]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/geometry/index/detail/rtree/pack_create.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / geometry / index / detail / rtree / pack_create.hpp
1 // Boost.Geometry Index
2 //
3 // R-tree initial packing
4 //
5 // Copyright (c) 2011-2017 Adam Wulkiewicz, Lodz, Poland.
6 //
7 // This file was modified by Oracle on 2019.
8 // Modifications copyright (c) 2019 Oracle and/or its affiliates.
9 // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
10 //
11 // Use, modification and distribution is subject to the Boost Software License,
12 // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
13 // http://www.boost.org/LICENSE_1_0.txt)
14
15 #ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP
16 #define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP
17
18 #include <boost/core/ignore_unused.hpp>
19
20 #include <boost/geometry/algorithms/expand.hpp>
21 #include <boost/geometry/index/detail/algorithms/bounds.hpp>
22 #include <boost/geometry/index/detail/algorithms/nth_element.hpp>
23
24 #include <boost/geometry/algorithms/detail/expand_by_epsilon.hpp>
25
26 namespace boost { namespace geometry { namespace index { namespace detail { namespace rtree {
27
28 namespace pack_utils {
29
30 template <std::size_t Dimension>
31 struct biggest_edge
32 {
33 BOOST_STATIC_ASSERT(0 < Dimension);
34 template <typename Box>
35 static inline void apply(Box const& box, typename coordinate_type<Box>::type & length, std::size_t & dim_index)
36 {
37 biggest_edge<Dimension-1>::apply(box, length, dim_index);
38 typename coordinate_type<Box>::type curr
39 = geometry::get<max_corner, Dimension-1>(box) - geometry::get<min_corner, Dimension-1>(box);
40 if ( length < curr )
41 {
42 dim_index = Dimension - 1;
43 length = curr;
44 }
45 }
46 };
47
48 template <>
49 struct biggest_edge<1>
50 {
51 template <typename Box>
52 static inline void apply(Box const& box, typename coordinate_type<Box>::type & length, std::size_t & dim_index)
53 {
54 dim_index = 0;
55 length = geometry::get<max_corner, 0>(box) - geometry::get<min_corner, 0>(box);
56 }
57 };
58
59 template <std::size_t I>
60 struct point_entries_comparer
61 {
62 template <typename PointEntry>
63 bool operator()(PointEntry const& e1, PointEntry const& e2) const
64 {
65 return geometry::get<I>(e1.first) < geometry::get<I>(e2.first);
66 }
67 };
68
69 template <std::size_t I, std::size_t Dimension>
70 struct nth_element_and_half_boxes
71 {
72 template <typename EIt, typename Box>
73 static inline void apply(EIt first, EIt median, EIt last, Box const& box, Box & left, Box & right, std::size_t dim_index)
74 {
75 if ( I == dim_index )
76 {
77 index::detail::nth_element(first, median, last, point_entries_comparer<I>());
78
79 geometry::convert(box, left);
80 geometry::convert(box, right);
81 typename coordinate_type<Box>::type edge_len
82 = geometry::get<max_corner, I>(box) - geometry::get<min_corner, I>(box);
83 typename coordinate_type<Box>::type median
84 = geometry::get<min_corner, I>(box) + edge_len / 2;
85 geometry::set<max_corner, I>(left, median);
86 geometry::set<min_corner, I>(right, median);
87 }
88 else
89 nth_element_and_half_boxes<I+1, Dimension>::apply(first, median, last, box, left, right, dim_index);
90 }
91 };
92
93 template <std::size_t Dimension>
94 struct nth_element_and_half_boxes<Dimension, Dimension>
95 {
96 template <typename EIt, typename Box>
97 static inline void apply(EIt , EIt , EIt , Box const& , Box & , Box & , std::size_t ) {}
98 };
99
100 } // namespace pack_utils
101
102 // STR leafs number are calculated as rcount/max
103 // and the number of splitting planes for each dimension as (count/max)^(1/dimension)
104 // <-> for dimension==2 -> sqrt(count/max)
105 //
106 // The main flaw of this algorithm is that the resulting tree will have bad structure for:
107 // 1. non-uniformly distributed elements
108 // Statistic check could be performed, e.g. based on variance of lengths of elements edges for each dimension
109 // 2. elements distributed mainly along one axis
110 // Calculate bounding box of all elements and then number of dividing planes for a dimension
111 // from the length of BB edge for this dimension (more or less assuming that elements are uniformly-distributed squares)
112 //
113 // Another thing is that the last node may have less elements than Max or even Min.
114 // The number of splitting planes must be chosen more carefully than count/max
115 //
116 // This algorithm is something between STR and TGS
117 // it is more similar to the top-down recursive kd-tree creation algorithm
118 // using object median split and split axis of greatest BB edge
119 // BB is only used as a hint (assuming objects are distributed uniformly)
120 //
121 // Implemented algorithm guarantees that the number of elements in nodes will be between Min and Max
122 // and that nodes are packed as tightly as possible
123 // e.g. for 177 values Max = 5 and Min = 2 it will construct the following tree:
124 // ROOT 177
125 // L1 125 52
126 // L2 25 25 25 25 25 25 17 10
127 // L3 5x5 5x5 5x5 5x5 5x5 5x5 3x5+2 2x5
128
129 template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
130 class pack
131 {
132 typedef typename rtree::node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type node;
133 typedef typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
134 typedef typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
135
136 typedef typename Allocators::node_pointer node_pointer;
137 typedef rtree::subtree_destroyer<Value, Options, Translator, Box, Allocators> subtree_destroyer;
138 typedef typename Allocators::size_type size_type;
139
140 typedef typename geometry::point_type<Box>::type point_type;
141 typedef typename geometry::coordinate_type<point_type>::type coordinate_type;
142 typedef typename detail::default_content_result<Box>::type content_type;
143 typedef typename Options::parameters_type parameters_type;
144 typedef typename detail::strategy_type<parameters_type>::type strategy_type;
145 static const std::size_t dimension = geometry::dimension<point_type>::value;
146
147 typedef typename rtree::container_from_elements_type<
148 typename rtree::elements_type<leaf>::type,
149 std::size_t
150 >::type values_counts_container;
151
152 typedef typename rtree::elements_type<internal_node>::type internal_elements;
153 typedef typename internal_elements::value_type internal_element;
154
155 public:
156 // Arbitrary iterators
157 template <typename InIt> inline static
158 node_pointer apply(InIt first, InIt last, size_type & values_count, size_type & leafs_level,
159 parameters_type const& parameters, Translator const& translator, Allocators & allocators)
160 {
161 typedef typename std::iterator_traits<InIt>::difference_type diff_type;
162
163 diff_type diff = std::distance(first, last);
164 if ( diff <= 0 )
165 return node_pointer(0);
166
167 typedef std::pair<point_type, InIt> entry_type;
168 std::vector<entry_type> entries;
169
170 values_count = static_cast<size_type>(diff);
171 entries.reserve(values_count);
172
173 expandable_box<Box, strategy_type> hint_box(detail::get_strategy(parameters));
174 for ( ; first != last ; ++first )
175 {
176 // NOTE: support for iterators not returning true references adapted
177 // to Geometry concept and default translator returning true reference
178 // An alternative would be to dereference the iterator and translate
179 // in one expression each time the indexable was needed.
180 typename std::iterator_traits<InIt>::reference in_ref = *first;
181 typename Translator::result_type indexable = translator(in_ref);
182
183 // NOTE: added for consistency with insert()
184 // CONSIDER: alternative - ignore invalid indexable or throw an exception
185 BOOST_GEOMETRY_INDEX_ASSERT(detail::is_valid(indexable), "Indexable is invalid");
186
187 hint_box.expand(indexable);
188
189 point_type pt;
190 geometry::centroid(indexable, pt);
191 entries.push_back(std::make_pair(pt, first));
192 }
193
194 subtree_elements_counts subtree_counts = calculate_subtree_elements_counts(values_count, parameters, leafs_level);
195 internal_element el = per_level(entries.begin(), entries.end(), hint_box.get(), values_count, subtree_counts,
196 parameters, translator, allocators);
197
198 return el.second;
199 }
200
201 private:
202 template <typename BoxType, typename Strategy>
203 class expandable_box
204 {
205 public:
206 explicit expandable_box(Strategy const& strategy)
207 : m_strategy(strategy), m_initialized(false)
208 {}
209
210 template <typename Indexable>
211 explicit expandable_box(Indexable const& indexable, Strategy const& strategy)
212 : m_strategy(strategy), m_initialized(true)
213 {
214 detail::bounds(indexable, m_box, m_strategy);
215 }
216
217 template <typename Indexable>
218 void expand(Indexable const& indexable)
219 {
220 if ( !m_initialized )
221 {
222 // it's guaranteed that the Box will be initialized
223 // only for Points, Boxes and Segments but that's ok
224 // since only those Geometries can be stored
225 detail::bounds(indexable, m_box, m_strategy);
226 m_initialized = true;
227 }
228 else
229 {
230 detail::expand(m_box, indexable, m_strategy);
231 }
232 }
233
234 void expand_by_epsilon()
235 {
236 geometry::detail::expand_by_epsilon(m_box);
237 }
238
239 BoxType const& get() const
240 {
241 BOOST_GEOMETRY_INDEX_ASSERT(m_initialized, "uninitialized envelope accessed");
242 return m_box;
243 }
244
245 private:
246 BoxType m_box;
247 Strategy m_strategy;
248 bool m_initialized;
249 };
250
251 struct subtree_elements_counts
252 {
253 subtree_elements_counts(std::size_t ma, std::size_t mi) : maxc(ma), minc(mi) {}
254 std::size_t maxc;
255 std::size_t minc;
256 };
257
258 template <typename EIt> inline static
259 internal_element per_level(EIt first, EIt last, Box const& hint_box, std::size_t values_count, subtree_elements_counts const& subtree_counts,
260 parameters_type const& parameters, Translator const& translator, Allocators & allocators)
261 {
262 BOOST_GEOMETRY_INDEX_ASSERT(0 < std::distance(first, last) && static_cast<std::size_t>(std::distance(first, last)) == values_count,
263 "unexpected parameters");
264
265 if ( subtree_counts.maxc <= 1 )
266 {
267 // ROOT or LEAF
268 BOOST_GEOMETRY_INDEX_ASSERT(values_count <= parameters.get_max_elements(),
269 "too big number of elements");
270 // if !root check m_parameters.get_min_elements() <= count
271
272 // create new leaf node
273 node_pointer n = rtree::create_node<Allocators, leaf>::apply(allocators); // MAY THROW (A)
274 subtree_destroyer auto_remover(n, allocators);
275 leaf & l = rtree::get<leaf>(*n);
276
277 // reserve space for values
278 rtree::elements(l).reserve(values_count); // MAY THROW (A)
279
280 // calculate values box and copy values
281 // initialize the box explicitly to avoid GCC-4.4 uninitialized variable warnings with O2
282 expandable_box<Box, strategy_type> elements_box(translator(*(first->second)),
283 detail::get_strategy(parameters));
284 rtree::elements(l).push_back(*(first->second)); // MAY THROW (A?,C)
285 for ( ++first ; first != last ; ++first )
286 {
287 // NOTE: push_back() must be called at the end in order to support move_iterator.
288 // The iterator is dereferenced 2x (no temporary reference) to support
289 // non-true reference types and move_iterator without boost::forward<>.
290 elements_box.expand(translator(*(first->second)));
291 rtree::elements(l).push_back(*(first->second)); // MAY THROW (A?,C)
292 }
293
294 #ifdef BOOST_GEOMETRY_INDEX_EXPERIMENTAL_ENLARGE_BY_EPSILON
295 // Enlarge bounds of a leaf node.
296 // It's because Points and Segments are compared WRT machine epsilon
297 // This ensures that leafs bounds correspond to the stored elements
298 // NOTE: this is done only if the Indexable is a different kind of Geometry
299 // than the bounds (only Box for now). Spatial predicates are checked
300 // the same way for Geometry of the same kind.
301 if ( BOOST_GEOMETRY_CONDITION((
302 ! index::detail::is_bounding_geometry
303 <
304 typename indexable_type<Translator>::type
305 >::value )) )
306 {
307 elements_box.expand_by_epsilon();
308 }
309 #endif
310
311 auto_remover.release();
312 return internal_element(elements_box.get(), n);
313 }
314
315 // calculate next max and min subtree counts
316 subtree_elements_counts next_subtree_counts = subtree_counts;
317 next_subtree_counts.maxc /= parameters.get_max_elements();
318 next_subtree_counts.minc /= parameters.get_max_elements();
319
320 // create new internal node
321 node_pointer n = rtree::create_node<Allocators, internal_node>::apply(allocators); // MAY THROW (A)
322 subtree_destroyer auto_remover(n, allocators);
323 internal_node & in = rtree::get<internal_node>(*n);
324
325 // reserve space for values
326 std::size_t nodes_count = calculate_nodes_count(values_count, subtree_counts);
327 rtree::elements(in).reserve(nodes_count); // MAY THROW (A)
328 // calculate values box and copy values
329 expandable_box<Box, strategy_type> elements_box(detail::get_strategy(parameters));
330
331 per_level_packets(first, last, hint_box, values_count, subtree_counts, next_subtree_counts,
332 rtree::elements(in), elements_box,
333 parameters, translator, allocators);
334
335 auto_remover.release();
336 return internal_element(elements_box.get(), n);
337 }
338
339 template <typename EIt, typename ExpandableBox> inline static
340 void per_level_packets(EIt first, EIt last, Box const& hint_box,
341 std::size_t values_count,
342 subtree_elements_counts const& subtree_counts,
343 subtree_elements_counts const& next_subtree_counts,
344 internal_elements & elements, ExpandableBox & elements_box,
345 parameters_type const& parameters, Translator const& translator, Allocators & allocators)
346 {
347 BOOST_GEOMETRY_INDEX_ASSERT(0 < std::distance(first, last) && static_cast<std::size_t>(std::distance(first, last)) == values_count,
348 "unexpected parameters");
349
350 BOOST_GEOMETRY_INDEX_ASSERT(subtree_counts.minc <= values_count,
351 "too small number of elements");
352
353 // only one packet
354 if ( values_count <= subtree_counts.maxc )
355 {
356 // the end, move to the next level
357 internal_element el = per_level(first, last, hint_box, values_count, next_subtree_counts,
358 parameters, translator, allocators);
359
360 // in case if push_back() do throw here
361 // and even if this is not probable (previously reserved memory, nonthrowing pairs copy)
362 // this case is also tested by exceptions test.
363 subtree_destroyer auto_remover(el.second, allocators);
364 // this container should have memory allocated, reserve() called outside
365 elements.push_back(el); // MAY THROW (A?,C) - however in normal conditions shouldn't
366 auto_remover.release();
367
368 elements_box.expand(el.first);
369 return;
370 }
371
372 std::size_t median_count = calculate_median_count(values_count, subtree_counts);
373 EIt median = first + median_count;
374
375 coordinate_type greatest_length;
376 std::size_t greatest_dim_index = 0;
377 pack_utils::biggest_edge<dimension>::apply(hint_box, greatest_length, greatest_dim_index);
378 Box left, right;
379 pack_utils::nth_element_and_half_boxes<0, dimension>
380 ::apply(first, median, last, hint_box, left, right, greatest_dim_index);
381
382 per_level_packets(first, median, left,
383 median_count, subtree_counts, next_subtree_counts,
384 elements, elements_box,
385 parameters, translator, allocators);
386 per_level_packets(median, last, right,
387 values_count - median_count, subtree_counts, next_subtree_counts,
388 elements, elements_box,
389 parameters, translator, allocators);
390 }
391
392 inline static
393 subtree_elements_counts calculate_subtree_elements_counts(std::size_t elements_count, parameters_type const& parameters, size_type & leafs_level)
394 {
395 boost::ignore_unused(parameters);
396
397 subtree_elements_counts res(1, 1);
398 leafs_level = 0;
399
400 std::size_t smax = parameters.get_max_elements();
401 for ( ; smax < elements_count ; smax *= parameters.get_max_elements(), ++leafs_level )
402 res.maxc = smax;
403
404 res.minc = parameters.get_min_elements() * (res.maxc / parameters.get_max_elements());
405
406 return res;
407 }
408
409 inline static
410 std::size_t calculate_nodes_count(std::size_t count,
411 subtree_elements_counts const& subtree_counts)
412 {
413 std::size_t n = count / subtree_counts.maxc;
414 std::size_t r = count % subtree_counts.maxc;
415
416 if ( 0 < r && r < subtree_counts.minc )
417 {
418 std::size_t count_minus_min = count - subtree_counts.minc;
419 n = count_minus_min / subtree_counts.maxc;
420 r = count_minus_min % subtree_counts.maxc;
421 ++n;
422 }
423
424 if ( 0 < r )
425 ++n;
426
427 return n;
428 }
429
430 inline static
431 std::size_t calculate_median_count(std::size_t count,
432 subtree_elements_counts const& subtree_counts)
433 {
434 // e.g. for max = 5, min = 2, count = 52, subtree_max = 25, subtree_min = 10
435
436 std::size_t n = count / subtree_counts.maxc; // e.g. 52 / 25 = 2
437 std::size_t r = count % subtree_counts.maxc; // e.g. 52 % 25 = 2
438 std::size_t median_count = (n / 2) * subtree_counts.maxc; // e.g. 2 / 2 * 25 = 25
439
440 if ( 0 != r ) // e.g. 0 != 2
441 {
442 if ( subtree_counts.minc <= r ) // e.g. 10 <= 2 == false
443 {
444 //BOOST_GEOMETRY_INDEX_ASSERT(0 < n, "unexpected value");
445 median_count = ((n+1)/2) * subtree_counts.maxc; // if calculated ((2+1)/2) * 25 which would be ok, but not in all cases
446 }
447 else // r < subtree_counts.second // e.g. 2 < 10 == true
448 {
449 std::size_t count_minus_min = count - subtree_counts.minc; // e.g. 52 - 10 = 42
450 n = count_minus_min / subtree_counts.maxc; // e.g. 42 / 25 = 1
451 r = count_minus_min % subtree_counts.maxc; // e.g. 42 % 25 = 17
452 if ( r == 0 ) // e.g. false
453 {
454 // n can't be equal to 0 because then there wouldn't be any element in the other node
455 //BOOST_GEOMETRY_INDEX_ASSERT(0 < n, "unexpected value");
456 median_count = ((n+1)/2) * subtree_counts.maxc; // if calculated ((1+1)/2) * 25 which would be ok, but not in all cases
457 }
458 else
459 {
460 if ( n == 0 ) // e.g. false
461 median_count = r; // if calculated -> 17 which is wrong!
462 else
463 median_count = ((n+2)/2) * subtree_counts.maxc; // e.g. ((1+2)/2) * 25 = 25
464 }
465 }
466 }
467
468 return median_count;
469 }
470 };
471
472 }}}}} // namespace boost::geometry::index::detail::rtree
473
474 #endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_PACK_CREATE_HPP