]> git.proxmox.com Git - ceph.git/blame - ceph/src/boost/libs/math/include/boost/math/special_functions/detail/lgamma_small.hpp
add subtree-ish sources for 12.0.3
[ceph.git] / ceph / src / boost / libs / math / include / boost / math / special_functions / detail / lgamma_small.hpp
CommitLineData
7c673cae
FG
1// (C) Copyright John Maddock 2006.
2// Use, modification and distribution are subject to the
3// Boost Software License, Version 1.0. (See accompanying file
4// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
5
6#ifndef BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
7#define BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
8
9#ifdef _MSC_VER
10#pragma once
11#endif
12
13#include <boost/math/tools/big_constant.hpp>
14
15namespace boost{ namespace math{ namespace detail{
16
17//
18// These need forward declaring to keep GCC happy:
19//
20template <class T, class Policy, class Lanczos>
21T gamma_imp(T z, const Policy& pol, const Lanczos& l);
22template <class T, class Policy>
23T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos& l);
24
25//
26// lgamma for small arguments:
27//
28template <class T, class Policy, class Lanczos>
29T lgamma_small_imp(T z, T zm1, T zm2, const mpl::int_<64>&, const Policy& /* l */, const Lanczos&)
30{
31 // This version uses rational approximations for small
32 // values of z accurate enough for 64-bit mantissas
33 // (80-bit long doubles), works well for 53-bit doubles as well.
34 // Lanczos is only used to select the Lanczos function.
35
36 BOOST_MATH_STD_USING // for ADL of std names
37 T result = 0;
38 if(z < tools::epsilon<T>())
39 {
40 result = -log(z);
41 }
42 else if((zm1 == 0) || (zm2 == 0))
43 {
44 // nothing to do, result is zero....
45 }
46 else if(z > 2)
47 {
48 //
49 // Begin by performing argument reduction until
50 // z is in [2,3):
51 //
52 if(z >= 3)
53 {
54 do
55 {
56 z -= 1;
57 zm2 -= 1;
58 result += log(z);
59 }while(z >= 3);
60 // Update zm2, we need it below:
61 zm2 = z - 2;
62 }
63
64 //
65 // Use the following form:
66 //
67 // lgamma(z) = (z-2)(z+1)(Y + R(z-2))
68 //
69 // where R(z-2) is a rational approximation optimised for
70 // low absolute error - as long as it's absolute error
71 // is small compared to the constant Y - then any rounding
72 // error in it's computation will get wiped out.
73 //
74 // R(z-2) has the following properties:
75 //
76 // At double: Max error found: 4.231e-18
77 // At long double: Max error found: 1.987e-21
78 // Maximum Deviation Found (approximation error): 5.900e-24
79 //
80 static const T P[] = {
81 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.180355685678449379109e-1)),
82 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25126649619989678683e-1)),
83 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.494103151567532234274e-1)),
84 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.172491608709613993966e-1)),
85 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.259453563205438108893e-3)),
86 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.541009869215204396339e-3)),
87 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.324588649825948492091e-4))
88 };
89 static const T Q[] = {
90 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
91 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.196202987197795200688e1)),
92 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.148019669424231326694e1)),
93 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.541391432071720958364e0)),
94 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.988504251128010129477e-1)),
95 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.82130967464889339326e-2)),
96 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.224936291922115757597e-3)),
97 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.223352763208617092964e-6))
98 };
99
100 static const float Y = 0.158963680267333984375e0f;
101
102 T r = zm2 * (z + 1);
103 T R = tools::evaluate_polynomial(P, zm2);
104 R /= tools::evaluate_polynomial(Q, zm2);
105
106 result += r * Y + r * R;
107 }
108 else
109 {
110 //
111 // If z is less than 1 use recurrance to shift to
112 // z in the interval [1,2]:
113 //
114 if(z < 1)
115 {
116 result += -log(z);
117 zm2 = zm1;
118 zm1 = z;
119 z += 1;
120 }
121 //
122 // Two approximations, on for z in [1,1.5] and
123 // one for z in [1.5,2]:
124 //
125 if(z <= 1.5)
126 {
127 //
128 // Use the following form:
129 //
130 // lgamma(z) = (z-1)(z-2)(Y + R(z-1))
131 //
132 // where R(z-1) is a rational approximation optimised for
133 // low absolute error - as long as it's absolute error
134 // is small compared to the constant Y - then any rounding
135 // error in it's computation will get wiped out.
136 //
137 // R(z-1) has the following properties:
138 //
139 // At double precision: Max error found: 1.230011e-17
140 // At 80-bit long double precision: Max error found: 5.631355e-21
141 // Maximum Deviation Found: 3.139e-021
142 // Expected Error Term: 3.139e-021
143
144 //
145 static const float Y = 0.52815341949462890625f;
146
147 static const T P[] = {
148 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.490622454069039543534e-1)),
149 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.969117530159521214579e-1)),
150 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.414983358359495381969e0)),
151 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.406567124211938417342e0)),
152 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.158413586390692192217e0)),
153 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.240149820648571559892e-1)),
154 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100346687696279557415e-2))
155 };
156 static const T Q[] = {
157 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
158 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.302349829846463038743e1)),
159 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.348739585360723852576e1)),
160 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.191415588274426679201e1)),
161 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.507137738614363510846e0)),
162 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.577039722690451849648e-1)),
163 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.195768102601107189171e-2))
164 };
165
166 T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1);
167 T prefix = zm1 * zm2;
168
169 result += prefix * Y + prefix * r;
170 }
171 else
172 {
173 //
174 // Use the following form:
175 //
176 // lgamma(z) = (2-z)(1-z)(Y + R(2-z))
177 //
178 // where R(2-z) is a rational approximation optimised for
179 // low absolute error - as long as it's absolute error
180 // is small compared to the constant Y - then any rounding
181 // error in it's computation will get wiped out.
182 //
183 // R(2-z) has the following properties:
184 //
185 // At double precision, max error found: 1.797565e-17
186 // At 80-bit long double precision, max error found: 9.306419e-21
187 // Maximum Deviation Found: 2.151e-021
188 // Expected Error Term: 2.150e-021
189 //
190 static const float Y = 0.452017307281494140625f;
191
192 static const T P[] = {
193 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.292329721830270012337e-1)),
194 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.144216267757192309184e0)),
195 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.142440390738631274135e0)),
196 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.542809694055053558157e-1)),
197 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.850535976868336437746e-2)),
198 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.431171342679297331241e-3))
199 };
200 static const T Q[] = {
201 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.1e1)),
202 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.150169356054485044494e1)),
203 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.846973248876495016101e0)),
204 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.220095151814995745555e0)),
205 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.25582797155975869989e-1)),
206 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.100666795539143372762e-2)),
207 static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -0.827193521891290553639e-6))
208 };
209 T r = zm2 * zm1;
210 T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2));
211
212 result += r * Y + r * R;
213 }
214 }
215 return result;
216}
217template <class T, class Policy, class Lanczos>
218T lgamma_small_imp(T z, T zm1, T zm2, const mpl::int_<113>&, const Policy& /* l */, const Lanczos&)
219{
220 //
221 // This version uses rational approximations for small
222 // values of z accurate enough for 113-bit mantissas
223 // (128-bit long doubles).
224 //
225 BOOST_MATH_STD_USING // for ADL of std names
226 T result = 0;
227 if(z < tools::epsilon<T>())
228 {
229 result = -log(z);
230 BOOST_MATH_INSTRUMENT_CODE(result);
231 }
232 else if((zm1 == 0) || (zm2 == 0))
233 {
234 // nothing to do, result is zero....
235 }
236 else if(z > 2)
237 {
238 //
239 // Begin by performing argument reduction until
240 // z is in [2,3):
241 //
242 if(z >= 3)
243 {
244 do
245 {
246 z -= 1;
247 result += log(z);
248 }while(z >= 3);
249 zm2 = z - 2;
250 }
251 BOOST_MATH_INSTRUMENT_CODE(zm2);
252 BOOST_MATH_INSTRUMENT_CODE(z);
253 BOOST_MATH_INSTRUMENT_CODE(result);
254
255 //
256 // Use the following form:
257 //
258 // lgamma(z) = (z-2)(z+1)(Y + R(z-2))
259 //
260 // where R(z-2) is a rational approximation optimised for
261 // low absolute error - as long as it's absolute error
262 // is small compared to the constant Y - then any rounding
263 // error in it's computation will get wiped out.
264 //
265 // Maximum Deviation Found (approximation error) 3.73e-37
266
267 static const T P[] = {
268 BOOST_MATH_BIG_CONSTANT(T, 113, -0.018035568567844937910504030027467476655),
269 BOOST_MATH_BIG_CONSTANT(T, 113, 0.013841458273109517271750705401202404195),
270 BOOST_MATH_BIG_CONSTANT(T, 113, 0.062031842739486600078866923383017722399),
271 BOOST_MATH_BIG_CONSTANT(T, 113, 0.052518418329052161202007865149435256093),
272 BOOST_MATH_BIG_CONSTANT(T, 113, 0.01881718142472784129191838493267755758),
273 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0025104830367021839316463675028524702846),
274 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00021043176101831873281848891452678568311),
275 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00010249622350908722793327719494037981166),
276 BOOST_MATH_BIG_CONSTANT(T, 113, -0.11381479670982006841716879074288176994e-4),
277 BOOST_MATH_BIG_CONSTANT(T, 113, -0.49999811718089980992888533630523892389e-6),
278 BOOST_MATH_BIG_CONSTANT(T, 113, -0.70529798686542184668416911331718963364e-8)
279 };
280 static const T Q[] = {
281 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
282 BOOST_MATH_BIG_CONSTANT(T, 113, 2.5877485070422317542808137697939233685),
283 BOOST_MATH_BIG_CONSTANT(T, 113, 2.8797959228352591788629602533153837126),
284 BOOST_MATH_BIG_CONSTANT(T, 113, 1.8030885955284082026405495275461180977),
285 BOOST_MATH_BIG_CONSTANT(T, 113, 0.69774331297747390169238306148355428436),
286 BOOST_MATH_BIG_CONSTANT(T, 113, 0.17261566063277623942044077039756583802),
287 BOOST_MATH_BIG_CONSTANT(T, 113, 0.02729301254544230229429621192443000121),
288 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026776425891195270663133581960016620433),
289 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00015244249160486584591370355730402168106),
290 BOOST_MATH_BIG_CONSTANT(T, 113, 0.43997034032479866020546814475414346627e-5),
291 BOOST_MATH_BIG_CONSTANT(T, 113, 0.46295080708455613044541885534408170934e-7),
292 BOOST_MATH_BIG_CONSTANT(T, 113, -0.93326638207459533682980757982834180952e-11),
293 BOOST_MATH_BIG_CONSTANT(T, 113, 0.42316456553164995177177407325292867513e-13)
294 };
295
296 T R = tools::evaluate_polynomial(P, zm2);
297 R /= tools::evaluate_polynomial(Q, zm2);
298
299 static const float Y = 0.158963680267333984375F;
300
301 T r = zm2 * (z + 1);
302
303 result += r * Y + r * R;
304 BOOST_MATH_INSTRUMENT_CODE(result);
305 }
306 else
307 {
308 //
309 // If z is less than 1 use recurrance to shift to
310 // z in the interval [1,2]:
311 //
312 if(z < 1)
313 {
314 result += -log(z);
315 zm2 = zm1;
316 zm1 = z;
317 z += 1;
318 }
319 BOOST_MATH_INSTRUMENT_CODE(result);
320 BOOST_MATH_INSTRUMENT_CODE(z);
321 BOOST_MATH_INSTRUMENT_CODE(zm2);
322 //
323 // Three approximations, on for z in [1,1.35], [1.35,1.625] and [1.625,1]
324 //
325 if(z <= 1.35)
326 {
327 //
328 // Use the following form:
329 //
330 // lgamma(z) = (z-1)(z-2)(Y + R(z-1))
331 //
332 // where R(z-1) is a rational approximation optimised for
333 // low absolute error - as long as it's absolute error
334 // is small compared to the constant Y - then any rounding
335 // error in it's computation will get wiped out.
336 //
337 // R(z-1) has the following properties:
338 //
339 // Maximum Deviation Found (approximation error) 1.659e-36
340 // Expected Error Term (theoretical error) 1.343e-36
341 // Max error found at 128-bit long double precision 1.007e-35
342 //
343 static const float Y = 0.54076099395751953125f;
344
345 static const T P[] = {
346 BOOST_MATH_BIG_CONSTANT(T, 113, 0.036454670944013329356512090082402429697),
347 BOOST_MATH_BIG_CONSTANT(T, 113, -0.066235835556476033710068679907798799959),
348 BOOST_MATH_BIG_CONSTANT(T, 113, -0.67492399795577182387312206593595565371),
349 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4345555263962411429855341651960000166),
350 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4894319559821365820516771951249649563),
351 BOOST_MATH_BIG_CONSTANT(T, 113, -0.87210277668067964629483299712322411566),
352 BOOST_MATH_BIG_CONSTANT(T, 113, -0.29602090537771744401524080430529369136),
353 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0561832587517836908929331992218879676),
354 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0053236785487328044334381502530383140443),
355 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00018629360291358130461736386077971890789),
356 BOOST_MATH_BIG_CONSTANT(T, 113, -0.10164985672213178500790406939467614498e-6),
357 BOOST_MATH_BIG_CONSTANT(T, 113, 0.13680157145361387405588201461036338274e-8)
358 };
359 static const T Q[] = {
360 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
361 BOOST_MATH_BIG_CONSTANT(T, 113, 4.9106336261005990534095838574132225599),
362 BOOST_MATH_BIG_CONSTANT(T, 113, 10.258804800866438510889341082793078432),
363 BOOST_MATH_BIG_CONSTANT(T, 113, 11.88588976846826108836629960537466889),
364 BOOST_MATH_BIG_CONSTANT(T, 113, 8.3455000546999704314454891036700998428),
365 BOOST_MATH_BIG_CONSTANT(T, 113, 3.6428823682421746343233362007194282703),
366 BOOST_MATH_BIG_CONSTANT(T, 113, 0.97465989807254572142266753052776132252),
367 BOOST_MATH_BIG_CONSTANT(T, 113, 0.15121052897097822172763084966793352524),
368 BOOST_MATH_BIG_CONSTANT(T, 113, 0.012017363555383555123769849654484594893),
369 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0003583032812720649835431669893011257277)
370 };
371
372 T r = tools::evaluate_polynomial(P, zm1) / tools::evaluate_polynomial(Q, zm1);
373 T prefix = zm1 * zm2;
374
375 result += prefix * Y + prefix * r;
376 BOOST_MATH_INSTRUMENT_CODE(result);
377 }
378 else if(z <= 1.625)
379 {
380 //
381 // Use the following form:
382 //
383 // lgamma(z) = (2-z)(1-z)(Y + R(2-z))
384 //
385 // where R(2-z) is a rational approximation optimised for
386 // low absolute error - as long as it's absolute error
387 // is small compared to the constant Y - then any rounding
388 // error in it's computation will get wiped out.
389 //
390 // R(2-z) has the following properties:
391 //
392 // Max error found at 128-bit long double precision 9.634e-36
393 // Maximum Deviation Found (approximation error) 1.538e-37
394 // Expected Error Term (theoretical error) 2.350e-38
395 //
396 static const float Y = 0.483787059783935546875f;
397
398 static const T P[] = {
399 BOOST_MATH_BIG_CONSTANT(T, 113, -0.017977422421608624353488126610933005432),
400 BOOST_MATH_BIG_CONSTANT(T, 113, 0.18484528905298309555089509029244135703),
401 BOOST_MATH_BIG_CONSTANT(T, 113, -0.40401251514859546989565001431430884082),
402 BOOST_MATH_BIG_CONSTANT(T, 113, 0.40277179799147356461954182877921388182),
403 BOOST_MATH_BIG_CONSTANT(T, 113, -0.21993421441282936476709677700477598816),
404 BOOST_MATH_BIG_CONSTANT(T, 113, 0.069595742223850248095697771331107571011),
405 BOOST_MATH_BIG_CONSTANT(T, 113, -0.012681481427699686635516772923547347328),
406 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0012489322866834830413292771335113136034),
407 BOOST_MATH_BIG_CONSTANT(T, 113, -0.57058739515423112045108068834668269608e-4),
408 BOOST_MATH_BIG_CONSTANT(T, 113, 0.8207548771933585614380644961342925976e-6)
409 };
410 static const T Q[] = {
411 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
412 BOOST_MATH_BIG_CONSTANT(T, 113, -2.9629552288944259229543137757200262073),
413 BOOST_MATH_BIG_CONSTANT(T, 113, 3.7118380799042118987185957298964772755),
414 BOOST_MATH_BIG_CONSTANT(T, 113, -2.5569815272165399297600586376727357187),
415 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0546764918220835097855665680632153367),
416 BOOST_MATH_BIG_CONSTANT(T, 113, -0.26574021300894401276478730940980810831),
417 BOOST_MATH_BIG_CONSTANT(T, 113, 0.03996289731752081380552901986471233462),
418 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0033398680924544836817826046380586480873),
419 BOOST_MATH_BIG_CONSTANT(T, 113, 0.00013288854760548251757651556792598235735),
420 BOOST_MATH_BIG_CONSTANT(T, 113, -0.17194794958274081373243161848194745111e-5)
421 };
422 T r = zm2 * zm1;
423 T R = tools::evaluate_polynomial(P, T(0.625 - zm1)) / tools::evaluate_polynomial(Q, T(0.625 - zm1));
424
425 result += r * Y + r * R;
426 BOOST_MATH_INSTRUMENT_CODE(result);
427 }
428 else
429 {
430 //
431 // Same form as above.
432 //
433 // Max error found (at 128-bit long double precision) 1.831e-35
434 // Maximum Deviation Found (approximation error) 8.588e-36
435 // Expected Error Term (theoretical error) 1.458e-36
436 //
437 static const float Y = 0.443811893463134765625f;
438
439 static const T P[] = {
440 BOOST_MATH_BIG_CONSTANT(T, 113, -0.021027558364667626231512090082402429494),
441 BOOST_MATH_BIG_CONSTANT(T, 113, 0.15128811104498736604523586803722368377),
442 BOOST_MATH_BIG_CONSTANT(T, 113, -0.26249631480066246699388544451126410278),
443 BOOST_MATH_BIG_CONSTANT(T, 113, 0.21148748610533489823742352180628489742),
444 BOOST_MATH_BIG_CONSTANT(T, 113, -0.093964130697489071999873506148104370633),
445 BOOST_MATH_BIG_CONSTANT(T, 113, 0.024292059227009051652542804957550866827),
446 BOOST_MATH_BIG_CONSTANT(T, 113, -0.0036284453226534839926304745756906117066),
447 BOOST_MATH_BIG_CONSTANT(T, 113, 0.0002939230129315195346843036254392485984),
448 BOOST_MATH_BIG_CONSTANT(T, 113, -0.11088589183158123733132268042570710338e-4),
449 BOOST_MATH_BIG_CONSTANT(T, 113, 0.13240510580220763969511741896361984162e-6)
450 };
451 static const T Q[] = {
452 BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
453 BOOST_MATH_BIG_CONSTANT(T, 113, -2.4240003754444040525462170802796471996),
454 BOOST_MATH_BIG_CONSTANT(T, 113, 2.4868383476933178722203278602342786002),
455 BOOST_MATH_BIG_CONSTANT(T, 113, -1.4047068395206343375520721509193698547),
456 BOOST_MATH_BIG_CONSTANT(T, 113, 0.47583809087867443858344765659065773369),
457 BOOST_MATH_BIG_CONSTANT(T, 113, -0.09865724264554556400463655444270700132),
458 BOOST_MATH_BIG_CONSTANT(T, 113, 0.012238223514176587501074150988445109735),
459 BOOST_MATH_BIG_CONSTANT(T, 113, -0.00084625068418239194670614419707491797097),
460 BOOST_MATH_BIG_CONSTANT(T, 113, 0.2796574430456237061420839429225710602e-4),
461 BOOST_MATH_BIG_CONSTANT(T, 113, -0.30202973883316730694433702165188835331e-6)
462 };
463 // (2 - x) * (1 - x) * (c + R(2 - x))
464 T r = zm2 * zm1;
465 T R = tools::evaluate_polynomial(P, T(-zm2)) / tools::evaluate_polynomial(Q, T(-zm2));
466
467 result += r * Y + r * R;
468 BOOST_MATH_INSTRUMENT_CODE(result);
469 }
470 }
471 BOOST_MATH_INSTRUMENT_CODE(result);
472 return result;
473}
474template <class T, class Policy, class Lanczos>
475T lgamma_small_imp(T z, T zm1, T zm2, const mpl::int_<0>&, const Policy& pol, const Lanczos&)
476{
477 //
478 // No rational approximations are available because either
479 // T has no numeric_limits support (so we can't tell how
480 // many digits it has), or T has more digits than we know
481 // what to do with.... we do have a Lanczos approximation
482 // though, and that can be used to keep errors under control.
483 //
484 BOOST_MATH_STD_USING // for ADL of std names
485 T result = 0;
486 if(z < tools::epsilon<T>())
487 {
488 result = -log(z);
489 }
490 else if(z < 0.5)
491 {
492 // taking the log of tgamma reduces the error, no danger of overflow here:
493 result = log(gamma_imp(z, pol, Lanczos()));
494 }
495 else if(z >= 3)
496 {
497 // taking the log of tgamma reduces the error, no danger of overflow here:
498 result = log(gamma_imp(z, pol, Lanczos()));
499 }
500 else if(z >= 1.5)
501 {
502 // special case near 2:
503 T dz = zm2;
504 result = dz * log((z + Lanczos::g() - T(0.5)) / boost::math::constants::e<T>());
505 result += boost::math::log1p(dz / (Lanczos::g() + T(1.5)), pol) * T(1.5);
506 result += boost::math::log1p(Lanczos::lanczos_sum_near_2(dz), pol);
507 }
508 else
509 {
510 // special case near 1:
511 T dz = zm1;
512 result = dz * log((z + Lanczos::g() - T(0.5)) / boost::math::constants::e<T>());
513 result += boost::math::log1p(dz / (Lanczos::g() + T(0.5)), pol) / 2;
514 result += boost::math::log1p(Lanczos::lanczos_sum_near_1(dz), pol);
515 }
516 return result;
517}
518
519}}} // namespaces
520
521#endif // BOOST_MATH_SPECIAL_FUNCTIONS_DETAIL_LGAMMA_SMALL
522