]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/geometry/algorithms/detail/within/multi_point.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / geometry / algorithms / detail / within / multi_point.hpp
1 // Boost.Geometry
2
3 // Copyright (c) 2017, 2019 Oracle and/or its affiliates.
4
5 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
6
7 // Use, modification and distribution is subject to the Boost Software License,
8 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
9 // http://www.boost.org/LICENSE_1_0.txt)
10
11 #ifndef BOOST_GEOMETRY_ALGORITHMS_DETAIL_WITHIN_MULTI_POINT_HPP
12 #define BOOST_GEOMETRY_ALGORITHMS_DETAIL_WITHIN_MULTI_POINT_HPP
13
14
15 #include <algorithm>
16 #include <vector>
17
18 #include <boost/range.hpp>
19 #include <boost/type_traits/is_same.hpp>
20
21 #include <boost/geometry/algorithms/detail/disjoint/box_box.hpp>
22 #include <boost/geometry/algorithms/detail/disjoint/point_box.hpp>
23 #include <boost/geometry/algorithms/detail/expand_by_epsilon.hpp>
24 #include <boost/geometry/algorithms/detail/within/point_in_geometry.hpp>
25 #include <boost/geometry/algorithms/envelope.hpp>
26 #include <boost/geometry/algorithms/detail/partition.hpp>
27 #include <boost/geometry/core/tag.hpp>
28 #include <boost/geometry/core/tag_cast.hpp>
29 #include <boost/geometry/core/tags.hpp>
30
31 #include <boost/geometry/geometries/box.hpp>
32
33 #include <boost/geometry/index/rtree.hpp>
34
35 #include <boost/geometry/policies/compare.hpp>
36
37 #include <boost/geometry/strategies/covered_by.hpp>
38 #include <boost/geometry/strategies/disjoint.hpp>
39
40
41 namespace boost { namespace geometry {
42
43 #ifndef DOXYGEN_NO_DETAIL
44 namespace detail { namespace within {
45
46 struct multi_point_point
47 {
48 template <typename MultiPoint, typename Point, typename Strategy>
49 static inline bool apply(MultiPoint const& multi_point,
50 Point const& point,
51 Strategy const& strategy)
52 {
53 typedef typename boost::range_const_iterator<MultiPoint>::type iterator;
54 for ( iterator it = boost::begin(multi_point) ; it != boost::end(multi_point) ; ++it )
55 {
56 if (! strategy.apply(*it, point))
57 {
58 return false;
59 }
60 }
61
62 // all points of MultiPoint inside Point
63 return true;
64 }
65 };
66
67 // NOTE: currently the strategy is ignored, math::equals() is used inside geometry::less<>
68 struct multi_point_multi_point
69 {
70 template <typename MultiPoint1, typename MultiPoint2, typename Strategy>
71 static inline bool apply(MultiPoint1 const& multi_point1,
72 MultiPoint2 const& multi_point2,
73 Strategy const& /*strategy*/)
74 {
75 typedef typename boost::range_value<MultiPoint2>::type point2_type;
76 typedef typename Strategy::cs_tag cs_tag;
77 typedef geometry::less<void, -1, cs_tag> less_type;
78
79 less_type const less = less_type();
80
81 std::vector<point2_type> points2(boost::begin(multi_point2), boost::end(multi_point2));
82 std::sort(points2.begin(), points2.end(), less);
83
84 bool result = false;
85
86 typedef typename boost::range_const_iterator<MultiPoint1>::type iterator;
87 for ( iterator it = boost::begin(multi_point1) ; it != boost::end(multi_point1) ; ++it )
88 {
89 if (! std::binary_search(points2.begin(), points2.end(), *it, less))
90 {
91 return false;
92 }
93 else
94 {
95 result = true;
96 }
97 }
98
99 return result;
100 }
101 };
102
103
104 // TODO: the complexity could be lesser
105 // the second geometry could be "prepared"/sorted
106 // For Linear geometries partition could be used
107 // For Areal geometries point_in_geometry() would have to call the winding
108 // strategy differently, currently it linearly calls the strategy for each
109 // segment. So the segments would have to be sorted in a way consistent with
110 // the strategy and then the strategy called only for the segments in range.
111 template <bool Within>
112 struct multi_point_single_geometry
113 {
114 template <typename MultiPoint, typename LinearOrAreal, typename Strategy>
115 static inline bool apply(MultiPoint const& multi_point,
116 LinearOrAreal const& linear_or_areal,
117 Strategy const& strategy)
118 {
119 //typedef typename boost::range_value<MultiPoint>::type point1_type;
120 typedef typename point_type<LinearOrAreal>::type point2_type;
121 typedef model::box<point2_type> box2_type;
122
123 // Create envelope of geometry
124 box2_type box;
125 geometry::envelope(linear_or_areal, box, strategy.get_envelope_strategy());
126 geometry::detail::expand_by_epsilon(box);
127
128 typedef typename Strategy::disjoint_point_box_strategy_type point_in_box_type;
129
130 // Test each Point with envelope and then geometry if needed
131 // If in the exterior, break
132 bool result = false;
133
134 typedef typename boost::range_const_iterator<MultiPoint>::type iterator;
135 for ( iterator it = boost::begin(multi_point) ; it != boost::end(multi_point) ; ++it )
136 {
137 int in_val = 0;
138
139 // exterior of box and of geometry
140 if (! point_in_box_type::apply(*it, box)
141 || (in_val = point_in_geometry(*it, linear_or_areal, strategy)) < 0)
142 {
143 result = false;
144 break;
145 }
146
147 // interior : interior/boundary
148 if (Within ? in_val > 0 : in_val >= 0)
149 {
150 result = true;
151 }
152 }
153
154 return result;
155 }
156 };
157
158
159 // TODO: same here, probably the complexity could be lesser
160 template <bool Within>
161 struct multi_point_multi_geometry
162 {
163 template <typename MultiPoint, typename LinearOrAreal, typename Strategy>
164 static inline bool apply(MultiPoint const& multi_point,
165 LinearOrAreal const& linear_or_areal,
166 Strategy const& strategy)
167 {
168 typedef typename point_type<LinearOrAreal>::type point2_type;
169 typedef model::box<point2_type> box2_type;
170 static const bool is_linear = is_same
171 <
172 typename tag_cast
173 <
174 typename tag<LinearOrAreal>::type,
175 linear_tag
176 >::type,
177 linear_tag
178 >::value;
179
180 typename Strategy::envelope_strategy_type const
181 envelope_strategy = strategy.get_envelope_strategy();
182
183 // TODO: box pairs could be constructed on the fly, inside the rtree
184
185 // Prepare range of envelopes and ids
186 std::size_t count2 = boost::size(linear_or_areal);
187 typedef std::pair<box2_type, std::size_t> box_pair_type;
188 typedef std::vector<box_pair_type> box_pair_vector;
189 box_pair_vector boxes(count2);
190 for (std::size_t i = 0 ; i < count2 ; ++i)
191 {
192 geometry::envelope(linear_or_areal, boxes[i].first, envelope_strategy);
193 geometry::detail::expand_by_epsilon(boxes[i].first);
194 boxes[i].second = i;
195 }
196
197 // Create R-tree
198 typedef strategy::index::services::from_strategy
199 <
200 Strategy
201 > index_strategy_from;
202 typedef index::parameters
203 <
204 index::rstar<4>, typename index_strategy_from::type
205 > index_parameters_type;
206 index::rtree<box_pair_type, index_parameters_type>
207 rtree(boxes.begin(), boxes.end(),
208 index_parameters_type(index::rstar<4>(), index_strategy_from::get(strategy)));
209
210 // For each point find overlapping envelopes and test corresponding single geometries
211 // If a point is in the exterior break
212 bool result = false;
213
214 typedef typename boost::range_const_iterator<MultiPoint>::type iterator;
215 for ( iterator it = boost::begin(multi_point) ; it != boost::end(multi_point) ; ++it )
216 {
217 // TODO: investigate the possibility of using satisfies
218 // TODO: investigate the possibility of using iterative queries (optimization below)
219 box_pair_vector inters_boxes;
220 rtree.query(index::intersects(*it), std::back_inserter(inters_boxes));
221
222 bool found_interior = false;
223 bool found_boundary = false;
224 int boundaries = 0;
225
226 typedef typename box_pair_vector::const_iterator box_iterator;
227 for (box_iterator box_it = inters_boxes.begin() ;
228 box_it != inters_boxes.end() ; ++box_it )
229 {
230 int const in_val = point_in_geometry(*it,
231 range::at(linear_or_areal, box_it->second), strategy);
232
233 if (in_val > 0)
234 {
235 found_interior = true;
236 }
237 else if (in_val == 0)
238 {
239 ++boundaries;
240 }
241
242 // If the result was set previously (interior or
243 // interior/boundary found) the only thing that needs to be
244 // done for other points is to make sure they're not
245 // overlapping the exterior no need to analyse boundaries.
246 if (result && in_val >= 0)
247 {
248 break;
249 }
250 }
251
252 if (boundaries > 0)
253 {
254 if (is_linear && boundaries % 2 == 0)
255 {
256 found_interior = true;
257 }
258 else
259 {
260 found_boundary = true;
261 }
262 }
263
264 // exterior
265 if (! found_interior && ! found_boundary)
266 {
267 result = false;
268 break;
269 }
270
271 // interior : interior/boundary
272 if (Within ? found_interior : (found_interior || found_boundary))
273 {
274 result = true;
275 }
276 }
277
278 return result;
279 }
280 };
281
282 }} // namespace detail::within
283 #endif // DOXYGEN_NO_DETAIL
284
285 }} // namespace boost::geometry
286
287
288 #endif // BOOST_GEOMETRY_ALGORITHMS_DETAIL_WITHIN_MULTI_POINT_HPP