]> git.proxmox.com Git - ceph.git/blob - ceph/src/boost/libs/asio/example/cpp14/operations/composed_5.cpp
import new upstream nautilus stable release 14.2.8
[ceph.git] / ceph / src / boost / libs / asio / example / cpp14 / operations / composed_5.cpp
1 //
2 // composed_5.cpp
3 // ~~~~~~~~~~~~~~
4 //
5 // Copyright (c) 2003-2019 Christopher M. Kohlhoff (chris at kohlhoff dot com)
6 //
7 // Distributed under the Boost Software License, Version 1.0. (See accompanying
8 // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
9 //
10
11 #include <boost/asio/io_context.hpp>
12 #include <boost/asio/ip/tcp.hpp>
13 #include <boost/asio/use_future.hpp>
14 #include <boost/asio/write.hpp>
15 #include <functional>
16 #include <iostream>
17 #include <memory>
18 #include <sstream>
19 #include <string>
20 #include <type_traits>
21 #include <utility>
22
23 using boost::asio::ip::tcp;
24
25 // NOTE: This example requires the new boost::asio::async_initiate function. For
26 // an example that works with the Networking TS style of completion tokens,
27 // please see an older version of asio.
28
29 //------------------------------------------------------------------------------
30
31 // This composed operation automatically serialises a message, using its I/O
32 // streams insertion operator, before sending it on the socket. To do this, it
33 // must allocate a buffer for the encoded message and ensure this buffer's
34 // validity until the underlying async_write operation completes.
35
36 template <typename T, typename CompletionToken>
37 auto async_write_message(tcp::socket& socket,
38 const T& message, CompletionToken&& token)
39 // The return type of the initiating function is deduced from the combination
40 // of CompletionToken type and the completion handler's signature. When the
41 // completion token is a simple callback, the return type is always void.
42 // In this example, when the completion token is boost::asio::yield_context
43 // (used for stackful coroutines) the return type would be also be void, as
44 // there is no non-error argument to the completion handler. When the
45 // completion token is boost::asio::use_future it would be std::future<void>.
46 //
47 // In C++14 we can omit the return type as it is automatically deduced from
48 // the return type of boost::asio::async_initiate.
49 {
50 // In addition to determining the mechanism by which an asynchronous
51 // operation delivers its result, a completion token also determines the time
52 // when the operation commences. For example, when the completion token is a
53 // simple callback the operation commences before the initiating function
54 // returns. However, if the completion token's delivery mechanism uses a
55 // future, we might instead want to defer initiation of the operation until
56 // the returned future object is waited upon.
57 //
58 // To enable this, when implementing an asynchronous operation we must
59 // package the initiation step as a function object. The initiation function
60 // object's call operator is passed the concrete completion handler produced
61 // by the completion token. This completion handler matches the asynchronous
62 // operation's completion handler signature, which in this example is:
63 //
64 // void(boost::system::error_code error)
65 //
66 // The initiation function object also receives any additional arguments
67 // required to start the operation. (Note: We could have instead passed these
68 // arguments in the lambda capture set. However, we should prefer to
69 // propagate them as function call arguments as this allows the completion
70 // token to optimise how they are passed. For example, a lazy future which
71 // defers initiation would need to make a decay-copy of the arguments, but
72 // when using a simple callback the arguments can be trivially forwarded
73 // straight through.)
74 auto initiation = [](auto&& completion_handler,
75 tcp::socket& socket, std::unique_ptr<std::string> encoded_message)
76 {
77 // In this example, the composed operation's intermediate completion
78 // handler is implemented as a hand-crafted function object, rather than
79 // using a lambda or std::bind.
80 struct intermediate_completion_handler
81 {
82 // The intermediate completion handler holds a reference to the socket so
83 // that it can obtain the I/O executor (see get_executor below).
84 tcp::socket& socket_;
85
86 // The allocated buffer for the encoded message. The std::unique_ptr
87 // smart pointer is move-only, and as a consequence our intermediate
88 // completion handler is also move-only.
89 std::unique_ptr<std::string> encoded_message_;
90
91 // The user-supplied completion handler.
92 typename std::decay<decltype(completion_handler)>::type handler_;
93
94 // The function call operator matches the completion signature of the
95 // async_write operation.
96 void operator()(const boost::system::error_code& error, std::size_t /*n*/)
97 {
98 // Deallocate the encoded message before calling the user-supplied
99 // completion handler.
100 encoded_message_.reset();
101
102 // Call the user-supplied handler with the result of the operation.
103 // The arguments must match the completion signature of our composed
104 // operation.
105 handler_(error);
106 }
107
108 // It is essential to the correctness of our composed operation that we
109 // preserve the executor of the user-supplied completion handler. With a
110 // hand-crafted function object we can do this by defining a nested type
111 // executor_type and member function get_executor. These obtain the
112 // completion handler's associated executor, and default to the I/O
113 // executor - in this case the executor of the socket - if the completion
114 // handler does not have its own.
115 using executor_type = boost::asio::associated_executor_t<
116 typename std::decay<decltype(completion_handler)>::type,
117 tcp::socket::executor_type>;
118
119 executor_type get_executor() const noexcept
120 {
121 return boost::asio::get_associated_executor(
122 handler_, socket_.get_executor());
123 }
124
125 // Although not necessary for correctness, we may also preserve the
126 // allocator of the user-supplied completion handler. This is achieved by
127 // defining a nested type allocator_type and member function
128 // get_allocator. These obtain the completion handler's associated
129 // allocator, and default to std::allocator<void> if the completion
130 // handler does not have its own.
131 using allocator_type = boost::asio::associated_allocator_t<
132 typename std::decay<decltype(completion_handler)>::type,
133 std::allocator<void>>;
134
135 allocator_type get_allocator() const noexcept
136 {
137 return boost::asio::get_associated_allocator(
138 handler_, std::allocator<void>{});
139 }
140 };
141
142 // Initiate the underlying async_write operation using our intermediate
143 // completion handler.
144 auto encoded_message_buffer = boost::asio::buffer(*encoded_message);
145 boost::asio::async_write(socket, encoded_message_buffer,
146 intermediate_completion_handler{socket, std::move(encoded_message),
147 std::forward<decltype(completion_handler)>(completion_handler)});
148 };
149
150 // Encode the message and copy it into an allocated buffer. The buffer will
151 // be maintained for the lifetime of the asynchronous operation.
152 std::ostringstream os;
153 os << message;
154 std::unique_ptr<std::string> encoded_message(new std::string(os.str()));
155
156 // The boost::asio::async_initiate function takes:
157 //
158 // - our initiation function object,
159 // - the completion token,
160 // - the completion handler signature, and
161 // - any additional arguments we need to initiate the operation.
162 //
163 // It then asks the completion token to create a completion handler (i.e. a
164 // callback) with the specified signature, and invoke the initiation function
165 // object with this completion handler as well as the additional arguments.
166 // The return value of async_initiate is the result of our operation's
167 // initiating function.
168 //
169 // Note that we wrap non-const reference arguments in std::reference_wrapper
170 // to prevent incorrect decay-copies of these objects.
171 return boost::asio::async_initiate<
172 CompletionToken, void(boost::system::error_code)>(
173 initiation, token, std::ref(socket),
174 std::move(encoded_message));
175 }
176
177 //------------------------------------------------------------------------------
178
179 void test_callback()
180 {
181 boost::asio::io_context io_context;
182
183 tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
184 tcp::socket socket = acceptor.accept();
185
186 // Test our asynchronous operation using a lambda as a callback.
187 async_write_message(socket, 123456,
188 [](const boost::system::error_code& error)
189 {
190 if (!error)
191 {
192 std::cout << "Message sent\n";
193 }
194 else
195 {
196 std::cout << "Error: " << error.message() << "\n";
197 }
198 });
199
200 io_context.run();
201 }
202
203 //------------------------------------------------------------------------------
204
205 void test_future()
206 {
207 boost::asio::io_context io_context;
208
209 tcp::acceptor acceptor(io_context, {tcp::v4(), 55555});
210 tcp::socket socket = acceptor.accept();
211
212 // Test our asynchronous operation using the use_future completion token.
213 // This token causes the operation's initiating function to return a future,
214 // which may be used to synchronously wait for the result of the operation.
215 std::future<void> f = async_write_message(
216 socket, 654.321, boost::asio::use_future);
217
218 io_context.run();
219
220 try
221 {
222 // Get the result of the operation.
223 f.get();
224 std::cout << "Message sent\n";
225 }
226 catch (const std::exception& e)
227 {
228 std::cout << "Exception: " << e.what() << "\n";
229 }
230 }
231
232 //------------------------------------------------------------------------------
233
234 int main()
235 {
236 test_callback();
237 test_future();
238 }