow_offset_synced).  If we crashed and re-copied from the
+        * scratch space, we would lose the regular writes.
+        */
+       RAIDZ_REFLOW_SET(&spa->spa_ubsync, RRSS_SCRATCH_INVALID_SYNCED,
+           logical_size);
+       spa->spa_ubsync.ub_timestamp++;
+       ASSERT0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
+           &spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
+       if (spa_multihost(spa))
+               mmp_update_uberblock(spa, &spa->spa_ubsync);
+
+       zfs_dbgmsg("reflow: uberblock updated "
+           "(txg %llu, SCRATCH_NOT_IN_USE, size %llu, ts %llu)",
+           (long long)spa->spa_ubsync.ub_txg,
+           (long long)logical_size,
+           (long long)spa->spa_ubsync.ub_timestamp);
+
+       raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_1);
 
        /*
-        * At this point we've attempted to reconstruct the data given the
-        * errors we detected, and we've attempted to read all columns. There
-        * must, therefore, be one or more additional problems -- silent errors
-        * resulting in invalid data rather than explicit I/O errors resulting
-        * in absent data. We check if there is enough additional data to
-        * possibly reconstruct the data and then perform combinatorial
-        * reconstruction over all possible combinations. If that fails,
-        * we're cooked.
+        * Update progress.
         */
-       if (total_errors > rm->rm_firstdatacol) {
-               zio->io_error = vdev_raidz_worst_error(rm);
+       vre->vre_offset = logical_size;
+       zfs_rangelock_exit(lr);
+       spa_config_exit(spa, SCL_STATE, FTAG);
 
-       } else if (total_errors < rm->rm_firstdatacol &&
-           (code = vdev_raidz_combrec(zio, total_errors, data_errors)) != 0) {
+       int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
+       vre->vre_offset_pertxg[txgoff] = vre->vre_offset;
+       vre->vre_bytes_copied_pertxg[txgoff] = vre->vre_bytes_copied;
+       /*
+        * Note - raidz_reflow_sync() will update the uberblock state to
+        * RRSS_SCRATCH_INVALID_SYNCED_REFLOW
+        */
+       raidz_reflow_sync(spa, tx);
+
+       raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2);
+}
+
+/*
+ * We crashed in the middle of raidz_reflow_scratch_sync(); complete its work
+ * here.  No other i/o can be in progress, so we don't need the vre_rangelock.
+ */
+void
+vdev_raidz_reflow_copy_scratch(spa_t *spa)
+{
+       vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
+       uint64_t logical_size = RRSS_GET_OFFSET(&spa->spa_uberblock);
+       ASSERT3U(RRSS_GET_STATE(&spa->spa_uberblock), ==, RRSS_SCRATCH_VALID);
+
+       spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
+       vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
+       ASSERT0(logical_size % raidvd->vdev_children);
+       uint64_t write_size = logical_size / raidvd->vdev_children;
+
+       zio_t *pio;
+
+       /*
+        * Read from scratch space.
+        */
+       abd_t **abds = kmem_alloc(raidvd->vdev_children * sizeof (abd_t *),
+           KM_SLEEP);
+       for (int i = 0; i < raidvd->vdev_children; i++) {
+               abds[i] = abd_alloc_linear(write_size, B_FALSE);
+       }
+
+       pio = zio_root(spa, NULL, NULL, 0);
+       for (int i = 0; i < raidvd->vdev_children; i++) {
                /*
-                * If we didn't use all the available parity for the
-                * combinatorial reconstruction, verify that the remaining
-                * parity is correct.
+                * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE to
+                * the offset to calculate the physical offset to write to.
+                * Passing in a negative offset lets us access the boot area.
                 */
-               if (code != (1 << rm->rm_firstdatacol) - 1)
-                       (void) raidz_parity_verify(zio, rm);
+               zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
+                   VDEV_BOOT_OFFSET - VDEV_LABEL_START_SIZE, abds[i],
+                   write_size, ZIO_TYPE_READ,
+                   ZIO_PRIORITY_ASYNC_READ, 0,
+                   raidz_scratch_child_done, pio));
+       }
+       zio_wait(pio);
+
+       /*
+        * Overwrite real location with reflow'ed data.
+        */
+       pio = zio_root(spa, NULL, NULL, 0);
+       for (int i = 0; i < raidvd->vdev_children; i++) {
+               zio_nowait(zio_vdev_child_io(pio, NULL, raidvd->vdev_child[i],
+                   0, abds[i], write_size, ZIO_TYPE_WRITE,
+                   ZIO_PRIORITY_ASYNC_WRITE, 0,
+                   raidz_scratch_child_done, pio));
+       }
+       zio_wait(pio);
+       pio = zio_root(spa, NULL, NULL, 0);
+       zio_flush(pio, raidvd);
+       zio_wait(pio);
+
+       zfs_dbgmsg("reflow recovery: overwrote %llu bytes (logical) "
+           "to real location", (long long)logical_size);
+
+       for (int i = 0; i < raidvd->vdev_children; i++)
+               abd_free(abds[i]);
+       kmem_free(abds, raidvd->vdev_children * sizeof (abd_t *));
+
+       /*
+        * Update uberblock.
+        */
+       RAIDZ_REFLOW_SET(&spa->spa_ubsync,
+           RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT, logical_size);
+       spa->spa_ubsync.ub_timestamp++;
+       VERIFY0(vdev_uberblock_sync_list(&spa->spa_root_vdev, 1,
+           &spa->spa_ubsync, ZIO_FLAG_CONFIG_WRITER));
+       if (spa_multihost(spa))
+               mmp_update_uberblock(spa, &spa->spa_ubsync);
+
+       zfs_dbgmsg("reflow recovery: uberblock updated "
+           "(txg %llu, SCRATCH_NOT_IN_USE, size %llu, ts %llu)",
+           (long long)spa->spa_ubsync.ub_txg,
+           (long long)logical_size,
+           (long long)spa->spa_ubsync.ub_timestamp);
+
+       dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
+           spa_first_txg(spa));
+       int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
+       vre->vre_offset = logical_size;
+       vre->vre_offset_pertxg[txgoff] = vre->vre_offset;
+       vre->vre_bytes_copied_pertxg[txgoff] = vre->vre_bytes_copied;
+       /*
+        * Note that raidz_reflow_sync() will update the uberblock once more
+        */
+       raidz_reflow_sync(spa, tx);
+
+       dmu_tx_commit(tx);
+
+       spa_config_exit(spa, SCL_STATE, FTAG);
+}
+
+static boolean_t
+spa_raidz_expand_thread_check(void *arg, zthr_t *zthr)
+{
+       (void) zthr;
+       spa_t *spa = arg;
+
+       return (spa->spa_raidz_expand != NULL &&
+           !spa->spa_raidz_expand->vre_waiting_for_resilver);
+}
+
+/*
+ * RAIDZ expansion background thread
+ *
+ * Can be called multiple times if the reflow is paused
+ */
+static void
+spa_raidz_expand_thread(void *arg, zthr_t *zthr)
+{
+       spa_t *spa = arg;
+       vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
+
+       if (RRSS_GET_STATE(&spa->spa_ubsync) == RRSS_SCRATCH_VALID)
+               vre->vre_offset = 0;
+       else
+               vre->vre_offset = RRSS_GET_OFFSET(&spa->spa_ubsync);
+
+       /* Reflow the begining portion using the scratch area */
+       if (vre->vre_offset == 0) {
+               VERIFY0(dsl_sync_task(spa_name(spa),
+                   NULL, raidz_reflow_scratch_sync,
+                   vre, 0, ZFS_SPACE_CHECK_NONE));
+
+               /* if we encountered errors then pause */
+               if (vre->vre_offset == 0) {
+                       mutex_enter(&vre->vre_lock);
+                       vre->vre_waiting_for_resilver = B_TRUE;
+                       mutex_exit(&vre->vre_lock);
+                       return;
+               }
+       }
+
+       spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+       vdev_t *raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
+
+       uint64_t guid = raidvd->vdev_guid;
+
+       /* Iterate over all the remaining metaslabs */
+       for (uint64_t i = vre->vre_offset >> raidvd->vdev_ms_shift;
+           i < raidvd->vdev_ms_count &&
+           !zthr_iscancelled(zthr) &&
+           vre->vre_failed_offset == UINT64_MAX; i++) {
+               metaslab_t *msp = raidvd->vdev_ms[i];
+
+               metaslab_disable(msp);
+               mutex_enter(&msp->ms_lock);
+
+               /*
+                * The metaslab may be newly created (for the expanded
+                * space), in which case its trees won't exist yet,
+                * so we need to bail out early.
+                */
+               if (msp->ms_new) {
+                       mutex_exit(&msp->ms_lock);
+                       metaslab_enable(msp, B_FALSE, B_FALSE);
+                       continue;
+               }
+
+               VERIFY0(metaslab_load(msp));
+
+               /*
+                * We want to copy everything except the free (allocatable)
+                * space.  Note that there may be a little bit more free
+                * space (e.g. in ms_defer), and it's fine to copy that too.
+                */
+               range_tree_t *rt = range_tree_create(NULL, RANGE_SEG64,
+                   NULL, 0, 0);
+               range_tree_add(rt, msp->ms_start, msp->ms_size);
+               range_tree_walk(msp->ms_allocatable, range_tree_remove, rt);
+               mutex_exit(&msp->ms_lock);
+
+               /*
+                * Force the last sector of each metaslab to be copied.  This
+                * ensures that we advance the on-disk progress to the end of
+                * this metaslab while the metaslab is disabled.  Otherwise, we
+                * could move past this metaslab without advancing the on-disk
+                * progress, and then an allocation to this metaslab would not
+                * be copied.
+                */
+               int sectorsz = 1 << raidvd->vdev_ashift;
+               uint64_t ms_last_offset = msp->ms_start +
+                   msp->ms_size - sectorsz;
+               if (!range_tree_contains(rt, ms_last_offset, sectorsz)) {
+                       range_tree_add(rt, ms_last_offset, sectorsz);
+               }
+
+               /*
+                * When we are resuming from a paused expansion (i.e.
+                * when importing a pool with a expansion in progress),
+                * discard any state that we have already processed.
+                */
+               range_tree_clear(rt, 0, vre->vre_offset);
+
+               while (!zthr_iscancelled(zthr) &&
+                   !range_tree_is_empty(rt) &&
+                   vre->vre_failed_offset == UINT64_MAX) {
+
+                       /*
+                        * We need to periodically drop the config lock so that
+                        * writers can get in.  Additionally, we can't wait
+                        * for a txg to sync while holding a config lock
+                        * (since a waiting writer could cause a 3-way deadlock
+                        * with the sync thread, which also gets a config
+                        * lock for reader).  So we can't hold the config lock
+                        * while calling dmu_tx_assign().
+                        */
+                       spa_config_exit(spa, SCL_CONFIG, FTAG);
+
+                       /*
+                        * If requested, pause the reflow when the amount
+                        * specified by raidz_expand_max_reflow_bytes is reached
+                        *
+                        * This pause is only used during testing or debugging.
+                        */
+                       while (raidz_expand_max_reflow_bytes != 0 &&
+                           raidz_expand_max_reflow_bytes <=
+                           vre->vre_bytes_copied && !zthr_iscancelled(zthr)) {
+                               delay(hz);
+                       }
+
+                       mutex_enter(&vre->vre_lock);
+                       while (vre->vre_outstanding_bytes >
+                           raidz_expand_max_copy_bytes) {
+                               cv_wait(&vre->vre_cv, &vre->vre_lock);
+                       }
+                       mutex_exit(&vre->vre_lock);
+
+                       dmu_tx_t *tx =
+                           dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
+
+                       VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
+                       uint64_t txg = dmu_tx_get_txg(tx);
+
+                       /*
+                        * Reacquire the vdev_config lock.  Theoretically, the
+                        * vdev_t that we're expanding may have changed.
+                        */
+                       spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+                       raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
+
+                       boolean_t needsync =
+                           raidz_reflow_impl(raidvd, vre, rt, tx);
+
+                       dmu_tx_commit(tx);
+
+                       if (needsync) {
+                               spa_config_exit(spa, SCL_CONFIG, FTAG);
+                               txg_wait_synced(spa->spa_dsl_pool, txg);
+                               spa_config_enter(spa, SCL_CONFIG, FTAG,
+                                   RW_READER);
+                       }
+               }
+
+               spa_config_exit(spa, SCL_CONFIG, FTAG);
+
+               metaslab_enable(msp, B_FALSE, B_FALSE);
+               range_tree_vacate(rt, NULL, NULL);
+               range_tree_destroy(rt);
+
+               spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
+               raidvd = vdev_lookup_top(spa, vre->vre_vdev_id);
+       }
+
+       spa_config_exit(spa, SCL_CONFIG, FTAG);
+
+       /*
+        * The txg_wait_synced() here ensures that all reflow zio's have
+        * completed, and vre_failed_offset has been set if necessary.  It
+        * also ensures that the progress of the last raidz_reflow_sync() is
+        * written to disk before raidz_reflow_complete_sync() changes the
+        * in-memory vre_state.  vdev_raidz_io_start() uses vre_state to
+        * determine if a reflow is in progress, in which case we may need to
+        * write to both old and new locations.  Therefore we can only change
+        * vre_state once this is not necessary, which is once the on-disk
+        * progress (in spa_ubsync) has been set past any possible writes (to
+        * the end of the last metaslab).
+        */
+       txg_wait_synced(spa->spa_dsl_pool, 0);
+
+       if (!zthr_iscancelled(zthr) &&
+           vre->vre_offset == raidvd->vdev_ms_count << raidvd->vdev_ms_shift) {
+               /*
+                * We are not being canceled or paused, so the reflow must be
+                * complete. In that case also mark it as completed on disk.
+                */
+               ASSERT3U(vre->vre_failed_offset, ==, UINT64_MAX);
+               VERIFY0(dsl_sync_task(spa_name(spa), NULL,
+                   raidz_reflow_complete_sync, spa,
+                   0, ZFS_SPACE_CHECK_NONE));
+               (void) vdev_online(spa, guid, ZFS_ONLINE_EXPAND, NULL);
        } else {
                /*
-                * We're here because either:
-                *
-                *      total_errors == rm_first_datacol, or
-                *      vdev_raidz_combrec() failed
-                *
-                * In either case, there is enough bad data to prevent
-                * reconstruction.
-                *
-                * Start checksum ereports for all children which haven't
-                * failed, and the IO wasn't speculative.
+                * Wait for all copy zio's to complete and for all the
+                * raidz_reflow_sync() synctasks to be run.
+                */
+               spa_history_log_internal(spa, "reflow pause",
+                   NULL, "offset=%llu failed_offset=%lld",
+                   (long long)vre->vre_offset,
+                   (long long)vre->vre_failed_offset);
+               mutex_enter(&vre->vre_lock);
+               if (vre->vre_failed_offset != UINT64_MAX) {
+                       /*
+                        * Reset progress so that we will retry everything
+                        * after the point that something failed.
+                        */
+                       vre->vre_offset = vre->vre_failed_offset;
+                       vre->vre_failed_offset = UINT64_MAX;
+                       vre->vre_waiting_for_resilver = B_TRUE;
+               }
+               mutex_exit(&vre->vre_lock);
+       }
+}
+
+void
+spa_start_raidz_expansion_thread(spa_t *spa)
+{
+       ASSERT3P(spa->spa_raidz_expand_zthr, ==, NULL);
+       spa->spa_raidz_expand_zthr = zthr_create("raidz_expand",
+           spa_raidz_expand_thread_check, spa_raidz_expand_thread,
+           spa, defclsyspri);
+}
+
+void
+raidz_dtl_reassessed(vdev_t *vd)
+{
+       spa_t *spa = vd->vdev_spa;
+       if (spa->spa_raidz_expand != NULL) {
+               vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
+               /*
+                * we get called often from vdev_dtl_reassess() so make
+                * sure it's our vdev and any replacing is complete
                 */
-               zio->io_error = SET_ERROR(ECKSUM);
-
-               if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
-                       for (c = 0; c < rm->rm_cols; c++) {
-                               rc = &rm->rm_col[c];
-                               if (rc->rc_error == 0) {
-                                       zio_bad_cksum_t zbc;
-                                       zbc.zbc_has_cksum = 0;
-                                       zbc.zbc_injected =
-                                           rm->rm_ecksuminjected;
-
-                                       zfs_ereport_start_checksum(
-                                           zio->io_spa,
-                                           vd->vdev_child[rc->rc_devidx],
-                                           zio, rc->rc_offset, rc->rc_size,
-                                           (void *)(uintptr_t)c, &zbc);
+               if (vd->vdev_top->vdev_id == vre->vre_vdev_id &&
+                   !vdev_raidz_expand_child_replacing(vd->vdev_top)) {
+                       mutex_enter(&vre->vre_lock);
+                       if (vre->vre_waiting_for_resilver) {
+                               vdev_dbgmsg(vd, "DTL reassessed, "
+                                   "continuing raidz expansion");
+                               vre->vre_waiting_for_resilver = B_FALSE;
+                               zthr_wakeup(spa->spa_raidz_expand_zthr);
+                       }
+                       mutex_exit(&vre->vre_lock);
+               }
+       }
+}
+
+int
+vdev_raidz_attach_check(vdev_t *new_child)
+{
+       vdev_t *raidvd = new_child->vdev_parent;
+       uint64_t new_children = raidvd->vdev_children;
+
+       /*
+        * We use the "boot" space as scratch space to handle overwriting the
+        * initial part of the vdev.  If it is too small, then this expansion
+        * is not allowed.  This would be very unusual (e.g. ashift > 13 and
+        * >200 children).
+        */
+       if (new_children << raidvd->vdev_ashift > VDEV_BOOT_SIZE) {
+               return (EINVAL);
+       }
+       return (0);
+}
+
+void
+vdev_raidz_attach_sync(void *arg, dmu_tx_t *tx)
+{
+       vdev_t *new_child = arg;
+       spa_t *spa = new_child->vdev_spa;
+       vdev_t *raidvd = new_child->vdev_parent;
+       vdev_raidz_t *vdrz = raidvd->vdev_tsd;
+       ASSERT3P(raidvd->vdev_ops, ==, &vdev_raidz_ops);
+       ASSERT3P(raidvd->vdev_top, ==, raidvd);
+       ASSERT3U(raidvd->vdev_children, >, vdrz->vd_original_width);
+       ASSERT3U(raidvd->vdev_children, ==, vdrz->vd_physical_width + 1);
+       ASSERT3P(raidvd->vdev_child[raidvd->vdev_children - 1], ==,
+           new_child);
+
+       spa_feature_incr(spa, SPA_FEATURE_RAIDZ_EXPANSION, tx);
+
+       vdrz->vd_physical_width++;
+
+       VERIFY0(spa->spa_uberblock.ub_raidz_reflow_info);
+       vdrz->vn_vre.vre_vdev_id = raidvd->vdev_id;
+       vdrz->vn_vre.vre_offset = 0;
+       vdrz->vn_vre.vre_failed_offset = UINT64_MAX;
+       spa->spa_raidz_expand = &vdrz->vn_vre;
+       zthr_wakeup(spa->spa_raidz_expand_zthr);
+
+       /*
+        * Dirty the config so that ZPOOL_CONFIG_RAIDZ_EXPANDING will get
+        * written to the config.
+        */
+       vdev_config_dirty(raidvd);
+
+       vdrz->vn_vre.vre_start_time = gethrestime_sec();
+       vdrz->vn_vre.vre_end_time = 0;
+       vdrz->vn_vre.vre_state = DSS_SCANNING;
+       vdrz->vn_vre.vre_bytes_copied = 0;
+
+       uint64_t state = vdrz->vn_vre.vre_state;
+       VERIFY0(zap_update(spa->spa_meta_objset,
+           raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
+           sizeof (state), 1, &state, tx));
+
+       uint64_t start_time = vdrz->vn_vre.vre_start_time;
+       VERIFY0(zap_update(spa->spa_meta_objset,
+           raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME,
+           sizeof (start_time), 1, &start_time, tx));
+
+       (void) zap_remove(spa->spa_meta_objset,
+           raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME, tx);
+       (void) zap_remove(spa->spa_meta_objset,
+           raidvd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED, tx);
+
+       spa_history_log_internal(spa, "raidz vdev expansion started",  tx,
+           "%s vdev %llu new width %llu", spa_name(spa),
+           (unsigned long long)raidvd->vdev_id,
+           (unsigned long long)raidvd->vdev_children);
+}
+
+int
+vdev_raidz_load(vdev_t *vd)
+{
+       vdev_raidz_t *vdrz = vd->vdev_tsd;
+       int err;
+
+       uint64_t state = DSS_NONE;
+       uint64_t start_time = 0;
+       uint64_t end_time = 0;
+       uint64_t bytes_copied = 0;
+
+       if (vd->vdev_top_zap != 0) {
+               err = zap_lookup(vd->vdev_spa->spa_meta_objset,
+                   vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE,
+                   sizeof (state), 1, &state);
+               if (err != 0 && err != ENOENT)
+                       return (err);
+
+               err = zap_lookup(vd->vdev_spa->spa_meta_objset,
+                   vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME,
+                   sizeof (start_time), 1, &start_time);
+               if (err != 0 && err != ENOENT)
+                       return (err);
+
+               err = zap_lookup(vd->vdev_spa->spa_meta_objset,
+                   vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME,
+                   sizeof (end_time), 1, &end_time);
+               if (err != 0 && err != ENOENT)
+                       return (err);
+
+               err = zap_lookup(vd->vdev_spa->spa_meta_objset,
+                   vd->vdev_top_zap, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED,
+                   sizeof (bytes_copied), 1, &bytes_copied);
+               if (err != 0 && err != ENOENT)
+                       return (err);
+       }
+
+       /*
+        * If we are in the middle of expansion, vre_state should have
+        * already been set by vdev_raidz_init().
+        */
+       EQUIV(vdrz->vn_vre.vre_state == DSS_SCANNING, state == DSS_SCANNING);
+       vdrz->vn_vre.vre_state = (dsl_scan_state_t)state;
+       vdrz->vn_vre.vre_start_time = start_time;
+       vdrz->vn_vre.vre_end_time = end_time;
+       vdrz->vn_vre.vre_bytes_copied = bytes_copied;
+
+       return (0);
+}
+
+int
+spa_raidz_expand_get_stats(spa_t *spa, pool_raidz_expand_stat_t *pres)
+{
+       vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
+
+       if (vre == NULL) {
+               /* no removal in progress; find most recent completed */
+               for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++) {
+                       vdev_t *vd = spa->spa_root_vdev->vdev_child[c];
+                       if (vd->vdev_ops == &vdev_raidz_ops) {
+                               vdev_raidz_t *vdrz = vd->vdev_tsd;
+
+                               if (vdrz->vn_vre.vre_end_time != 0 &&
+                                   (vre == NULL ||
+                                   vdrz->vn_vre.vre_end_time >
+                                   vre->vre_end_time)) {
+                                       vre = &vdrz->vn_vre;
                                }
                        }
                }
        }
 
-done:
-       zio_checksum_verified(zio);
+       if (vre == NULL) {
+               return (SET_ERROR(ENOENT));
+       }
+
+       pres->pres_state = vre->vre_state;
+       pres->pres_expanding_vdev = vre->vre_vdev_id;
+
+       vdev_t *vd = vdev_lookup_top(spa, vre->vre_vdev_id);
+       pres->pres_to_reflow = vd->vdev_stat.vs_alloc;
+
+       mutex_enter(&vre->vre_lock);
+       pres->pres_reflowed = vre->vre_bytes_copied;
+       for (int i = 0; i < TXG_SIZE; i++)
+               pres->pres_reflowed += vre->vre_bytes_copied_pertxg[i];
+       mutex_exit(&vre->vre_lock);
+
+       pres->pres_start_time = vre->vre_start_time;
+       pres->pres_end_time = vre->vre_end_time;
+       pres->pres_waiting_for_resilver = vre->vre_waiting_for_resilver;
+
+       return (0);
+}
+
+/*
+ * Initialize private RAIDZ specific fields from the nvlist.
+ */
+static int
+vdev_raidz_init(spa_t *spa, nvlist_t *nv, void **tsd)
+{
+       uint_t children;
+       nvlist_t **child;
+       int error = nvlist_lookup_nvlist_array(nv,
+           ZPOOL_CONFIG_CHILDREN, &child, &children);
+       if (error != 0)
+               return (SET_ERROR(EINVAL));
+
+       uint64_t nparity;
+       if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, &nparity) == 0) {
+               if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
+                       return (SET_ERROR(EINVAL));
 
-       if (zio->io_error == 0 && spa_writeable(zio->io_spa) &&
-           (unexpected_errors || (zio->io_flags & ZIO_FLAG_RESILVER))) {
                /*
-                * Use the good data we have in hand to repair damaged children.
+                * Previous versions could only support 1 or 2 parity
+                * device.
                 */
-               for (c = 0; c < rm->rm_cols; c++) {
-                       rc = &rm->rm_col[c];
-                       cvd = vd->vdev_child[rc->rc_devidx];
+               if (nparity > 1 && spa_version(spa) < SPA_VERSION_RAIDZ2)
+                       return (SET_ERROR(EINVAL));
+               else if (nparity > 2 && spa_version(spa) < SPA_VERSION_RAIDZ3)
+                       return (SET_ERROR(EINVAL));
+       } else {
+               /*
+                * We require the parity to be specified for SPAs that
+                * support multiple parity levels.
+                */
+               if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
+                       return (SET_ERROR(EINVAL));
 
-                       if (rc->rc_error == 0)
-                               continue;
+               /*
+                * Otherwise, we default to 1 parity device for RAID-Z.
+                */
+               nparity = 1;
+       }
 
-                       zio_nowait(zio_vdev_child_io(zio, NULL, cvd,
-                           rc->rc_offset, rc->rc_abd, rc->rc_size,
-                           ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
-                           ZIO_FLAG_IO_REPAIR | (unexpected_errors ?
-                           ZIO_FLAG_SELF_HEAL : 0), NULL, NULL));
+       vdev_raidz_t *vdrz = kmem_zalloc(sizeof (*vdrz), KM_SLEEP);
+       vdrz->vn_vre.vre_vdev_id = -1;
+       vdrz->vn_vre.vre_offset = UINT64_MAX;
+       vdrz->vn_vre.vre_failed_offset = UINT64_MAX;
+       mutex_init(&vdrz->vn_vre.vre_lock, NULL, MUTEX_DEFAULT, NULL);
+       cv_init(&vdrz->vn_vre.vre_cv, NULL, CV_DEFAULT, NULL);
+       zfs_rangelock_init(&vdrz->vn_vre.vre_rangelock, NULL, NULL);
+       mutex_init(&vdrz->vd_expand_lock, NULL, MUTEX_DEFAULT, NULL);
+       avl_create(&vdrz->vd_expand_txgs, vdev_raidz_reflow_compare,
+           sizeof (reflow_node_t), offsetof(reflow_node_t, re_link));
+
+       vdrz->vd_physical_width = children;
+       vdrz->vd_nparity = nparity;
+
+       /* note, the ID does not exist when creating a pool */
+       (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID,
+           &vdrz->vn_vre.vre_vdev_id);
+
+       boolean_t reflow_in_progress =
+           nvlist_exists(nv, ZPOOL_CONFIG_RAIDZ_EXPANDING);
+       if (reflow_in_progress) {
+               spa->spa_raidz_expand = &vdrz->vn_vre;
+               vdrz->vn_vre.vre_state = DSS_SCANNING;
+       }
+
+       vdrz->vd_original_width = children;
+       uint64_t *txgs;
+       unsigned int txgs_size = 0;
+       error = nvlist_lookup_uint64_array(nv, ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS,
+           &txgs, &txgs_size);
+       if (error == 0) {
+               for (int i = 0; i < txgs_size; i++) {
+                       reflow_node_t *re = kmem_zalloc(sizeof (*re), KM_SLEEP);
+                       re->re_txg = txgs[txgs_size - i - 1];
+                       re->re_logical_width = vdrz->vd_physical_width - i;
+
+                       if (reflow_in_progress)
+                               re->re_logical_width--;
+
+                       avl_add(&vdrz->vd_expand_txgs, re);
                }
+
+               vdrz->vd_original_width = vdrz->vd_physical_width - txgs_size;
        }
+       if (reflow_in_progress) {
+               vdrz->vd_original_width--;
+               zfs_dbgmsg("reflow_in_progress, %u wide, %d prior expansions",
+                   children, txgs_size);
+       }
+
+       *tsd = vdrz;
+
+       return (0);
 }
 
 static void
-vdev_raidz_state_change(vdev_t *vd, int faulted, int degraded)
+vdev_raidz_fini(vdev_t *vd)
 {
-       if (faulted > vd->vdev_nparity)
-               vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
-                   VDEV_AUX_NO_REPLICAS);
-       else if (degraded + faulted != 0)
-               vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, VDEV_AUX_NONE);
-       else
-               vdev_set_state(vd, B_FALSE, VDEV_STATE_HEALTHY, VDEV_AUX_NONE);
+       vdev_raidz_t *vdrz = vd->vdev_tsd;
+       if (vd->vdev_spa->spa_raidz_expand == &vdrz->vn_vre)
+               vd->vdev_spa->spa_raidz_expand = NULL;
+       reflow_node_t *re;
+       void *cookie = NULL;
+       avl_tree_t *tree = &vdrz->vd_expand_txgs;
+       while ((re = avl_destroy_nodes(tree, &cookie)) != NULL)
+               kmem_free(re, sizeof (*re));
+       avl_destroy(&vdrz->vd_expand_txgs);
+       mutex_destroy(&vdrz->vd_expand_lock);
+       mutex_destroy(&vdrz->vn_vre.vre_lock);
+       cv_destroy(&vdrz->vn_vre.vre_cv);
+       zfs_rangelock_fini(&vdrz->vn_vre.vre_rangelock);
+       kmem_free(vdrz, sizeof (*vdrz));
+}
+
+/*
+ * Add RAIDZ specific fields to the config nvlist.
+ */
+static void
+vdev_raidz_config_generate(vdev_t *vd, nvlist_t *nv)
+{
+       ASSERT3P(vd->vdev_ops, ==, &vdev_raidz_ops);
+       vdev_raidz_t *vdrz = vd->vdev_tsd;
+
+       /*
+        * Make sure someone hasn't managed to sneak a fancy new vdev
+        * into a crufty old storage pool.
+        */
+       ASSERT(vdrz->vd_nparity == 1 ||
+           (vdrz->vd_nparity <= 2 &&
+           spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ2) ||
+           (vdrz->vd_nparity <= 3 &&
+           spa_version(vd->vdev_spa) >= SPA_VERSION_RAIDZ3));
+
+       /*
+        * Note that we'll add these even on storage pools where they
+        * aren't strictly required -- older software will just ignore
+        * it.
+        */
+       fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vdrz->vd_nparity);
+
+       if (vdrz->vn_vre.vre_state == DSS_SCANNING) {
+               fnvlist_add_boolean(nv, ZPOOL_CONFIG_RAIDZ_EXPANDING);
+       }
+
+       mutex_enter(&vdrz->vd_expand_lock);
+       if (!avl_is_empty(&vdrz->vd_expand_txgs)) {
+               uint64_t count = avl_numnodes(&vdrz->vd_expand_txgs);
+               uint64_t *txgs = kmem_alloc(sizeof (uint64_t) * count,
+                   KM_SLEEP);
+               uint64_t i = 0;
+
+               for (reflow_node_t *re = avl_first(&vdrz->vd_expand_txgs);
+                   re != NULL; re = AVL_NEXT(&vdrz->vd_expand_txgs, re)) {
+                       txgs[i++] = re->re_txg;
+               }
+
+               fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS,
+                   txgs, count);
+
+               kmem_free(txgs, sizeof (uint64_t) * count);
+       }
+       mutex_exit(&vdrz->vd_expand_lock);
+}
+
+static uint64_t
+vdev_raidz_nparity(vdev_t *vd)
+{
+       vdev_raidz_t *vdrz = vd->vdev_tsd;
+       return (vdrz->vd_nparity);
+}
+
+static uint64_t
+vdev_raidz_ndisks(vdev_t *vd)
+{
+       return (vd->vdev_children);
 }
 
 vdev_ops_t vdev_raidz_ops = {
-       vdev_raidz_open,
-       vdev_raidz_close,
-       vdev_raidz_asize,
-       vdev_raidz_io_start,
-       vdev_raidz_io_done,
-       vdev_raidz_state_change,
-       NULL,
-       NULL,
-       VDEV_TYPE_RAIDZ,        /* name of this vdev type */
-       B_FALSE                 /* not a leaf vdev */
+       .vdev_op_init = vdev_raidz_init,
+       .vdev_op_fini = vdev_raidz_fini,
+       .vdev_op_open = vdev_raidz_open,
+       .vdev_op_close = vdev_raidz_close,
+       .vdev_op_asize = vdev_raidz_asize,
+       .vdev_op_min_asize = vdev_raidz_min_asize,
+       .vdev_op_min_alloc = NULL,
+       .vdev_op_io_start = vdev_raidz_io_start,
+       .vdev_op_io_done = vdev_raidz_io_done,
+       .vdev_op_state_change = vdev_raidz_state_change,
+       .vdev_op_need_resilver = vdev_raidz_need_resilver,
+       .vdev_op_hold = NULL,
+       .vdev_op_rele = NULL,
+       .vdev_op_remap = NULL,
+       .vdev_op_xlate = vdev_raidz_xlate,
+       .vdev_op_rebuild_asize = NULL,
+       .vdev_op_metaslab_init = NULL,
+       .vdev_op_config_generate = vdev_raidz_config_generate,
+       .vdev_op_nparity = vdev_raidz_nparity,
+       .vdev_op_ndisks = vdev_raidz_ndisks,
+       .vdev_op_type = VDEV_TYPE_RAIDZ,        /* name of this vdev type */
+       .vdev_op_leaf = B_FALSE                 /* not a leaf vdev */
 };
+
+/* BEGIN CSTYLED */
+ZFS_MODULE_PARAM(zfs_vdev, raidz_, expand_max_reflow_bytes, ULONG, ZMOD_RW,
+       "For testing, pause RAIDZ expansion after reflowing this many bytes");
+ZFS_MODULE_PARAM(zfs_vdev, raidz_, expand_max_copy_bytes, ULONG, ZMOD_RW,
+       "Max amount of concurrent i/o for RAIDZ expansion");
+ZFS_MODULE_PARAM(zfs_vdev, raidz_, io_aggregate_rows, ULONG, ZMOD_RW,
+       "For expanded RAIDZ, aggregate reads that have more rows than this");
+ZFS_MODULE_PARAM(zfs, zfs_, scrub_after_expand, INT, ZMOD_RW,
+       "For expanded RAIDZ, automatically start a pool scrub when expansion "
+       "completes");
+/* END CSTYLED */