]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/function/function_base.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / function / function_base.hpp
1 // Boost.Function library
2
3 // Copyright Douglas Gregor 2001-2006
4 // Copyright Emil Dotchevski 2007
5 // Use, modification and distribution is subject to the Boost Software License, Version 1.0.
6 // (See accompanying file LICENSE_1_0.txt or copy at
7 // http://www.boost.org/LICENSE_1_0.txt)
8
9 // For more information, see http://www.boost.org
10
11 #ifndef BOOST_FUNCTION_BASE_HEADER
12 #define BOOST_FUNCTION_BASE_HEADER
13
14 #include <stdexcept>
15 #include <string>
16 #include <memory>
17 #include <new>
18 #include <boost/config.hpp>
19 #include <boost/assert.hpp>
20 #include <boost/integer.hpp>
21 #include <boost/type_index.hpp>
22 #include <boost/type_traits/has_trivial_copy.hpp>
23 #include <boost/type_traits/has_trivial_destructor.hpp>
24 #include <boost/type_traits/is_const.hpp>
25 #include <boost/type_traits/is_integral.hpp>
26 #include <boost/type_traits/is_volatile.hpp>
27 #include <boost/type_traits/composite_traits.hpp>
28 #include <boost/ref.hpp>
29 #include <boost/type_traits/conditional.hpp>
30 #include <boost/config/workaround.hpp>
31 #include <boost/type_traits/alignment_of.hpp>
32 #ifndef BOOST_NO_SFINAE
33 #include <boost/type_traits/enable_if.hpp>
34 #else
35 #include <boost/type_traits/integral_constant.hpp>
36 #endif
37 #include <boost/function_equal.hpp>
38 #include <boost/function/function_fwd.hpp>
39
40 #if defined(BOOST_MSVC)
41 # pragma warning( push )
42 # pragma warning( disable : 4793 ) // complaint about native code generation
43 # pragma warning( disable : 4127 ) // "conditional expression is constant"
44 #endif
45
46 #if defined(__ICL) && __ICL <= 600 || defined(__MWERKS__) && __MWERKS__ < 0x2406 && !defined(BOOST_STRICT_CONFIG)
47 # define BOOST_FUNCTION_TARGET_FIX(x) x
48 #else
49 # define BOOST_FUNCTION_TARGET_FIX(x)
50 #endif // __ICL etc
51
52 # define BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor,Type) \
53 typename ::boost::enable_if_< \
54 !(::boost::is_integral<Functor>::value), \
55 Type>::type
56
57 namespace boost {
58 namespace detail {
59 namespace function {
60 class X;
61
62 /**
63 * A buffer used to store small function objects in
64 * boost::function. It is a union containing function pointers,
65 * object pointers, and a structure that resembles a bound
66 * member function pointer.
67 */
68 union function_buffer_members
69 {
70 // For pointers to function objects
71 typedef void* obj_ptr_t;
72 mutable obj_ptr_t obj_ptr;
73
74 // For pointers to std::type_info objects
75 struct type_t {
76 // (get_functor_type_tag, check_functor_type_tag).
77 const boost::typeindex::type_info* type;
78
79 // Whether the type is const-qualified.
80 bool const_qualified;
81 // Whether the type is volatile-qualified.
82 bool volatile_qualified;
83 } type;
84
85 // For function pointers of all kinds
86 typedef void (*func_ptr_t)();
87 mutable func_ptr_t func_ptr;
88
89 // For bound member pointers
90 struct bound_memfunc_ptr_t {
91 void (X::*memfunc_ptr)(int);
92 void* obj_ptr;
93 } bound_memfunc_ptr;
94
95 // For references to function objects. We explicitly keep
96 // track of the cv-qualifiers on the object referenced.
97 struct obj_ref_t {
98 mutable void* obj_ptr;
99 bool is_const_qualified;
100 bool is_volatile_qualified;
101 } obj_ref;
102 };
103
104 union BOOST_SYMBOL_VISIBLE function_buffer
105 {
106 // Type-specific union members
107 mutable function_buffer_members members;
108
109 // To relax aliasing constraints
110 mutable char data[sizeof(function_buffer_members)];
111 };
112
113 /**
114 * The unusable class is a placeholder for unused function arguments
115 * It is also completely unusable except that it constructable from
116 * anything. This helps compilers without partial specialization to
117 * handle Boost.Function objects returning void.
118 */
119 struct unusable
120 {
121 unusable() {}
122 template<typename T> unusable(const T&) {}
123 };
124
125 /* Determine the return type. This supports compilers that do not support
126 * void returns or partial specialization by silently changing the return
127 * type to "unusable".
128 */
129 template<typename T> struct function_return_type { typedef T type; };
130
131 template<>
132 struct function_return_type<void>
133 {
134 typedef unusable type;
135 };
136
137 // The operation type to perform on the given functor/function pointer
138 enum functor_manager_operation_type {
139 clone_functor_tag,
140 move_functor_tag,
141 destroy_functor_tag,
142 check_functor_type_tag,
143 get_functor_type_tag
144 };
145
146 // Tags used to decide between different types of functions
147 struct function_ptr_tag {};
148 struct function_obj_tag {};
149 struct member_ptr_tag {};
150 struct function_obj_ref_tag {};
151
152 template<typename F>
153 class get_function_tag
154 {
155 typedef typename conditional<(is_pointer<F>::value),
156 function_ptr_tag,
157 function_obj_tag>::type ptr_or_obj_tag;
158
159 typedef typename conditional<(is_member_pointer<F>::value),
160 member_ptr_tag,
161 ptr_or_obj_tag>::type ptr_or_obj_or_mem_tag;
162
163 typedef typename conditional<(is_reference_wrapper<F>::value),
164 function_obj_ref_tag,
165 ptr_or_obj_or_mem_tag>::type or_ref_tag;
166
167 public:
168 typedef or_ref_tag type;
169 };
170
171 // The trivial manager does nothing but return the same pointer (if we
172 // are cloning) or return the null pointer (if we are deleting).
173 template<typename F>
174 struct reference_manager
175 {
176 static inline void
177 manage(const function_buffer& in_buffer, function_buffer& out_buffer,
178 functor_manager_operation_type op)
179 {
180 switch (op) {
181 case clone_functor_tag:
182 out_buffer.members.obj_ref = in_buffer.members.obj_ref;
183 return;
184
185 case move_functor_tag:
186 out_buffer.members.obj_ref = in_buffer.members.obj_ref;
187 in_buffer.members.obj_ref.obj_ptr = 0;
188 return;
189
190 case destroy_functor_tag:
191 out_buffer.members.obj_ref.obj_ptr = 0;
192 return;
193
194 case check_functor_type_tag:
195 {
196 // Check whether we have the same type. We can add
197 // cv-qualifiers, but we can't take them away.
198 if (*out_buffer.members.type.type == boost::typeindex::type_id<F>()
199 && (!in_buffer.members.obj_ref.is_const_qualified
200 || out_buffer.members.type.const_qualified)
201 && (!in_buffer.members.obj_ref.is_volatile_qualified
202 || out_buffer.members.type.volatile_qualified))
203 out_buffer.members.obj_ptr = in_buffer.members.obj_ref.obj_ptr;
204 else
205 out_buffer.members.obj_ptr = 0;
206 }
207 return;
208
209 case get_functor_type_tag:
210 out_buffer.members.type.type = &boost::typeindex::type_id<F>().type_info();
211 out_buffer.members.type.const_qualified = in_buffer.members.obj_ref.is_const_qualified;
212 out_buffer.members.type.volatile_qualified = in_buffer.members.obj_ref.is_volatile_qualified;
213 return;
214 }
215 }
216 };
217
218 /**
219 * Determine if boost::function can use the small-object
220 * optimization with the function object type F.
221 */
222 template<typename F>
223 struct function_allows_small_object_optimization
224 {
225 BOOST_STATIC_CONSTANT
226 (bool,
227 value = ((sizeof(F) <= sizeof(function_buffer) &&
228 (alignment_of<function_buffer>::value
229 % alignment_of<F>::value == 0))));
230 };
231
232 template <typename F,typename A>
233 struct functor_wrapper: public F, public A
234 {
235 functor_wrapper( F f, A a ):
236 F(f),
237 A(a)
238 {
239 }
240
241 functor_wrapper(const functor_wrapper& f) :
242 F(static_cast<const F&>(f)),
243 A(static_cast<const A&>(f))
244 {
245 }
246 };
247
248 /**
249 * The functor_manager class contains a static function "manage" which
250 * can clone or destroy the given function/function object pointer.
251 */
252 template<typename Functor>
253 struct functor_manager_common
254 {
255 typedef Functor functor_type;
256
257 // Function pointers
258 static inline void
259 manage_ptr(const function_buffer& in_buffer, function_buffer& out_buffer,
260 functor_manager_operation_type op)
261 {
262 if (op == clone_functor_tag)
263 out_buffer.members.func_ptr = in_buffer.members.func_ptr;
264 else if (op == move_functor_tag) {
265 out_buffer.members.func_ptr = in_buffer.members.func_ptr;
266 in_buffer.members.func_ptr = 0;
267 } else if (op == destroy_functor_tag)
268 out_buffer.members.func_ptr = 0;
269 else if (op == check_functor_type_tag) {
270 if (*out_buffer.members.type.type == boost::typeindex::type_id<Functor>())
271 out_buffer.members.obj_ptr = &in_buffer.members.func_ptr;
272 else
273 out_buffer.members.obj_ptr = 0;
274 } else /* op == get_functor_type_tag */ {
275 out_buffer.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
276 out_buffer.members.type.const_qualified = false;
277 out_buffer.members.type.volatile_qualified = false;
278 }
279 }
280
281 // Function objects that fit in the small-object buffer.
282 static inline void
283 manage_small(const function_buffer& in_buffer, function_buffer& out_buffer,
284 functor_manager_operation_type op)
285 {
286 if (op == clone_functor_tag || op == move_functor_tag) {
287 const functor_type* in_functor =
288 reinterpret_cast<const functor_type*>(in_buffer.data);
289 new (reinterpret_cast<void*>(out_buffer.data)) functor_type(*in_functor);
290
291 if (op == move_functor_tag) {
292 functor_type* f = reinterpret_cast<functor_type*>(in_buffer.data);
293 (void)f; // suppress warning about the value of f not being used (MSVC)
294 f->~Functor();
295 }
296 } else if (op == destroy_functor_tag) {
297 // Some compilers (Borland, vc6, ...) are unhappy with ~functor_type.
298 functor_type* f = reinterpret_cast<functor_type*>(out_buffer.data);
299 (void)f; // suppress warning about the value of f not being used (MSVC)
300 f->~Functor();
301 } else if (op == check_functor_type_tag) {
302 if (*out_buffer.members.type.type == boost::typeindex::type_id<Functor>())
303 out_buffer.members.obj_ptr = in_buffer.data;
304 else
305 out_buffer.members.obj_ptr = 0;
306 } else /* op == get_functor_type_tag */ {
307 out_buffer.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
308 out_buffer.members.type.const_qualified = false;
309 out_buffer.members.type.volatile_qualified = false;
310 }
311 }
312 };
313
314 template<typename Functor>
315 struct functor_manager
316 {
317 private:
318 typedef Functor functor_type;
319
320 // Function pointers
321 static inline void
322 manager(const function_buffer& in_buffer, function_buffer& out_buffer,
323 functor_manager_operation_type op, function_ptr_tag)
324 {
325 functor_manager_common<Functor>::manage_ptr(in_buffer,out_buffer,op);
326 }
327
328 // Function objects that fit in the small-object buffer.
329 static inline void
330 manager(const function_buffer& in_buffer, function_buffer& out_buffer,
331 functor_manager_operation_type op, true_type)
332 {
333 functor_manager_common<Functor>::manage_small(in_buffer,out_buffer,op);
334 }
335
336 // Function objects that require heap allocation
337 static inline void
338 manager(const function_buffer& in_buffer, function_buffer& out_buffer,
339 functor_manager_operation_type op, false_type)
340 {
341 if (op == clone_functor_tag) {
342 // Clone the functor
343 // GCC 2.95.3 gets the CV qualifiers wrong here, so we
344 // can't do the static_cast that we should do.
345 // jewillco: Changing this to static_cast because GCC 2.95.3 is
346 // obsolete.
347 const functor_type* f =
348 static_cast<const functor_type*>(in_buffer.members.obj_ptr);
349 functor_type* new_f = new functor_type(*f);
350 out_buffer.members.obj_ptr = new_f;
351 } else if (op == move_functor_tag) {
352 out_buffer.members.obj_ptr = in_buffer.members.obj_ptr;
353 in_buffer.members.obj_ptr = 0;
354 } else if (op == destroy_functor_tag) {
355 /* Cast from the void pointer to the functor pointer type */
356 functor_type* f =
357 static_cast<functor_type*>(out_buffer.members.obj_ptr);
358 delete f;
359 out_buffer.members.obj_ptr = 0;
360 } else if (op == check_functor_type_tag) {
361 if (*out_buffer.members.type.type == boost::typeindex::type_id<Functor>())
362 out_buffer.members.obj_ptr = in_buffer.members.obj_ptr;
363 else
364 out_buffer.members.obj_ptr = 0;
365 } else /* op == get_functor_type_tag */ {
366 out_buffer.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
367 out_buffer.members.type.const_qualified = false;
368 out_buffer.members.type.volatile_qualified = false;
369 }
370 }
371
372 // For function objects, we determine whether the function
373 // object can use the small-object optimization buffer or
374 // whether we need to allocate it on the heap.
375 static inline void
376 manager(const function_buffer& in_buffer, function_buffer& out_buffer,
377 functor_manager_operation_type op, function_obj_tag)
378 {
379 manager(in_buffer, out_buffer, op,
380 integral_constant<bool, (function_allows_small_object_optimization<functor_type>::value)>());
381 }
382
383 // For member pointers, we use the small-object optimization buffer.
384 static inline void
385 manager(const function_buffer& in_buffer, function_buffer& out_buffer,
386 functor_manager_operation_type op, member_ptr_tag)
387 {
388 manager(in_buffer, out_buffer, op, true_type());
389 }
390
391 public:
392 /* Dispatch to an appropriate manager based on whether we have a
393 function pointer or a function object pointer. */
394 static inline void
395 manage(const function_buffer& in_buffer, function_buffer& out_buffer,
396 functor_manager_operation_type op)
397 {
398 typedef typename get_function_tag<functor_type>::type tag_type;
399 if (op == get_functor_type_tag) {
400 out_buffer.members.type.type = &boost::typeindex::type_id<functor_type>().type_info();
401 out_buffer.members.type.const_qualified = false;
402 out_buffer.members.type.volatile_qualified = false;
403 } else {
404 manager(in_buffer, out_buffer, op, tag_type());
405 }
406 }
407 };
408
409 template<typename Functor, typename Allocator>
410 struct functor_manager_a
411 {
412 private:
413 typedef Functor functor_type;
414
415 // Function pointers
416 static inline void
417 manager(const function_buffer& in_buffer, function_buffer& out_buffer,
418 functor_manager_operation_type op, function_ptr_tag)
419 {
420 functor_manager_common<Functor>::manage_ptr(in_buffer,out_buffer,op);
421 }
422
423 // Function objects that fit in the small-object buffer.
424 static inline void
425 manager(const function_buffer& in_buffer, function_buffer& out_buffer,
426 functor_manager_operation_type op, true_type)
427 {
428 functor_manager_common<Functor>::manage_small(in_buffer,out_buffer,op);
429 }
430
431 // Function objects that require heap allocation
432 static inline void
433 manager(const function_buffer& in_buffer, function_buffer& out_buffer,
434 functor_manager_operation_type op, false_type)
435 {
436 typedef functor_wrapper<Functor,Allocator> functor_wrapper_type;
437 #if defined(BOOST_NO_CXX11_ALLOCATOR)
438 typedef typename Allocator::template rebind<functor_wrapper_type>::other
439 wrapper_allocator_type;
440 typedef typename wrapper_allocator_type::pointer wrapper_allocator_pointer_type;
441 #else
442 using wrapper_allocator_type = typename std::allocator_traits<Allocator>::template rebind_alloc<functor_wrapper_type>;
443 using wrapper_allocator_pointer_type = typename std::allocator_traits<wrapper_allocator_type>::pointer;
444 #endif
445
446 if (op == clone_functor_tag) {
447 // Clone the functor
448 // GCC 2.95.3 gets the CV qualifiers wrong here, so we
449 // can't do the static_cast that we should do.
450 const functor_wrapper_type* f =
451 static_cast<const functor_wrapper_type*>(in_buffer.members.obj_ptr);
452 wrapper_allocator_type wrapper_allocator(static_cast<Allocator const &>(*f));
453 wrapper_allocator_pointer_type copy = wrapper_allocator.allocate(1);
454 #if defined(BOOST_NO_CXX11_ALLOCATOR)
455 wrapper_allocator.construct(copy, *f);
456 #else
457 std::allocator_traits<wrapper_allocator_type>::construct(wrapper_allocator, copy, *f);
458 #endif
459
460 // Get back to the original pointer type
461 functor_wrapper_type* new_f = static_cast<functor_wrapper_type*>(copy);
462 out_buffer.members.obj_ptr = new_f;
463 } else if (op == move_functor_tag) {
464 out_buffer.members.obj_ptr = in_buffer.members.obj_ptr;
465 in_buffer.members.obj_ptr = 0;
466 } else if (op == destroy_functor_tag) {
467 /* Cast from the void pointer to the functor_wrapper_type */
468 functor_wrapper_type* victim =
469 static_cast<functor_wrapper_type*>(in_buffer.members.obj_ptr);
470 wrapper_allocator_type wrapper_allocator(static_cast<Allocator const &>(*victim));
471 #if defined(BOOST_NO_CXX11_ALLOCATOR)
472 wrapper_allocator.destroy(victim);
473 #else
474 std::allocator_traits<wrapper_allocator_type>::destroy(wrapper_allocator, victim);
475 #endif
476 wrapper_allocator.deallocate(victim,1);
477 out_buffer.members.obj_ptr = 0;
478 } else if (op == check_functor_type_tag) {
479 if (*out_buffer.members.type.type == boost::typeindex::type_id<Functor>())
480 out_buffer.members.obj_ptr = in_buffer.members.obj_ptr;
481 else
482 out_buffer.members.obj_ptr = 0;
483 } else /* op == get_functor_type_tag */ {
484 out_buffer.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
485 out_buffer.members.type.const_qualified = false;
486 out_buffer.members.type.volatile_qualified = false;
487 }
488 }
489
490 // For function objects, we determine whether the function
491 // object can use the small-object optimization buffer or
492 // whether we need to allocate it on the heap.
493 static inline void
494 manager(const function_buffer& in_buffer, function_buffer& out_buffer,
495 functor_manager_operation_type op, function_obj_tag)
496 {
497 manager(in_buffer, out_buffer, op,
498 integral_constant<bool, (function_allows_small_object_optimization<functor_type>::value)>());
499 }
500
501 public:
502 /* Dispatch to an appropriate manager based on whether we have a
503 function pointer or a function object pointer. */
504 static inline void
505 manage(const function_buffer& in_buffer, function_buffer& out_buffer,
506 functor_manager_operation_type op)
507 {
508 typedef typename get_function_tag<functor_type>::type tag_type;
509 if (op == get_functor_type_tag) {
510 out_buffer.members.type.type = &boost::typeindex::type_id<functor_type>().type_info();
511 out_buffer.members.type.const_qualified = false;
512 out_buffer.members.type.volatile_qualified = false;
513 } else {
514 manager(in_buffer, out_buffer, op, tag_type());
515 }
516 }
517 };
518
519 // A type that is only used for comparisons against zero
520 struct useless_clear_type {};
521
522 #ifdef BOOST_NO_SFINAE
523 // These routines perform comparisons between a Boost.Function
524 // object and an arbitrary function object (when the last
525 // parameter is false_type) or against zero (when the
526 // last parameter is true_type). They are only necessary
527 // for compilers that don't support SFINAE.
528 template<typename Function, typename Functor>
529 bool
530 compare_equal(const Function& f, const Functor&, int, true_type)
531 { return f.empty(); }
532
533 template<typename Function, typename Functor>
534 bool
535 compare_not_equal(const Function& f, const Functor&, int,
536 true_type)
537 { return !f.empty(); }
538
539 template<typename Function, typename Functor>
540 bool
541 compare_equal(const Function& f, const Functor& g, long,
542 false_type)
543 {
544 if (const Functor* fp = f.template target<Functor>())
545 return function_equal(*fp, g);
546 else return false;
547 }
548
549 template<typename Function, typename Functor>
550 bool
551 compare_equal(const Function& f, const reference_wrapper<Functor>& g,
552 int, false_type)
553 {
554 if (const Functor* fp = f.template target<Functor>())
555 return fp == g.get_pointer();
556 else return false;
557 }
558
559 template<typename Function, typename Functor>
560 bool
561 compare_not_equal(const Function& f, const Functor& g, long,
562 false_type)
563 {
564 if (const Functor* fp = f.template target<Functor>())
565 return !function_equal(*fp, g);
566 else return true;
567 }
568
569 template<typename Function, typename Functor>
570 bool
571 compare_not_equal(const Function& f,
572 const reference_wrapper<Functor>& g, int,
573 false_type)
574 {
575 if (const Functor* fp = f.template target<Functor>())
576 return fp != g.get_pointer();
577 else return true;
578 }
579 #endif // BOOST_NO_SFINAE
580
581 /**
582 * Stores the "manager" portion of the vtable for a
583 * boost::function object.
584 */
585 struct vtable_base
586 {
587 void (*manager)(const function_buffer& in_buffer,
588 function_buffer& out_buffer,
589 functor_manager_operation_type op);
590 };
591 } // end namespace function
592 } // end namespace detail
593
594 /**
595 * The function_base class contains the basic elements needed for the
596 * function1, function2, function3, etc. classes. It is common to all
597 * functions (and as such can be used to tell if we have one of the
598 * functionN objects).
599 */
600 class function_base
601 {
602 public:
603 function_base() : vtable(0) { }
604
605 /** Determine if the function is empty (i.e., has no target). */
606 bool empty() const { return !vtable; }
607
608 /** Retrieve the type of the stored function object, or type_id<void>()
609 if this is empty. */
610 const boost::typeindex::type_info& target_type() const
611 {
612 if (!vtable) return boost::typeindex::type_id<void>().type_info();
613
614 detail::function::function_buffer type;
615 get_vtable()->manager(functor, type, detail::function::get_functor_type_tag);
616 return *type.members.type.type;
617 }
618
619 template<typename Functor>
620 Functor* target()
621 {
622 if (!vtable) return 0;
623
624 detail::function::function_buffer type_result;
625 type_result.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
626 type_result.members.type.const_qualified = is_const<Functor>::value;
627 type_result.members.type.volatile_qualified = is_volatile<Functor>::value;
628 get_vtable()->manager(functor, type_result,
629 detail::function::check_functor_type_tag);
630 return static_cast<Functor*>(type_result.members.obj_ptr);
631 }
632
633 template<typename Functor>
634 const Functor* target() const
635 {
636 if (!vtable) return 0;
637
638 detail::function::function_buffer type_result;
639 type_result.members.type.type = &boost::typeindex::type_id<Functor>().type_info();
640 type_result.members.type.const_qualified = true;
641 type_result.members.type.volatile_qualified = is_volatile<Functor>::value;
642 get_vtable()->manager(functor, type_result,
643 detail::function::check_functor_type_tag);
644 // GCC 2.95.3 gets the CV qualifiers wrong here, so we
645 // can't do the static_cast that we should do.
646 return static_cast<const Functor*>(type_result.members.obj_ptr);
647 }
648
649 template<typename F>
650 bool contains(const F& f) const
651 {
652 if (const F* fp = this->template target<F>())
653 {
654 return function_equal(*fp, f);
655 } else {
656 return false;
657 }
658 }
659
660 #if defined(__GNUC__) && __GNUC__ == 3 && __GNUC_MINOR__ <= 3
661 // GCC 3.3 and newer cannot copy with the global operator==, due to
662 // problems with instantiation of function return types before it
663 // has been verified that the argument types match up.
664 template<typename Functor>
665 BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
666 operator==(Functor g) const
667 {
668 if (const Functor* fp = target<Functor>())
669 return function_equal(*fp, g);
670 else return false;
671 }
672
673 template<typename Functor>
674 BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
675 operator!=(Functor g) const
676 {
677 if (const Functor* fp = target<Functor>())
678 return !function_equal(*fp, g);
679 else return true;
680 }
681 #endif
682
683 public: // should be protected, but GCC 2.95.3 will fail to allow access
684 detail::function::vtable_base* get_vtable() const {
685 return reinterpret_cast<detail::function::vtable_base*>(
686 reinterpret_cast<std::size_t>(vtable) & ~static_cast<std::size_t>(0x01));
687 }
688
689 bool has_trivial_copy_and_destroy() const {
690 return reinterpret_cast<std::size_t>(vtable) & 0x01;
691 }
692
693 detail::function::vtable_base* vtable;
694 mutable detail::function::function_buffer functor;
695 };
696
697 #if defined(BOOST_CLANG)
698 # pragma clang diagnostic push
699 # pragma clang diagnostic ignored "-Wweak-vtables"
700 #endif
701 /**
702 * The bad_function_call exception class is thrown when a boost::function
703 * object is invoked
704 */
705 class BOOST_SYMBOL_VISIBLE bad_function_call : public std::runtime_error
706 {
707 public:
708 bad_function_call() : std::runtime_error("call to empty boost::function") {}
709 };
710 #if defined(BOOST_CLANG)
711 # pragma clang diagnostic pop
712 #endif
713
714 #ifndef BOOST_NO_SFINAE
715 inline bool operator==(const function_base& f,
716 detail::function::useless_clear_type*)
717 {
718 return f.empty();
719 }
720
721 inline bool operator!=(const function_base& f,
722 detail::function::useless_clear_type*)
723 {
724 return !f.empty();
725 }
726
727 inline bool operator==(detail::function::useless_clear_type*,
728 const function_base& f)
729 {
730 return f.empty();
731 }
732
733 inline bool operator!=(detail::function::useless_clear_type*,
734 const function_base& f)
735 {
736 return !f.empty();
737 }
738 #endif
739
740 #ifdef BOOST_NO_SFINAE
741 // Comparisons between boost::function objects and arbitrary function objects
742 template<typename Functor>
743 inline bool operator==(const function_base& f, Functor g)
744 {
745 typedef integral_constant<bool, (is_integral<Functor>::value)> integral;
746 return detail::function::compare_equal(f, g, 0, integral());
747 }
748
749 template<typename Functor>
750 inline bool operator==(Functor g, const function_base& f)
751 {
752 typedef integral_constant<bool, (is_integral<Functor>::value)> integral;
753 return detail::function::compare_equal(f, g, 0, integral());
754 }
755
756 template<typename Functor>
757 inline bool operator!=(const function_base& f, Functor g)
758 {
759 typedef integral_constant<bool, (is_integral<Functor>::value)> integral;
760 return detail::function::compare_not_equal(f, g, 0, integral());
761 }
762
763 template<typename Functor>
764 inline bool operator!=(Functor g, const function_base& f)
765 {
766 typedef integral_constant<bool, (is_integral<Functor>::value)> integral;
767 return detail::function::compare_not_equal(f, g, 0, integral());
768 }
769 #else
770
771 # if !(defined(__GNUC__) && __GNUC__ == 3 && __GNUC_MINOR__ <= 3)
772 // Comparisons between boost::function objects and arbitrary function
773 // objects. GCC 3.3 and before has an obnoxious bug that prevents this
774 // from working.
775 template<typename Functor>
776 BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
777 operator==(const function_base& f, Functor g)
778 {
779 if (const Functor* fp = f.template target<Functor>())
780 return function_equal(*fp, g);
781 else return false;
782 }
783
784 template<typename Functor>
785 BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
786 operator==(Functor g, const function_base& f)
787 {
788 if (const Functor* fp = f.template target<Functor>())
789 return function_equal(g, *fp);
790 else return false;
791 }
792
793 template<typename Functor>
794 BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
795 operator!=(const function_base& f, Functor g)
796 {
797 if (const Functor* fp = f.template target<Functor>())
798 return !function_equal(*fp, g);
799 else return true;
800 }
801
802 template<typename Functor>
803 BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
804 operator!=(Functor g, const function_base& f)
805 {
806 if (const Functor* fp = f.template target<Functor>())
807 return !function_equal(g, *fp);
808 else return true;
809 }
810 # endif
811
812 template<typename Functor>
813 BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
814 operator==(const function_base& f, reference_wrapper<Functor> g)
815 {
816 if (const Functor* fp = f.template target<Functor>())
817 return fp == g.get_pointer();
818 else return false;
819 }
820
821 template<typename Functor>
822 BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
823 operator==(reference_wrapper<Functor> g, const function_base& f)
824 {
825 if (const Functor* fp = f.template target<Functor>())
826 return g.get_pointer() == fp;
827 else return false;
828 }
829
830 template<typename Functor>
831 BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
832 operator!=(const function_base& f, reference_wrapper<Functor> g)
833 {
834 if (const Functor* fp = f.template target<Functor>())
835 return fp != g.get_pointer();
836 else return true;
837 }
838
839 template<typename Functor>
840 BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL(Functor, bool)
841 operator!=(reference_wrapper<Functor> g, const function_base& f)
842 {
843 if (const Functor* fp = f.template target<Functor>())
844 return g.get_pointer() != fp;
845 else return true;
846 }
847
848 #endif // Compiler supporting SFINAE
849
850 namespace detail {
851 namespace function {
852 inline bool has_empty_target(const function_base* f)
853 {
854 return f->empty();
855 }
856
857 #if BOOST_WORKAROUND(BOOST_MSVC, <= 1310)
858 inline bool has_empty_target(const void*)
859 {
860 return false;
861 }
862 #else
863 inline bool has_empty_target(...)
864 {
865 return false;
866 }
867 #endif
868 } // end namespace function
869 } // end namespace detail
870 } // end namespace boost
871
872 #undef BOOST_FUNCTION_ENABLE_IF_NOT_INTEGRAL
873
874 #if defined(BOOST_MSVC)
875 # pragma warning( pop )
876 #endif
877
878 #endif // BOOST_FUNCTION_BASE_HEADER