]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/boost/rational.hpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / boost / rational.hpp
1 // Boost rational.hpp header file ------------------------------------------//
2
3 // (C) Copyright Paul Moore 1999. Permission to copy, use, modify, sell and
4 // distribute this software is granted provided this copyright notice appears
5 // in all copies. This software is provided "as is" without express or
6 // implied warranty, and with no claim as to its suitability for any purpose.
7
8 // boostinspect:nolicense (don't complain about the lack of a Boost license)
9 // (Paul Moore hasn't been in contact for years, so there's no way to change the
10 // license.)
11
12 // See http://www.boost.org/libs/rational for documentation.
13
14 // Credits:
15 // Thanks to the boost mailing list in general for useful comments.
16 // Particular contributions included:
17 // Andrew D Jewell, for reminding me to take care to avoid overflow
18 // Ed Brey, for many comments, including picking up on some dreadful typos
19 // Stephen Silver contributed the test suite and comments on user-defined
20 // IntType
21 // Nickolay Mladenov, for the implementation of operator+=
22
23 // Revision History
24 // 02 Sep 13 Remove unneeded forward declarations; tweak private helper
25 // function (Daryle Walker)
26 // 30 Aug 13 Improve exception safety of "assign"; start modernizing I/O code
27 // (Daryle Walker)
28 // 27 Aug 13 Add cross-version constructor template, plus some private helper
29 // functions; add constructor to exception class to take custom
30 // messages (Daryle Walker)
31 // 25 Aug 13 Add constexpr qualification wherever possible (Daryle Walker)
32 // 05 May 12 Reduced use of implicit gcd (Mario Lang)
33 // 05 Nov 06 Change rational_cast to not depend on division between different
34 // types (Daryle Walker)
35 // 04 Nov 06 Off-load GCD and LCM to Boost.Integer; add some invariant checks;
36 // add std::numeric_limits<> requirement to help GCD (Daryle Walker)
37 // 31 Oct 06 Recoded both operator< to use round-to-negative-infinity
38 // divisions; the rational-value version now uses continued fraction
39 // expansion to avoid overflows, for bug #798357 (Daryle Walker)
40 // 20 Oct 06 Fix operator bool_type for CW 8.3 (Joaquín M López Muñoz)
41 // 18 Oct 06 Use EXPLICIT_TEMPLATE_TYPE helper macros from Boost.Config
42 // (Joaquín M López Muñoz)
43 // 27 Dec 05 Add Boolean conversion operator (Daryle Walker)
44 // 28 Sep 02 Use _left versions of operators from operators.hpp
45 // 05 Jul 01 Recode gcd(), avoiding std::swap (Helmut Zeisel)
46 // 03 Mar 01 Workarounds for Intel C++ 5.0 (David Abrahams)
47 // 05 Feb 01 Update operator>> to tighten up input syntax
48 // 05 Feb 01 Final tidy up of gcd code prior to the new release
49 // 27 Jan 01 Recode abs() without relying on abs(IntType)
50 // 21 Jan 01 Include Nickolay Mladenov's operator+= algorithm,
51 // tidy up a number of areas, use newer features of operators.hpp
52 // (reduces space overhead to zero), add operator!,
53 // introduce explicit mixed-mode arithmetic operations
54 // 12 Jan 01 Include fixes to handle a user-defined IntType better
55 // 19 Nov 00 Throw on divide by zero in operator /= (John (EBo) David)
56 // 23 Jun 00 Incorporate changes from Mark Rodgers for Borland C++
57 // 22 Jun 00 Change _MSC_VER to BOOST_MSVC so other compilers are not
58 // affected (Beman Dawes)
59 // 6 Mar 00 Fix operator-= normalization, #include <string> (Jens Maurer)
60 // 14 Dec 99 Modifications based on comments from the boost list
61 // 09 Dec 99 Initial Version (Paul Moore)
62
63 #ifndef BOOST_RATIONAL_HPP
64 #define BOOST_RATIONAL_HPP
65
66 #include <boost/config.hpp> // for BOOST_NO_STDC_NAMESPACE, BOOST_MSVC, etc
67 #ifndef BOOST_NO_IOSTREAM
68 #include <iomanip> // for std::setw
69 #include <ios> // for std::noskipws, streamsize
70 #include <istream> // for std::istream
71 #include <ostream> // for std::ostream
72 #include <sstream> // for std::ostringstream
73 #endif
74 #include <cstddef> // for NULL
75 #include <stdexcept> // for std::domain_error
76 #include <string> // for std::string implicit constructor
77 #include <boost/operators.hpp> // for boost::addable etc
78 #include <cstdlib> // for std::abs
79 #include <boost/call_traits.hpp> // for boost::call_traits
80 #include <boost/detail/workaround.hpp> // for BOOST_WORKAROUND
81 #include <boost/assert.hpp> // for BOOST_ASSERT
82 #include <boost/integer/common_factor_rt.hpp> // for boost::integer::gcd, lcm
83 #include <limits> // for std::numeric_limits
84 #include <boost/static_assert.hpp> // for BOOST_STATIC_ASSERT
85 #include <boost/throw_exception.hpp>
86 #include <boost/utility/enable_if.hpp>
87 #include <boost/type_traits/is_convertible.hpp>
88 #include <boost/type_traits/is_class.hpp>
89 #include <boost/type_traits/is_same.hpp>
90 #include <boost/type_traits/is_array.hpp>
91
92 // Control whether depreciated GCD and LCM functions are included (default: yes)
93 #ifndef BOOST_CONTROL_RATIONAL_HAS_GCD
94 #define BOOST_CONTROL_RATIONAL_HAS_GCD 1
95 #endif
96
97 namespace boost {
98
99 #if BOOST_CONTROL_RATIONAL_HAS_GCD
100 template <typename IntType>
101 IntType gcd(IntType n, IntType m)
102 {
103 // Defer to the version in Boost.Integer
104 return integer::gcd( n, m );
105 }
106
107 template <typename IntType>
108 IntType lcm(IntType n, IntType m)
109 {
110 // Defer to the version in Boost.Integer
111 return integer::lcm( n, m );
112 }
113 #endif // BOOST_CONTROL_RATIONAL_HAS_GCD
114
115 namespace rational_detail{
116
117 template <class FromInt, class ToInt, typename Enable = void>
118 struct is_compatible_integer;
119
120 template <class FromInt, class ToInt>
121 struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>
122 {
123 BOOST_STATIC_CONSTANT(bool, value = ((std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
124 && (std::numeric_limits<FromInt>::digits <= std::numeric_limits<ToInt>::digits)
125 && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
126 && ((std::numeric_limits<FromInt>::is_signed == false) || (std::numeric_limits<ToInt>::is_signed == true))
127 && is_convertible<FromInt, ToInt>::value)
128 || is_same<FromInt, ToInt>::value)
129 || (is_class<ToInt>::value && is_class<FromInt>::value && is_convertible<FromInt, ToInt>::value));
130 };
131
132 template <class FromInt, class ToInt>
133 struct is_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>
134 {
135 BOOST_STATIC_CONSTANT(bool, value = false);
136 };
137
138 template <class FromInt, class ToInt, typename Enable = void>
139 struct is_backward_compatible_integer;
140
141 template <class FromInt, class ToInt>
142 struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<!is_array<FromInt>::value>::type>
143 {
144 BOOST_STATIC_CONSTANT(bool, value = (std::numeric_limits<FromInt>::is_specialized && std::numeric_limits<FromInt>::is_integer
145 && !is_compatible_integer<FromInt, ToInt>::value
146 && (std::numeric_limits<FromInt>::radix == std::numeric_limits<ToInt>::radix)
147 && is_convertible<FromInt, ToInt>::value));
148 };
149
150 template <class FromInt, class ToInt>
151 struct is_backward_compatible_integer<FromInt, ToInt, typename enable_if_c<is_array<FromInt>::value>::type>
152 {
153 BOOST_STATIC_CONSTANT(bool, value = false);
154 };
155 }
156
157 class bad_rational : public std::domain_error
158 {
159 public:
160 explicit bad_rational() : std::domain_error("bad rational: zero denominator") {}
161 explicit bad_rational( char const *what ) : std::domain_error( what ) {}
162 };
163
164 template <typename IntType>
165 class rational
166 {
167 // Class-wide pre-conditions
168 BOOST_STATIC_ASSERT( ::std::numeric_limits<IntType>::is_specialized );
169
170 // Helper types
171 typedef typename boost::call_traits<IntType>::param_type param_type;
172
173 struct helper { IntType parts[2]; };
174 typedef IntType (helper::* bool_type)[2];
175
176 public:
177 // Component type
178 typedef IntType int_type;
179
180 BOOST_CONSTEXPR
181 rational() : num(0), den(1) {}
182
183 template <class T>//, typename enable_if_c<!is_array<T>::value>::type>
184 BOOST_CONSTEXPR rational(const T& n, typename enable_if_c<
185 rational_detail::is_compatible_integer<T, IntType>::value
186 >::type const* = 0) : num(n), den(1) {}
187
188 template <class T, class U>
189 BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<
190 rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value
191 >::type const* = 0) : num(n), den(d) {
192 normalize();
193 }
194
195 template < typename NewType >
196 BOOST_CONSTEXPR explicit
197 rational(rational<NewType> const &r, typename enable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
198 : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
199 int_type(r.denominator())) ? r.denominator() :
200 (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
201
202 template < typename NewType >
203 BOOST_CONSTEXPR explicit
204 rational(rational<NewType> const &r, typename disable_if_c<rational_detail::is_compatible_integer<NewType, IntType>::value>::type const* = 0)
205 : num(r.numerator()), den(is_normalized(int_type(r.numerator()),
206 int_type(r.denominator())) && is_safe_narrowing_conversion(r.denominator()) && is_safe_narrowing_conversion(r.numerator()) ? r.denominator() :
207 (BOOST_THROW_EXCEPTION(bad_rational("bad rational: denormalized conversion")), 0)){}
208 // Default copy constructor and assignment are fine
209
210 // Add assignment from IntType
211 template <class T>
212 BOOST_CXX14_CONSTEXPR typename enable_if_c<
213 rational_detail::is_compatible_integer<T, IntType>::value, rational &
214 >::type operator=(const T& n) { return assign(static_cast<IntType>(n), static_cast<IntType>(1)); }
215
216 // Assign in place
217 template <class T, class U>
218 BOOST_CXX14_CONSTEXPR typename enable_if_c<
219 rational_detail::is_compatible_integer<T, IntType>::value && rational_detail::is_compatible_integer<U, IntType>::value, rational &
220 >::type assign(const T& n, const U& d)
221 {
222 return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
223 }
224 //
225 // The following overloads should probably *not* be provided -
226 // but are provided for backwards compatibity reasons only.
227 // These allow for construction/assignment from types that
228 // are wider than IntType only if there is an implicit
229 // conversion from T to IntType, they will throw a bad_rational
230 // if the conversion results in loss of precision or undefined behaviour.
231 //
232 template <class T>//, typename enable_if_c<!is_array<T>::value>::type>
233 BOOST_CXX14_CONSTEXPR rational(const T& n, typename enable_if_c<
234 rational_detail::is_backward_compatible_integer<T, IntType>::value
235 >::type const* = 0)
236 {
237 assign(n, static_cast<T>(1));
238 }
239 template <class T, class U>
240 BOOST_CXX14_CONSTEXPR rational(const T& n, const U& d, typename enable_if_c<
241 (!rational_detail::is_compatible_integer<T, IntType>::value
242 || !rational_detail::is_compatible_integer<U, IntType>::value)
243 && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
244 && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
245 && is_convertible<T, IntType>::value &&
246 std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
247 && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
248 && is_convertible<U, IntType>::value
249 >::type const* = 0)
250 {
251 assign(n, d);
252 }
253 template <class T>
254 BOOST_CXX14_CONSTEXPR typename enable_if_c<
255 std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
256 && !rational_detail::is_compatible_integer<T, IntType>::value
257 && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
258 && is_convertible<T, IntType>::value,
259 rational &
260 >::type operator=(const T& n) { return assign(n, static_cast<T>(1)); }
261
262 template <class T, class U>
263 BOOST_CXX14_CONSTEXPR typename enable_if_c<
264 (!rational_detail::is_compatible_integer<T, IntType>::value
265 || !rational_detail::is_compatible_integer<U, IntType>::value)
266 && std::numeric_limits<T>::is_specialized && std::numeric_limits<T>::is_integer
267 && (std::numeric_limits<T>::radix == std::numeric_limits<IntType>::radix)
268 && is_convertible<T, IntType>::value &&
269 std::numeric_limits<U>::is_specialized && std::numeric_limits<U>::is_integer
270 && (std::numeric_limits<U>::radix == std::numeric_limits<IntType>::radix)
271 && is_convertible<U, IntType>::value,
272 rational &
273 >::type assign(const T& n, const U& d)
274 {
275 if(!is_safe_narrowing_conversion(n) || !is_safe_narrowing_conversion(d))
276 BOOST_THROW_EXCEPTION(bad_rational());
277 return *this = rational<IntType>(static_cast<IntType>(n), static_cast<IntType>(d));
278 }
279
280 // Access to representation
281 BOOST_CONSTEXPR
282 const IntType& numerator() const { return num; }
283 BOOST_CONSTEXPR
284 const IntType& denominator() const { return den; }
285
286 // Arithmetic assignment operators
287 BOOST_CXX14_CONSTEXPR rational& operator+= (const rational& r);
288 BOOST_CXX14_CONSTEXPR rational& operator-= (const rational& r);
289 BOOST_CXX14_CONSTEXPR rational& operator*= (const rational& r);
290 BOOST_CXX14_CONSTEXPR rational& operator/= (const rational& r);
291
292 template <class T>
293 BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator+= (const T& i)
294 {
295 num += i * den;
296 return *this;
297 }
298 template <class T>
299 BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator-= (const T& i)
300 {
301 num -= i * den;
302 return *this;
303 }
304 template <class T>
305 BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator*= (const T& i)
306 {
307 // Avoid overflow and preserve normalization
308 IntType gcd = integer::gcd(static_cast<IntType>(i), den);
309 num *= i / gcd;
310 den /= gcd;
311 return *this;
312 }
313 template <class T>
314 BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, rational&>::type operator/= (const T& i)
315 {
316 // Avoid repeated construction
317 IntType const zero(0);
318
319 if(i == zero) BOOST_THROW_EXCEPTION(bad_rational());
320 if(num == zero) return *this;
321
322 // Avoid overflow and preserve normalization
323 IntType const gcd = integer::gcd(num, static_cast<IntType>(i));
324 num /= gcd;
325 den *= i / gcd;
326
327 if(den < zero) {
328 num = -num;
329 den = -den;
330 }
331
332 return *this;
333 }
334
335 // Increment and decrement
336 BOOST_CXX14_CONSTEXPR const rational& operator++() { num += den; return *this; }
337 BOOST_CXX14_CONSTEXPR const rational& operator--() { num -= den; return *this; }
338
339 BOOST_CXX14_CONSTEXPR rational operator++(int)
340 {
341 rational t(*this);
342 ++(*this);
343 return t;
344 }
345 BOOST_CXX14_CONSTEXPR rational operator--(int)
346 {
347 rational t(*this);
348 --(*this);
349 return t;
350 }
351
352 // Operator not
353 BOOST_CONSTEXPR
354 bool operator!() const { return !num; }
355
356 // Boolean conversion
357
358 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
359 // The "ISO C++ Template Parser" option in CW 8.3 chokes on the
360 // following, hence we selectively disable that option for the
361 // offending memfun.
362 #pragma parse_mfunc_templ off
363 #endif
364
365 BOOST_CONSTEXPR
366 operator bool_type() const { return operator !() ? 0 : &helper::parts; }
367
368 #if BOOST_WORKAROUND(__MWERKS__,<=0x3003)
369 #pragma parse_mfunc_templ reset
370 #endif
371
372 // Comparison operators
373 BOOST_CXX14_CONSTEXPR bool operator< (const rational& r) const;
374 BOOST_CXX14_CONSTEXPR bool operator> (const rational& r) const { return r < *this; }
375 BOOST_CONSTEXPR
376 bool operator== (const rational& r) const;
377
378 template <class T>
379 BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator< (const T& i) const
380 {
381 // Avoid repeated construction
382 int_type const zero(0);
383
384 // Break value into mixed-fraction form, w/ always-nonnegative remainder
385 BOOST_ASSERT(this->den > zero);
386 int_type q = this->num / this->den, r = this->num % this->den;
387 while(r < zero) { r += this->den; --q; }
388
389 // Compare with just the quotient, since the remainder always bumps the
390 // value up. [Since q = floor(n/d), and if n/d < i then q < i, if n/d == i
391 // then q == i, if n/d == i + r/d then q == i, and if n/d >= i + 1 then
392 // q >= i + 1 > i; therefore n/d < i iff q < i.]
393 return q < i;
394 }
395 template <class T>
396 BOOST_CXX14_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator>(const T& i) const
397 {
398 return operator==(i) ? false : !operator<(i);
399 }
400 template <class T>
401 BOOST_CONSTEXPR typename boost::enable_if_c<rational_detail::is_compatible_integer<T, IntType>::value, bool>::type operator== (const T& i) const
402 {
403 return ((den == IntType(1)) && (num == i));
404 }
405
406 private:
407 // Implementation - numerator and denominator (normalized).
408 // Other possibilities - separate whole-part, or sign, fields?
409 IntType num;
410 IntType den;
411
412 // Helper functions
413 static BOOST_CONSTEXPR
414 int_type inner_gcd( param_type a, param_type b, int_type const &zero =
415 int_type(0) )
416 { return b == zero ? a : inner_gcd(b, a % b, zero); }
417
418 static BOOST_CONSTEXPR
419 int_type inner_abs( param_type x, int_type const &zero = int_type(0) )
420 { return x < zero ? -x : +x; }
421
422 // Representation note: Fractions are kept in normalized form at all
423 // times. normalized form is defined as gcd(num,den) == 1 and den > 0.
424 // In particular, note that the implementation of abs() below relies
425 // on den always being positive.
426 BOOST_CXX14_CONSTEXPR bool test_invariant() const;
427 BOOST_CXX14_CONSTEXPR void normalize();
428
429 static BOOST_CONSTEXPR
430 bool is_normalized( param_type n, param_type d, int_type const &zero =
431 int_type(0), int_type const &one = int_type(1) )
432 {
433 return d > zero && ( n != zero || d == one ) && inner_abs( inner_gcd(n,
434 d, zero), zero ) == one;
435 }
436 //
437 // Conversion checks:
438 //
439 // (1) From an unsigned type with more digits than IntType:
440 //
441 template <class T>
442 BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
443 {
444 return val < (T(1) << std::numeric_limits<IntType>::digits);
445 }
446 //
447 // (2) From a signed type with more digits than IntType, and IntType also signed:
448 //
449 template <class T>
450 BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T& val)
451 {
452 // Note that this check assumes IntType has a 2's complement representation,
453 // we don't want to try to convert a std::numeric_limits<IntType>::min() to
454 // a T because that conversion may not be allowed (this happens when IntType
455 // is from Boost.Multiprecision).
456 return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= -(T(1) << std::numeric_limits<IntType>::digits));
457 }
458 //
459 // (3) From a signed type with more digits than IntType, and IntType unsigned:
460 //
461 template <class T>
462 BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits > std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
463 {
464 return (val < (T(1) << std::numeric_limits<IntType>::digits)) && (val >= 0);
465 }
466 //
467 // (4) From a signed type with fewer digits than IntType, and IntType unsigned:
468 //
469 template <class T>
470 BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T& val)
471 {
472 return val >= 0;
473 }
474 //
475 // (5) From an unsigned type with fewer digits than IntType, and IntType signed:
476 //
477 template <class T>
478 BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
479 {
480 return true;
481 }
482 //
483 // (6) From an unsigned type with fewer digits than IntType, and IntType unsigned:
484 //
485 template <class T>
486 BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == false) && (std::numeric_limits<IntType>::is_signed == false), bool>::type is_safe_narrowing_conversion(const T&)
487 {
488 return true;
489 }
490 //
491 // (7) From an signed type with fewer digits than IntType, and IntType signed:
492 //
493 template <class T>
494 BOOST_CONSTEXPR static typename boost::enable_if_c<(std::numeric_limits<T>::digits <= std::numeric_limits<IntType>::digits) && (std::numeric_limits<T>::is_signed == true) && (std::numeric_limits<IntType>::is_signed == true), bool>::type is_safe_narrowing_conversion(const T&)
495 {
496 return true;
497 }
498 };
499
500 // Unary plus and minus
501 template <typename IntType>
502 BOOST_CONSTEXPR
503 inline rational<IntType> operator+ (const rational<IntType>& r)
504 {
505 return r;
506 }
507
508 template <typename IntType>
509 BOOST_CXX14_CONSTEXPR
510 inline rational<IntType> operator- (const rational<IntType>& r)
511 {
512 return rational<IntType>(static_cast<IntType>(-r.numerator()), r.denominator());
513 }
514
515 // Arithmetic assignment operators
516 template <typename IntType>
517 BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator+= (const rational<IntType>& r)
518 {
519 // This calculation avoids overflow, and minimises the number of expensive
520 // calculations. Thanks to Nickolay Mladenov for this algorithm.
521 //
522 // Proof:
523 // We have to compute a/b + c/d, where gcd(a,b)=1 and gcd(b,c)=1.
524 // Let g = gcd(b,d), and b = b1*g, d=d1*g. Then gcd(b1,d1)=1
525 //
526 // The result is (a*d1 + c*b1) / (b1*d1*g).
527 // Now we have to normalize this ratio.
528 // Let's assume h | gcd((a*d1 + c*b1), (b1*d1*g)), and h > 1
529 // If h | b1 then gcd(h,d1)=1 and hence h|(a*d1+c*b1) => h|a.
530 // But since gcd(a,b1)=1 we have h=1.
531 // Similarly h|d1 leads to h=1.
532 // So we have that h | gcd((a*d1 + c*b1) , (b1*d1*g)) => h|g
533 // Finally we have gcd((a*d1 + c*b1), (b1*d1*g)) = gcd((a*d1 + c*b1), g)
534 // Which proves that instead of normalizing the result, it is better to
535 // divide num and den by gcd((a*d1 + c*b1), g)
536
537 // Protect against self-modification
538 IntType r_num = r.num;
539 IntType r_den = r.den;
540
541 IntType g = integer::gcd(den, r_den);
542 den /= g; // = b1 from the calculations above
543 num = num * (r_den / g) + r_num * den;
544 g = integer::gcd(num, g);
545 num /= g;
546 den *= r_den/g;
547
548 return *this;
549 }
550
551 template <typename IntType>
552 BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator-= (const rational<IntType>& r)
553 {
554 // Protect against self-modification
555 IntType r_num = r.num;
556 IntType r_den = r.den;
557
558 // This calculation avoids overflow, and minimises the number of expensive
559 // calculations. It corresponds exactly to the += case above
560 IntType g = integer::gcd(den, r_den);
561 den /= g;
562 num = num * (r_den / g) - r_num * den;
563 g = integer::gcd(num, g);
564 num /= g;
565 den *= r_den/g;
566
567 return *this;
568 }
569
570 template <typename IntType>
571 BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator*= (const rational<IntType>& r)
572 {
573 // Protect against self-modification
574 IntType r_num = r.num;
575 IntType r_den = r.den;
576
577 // Avoid overflow and preserve normalization
578 IntType gcd1 = integer::gcd(num, r_den);
579 IntType gcd2 = integer::gcd(r_num, den);
580 num = (num/gcd1) * (r_num/gcd2);
581 den = (den/gcd2) * (r_den/gcd1);
582 return *this;
583 }
584
585 template <typename IntType>
586 BOOST_CXX14_CONSTEXPR rational<IntType>& rational<IntType>::operator/= (const rational<IntType>& r)
587 {
588 // Protect against self-modification
589 IntType r_num = r.num;
590 IntType r_den = r.den;
591
592 // Avoid repeated construction
593 IntType zero(0);
594
595 // Trap division by zero
596 if (r_num == zero)
597 BOOST_THROW_EXCEPTION(bad_rational());
598 if (num == zero)
599 return *this;
600
601 // Avoid overflow and preserve normalization
602 IntType gcd1 = integer::gcd(num, r_num);
603 IntType gcd2 = integer::gcd(r_den, den);
604 num = (num/gcd1) * (r_den/gcd2);
605 den = (den/gcd2) * (r_num/gcd1);
606
607 if (den < zero) {
608 num = -num;
609 den = -den;
610 }
611 return *this;
612 }
613
614
615 //
616 // Non-member operators: previously these were provided by Boost.Operator, but these had a number of
617 // drawbacks, most notably, that in order to allow inter-operability with IntType code such as this:
618 //
619 // rational<int> r(3);
620 // assert(r == 3.5); // compiles and passes!!
621 //
622 // Happens to be allowed as well :-(
623 //
624 // There are three possible cases for each operator:
625 // 1) rational op rational.
626 // 2) rational op integer
627 // 3) integer op rational
628 // Cases (1) and (2) are folded into the one function.
629 //
630 template <class IntType, class Arg>
631 BOOST_CXX14_CONSTEXPR
632 inline typename boost::enable_if_c <
633 rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
634 operator + (const rational<IntType>& a, const Arg& b)
635 {
636 rational<IntType> t(a);
637 return t += b;
638 }
639 template <class Arg, class IntType>
640 BOOST_CXX14_CONSTEXPR
641 inline typename boost::enable_if_c <
642 rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
643 operator + (const Arg& b, const rational<IntType>& a)
644 {
645 rational<IntType> t(a);
646 return t += b;
647 }
648
649 template <class IntType, class Arg>
650 BOOST_CXX14_CONSTEXPR
651 inline typename boost::enable_if_c <
652 rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
653 operator - (const rational<IntType>& a, const Arg& b)
654 {
655 rational<IntType> t(a);
656 return t -= b;
657 }
658 template <class Arg, class IntType>
659 BOOST_CXX14_CONSTEXPR
660 inline typename boost::enable_if_c <
661 rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
662 operator - (const Arg& b, const rational<IntType>& a)
663 {
664 rational<IntType> t(a);
665 return -(t -= b);
666 }
667
668 template <class IntType, class Arg>
669 BOOST_CXX14_CONSTEXPR
670 inline typename boost::enable_if_c <
671 rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
672 operator * (const rational<IntType>& a, const Arg& b)
673 {
674 rational<IntType> t(a);
675 return t *= b;
676 }
677 template <class Arg, class IntType>
678 BOOST_CXX14_CONSTEXPR
679 inline typename boost::enable_if_c <
680 rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
681 operator * (const Arg& b, const rational<IntType>& a)
682 {
683 rational<IntType> t(a);
684 return t *= b;
685 }
686
687 template <class IntType, class Arg>
688 BOOST_CXX14_CONSTEXPR
689 inline typename boost::enable_if_c <
690 rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, rational<IntType> >::type
691 operator / (const rational<IntType>& a, const Arg& b)
692 {
693 rational<IntType> t(a);
694 return t /= b;
695 }
696 template <class Arg, class IntType>
697 BOOST_CXX14_CONSTEXPR
698 inline typename boost::enable_if_c <
699 rational_detail::is_compatible_integer<Arg, IntType>::value, rational<IntType> >::type
700 operator / (const Arg& b, const rational<IntType>& a)
701 {
702 rational<IntType> t(b);
703 return t /= a;
704 }
705
706 template <class IntType, class Arg>
707 BOOST_CXX14_CONSTEXPR
708 inline typename boost::enable_if_c <
709 rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
710 operator <= (const rational<IntType>& a, const Arg& b)
711 {
712 return !(a > b);
713 }
714 template <class Arg, class IntType>
715 BOOST_CXX14_CONSTEXPR
716 inline typename boost::enable_if_c <
717 rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
718 operator <= (const Arg& b, const rational<IntType>& a)
719 {
720 return a >= b;
721 }
722
723 template <class IntType, class Arg>
724 BOOST_CXX14_CONSTEXPR
725 inline typename boost::enable_if_c <
726 rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
727 operator >= (const rational<IntType>& a, const Arg& b)
728 {
729 return !(a < b);
730 }
731 template <class Arg, class IntType>
732 BOOST_CXX14_CONSTEXPR
733 inline typename boost::enable_if_c <
734 rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
735 operator >= (const Arg& b, const rational<IntType>& a)
736 {
737 return a <= b;
738 }
739
740 template <class IntType, class Arg>
741 BOOST_CONSTEXPR
742 inline typename boost::enable_if_c <
743 rational_detail::is_compatible_integer<Arg, IntType>::value || is_same<rational<IntType>, Arg>::value, bool>::type
744 operator != (const rational<IntType>& a, const Arg& b)
745 {
746 return !(a == b);
747 }
748 template <class Arg, class IntType>
749 BOOST_CONSTEXPR
750 inline typename boost::enable_if_c <
751 rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
752 operator != (const Arg& b, const rational<IntType>& a)
753 {
754 return !(b == a);
755 }
756
757 template <class Arg, class IntType>
758 BOOST_CXX14_CONSTEXPR
759 inline typename boost::enable_if_c <
760 rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
761 operator < (const Arg& b, const rational<IntType>& a)
762 {
763 return a > b;
764 }
765 template <class Arg, class IntType>
766 BOOST_CXX14_CONSTEXPR
767 inline typename boost::enable_if_c <
768 rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
769 operator > (const Arg& b, const rational<IntType>& a)
770 {
771 return a < b;
772 }
773 template <class Arg, class IntType>
774 BOOST_CONSTEXPR
775 inline typename boost::enable_if_c <
776 rational_detail::is_compatible_integer<Arg, IntType>::value, bool>::type
777 operator == (const Arg& b, const rational<IntType>& a)
778 {
779 return a == b;
780 }
781
782 // Comparison operators
783 template <typename IntType>
784 BOOST_CXX14_CONSTEXPR
785 bool rational<IntType>::operator< (const rational<IntType>& r) const
786 {
787 // Avoid repeated construction
788 int_type const zero( 0 );
789
790 // This should really be a class-wide invariant. The reason for these
791 // checks is that for 2's complement systems, INT_MIN has no corresponding
792 // positive, so negating it during normalization keeps it INT_MIN, which
793 // is bad for later calculations that assume a positive denominator.
794 BOOST_ASSERT( this->den > zero );
795 BOOST_ASSERT( r.den > zero );
796
797 // Determine relative order by expanding each value to its simple continued
798 // fraction representation using the Euclidian GCD algorithm.
799 struct { int_type n, d, q, r; }
800 ts = { this->num, this->den, static_cast<int_type>(this->num / this->den),
801 static_cast<int_type>(this->num % this->den) },
802 rs = { r.num, r.den, static_cast<int_type>(r.num / r.den),
803 static_cast<int_type>(r.num % r.den) };
804 unsigned reverse = 0u;
805
806 // Normalize negative moduli by repeatedly adding the (positive) denominator
807 // and decrementing the quotient. Later cycles should have all positive
808 // values, so this only has to be done for the first cycle. (The rules of
809 // C++ require a nonnegative quotient & remainder for a nonnegative dividend
810 // & positive divisor.)
811 while ( ts.r < zero ) { ts.r += ts.d; --ts.q; }
812 while ( rs.r < zero ) { rs.r += rs.d; --rs.q; }
813
814 // Loop through and compare each variable's continued-fraction components
815 for ( ;; )
816 {
817 // The quotients of the current cycle are the continued-fraction
818 // components. Comparing two c.f. is comparing their sequences,
819 // stopping at the first difference.
820 if ( ts.q != rs.q )
821 {
822 // Since reciprocation changes the relative order of two variables,
823 // and c.f. use reciprocals, the less/greater-than test reverses
824 // after each index. (Start w/ non-reversed @ whole-number place.)
825 return reverse ? ts.q > rs.q : ts.q < rs.q;
826 }
827
828 // Prepare the next cycle
829 reverse ^= 1u;
830
831 if ( (ts.r == zero) || (rs.r == zero) )
832 {
833 // At least one variable's c.f. expansion has ended
834 break;
835 }
836
837 ts.n = ts.d; ts.d = ts.r;
838 ts.q = ts.n / ts.d; ts.r = ts.n % ts.d;
839 rs.n = rs.d; rs.d = rs.r;
840 rs.q = rs.n / rs.d; rs.r = rs.n % rs.d;
841 }
842
843 // Compare infinity-valued components for otherwise equal sequences
844 if ( ts.r == rs.r )
845 {
846 // Both remainders are zero, so the next (and subsequent) c.f.
847 // components for both sequences are infinity. Therefore, the sequences
848 // and their corresponding values are equal.
849 return false;
850 }
851 else
852 {
853 #ifdef BOOST_MSVC
854 #pragma warning(push)
855 #pragma warning(disable:4800)
856 #endif
857 // Exactly one of the remainders is zero, so all following c.f.
858 // components of that variable are infinity, while the other variable
859 // has a finite next c.f. component. So that other variable has the
860 // lesser value (modulo the reversal flag!).
861 return ( ts.r != zero ) != static_cast<bool>( reverse );
862 #ifdef BOOST_MSVC
863 #pragma warning(pop)
864 #endif
865 }
866 }
867
868 template <typename IntType>
869 BOOST_CONSTEXPR
870 inline bool rational<IntType>::operator== (const rational<IntType>& r) const
871 {
872 return ((num == r.num) && (den == r.den));
873 }
874
875 // Invariant check
876 template <typename IntType>
877 BOOST_CXX14_CONSTEXPR
878 inline bool rational<IntType>::test_invariant() const
879 {
880 return ( this->den > int_type(0) ) && ( integer::gcd(this->num, this->den) ==
881 int_type(1) );
882 }
883
884 // Normalisation
885 template <typename IntType>
886 BOOST_CXX14_CONSTEXPR void rational<IntType>::normalize()
887 {
888 // Avoid repeated construction
889 IntType zero(0);
890
891 if (den == zero)
892 BOOST_THROW_EXCEPTION(bad_rational());
893
894 // Handle the case of zero separately, to avoid division by zero
895 if (num == zero) {
896 den = IntType(1);
897 return;
898 }
899
900 IntType g = integer::gcd(num, den);
901
902 num /= g;
903 den /= g;
904
905 if (den < -(std::numeric_limits<IntType>::max)()) {
906 BOOST_THROW_EXCEPTION(bad_rational("bad rational: non-zero singular denominator"));
907 }
908
909 // Ensure that the denominator is positive
910 if (den < zero) {
911 num = -num;
912 den = -den;
913 }
914
915 BOOST_ASSERT( this->test_invariant() );
916 }
917
918 #ifndef BOOST_NO_IOSTREAM
919 namespace detail {
920
921 // A utility class to reset the format flags for an istream at end
922 // of scope, even in case of exceptions
923 struct resetter {
924 resetter(std::istream& is) : is_(is), f_(is.flags()) {}
925 ~resetter() { is_.flags(f_); }
926 std::istream& is_;
927 std::istream::fmtflags f_; // old GNU c++ lib has no ios_base
928 };
929
930 }
931
932 // Input and output
933 template <typename IntType>
934 std::istream& operator>> (std::istream& is, rational<IntType>& r)
935 {
936 using std::ios;
937
938 IntType n = IntType(0), d = IntType(1);
939 char c = 0;
940 detail::resetter sentry(is);
941
942 if ( is >> n )
943 {
944 if ( is.get(c) )
945 {
946 if ( c == '/' )
947 {
948 if ( is >> std::noskipws >> d )
949 try {
950 r.assign( n, d );
951 } catch ( bad_rational & ) { // normalization fail
952 try { is.setstate(ios::failbit); }
953 catch ( ... ) {} // don't throw ios_base::failure...
954 if ( is.exceptions() & ios::failbit )
955 throw; // ...but the original exception instead
956 // ELSE: suppress the exception, use just error flags
957 }
958 }
959 else
960 is.setstate( ios::failbit );
961 }
962 }
963
964 return is;
965 }
966
967 // Add manipulators for output format?
968 template <typename IntType>
969 std::ostream& operator<< (std::ostream& os, const rational<IntType>& r)
970 {
971 // The slash directly precedes the denominator, which has no prefixes.
972 std::ostringstream ss;
973
974 ss.copyfmt( os );
975 ss.tie( NULL );
976 ss.exceptions( std::ios::goodbit );
977 ss.width( 0 );
978 ss << std::noshowpos << std::noshowbase << '/' << r.denominator();
979
980 // The numerator holds the showpos, internal, and showbase flags.
981 std::string const tail = ss.str();
982 std::streamsize const w =
983 os.width() - static_cast<std::streamsize>( tail.size() );
984
985 ss.clear();
986 ss.str( "" );
987 ss.flags( os.flags() );
988 ss << std::setw( w < 0 || (os.flags() & std::ios::adjustfield) !=
989 std::ios::internal ? 0 : w ) << r.numerator();
990 return os << ss.str() + tail;
991 }
992 #endif // BOOST_NO_IOSTREAM
993
994 // Type conversion
995 template <typename T, typename IntType>
996 BOOST_CONSTEXPR
997 inline T rational_cast(const rational<IntType>& src)
998 {
999 return static_cast<T>(src.numerator())/static_cast<T>(src.denominator());
1000 }
1001
1002 // Do not use any abs() defined on IntType - it isn't worth it, given the
1003 // difficulties involved (Koenig lookup required, there may not *be* an abs()
1004 // defined, etc etc).
1005 template <typename IntType>
1006 BOOST_CXX14_CONSTEXPR
1007 inline rational<IntType> abs(const rational<IntType>& r)
1008 {
1009 return r.numerator() >= IntType(0)? r: -r;
1010 }
1011
1012 namespace integer {
1013
1014 template <typename IntType>
1015 struct gcd_evaluator< rational<IntType> >
1016 {
1017 typedef rational<IntType> result_type,
1018 first_argument_type, second_argument_type;
1019 result_type operator() ( first_argument_type const &a
1020 , second_argument_type const &b
1021 ) const
1022 {
1023 return result_type(integer::gcd(a.numerator(), b.numerator()),
1024 integer::lcm(a.denominator(), b.denominator()));
1025 }
1026 };
1027
1028 template <typename IntType>
1029 struct lcm_evaluator< rational<IntType> >
1030 {
1031 typedef rational<IntType> result_type,
1032 first_argument_type, second_argument_type;
1033 result_type operator() ( first_argument_type const &a
1034 , second_argument_type const &b
1035 ) const
1036 {
1037 return result_type(integer::lcm(a.numerator(), b.numerator()),
1038 integer::gcd(a.denominator(), b.denominator()));
1039 }
1040 };
1041
1042 } // namespace integer
1043
1044 } // namespace boost
1045
1046 #endif // BOOST_RATIONAL_HPP